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1 Introduction and summary

This paper uses analytic methods of the conformal bootstrap to construct non-planar cor-

relators in N = 4 super-Yang-Mills (SYM), and to relate them to detailed features of

perturbative type II closed string amplitudes. Our computations focus on two interre-

lated aspects.
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The first is the direct construction of the one-loop/genus-one, four-point string am-

plitude in AdS5 × S5 in the low-energy expansion. This is holographically dual to the

N = 4 SYM four-point function of the lowest half-BPS operator, in the ‘t Hooft limit at

O(1/c2) and in a 1/λ expansion. In the flat space limit, this maps onto the genus-one,

four-point scattering amplitude for type II closed strings in R10, which we call A(g=1). We

will develop the systematic expansion of this and related half-BPS four-point functions,

and give explicit low-orders results. In the flat space limit, we will match the N = 4 SYM

correlator to terms in the low-energy expansion of A(g=1) constructed from supergravity,

R4 and ∂4R4 vertices. We also perform a match of some results to all orders in α′, includ-

ing the forward limit of the discontinuity of A(g=1), which we derive on the string theory

side using existing technology.

The second is a new insight into the interpretation of subleading terms in the flat space

limit of AdS amplitudes, and how to fix them using string/M-theory.

Background. Four-particle amplitudes in type IIB string theory admit a double expan-

sion: a genus expansion in different topologies in powers of gs, and a low energy expansion

in powers of α′. For strings on AdS5 × S5 one can study this problem by considering

holographic correlators in N = 4 SYM, in a double expansion around large central charge

c and large ‘t Hooft coupling λ. These are correlators of protected chiral primary opera-

tors Op, dual to Kaluza-Klein (KK) scalars on S5, of dimension ∆ = p and SU(4)R irrep

[0, p, 0]. The simplest such operator is O2, the superconformal primary of the stress tensor

multiplet. We will focus on the four-point function 〈O2O2O2O2〉 at O(1/c2) in the 1/λ

expansion, and the matching of its flat space limit to the genus-one, four-point closed string

amplitude in the α′-expansion.

At the planar level, stringy corrections appear as local quartic vertices in the tree-level

AdS effective action. The origin of the stringy corrections to the N = 4 SYM correlator

is the S5 dimensional reduction of the low-energy expansion of the type IIB action. For

instance, quartic terms of schematic form ∂2kR4, where R is the 10d Riemann tensor, gen-

erate quartic vertices in AdS5 for all KK components of R. These translate to polynomial

amplitudes in Mellin space, and to linear combinations of so-called D-functions in position-

space [1–4]. Thus, in the context of AdS5 string theory, α′ corrections appear as polynomial

corrections to meromorphic tree-level Mellin amplitudes and, via the holographic relation

α′ = L2
AdS/
√
λ , (1.1)

to the 1/λ expansion of the N = 4 SYM Mellin amplitude. In the crossing context, these

polynomial corrections are sometimes referred to as “truncated” solutions.

At O(1/c2) in CFT (one-loop in AdS), amplitudes may be determined by a kind of

“AdS unitarity method.” This idea — introduced in [5], and further developed in [6] —

computes the one-loop amplitude essentially as a square of the tree-level amplitude. This

is made manifest in large spin perturbation theory [7] and the elegant Lorentzian inversion

formula [8], in which CFT correlators are determined, modulo certain low-spin data, by

their double-discontinuity (“dDisc”). In particular, dDisc of the one-loop correlator is

– 2 –



J
H
E
P
0
6
(
2
0
1
9
)
0
1
0

determined completely by tree-level data. This was leveraged in [9] to compute the full

CFT data for the one-loop correlator 〈O2O2O2O2〉 at infinite λ.1

Stringy corrections to non-planar correlators. Our goal here is to incorporate

stringy corrections to the one-loop amplitude in AdS5×S5 and, via the flat space limit, to

recover genus-one string amplitudes in 10d. We will determine the dDisc of 〈O2O2O2O2〉
at O(1/c2) to several orders in the 1/λ expansion and, from this, extract the physical con-

tent of the amplitude using Lorentzian inversion and the flat space limit. From the bulk

perspective, we are computing the dDiscs of the one-loop, four-point scattering amplitude

for type IIB closed strings in AdS5 × S5 in the low-energy expansion. Because all stringy

corrections involve quartic vertices, the 1/λ expansion of the one-loop correlator is dual

to a sum of the box function (one-loop supergravity) plus a tower of four-point triangle

and bubble diagrams in AdS5.2 These are degenerations of the non-perturbative (in α′)

one-loop closed string amplitude:

This picture may be thought of as living in R10 or AdS5 × S5.

Let us summarize the computation. The correlator 〈O2O2O2O2〉 is fixed by a single

function of cross-ratios which we call H(z, z̄). We will be computing the dDisc of its genus-

one term, H(g=1)(z, z̄). dDisc(H(g=1)) is completely determined by the term proportional

to log2 z, which is in turn fixed by the square of the tree-level anomalous dimensions, γ(g=0),

of SU(4)R singlet double-trace operators [O2O2]n,`, of schematic form

[O2O2]n,` = O2∂
2n∂µ1 . . . ∂µ`O2 − (traces) (1.2)

γ(g=0) is a function of λ, admitting an expansion

γ(g=0) ≈ γ(g=0|sugra) +

∞∑
k=0

λ−(3+k)/2γ(g=0|∂2kR4) (1.3)

The superscript refers to the 10d ∂2kR4, which generates, via dimensional reduction, or-

der λ−(3+k)/2 corrections to the AdS5 effective action. In the 1/λ expansion, the precise

expression for dDisc(H(g=1)) is a sum of powers of 1/λ times sums of the form

T x|y(z, z̄) ≡ 1

8

∑
n,`

a
(0)
n,`〈γ2〉x|yn,` gn,`(z, z̄) (1.4)

The a
(0)
n,` are squared OPE coefficients of mean field theory (MFT), gn,`(z, z̄) are the super-

conformal blocks corresponding to exchange of [O2O2]n,`, and

〈γ2〉x|yn,` ≡ 〈γ(g=0|x)γ(g=0|y)〉n,` , where x, y = sugra or ∂2kR4 . (1.5)

1A proposal for the full correlator was given in [10]. The same CFT data should follow from that proposal.
2This statement is precise modulo non-1PI diagrams, as explained in section 3.
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Each term in the expansion may be viewed as computing the dDisc of AdS triangle or

bubble diagrams with the appropriate quartic vertices:

T sugra|∂2kR4
(z, z̄) ⇔ dDisc(AdS5 triangles)

T ∂
2kR4|∂2k′R4

(z, z̄) ⇔ dDisc(AdS5 bubbles)
(1.6)

The “amplitudes” T x|y in (1.4) will be our main focus. We will compute them explicitly

for various cases involving sugra, R4 and ∂4R4 vertices. Based on this, we make an ansatz

for the transcendentality structure of T x|y in (3.22). The ansatz is simple, involving weight-

one functions only, and quite restrictive: indeed, upon specifying the order of the vertices,

a basis of solutions can be found. (See section 3.2.1.) This prescription (3.22) is one of our

main results.

As a technical remark, the computation requires incorporating 1/λ corrections into a

mixing problem among families of unprotected double-trace operators [OpOp]n,`. At c =∞,

these operators have ∆n,` = 2p + 2n + `, so the operators [O2O2]n,` are degenerate with

[OpOp]n−(p−2),`. This diagonalization is the meaning of the brackets in (1.4). The mixing

problem has been solved recently at λ = ∞ and to leading order in 1/c [6, 10–12]. As

shown in these works, this requires knowledge of the correlators 〈O2O2OpOp〉 to O(1/c).

That this mixing problem arises at one-loop can be seen heuristically via cutting AdS box

diagrams involving φp on the internal lines:

where the tree-level diagrams represent the correlators 〈O2O2OpOp〉 in the supergravity

approximation. In the present work we extend these results to include 1/λ corrections.

Again solving the mixing problem at O(1/c), we must now include the “truncated” so-

lutions to the crossing equations which correspond to the quartic vertices in AdS5. Such

contributions to mixing can then be depicted as follows:

and similarly for the triangle diagrams.

– 4 –
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Having computed these double-discontinuities, we then turn to extract interesting

physical information.

Anomalous dimensions. The most natural piece of data are 1/λ corrections to the

anomalous dimensions to O(1/c2). This can be directly obtained from the dDisc of each

contribution by the inversion formula, or equivalently large spin perturbation theory. A

remarkable feature of these results is the presence of simple poles at certain values of the

spin. This implies that the one-loop anomalous dimensions induced by stringy corrections

diverge linearly for these values of the spin. This is a CFT manifestation of the UV

divergences of one-loop AdS diagrams [5]. In AdS, these divergences are cured by local

counterterms, of exactly the same form as the quartic interactions that appear at tree-

level. The dimension of these counterterms dictates the maximum spin they can cure, and

is related to the degree of the divergence. For each triangle and bubble diagram we show

that the values of the spin for which we have poles are exactly the ones expected from the

above perspective.

Flat space limit. In any CFT with a string/M-theory dual, the leading terms of a

Mellin amplitude in the limit s, t→∞ may be determined by equating the result with the

appropriate 10d or 11d flat space string/M-theory scattering amplitude [3] (see also [13–

15]). For N = 4 SYM, this relates the non-planar correlator to the genus-one, type IIB

closed string amplitude in R10.3 This amplitude, A(g=1), is given by an integral of a

specific modular function over the fundamental domain of SL(2,Z) [17]. The α′ expansion

was studied in a series of works [18–24], most systematically in [25]. At low orders in the α′

expansion, transcendentality of the coefficients permits an unambiguous split4 into analytic

and non-analytic pieces,

A(g=1) ∝ A(g=1)
analytic(s, t) +A(g=1)

non-analytic(s, t) (1.7)

where s, t are 10d Mandelstam invariants.

The analytic piece can be thought of as regulating the one-loop UV divergences of

10d supergravity augmented by the higher-derivative quartic vertices of string theory. We

will show how the N = 4 SYM one-loop correlator — in particular, the pattern of UV

divergences exhibited by the anomalous dimensions described earlier — reflects the precise

functional form of A(g=1)
analytic.

More interesting is the non-analytic piece. In the flat space limit, the double-

discontinuity of the one-loop AdS amplitude becomes the discontinuity of the 10d am-

plitude [9]:

dDisc(H(g=1)) −−−−−−−−−→
flat space limit

Disc(A(g=1)) . (1.8)

3It is known that type IIA and IIB four-point scattering amplitudes in R10 are equal through genus

four [16].
4This is the conclusion of [25], see e.g. section 4.3. However, adopting a form of transcendental grading

in which logarithms of Mandelstam invariants have unit weight, the analytic and non-analytic pieces of the

amplitude possess terms of equal weight at low orders. This will not affect our matching between AdS and

flat space amplitudes. We thank Eric D’Hoker for raising this issue.
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By taking this limit, we generate predictions for the discontinuities of A(g=1) involving

sugra, R4 and ∂4R4 vertices. Using previous results of [25], we find a match.

We also use our CFT methods to compute the functional form of certain discontinuities

to all orders: first, any term in the α′ expansion of A(g=1) involving at least one R4

vertex; and second, the complete discontinuity of A(g=1) in the limit of forward scattering

(t → 0). We independently derive these results, and determine the actual coefficients,

using the string theory techniques of [25]. (See (4.22) and (4.25).) To our knowledge, these

expressions have not appeared elsewhere.

Flat space limit: subleading order. In taking the flat space limit, we run into an

interesting open question for holography. Subleading terms at large s, t represent “finite

size corrections” due to AdS curvature, and are not accessible using naive application of

the flat space limit. One would like to know whether these subleading terms — indeed,

the full AdS amplitudes themselves — may be recast as certain scattering observables in

the higher-dimensional string/M-theory and, if so, which ones.

One of our main observations is that subleading terms in the s, t→∞ limit of tree-level

AdS Mellin amplitudes may actually be fixed by constructing the one-loop AdS amplitude,

and matching its flat space limit to a one-loop string/M-theory amplitude. The basic point

is that since the one-loop amplitude is essentially the square of the tree-level amplitude

by AdS unitarity, the subleading terms in the tree-level amplitude feed into the one-loop

amplitude. Then by matching the latter to the string/M-theory one-loop amplitude, these

subleading terms can be at least partially fixed. For the case of 〈O2O2OpOp〉 at O(1/c), the

first such subleading term appears at O(λ−5/2), where the Mellin amplitude takes the form5

β(s2 + t2 + u2) + β1 + β2s (1.9)

where (β, β1, β2) are functions of p. Only β, given in (2.24), can be fixed by matching onto

the Virasoro-Shapiro amplitude at O(α′5). By matching to the genus-one string amplitude

at O(α′5) we fix β2 = 2p(p− 2)(p+ 1)4, and reduce β1 to two constants.

Organization. In section 2 we set up the problem, introduce the tree-level amplitudes

in the 1/λ expansion, and explain where the subleading terms at large s, t come from in

terms of the AdS5 × S5 reduction. In section 3 we construct the dDisc of the one-loop

amplitudes to the first several orders in 1/λ, reveal their transcendental structure, and

use this to parameterize the coefficients of subleading terms in the tree-level correlator at

O(λ−5/2). In section 4 we make contact with the type II genus-one string amplitudes.

We relate their analytic parts to the structure of one-loop anomalous dimensions and UV

divergences. Taking the flat space limit of our dDiscs, we reproduce the discontinuities of

various terms in the genus-one string amplitudes and constrain the subleading coefficients

β1(p) and β2(p) given above. We end with a handful of open problems, while various

appendices supplement the main text.

5At O(λ−3/2), the leading stringy correction, the amplitude is just a constant which can be matched

using the flat space limit and the known 10d R4 vertex, see [26] and appendix B.
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2 Generalities and tree-level solutions

Our object of study is the four-point function of O2, the superconformal primary in the

stress tensor multiplet of N = 4 SYM. O2 is a rank-two symmetric traceless tensor

of SO(6)R ≈ SU(4)R. Contracting its R-symmetry indices with polarization vectors yi
obeying the null condition yi · yi = 0, we introduce the index-free four-point function

〈O2(x1, y1)O2(x2, y2)O2(x3, y3)O2(x4, y4)〉 =
(y1 · y2)2(y3 · y4)2

x4
12x

4
34

∑
R
Y R(σ, τ)GR(z, z̄)

(2.1)

where the sum runs over SU(4)R representations R ∈ [0, 2, 0]× [0, 2, 0]. We have introduced

cross-ratios in position space

zz̄ =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

, xij = xi − xj (2.2)

and polarization space,

σ ≡ (y1 · y3)(y2 · y4)

(y1 · y2)(y3 · y4)
, τ ≡ (y1 · y4)(y2 · y3)

(y1 · y2)(y3 · y4)
. (2.3)

The Y R(σ, τ) are SO(6) harmonics which may be found in [27]. We will work in the

Lorentzian regime, where z, z̄ are independent complex variables. (For the physical cor-

relator, they are real variables.) Superconformal Ward identities [27, 28] allow to write

all GR(z, z̄) in terms of a single function G(z, z̄) ≡ G105(z, z̄)/(zz̄)2, where the irrep

105 ≡ [0, 4, 0]. Under the crossing transformation z ↔ 1− z̄, this satisfies the relation

((1− z)(1− z̄))2G(z, z̄)− (zz̄)2G(1− z̄, 1− z)

+ ((zz̄)2 − ((1− z)(1− z̄))2) +
zz̄ − (1− z)(1− z̄)

c
= 0 (2.4)

where the central charge c = (N2−1)/4. See [29] for a detailed discussion. The contribution

to G(z, z̄) from protected intermediate operators, belonging to short multiplets, can be

computed exactly and is denoted by Gshort(z, z̄). We then split

G(z, z̄) = Gshort(z, z̄) +H(z, z̄) (2.5)

where H(z, z̄) carries the dynamically non-trivial information and admits a decomposition

in superconformal blocks,

H(z, z̄) =
∑
∆,`

a∆,`g∆,`(z, z̄) , (2.6)

with squared three-point coefficients a∆,`. The sum runs over superconformal primaries in

long multiplets, of dimension ∆ and (traceless symmetric) Lorentz spin `. The supercon-

formal blocks are given by

g∆,`(z, z̄) = (zz̄)
∆−`

2

z`+1F∆+`+4
2

(z)F∆−`+2
2

(z̄)− z̄`+1F∆+`+4
2

(z̄)F∆−`+2
2

(z)

z − z̄ (2.7)

– 7 –
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where

Fβ(z) ≡ 2F1(β, β, 2β; z) (2.8)

is the standard hypergeometric function. Gshort(u, v) is independent of the coupling con-

stant λ and is 1/c exact [29]. In this paper, we will study G(z, z̄) at O(1/c2); so for our

purposes H(z, z̄) obeys the homogeneous crossing equation

H(z, z̄) =

(
zz̄

(1− z)(1− z̄)

)2

H(1− z̄, 1− z) (O(1/c2)) . (2.9)

In the ’t Hooft limit, CFT observables admit an expansion in powers of 1/c times

functions of the ’t Hooft coupling λ. In perturbation theory around strong coupling, this

becomes a double expansion in 1/c and 1/λ. H(z, z̄) admits a double expansion of the form6

H(z, z̄) =H(0)(z, z̄)+c−1
(
H(g=0)

sugra (z, z̄)+λ−3/2H(g=0)
1 (z, z̄)+λ−5/2H(g=0)

2 (z, z̄)+· · ·
)

+c−2
(
H(g=1)

sugra (z, z̄)+λ−3/2H(g=1)
1 (z, z̄)+λ−5/2H(g=1)

2 (z, z̄)+· · ·
)

+· · · (2.10)

H(0)(z, z̄) is the MFT contribution, while H(g=0)
sugra (z, z̄) is the well known supergravity re-

sult [30, 31],7

H(g=0)
sugra (z, z̄) = −(zz̄)2D̄2,4,2,2(z, z̄) (2.11)

The precise powers of λ appearing are inferred from the type IIB string amplitudes. We

will give further detail about these in section 4.

In strong coupling perturbation theory, the only single-trace operators with finite con-

formal dimensions are the half-BPS operators Op. The long operators contributing to

H(z, z̄) to O(1/c2) in the superconformal block decomposition (2.6) are the double-trace

operators [OpOp]n,`. Their scaling dimensions admit an expansion analogous to (2.10),

∆n,` = 4 + 2n+ `+
1

c

(
γ

(g=0|sugra)
n,` +

1

λ3/2
γ

(g=0|R4)
n,` + · · ·

)
+ · · · (2.12)

and likewise for the squared three-point coefficients an,` ≡ C2
22[pp]n,`

. For later convenience

we quote the leading-order result for the anomalous dimension

γ
(g=0|sugra)
n,` = − κn

(`+ 1)(`+ 6 + 2n)
, where κn = (n+ 1)4 . (2.13)

with (n+ 1)4 = Γ(n+ 5)/Γ(n+ 1) being the ascending Pochhammer symbol.

As will be clear in the next section, in computing the solutions to O(1/c2) we will

be forced to consider more general correlators 〈O2O2OpOp〉. The structure of these cor-

relators is almost identical to 〈O2O2O2O2〉: in the direct channel 22 → pp, the correlator

can again be decomposed into six SU(4)R representations, and again the superconformal

6At O(1/c2) and beyond, there are also log λ terms. Their existence is implied by the presence of

logarithmic threshold terms in the genus-one string amplitude. We will determine the discontinuities of

these logs from our CFT results. See section 4.2 for further discussion.
7As proven in [9], both H(0)(z, z̄) and H(g=0)

sugra (z, z̄) follow from the structure of singularities as z̄ → 1 in

the crossing equation.

– 8 –
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Ward identities determine all six channels in terms of a single function. The dynamically

non-trivial information arises from double-trace unprotected operators and is encoded in

Hp(z, z̄), which admits a double expansion analogous to (2.10). For general p,

H(g=0)
p,sugra(z, z̄) = − p

2Γ(p− 1)
(zz̄)pD̄p,p+2,2,2(z, z̄) (2.14)

Note that for p 6= 2 crossing relates Hp(z, z̄) to a different correlator, so that the rela-

tion (2.9) is not satisfied.

2.1 Mellin space

We will sometimes use the Mellin space approach to these amplitudes and their stringy

corrections. The Mellin representation of the above correlators Hp(z, z̄) is defined as8

Hp(z, z̄) =

∫ i∞

−i∞

dsdt

(4πi)2
(zz̄)s/2((1− z)(1− z̄))t/2−(p+2)/2 Γpp22Mp(s, t) (2.15)

where

Γpp22 ≡ Γ

(
2p− s

2

)
Γ

(
4− s

2

)
Γ

(
p+ 2− t

2

)2

Γ

(
p+ 2− u

2

)2

(2.16)

with s+ t+ u = 2p. The crossing conditions simply read

Mp(s, t) =Mp(s, u), M2(s, t) =M2(t, s) (2.17)

The supergravity solutions take a very simple form

Mp,sugra(s, t) =
4p

Γ(p− 1)

1

(s− 2)(t− p)(u− p) (2.18)

which indeed can be seen to satisfy the crossing conditions. In appendix B, we explain how

to take the flat space limit of these Mellin amplitudes and the subsequent relation to type

IIB S-matrix elements.

2.2 Structure of genus zero solutions

Let us now discuss stringy corrections to the supergravity result (2.18). The case p = 2 was

addressed in [4] but the generalisation to arbitrary p is straightforward, following the above

rules and imposing the crossing condition (2.17). For p = 2, the solutions are spanned by

the basis of monomials

σm2 σ
n
3 , where σp ≡ sp + tp + up . (2.19)

σm2 σ
n
3 gives rise to double-trace data for spins ` ≤ L = 2(m + n). Generalizing to p 6= 2,

{σm2 σn3 } no longer forms a basis, as we can construct more general solutions which obey

t↔ u, but not s↔ t, crossing symmetry.

While crossing symmetry alone cannot fix the overall coefficient of a solution, conformal

Regge theory [34] and unitarity imply that polynomial amplitudes are suppressed by powers

8M is the “reduced” amplitude in the parlance of [32, 33], who call it M̃. Likewise, uhere = ũthere. How

to recover the rational parts of position space amplitudes is discussed in [33].
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of the higher spin gap scale ∆gap, with the number of powers determined by dimensional

analysis [2, 8, 35–39]. In the context of string theory in AdS,
√
α′ ∼ 1/∆gap. This implies

that a (2m + 3n)-derivative term in the N = 4 SYM Mellin amplitude, such as σm2 σ
n
3 ,

appears multiplied by λ−(3/2+m+3n/2), to leading order in 1/λ. We can thus parameterize

the tree-level amplitudes M(g=0)
p (s, t) in the 1/λ expansion as

M(g=0)
p (s, t) =

p

Γ(p− 1)

 4

(s− 2)(t− p)(u− p) +
∞∑

m,n=0

λ−(3/2+m+3n/2)M(g=0)
p|m,n(s, t)


(2.20)

where

M(g=0)
p|m,n(s, t) ∝ σm2 σn3 + subleading powers (2.21)

The presence of subleading powers will be explained momentarily. It is also useful to

organize the expansion in momenta rather than in powers of 1/λ, whereupon the coefficient

of a given term has an infinite expansion in 1/λ. For p = 2, for example, where σm2 σ
n
3 form

a basis,

M(g=0)
2 (s, t) =

p

Γ(p− 1)

 4

(s− 2)(t− p)(u− p) +
∞∑

m,n=0

σm2 σ
n
3λ
−(3/2+m+3n/2)fm,n(λ)


(2.22)

where fm,n(λ) has an infinite expansion in non-negative powers of 1/
√
λ.

This structure may be understood from the form of the tree-level AdS5 effective action

for KK scalars φp dual to Op. All polynomial Mellin amplitudes for Mp are associated to

quartic bulk vertices φ2
2φ

2
p. The suppression of 10d derivatives by powers of α′ translates

directly into 1/λ suppression of quartic vertices in AdS5 after dimensional reduction on

S5, where we recall that LS5 = LAdS. The leading terms in (2.21) come from dimensional

reduction of the corresponding 10d vertices ∂2kR4 (+ superpartners), with 2k = 4m+ 6n.

The subleading terms in (2.21) come from higher-derivative terms in 10d which have legs

on the S5. Conversely, the leading terms may be fixed by the leading asymptotics in the

s, t→∞ limit of the AdS5 amplitude.

It is useful to write the first few orders explicitly,

M(g=0)
p (s, t) =

p

Γ(p−1)

(
4

(s−2)(t−p)(u−p) +
α

λ3/2
+

1

λ5/2
(βσ2+β1+β2s)+O(λ−3)

)
(2.23)

where (α, β, β1, β2) are constant parameters which may depend on p. The term of O(λ−3/2)

descends from the 10d R4 supervertex, while the terms of O(λ−5/2) descend from the 10d

∂4R4 supervertex.9 We can fix α and β by matching to the Virasoro-Shapiro amplitude in

the flat space limit, as done in [26] for the R4 term in p = 2. This is done in appendix B

using the formula (B.15), with the result

α = ζ3(p+ 1)3 , β =
ζ5

8
(p+ 1)5 , (2.24)

9In what follows, we will refer to the λ−3/2 term as the R4 term, etc., even though we are always

computing AdS5 amplitudes for scalar fields.
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where ζs is the Riemann zeta function. However, β1 and β2 descend from the 10d ∂4R4

supervertex with legs on the S5: they are subleading in the flat space limit, and cannot be

fixed by this method alone. One of the aims of this paper is to understand to what extent

we can fix such subleading parameters, thus making a precise identification between trun-

cated solutions and quartic vertices in the AdS5 effective action. For future convenience,

we redefine

β1 ≡ β1(p)(p+ 1)3 , β2 ≡ β2(p)(p+ 1)4 . (2.25)

In space-time, these truncated solutions have a relatively simple structure, involving

rational and transcendental functions, of the form

H(z, z̄)|σm2 σn3 = R0(z, z̄)+R1(z, z̄) log zz̄+R2(z, z̄) log(1−z)(1−z̄)+R2(z, z̄)Φ(z, z̄) (2.26)

where Φ(z, z̄) is the standard one-loop scalar box integral. An important feature of these

rational functions is that they have a divergence as z → z̄, of the form

σm2 σ
n
3 → Ri(z, z̄) ∼ 1

(z − z̄)13+4m+6n
(2.27)

As discussed in [2, 15, 40, 41], this singularity is expected for holographic CFT’s with a

local bulk dual. It is also directly related to the large n behaviour of the γn,` generated by

these solutions: σm
′

2 σn
′

3 generates γ
(m′,n′)
n,` with behavior

γ
(m′,n′)
n,` ∼ n9+4m′+6n′ (n� 1) (2.28)

In a general sum of the form

f(z, z̄) =
∑
n,`

a
(0)
n,`ψn,`gn,`(z, z̄) (2.29)

for some ψn,`, we expect

ψn�1,` ∼ nα → f(z, z̄) ∼ 1

(z − z̄)α+4
as z → z̄ . (2.30)

3 One-loop solutions

Let us now proceed to construct the tower of one-loop solutions, at O(1/c2) in CFT. We

will follow closely the strategy of [6], where H(g=1)
sugra (z, z̄) was constructed. The idea was

explained in the introduction: determine the double-discontinuity (dDisc) of the amplitude,

and use the Lorentzian inversion formula to extract the full OPE data (and construct the

full amplitude if one wishes).

The dDisc of an amplitude H(z, z̄) may be defined as the difference between the Eu-

clidean correlator and its two possible analytic continuations around z̄ = 1, keeping z

held fixed:

dDisc [H(z, z̄)] ≡ H(z, z̄)− 1

2
H	(z, z̄)− 1

2
H�(z, z̄). (3.1)

Note that integer powers of (1 − z̄) times log(1 − z̄) have vanishing dDisc. At strong

coupling, all powers of (1− z̄) are indeed integer, because the spectrum consists of Op and
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their composites. Consequently, the full dDisc of the one-loop amplitudes comes from the

piece proportional to log2(1− z̄). By crossing, which takes z → 1− z̄, this maps to terms

proportional to log2 z. Hence we are interested in finding this piece of the correlator. The

log2 z terms come exclusively from the squared genus-zero anomalous dimensions. Using

the expansion in superconformal blocks,

H(g=1)(z, z̄)
∣∣∣
log2 z

=
1

8

∑
n,`

〈a(0)(γ(g=0))2〉n,` gn,`(z, z̄) (3.2)

where gn,`(z, z̄) stands for the conformal block evaluated at ∆ = 4+2n+`. The anomalous

dimension γ(g=0) is the full anomalous dimension at O(1/c), and admits the 1/λ expan-

sion in (1.3). We have used the bracket to denote an implicit sum over all operators of

approximate twist 4 + 2n and spin `. This is necessary due to mixing: as noted in the

introduction and reviewed in appendix A, for given quantum numbers (n, `), there are n+1

nearly-degenerate operators of the same spin `.

[O2,O2]n,`, [O3,O3]n−1,`, · · · , [O2+n,O2+n]0,`. (3.3)

The intermediate operators in the conformal block expansion of H(z, z̄) are the eigenfunc-

tions ΣI of the dilatation operator, where I = 1, · · ·n+1, and (suppressing all other indices)

〈aγ2〉 ≡
n+1∑
I=1

a
(0)
I γ2

I (3.4)

In this section we determine dDisc(H(g=1)(z, z̄)|log2 z) to the first few non-trivial orders in

the 1/λ expansion by expanding γI in 1/λ.

3.1 Review of one-loop supergravity calculation

As shown in [6, 10, 11], in order to solve the mixing problem that appears at O(1/c2), one

needs to consider the family of holographic correlators 〈O2O2OpOp〉 to O(1/c). In [6] the

leading supergravity result, with no stringy corrections, was considered. The final result

for the weighted average 〈(γ(g=0|sugra))2〉n,` is a complicated expression and can be found

in [6]. A remarkable feature is its behaviour for large n,

〈(γ(g=0|sugra))2〉n,` ∼ n11 (n� 1) (3.5)

Without mixing, the square would instead behave as the square of the supergravity result,

namely ∼ n6. One can interpret the extra n5 as arising from the presence of the S5 in the

gravity dual. Using 〈(γ(g=0|sugra))2〉n,`, one can compute the final expression for the above

sum, which yields

H(g=1)
sugra (z, z̄)

∣∣∣
log2 z

=R0(z, z̄)+R1(z, z̄)(Li2(z)−Li2(z̄))+R2(z, z̄)(log2(1−z)−log2(1−z̄))

+R3(z, z̄)(log(1−z)−log(1−z̄))+R4(z, z̄)(log(1−z)+log(1−z̄)) (3.6)
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for some rational functions Ri(z, z̄) which can be found in [9]. In terms of AdS, this

represents the double-discontinuity of the box diagram. An important feature of these

rational functions is that they contain the factor

Ri(z, z̄) ∝ 1

(z − z̄)15
(3.7)

Following the discussion at the end of section 2, this follows from (3.5) as expected.

3.2 Adding stringy corrections

We now include higher order terms in 1/λ. Having fixed the truncated solutions forHp(u, v)

to O(1/c), we can compute the averages 〈(γ(g=0))2〉n,` in a large λ expansion by solving the

mixing problem order-by-order, and then plug into (3.2). As the complexity of the compu-

tation grows quickly, we focus on the first few orders. This will be enough to understand

the systematics of the expansion and will already provide explicit new results. Using the

shorthand (1.5), the 1/λ expansion of (3.2) is of the form10

H(g=1)(z, z̄)
∣∣∣
log2 z

= T sugra|sugra(z, z̄) +

∞∑
k=0

T sugra|∂2kR4
(z, z̄) +

∞∑
k=0

∞∑
k′=0

T ∂
2kR4|∂2k′R4

(z, z̄)

(3.8)

where T x|y(z, z̄) was defined in (1.4).

We will consider the sums involving sugra, R4 and ∂4R4 vertices:

O(λ−3/2) : T sugra|R4
(z, z̄) ≡ 1

8

∑
n,`

a
(0)
n,`〈γ2〉sugra|R4

n,` gn,`(z, z̄)

O(λ−5/2) : T sugra|∂4R4
(z, z̄) ≡ 1

8

∑
n,`

a
(0)
n,`〈γ2〉sugra|∂4R4

n,` gn,`(z, z̄)

O(λ−3) : TR
4|R4

(z, z̄) ≡ 1

8

∑
n,`

a
(0)
n,`〈γ2〉R

4|R4

n,` gn,`(z, z̄)

O(λ−4) : TR
4|∂4R4

(z, z̄) ≡ 1

8

∑
n,`

a
(0)
n,`〈γ2〉R

4|∂4R4

n,` gn,`(z, z̄)

O(λ−5) : T ∂
4R4|∂4R4

(z, z̄) ≡ 1

8

∑
n,`

a
(0)
n,`〈γ2〉∂

4R4|∂4R4

n,` gn,`(z, z̄)

(3.9)

As explained in the introduction, each term in the expansion may be viewed as computing

the dDisc of an AdS triangle or bubble diagram with the appropriate higher-derivative

vertices.11 We depict the AdS diagrams for two such terms in figure 1.

10We will sometimes use superscripts (m,n) ≡ σm2 σ
n
3 , as in (2.21), to distinguish different structures

at ∂2kR4.
11There are also vertex corrections and mass and wave function renormalizations. For instance, there

exists a bubble vertex correction to tree-level exchange — in which the bubble has one cubic and one quartic

vertex — which is of the same order in 1/λ as a four-point triangle. These non-1PI diagrams are also part

of the AdS picture of the stringy corrections being computed here.
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<latexit sha1_base64="2M+EMcquleH3VfRa4zfcO+L5+Mw=">AAACAHicbVA9T8MwEHXKVylfAQYGFosKialKUCUYK1gYC6KlUpNWF9dprTpOZDtIVdSFv8LCAEKs/Aw2/g1OmwFanmTp6b27890LEs6Udpxvq7Syura+Ud6sbG3v7O7Z+wdtFaeS0BaJeSw7ASjKmaAtzTSnnURSiAJOH4Lxde4/PFKpWCzu9SShfgRDwUJGQBupbx95CUjNgPfqXgR6RIBnd9NevW9XnZozA14mbkGqqECzb395g5ikERWacFCq6zqJ9rN8OOF0WvFSRRMgYxjSrqECIqr8bHbAFJ8aZYDDWJonNJ6pvzsyiJSaRIGpzJdUi14u/ud1Ux1e+hkTSaqpIPOPwpRjHeM8DTxgkhLNJ4YAkczsiskIJBBtMquYENzFk5dJ+7zmOjX3tl5tXBVxlNExOkFnyEUXqIFuUBO1EEFT9Ixe0Zv1ZL1Y79bHvLRkFT2H6A+szx/CfJZ+</latexit><latexit sha1_base64="2M+EMcquleH3VfRa4zfcO+L5+Mw=">AAACAHicbVA9T8MwEHXKVylfAQYGFosKialKUCUYK1gYC6KlUpNWF9dprTpOZDtIVdSFv8LCAEKs/Aw2/g1OmwFanmTp6b27890LEs6Udpxvq7Syura+Ud6sbG3v7O7Z+wdtFaeS0BaJeSw7ASjKmaAtzTSnnURSiAJOH4Lxde4/PFKpWCzu9SShfgRDwUJGQBupbx95CUjNgPfqXgR6RIBnd9NevW9XnZozA14mbkGqqECzb395g5ikERWacFCq6zqJ9rN8OOF0WvFSRRMgYxjSrqECIqr8bHbAFJ8aZYDDWJonNJ6pvzsyiJSaRIGpzJdUi14u/ud1Ux1e+hkTSaqpIPOPwpRjHeM8DTxgkhLNJ4YAkczsiskIJBBtMquYENzFk5dJ+7zmOjX3tl5tXBVxlNExOkFnyEUXqIFuUBO1EEFT9Ixe0Zv1ZL1Y79bHvLRkFT2H6A+szx/CfJZ+</latexit><latexit sha1_base64="2M+EMcquleH3VfRa4zfcO+L5+Mw=">AAACAHicbVA9T8MwEHXKVylfAQYGFosKialKUCUYK1gYC6KlUpNWF9dprTpOZDtIVdSFv8LCAEKs/Aw2/g1OmwFanmTp6b27890LEs6Udpxvq7Syura+Ud6sbG3v7O7Z+wdtFaeS0BaJeSw7ASjKmaAtzTSnnURSiAJOH4Lxde4/PFKpWCzu9SShfgRDwUJGQBupbx95CUjNgPfqXgR6RIBnd9NevW9XnZozA14mbkGqqECzb395g5ikERWacFCq6zqJ9rN8OOF0WvFSRRMgYxjSrqECIqr8bHbAFJ8aZYDDWJonNJ6pvzsyiJSaRIGpzJdUi14u/ud1Ux1e+hkTSaqpIPOPwpRjHeM8DTxgkhLNJ4YAkczsiskIJBBtMquYENzFk5dJ+7zmOjX3tl5tXBVxlNExOkFnyEUXqIFuUBO1EEFT9Ixe0Zv1ZL1Y79bHvLRkFT2H6A+szx/CfJZ+</latexit><latexit sha1_base64="2M+EMcquleH3VfRa4zfcO+L5+Mw=">AAACAHicbVA9T8MwEHXKVylfAQYGFosKialKUCUYK1gYC6KlUpNWF9dprTpOZDtIVdSFv8LCAEKs/Aw2/g1OmwFanmTp6b27890LEs6Udpxvq7Syura+Ud6sbG3v7O7Z+wdtFaeS0BaJeSw7ASjKmaAtzTSnnURSiAJOH4Lxde4/PFKpWCzu9SShfgRDwUJGQBupbx95CUjNgPfqXgR6RIBnd9NevW9XnZozA14mbkGqqECzb395g5ikERWacFCq6zqJ9rN8OOF0WvFSRRMgYxjSrqECIqr8bHbAFJ8aZYDDWJonNJ6pvzsyiJSaRIGpzJdUi14u/ud1Ux1e+hkTSaqpIPOPwpRjHeM8DTxgkhLNJ4YAkczsiskIJBBtMquYENzFk5dJ+7zmOjX3tl5tXBVxlNExOkFnyEUXqIFuUBO1EEFT9Ixe0Zv1ZL1Y79bHvLRkFT2H6A+szx/CfJZ+</latexit>

Figure 1. Two contributions to the genus-one AdS amplitude. The respective sums in (3.9)

compute their dDiscs.

The functions T should have the following properties:

1. Symmetry under exchange 1 ↔ 2. This is a symmetry of the full correlator and of

each superconformal block. It acts on cross-ratios as (z, z̄) → ( z
z−1 ,

z̄
z̄−1) and maps

the piece proportional to log2 z to itself. This implies

T

(
z

z − 1
,

z̄

z̄ − 1

)
= (1− z)2(1− z̄)2T (z, z̄) (3.10)

2. Absence of terms proportional to log2(1 − z̄). This arises from the fact that the

sum over spins is truncated. Hence, it cannot produce a double-discontinuity

around z̄ = 1.

It turns out that these two properties are quite restrictive. If one further assumes that

the functions admit a transcendental form analogous to (3.6) this forbids functions of

transcendentality higher than one.12

Let us consider the anomalous dimension averages involving the vertex R4. From the

results in appendix A, and using α = ζ3(p+ 1)3 from (2.24), we find

〈γ2〉sugra|R4

n,` = ζ3
(n+ 1)3(n+ 2)4(n+ 3)5(n+ 4)4(n+ 5)3

720(2n+ 5)(2n+ 7)
δ`,0

〈γ2〉R
4|R4

n,` = ζ2
3

(n+ 1)4(n+ 2)5(n+ 3)7(n+ 4)5(n+ 5)4

3360(2n+ 5)(2n+ 7)
δ`,0

(3.11)

The p-dependence α ∝ (p+ 1)3 is critical to the rationality of these results. At n� 1,

〈γ2〉sugra|R4

n�1,0 ∼ n17, 〈γ2〉R
4|R4

n�1,0 ∼ n23 (3.12)

This agrees with expectations: recalling that the supergravity solution goes like n3, while

the first truncated solution goes like n9, so taking into account the extra factor of n5 from

12This is indeed the case for T sugra|R4

and TR
4|R4

, as we will see by direct computation below. It will

also be borne out in the flat space limit, when we recover the genus-one type II string amplitude in R10.
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mixing indeed yields 17 = 3 + 9 + 5 and 23 = 9 + 9 + 5. We can now plug (3.11) into the

sums (3.2). The final result has a very simple structure,

T sugra|R4
(z, z̄) =

P sugra,R4

1 (z, z̄) + P sugra,R4

0 (z, z̄) log(1− z̄)− P sugra,R4

0 (z̄, z) log(1− z)

(z − z̄)21

TR
4|R4

(z, z̄) =
PR

4,R4

1 (z, z̄) + PR
4,R4

0 (z, z̄) log(1− z̄)− PR4,R4

0 (z̄, z) log(1− z)

(z − z̄)27
(3.13)

where P sugra,R4

i (z, z̄), PR
4,R4

i (z, z̄) are polynomials of degree 19 and 25, respectively.13 The

power of (z−z̄) in the denominator is consistent with the rule (2.30). These are complicated

polynomials, but we now show how to characterise them and their higher derivative cousins

using general considerations.

3.2.1 A basis of special functions

Consider the following sums for generic insertions ρn,`

SL(z, z̄) ≡
L∑
`

∑
n

a
(0)
n,`ρn,`gn,`(z, z̄) (3.14)

where L is a non-negative integer. For the problem at hand, the insertion ρn,` corresponds

to the averaged squared anomalous dimension; as argued earlier, in the context of stringy

corrections we expect this to have the following structure

SL(z, z̄) =
R0(z, z̄)

(z − z̄)m
+
R1(z, z̄) log(1− z̄)±R1(z̄, z) log(1− z)

(z − z̄)m
(3.15)

m and L are non-negative integers, and R0(z, z̄), R1(z, z̄) are rational functions with simple

denominators. The sign in the second term depends on whether m is even or odd, so as to

be symmetric under the z ↔ z̄ symmetry of the superconformal blocks gn,`(z, z̄).

What is the most general form of the insertions ρn,` that leads to this structure,

and what are the allowed functions Ri(z, z̄) and the integers (L,m)? To be precise, for

each m we have searched for solutions where the rational functions Ri(z, z̄) truncate at

some order in a small z, z̄ expansion. This order could in principle be very high, but

the correct symmetry under (z, z̄) → ( z
z−1 ,

z̄
z̄−1) puts an upper bound. By studying the

explicit sums over conformal blocks and imposing the above condition, we can count the

number of independent solutions, and study their explicit form. The number of solutions

depends on L.14

At L = 0, we obtain the following family of solutions, labelled by q = 0, 1, · · · :

ρ
(0,q)
n,0 =

Γ(n+ q + 6)

(2n+ 5)(2n+ 7)Γ(n− q + 1)
(3.16)

13These are available from the authors on request.
14Although very related, note that this is not the same problem as the one considered in [2]. There,

the task was to find crossing-symmetric amplitudes formed from conformal blocks and their ∆-derivatives.

The ansatz (3.15) is not crossing-symmetric, and is formed out of conformal blocks alone. In our phyiscal

problem it represents the dDisc of an amplitude, not a full amplitude.
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This obeys ρ
(2,q)
n�1,0 ∼ n3+2q. Denoting the full sums by S

(q)
0 (z, z̄), they take the form

S
(q)
0 (z, z̄) =

P
(5+2q)
1 (z̄, z)

(z − z̄)7+2q
+
P

(5+2q)
0 (z, z̄) log(1− z̄)− P (5+2q)

0 (z̄, z) log(1− z)

(z − z̄)7+2q
(3.17)

where the P
(d)
i (z, z̄) are degree-d polynomials. Explicit results are given in appendix C.

The S
(q)
0 (z, z̄) are related by a differential recursion in q.

At L = 2, we have a new family of solutions, again labelled by q = 0, 1, · · · :

ρ
(2,q)
n,0 =

3(2q + 5)Γ(n+ q + 7)

(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9)(2q + 9)Γ(n− q) (3.18)

ρ
(2,q)
n,2 =

Γ(n+ q + 8)

(2n+ 5)(2n+ 7)(2n+ 9)(2n+ 11)Γ(n− q + 1)
(3.19)

Note that the relative coefficient between the two terms is fixed. This again obeys ρ
(2,q)
n�1,0 ∼

ρ
(2,q)
n�1,2 ∼ n3+2q. Denoting the full sums by S

(q)
2 (z, z̄), their general structure is of the form

S
(q)
2 (z, z̄) =

P
(9+2q)
0 (z, z̄)

z̄3(z − z̄)7+2q
log(1− z̄)− P

(9+2q)
0 (z, z̄)

z3(z − z̄)7+2q
log(1− z) +

P
(7+2q)
1 (z̄, z)

z2z̄2(z − z̄)7+2q
(3.20)

We conjecture these to be the complete set of solutions at L = 0, 2. The procedure

can be carried out at higher L as desired. A generic feature, checked through L = 6, seems

to be that

S
(q)
L (z, z̄) ∝ (z − z̄)−(7+2q) (3.21)

3.2.2 General prescription

With these families of functions at hand, let’s now turn to the one-loop stringy corrections.

Our claim is that the sums (3.9) and their higher-derivative partners must be writable as lin-

ear combinations of the sums SL(z, z̄), where L is determined by the derivative order. This

follows from the functional ansatz (3.15). This leads to the following general prescription:

Prescription. For a ∂4m+6nR4 contribution (m,n) ≡ σm2 σn3 at one or both vertices,

T sugra|(m′,n′)(z, z̄) =

2(m′+n′)∑
s=0

7+2m′+3n′∑
q=0

cs,q S
(q)
s (z, z̄) ,

T (m,n)|(m′,n′)(z, z̄) =

smax∑
s=0

qmax∑
q=0

cs,q S
(q)
s (z, z̄)

(3.22)

for some constants cs,q, where

smax = 2×min(m+ n,m′ + n′) , qmax = 10 + 2(m+m′) + 3(n+ n′) (3.23)

The upper bounds on s follow from the discussion below (2.19). The upper bounds on q

are determined by power counting (e.g. the growth of 〈γ2
n,`〉 at n� 1) and the behavior of

solutions at z = z̄, under the assumption (3.21).15

15Starting from ∂12R4 there are multiple structures. At ∂12R4, both σ3
2 and σ2

3 appear. The former

has support up to spin 6 and has the schematic form (∂µ1µ2µ3R)(∂µ4µ5µ6R)(∂µ1µ2µ3R)(∂µ4µ5µ6R), while

the latter has support up to spin-4 and has schematic form (∂µ1µ2µ3R)(∂µ1µ4µ5R)(∂µ2µ4µ6R)(∂µ3µ5µ6R),

where ∂abc ≡ ∂a∂b∂c.
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For the R4 diagrams computed in (3.13) one obtains

T sugra|R4
(z, z̄) = ζ3

(
180S

(0)
0 (z, z̄) + 3060S

(1)
0 (z, z̄) +

8505

2
S

(2)
0 (z, z̄) +

2525

2
S

(3)
0 (z, z̄)

+
925

8
S

(4)
0 (z, z̄) +

153

40
S

(5)
0 (z, z̄) +

269

5760
S

(6)
0 (z, z̄) +

1

5760
S

(7)
0 (z, z̄)

)
TR

4|R4
(z, z̄) = ζ2

3

(97200

7
S

(0)
0 (z, z̄) + · · ·+ 1

26880
S

(10)
0 (z, z̄)

)
(3.24)

where the explicit S
(q)
0 (z, z̄) are given in appendix C. For brevity, we have refrained from

writing all terms in TR
4|R4

(z, z̄), but the structure obeys the ansatz (3.22) with rational

coefficients; we have written the S
(10)
0 (z, z̄) term explicitly for later use.

3.3 ∂4R4 and subleading terms in the flat space limit

Let us now turn our attention to the low-order diagrams involving ∂4R4. Recall that the

tree-level ∂4R4 term given in (2.23) contains two functions, β1(p) and β2(p), that are not

naively determined by the flat space limit of M(g=0)
p . The solution of the mixing problem

for 〈γ2〉 (presented below using results of appendix A), and the subsequent sums in (3.9),

depend on β1(p) and β2(p) in a rather non-trivial way. How do we constrain these functions?

First, note that the expected large n behaviour of the above contributions enforces

β1(p), β2(p) to grow at most as p4 and p2 for large p, respectively.

More powerfully, the claim (3.22) imposes an infinite set of linear and quadratic con-

straints for β1(p) and β2(p). In order to understand them, let us warmup with the following

simpler problem. Consider the truncated solution corresponding to the R4 vertex and shift

it by a p-dependent ambiguity:

α→ α+ χ(p) (3.25)

and require that contributions including χ(p) are linear combinations of the family of

solutions S
(q)
0 (z, z̄). Which constraints does this impose on χ(p)? We obtain a set of linear

constraints from the contributions T sugra|χ, Tα|χ and a set of quadratic constraints from

Tχ|χ. Quite remarkably these constraints imply that χ(p) has to be an even polynomial in

p, so that we have the freedom

α→ α+ χnp
2n (3.26)

Of course, the correct flat space limit for R4 uniquely fixes α = ζ3(p+ 1)3.

Let us return to the vertex ∂4R4. In this case the constraints are much harder to study,

but the only solution we were able to find corresponds again to polynomials β1(p), β2(p).

We believe this is the most general solution. Recall furthermore that the maximum degree

is limited by the large-n behaviour. More precisely, we obtain

β1(p) = b1 + (40− 4b0)p+ b2p
2 + (b0 − 18)p3 + b3p

4 (3.27)

β2(p) = −1

4
(p− 2)(b0p+ 2b0 − 8p) (3.28)

where we have also used the condition β2(2) = 0, which follows from crossing symmetry of

the Mellin amplitude for p = 2. Parameterizing β1(p) and β2(p) by these polynomials, the
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diagrams involving ∂4R4 take the form

T sugra|∂4R4
=
ζ5

8

(
60(3b1+12b2+48b3+1376)S

(0)
0 (z, z̄)+25200S

(0)
2 (z, z̄)+· · ·

+
−405b0+504b3+10408

8709120
S

(9)
0 (z, z̄)+

1

241920
S

(9)
2 (z, z̄)

)
(3.29)

TR
4|∂4R4

=
ζ3ζ5

8

(
64800

7
(3b1+12b2+48b3+1376)S

(0)
0 (z, z̄)+· · ·

+
−55b0+70b3+1372

2661120
S

(12)
0 (z, z̄)

)
T ∂

4R4|∂4R4
=

(
ζ5

8

)2(
10800

7
(3b1+12b2+48b3+1376)2S

(0)
0 (z, z̄)+

20321280000

11
S

(0)
2 (z, z̄)+· · ·

+
16835b20−46620b0b3−747400b0+34188b23+965552b3+9167536

5119994880
S

(14)
0 (z, z̄)

+
1

997920
S

(14)
2 (z, z̄)

)
Together with (3.24), this determines, up to four constants, all contributions containing

the vertices R4 and ∂4R4.

To summarize, requiring that β1(p) and β2(p) be consistent with the basis ansatz (3.22)

reduces these otherwise-arbitrary functions to four coefficients {b0, b1, b2, b3}. Note that b0
and b3, but not b1 and b2, appear in the terms with largest values of q. As we will see in

the next section, this will imply that b0 and b3 can actually be fixed using the flat space

limit at O(1/c2).16 This implies, using (3.27), that β2(p) — which determines the first

subleading correction ofM(g=0)
p (s, t) at large s, t — may in fact be completely fixed by the

flat space limit. The result is given in (4.27)–(4.28).

4 CFT data and genus-one string amplitudes

In the introduction it has been mentioned that the double-discontinuity of the correlator

contains all the relevant physical information, upon plugging it into the Lorentzian inversion

formula [8]. In this section we exploit this fact.17 Noting that

dDisc((1− z̄)n log2(1− z̄)) = 4π2(1− z̄)n for n ∈ Z , (4.1)

the dDisc of our correlator is simply 4π2 times the coefficient of log2(1− z̄). This coefficient

is precisely the definition of our amplitudes T x|y(z, z̄) after applying crossing symmetry to

pass to the t-channel (where dDisc acts trivially):

dDisc (H(g=1)(z, z̄)
∣∣
log2 z

) ⊃ 4π2

(
zz̄

(1− z)(1− z̄)

)2

T x|y(1− z̄, 1− z) (4.2)

16It is clear from (2.23) that for any fixed p, there should be only two undetermined constants at O(λ−5/2).

The power of the above analysis is that i) two constants determine the amplitude for all p, and ii) β2(p) can

actually be fixed. This simple p-dependence ultimately reflects the symmetries of the S5 which unify the

amplitudes for different p, as nicely exhibited at the level of tree-level supergravity in the recent work [42].

It would be interesting to combine the insights of [42] with the method we are using here at one-loop.
17Due to a number of recent reviews and applications of the Lorentzian inversion formula (e.g. [9, 42–44]),

we refer the reader elsewhere for an exposition, instead confining ourselves to its properties that we will

directly use. Our computations are most similar to those of [9].
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The crux of this section is the match between our CFT results and the type II closed

string amplitude at genus-one. To develop the α′ expansion of the latter, we follow the

treatment of [25]. The amplitude, A10, takes the form

A10 = κ2
10g

2
s

K̂

26

(
A(g=0) + 2πg2

sA(g=1) +O(g4
s)
)

(4.3)

κ2
10 is the gravitational coupling in Einstein frame, SIIB = (2κ2

10)−1
∫
d10x(R + . . .); gs

is the string coupling; and K̂ is an overall dimension-eight kinematic factor recalled in

appendix B. The genus-zero amplitude is the Virasoro-Shapiro amplitude [45],

A(g=0)(σ̂2, σ̂3) =
Γ(−α′s/4)Γ(−α′t/4)Γ(−α′u/4)

Γ(1 + α′s/4)Γ(1 + α′t/4)Γ(1 + α′u/4)
(4.4)

which admits an expansion

A(g=0)(σ̂2, σ̂3) =
26

α′3stu
exp

( ∞∑
k=1

2ζ2k+1

2k + 1
(α′/4)2k+1(s2k+1 + t2k+1 + u2k+1)

)

≡
∞∑
m=0

∞∑
n=−1

cmnσ̂
m
2 σ̂

n
3

(4.5)

Here we follow [25] in using the standard string theory notation σ̂n ≡ (α′/4)n(sn+ tn+un).

The supergravity term is (m,n) = (0,−1), with c0,−1 = 3. The genus-one amplitude, also

known as a function of α′, is a sum of analytic and non-analytic piece,

A(g=1)(σ̂2, σ̂3) = A(g=1)
analytic(σ̂2, σ̂3) +A(g=1)

non-analytic(σ̂2, σ̂3) (4.6)

We will give the explicit form of these pieces in what follows.

4.1 Analytic terms: anomalous dimensions and UV divergences

The most important physical observable we can extract from dDisc(H(z, z̄)) is the set of

anomalous dimensions of the double-trace operators [O2O2]m,`. In appendix D we present

the precise expression extracting the O(1/c2) anomalous dimension from dDisc(H(z, z̄)),

obtained from Lorentzian inversion/large spin perturbation theory.

As explained in section 3.2, the contributions involving vertices R4 and ∂4R4 can be

written as linear combinations of the functions S
(q)
0 (z, z̄) and S

(q)
2 (z, z̄). Hence, a convenient

way to organise our computation is by considering each of these functions and finding their

contributions to γ. This can be readily done using (D.6). For leading twist (n = 0)

double-trace operators, we find the following simple answer:

S
(q)
0 (z, z̄)→ γ

(q)
0,` = −48

Γ(q + 1)2Γ(q + 3)Γ(q + 4)Γ(−q + `+ 3)

(`+ 1)(`+ 6)Γ(q + `+ 5)
(4.7)

S
(q)
2 (z, z̄)→ γ

(q)
0,` = −288

Γ(q + 1)2Γ(q + 3)Γ(q + 5)Γ(−q + `+ 3)

(2q + 9)(`+ 1)(`+ 6)Γ(q + `+ 5)
(4.8)
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An important feature of γ
(q)
0,` given above is the presence of simple poles at ` = 0, 1, · · · , q−3.

Recalling (3.22) and (3.23), this implies that the one-loop anomalous dimensions induced

by stringy corrections diverge linearly for 0 ≤ ` ≤ qmax − 3:

T sugra|sugra : γ
(g=1)
0,` diverge for ` ≤ 1

T sugra|(m′,n′) : γ
(g=1)
0,` diverge for ` ≤ 4 + 2m′ + 3n′

T (m,n)|(m′,n′) : γ
(g=1)
0,` diverge for ` ≤ 7 + 2(m+m′) + 3(n+ n′)

(4.9)

We have included the pure supergravity loop, computed in [9, 10], as a useful benchmark.

The results (4.9) nicely exhibit the CFT picture of AdS UV divergences explained

in [5] which we now recapitulate. In AdS, UV divergences are cured by local counterterms

whose dimension reflects the degree of divergence. But the counterterm dimension, in turn,

determines the maximum spin of the anomalous dimensions it generates (`max = 2m+2n).

Therefore, the maximum spin for which anomalous dimensions diverge directly translates

into the degree of divergence of the full amplitude. This is manifest above: the spin bound

is linear in qmax, which is determined by the same power counting. One may think of these

as UV divergences either in AdS or in the flat space limit.

More importantly, the results are in accord with the structure of A(g=1)
analytic. Translat-

ing (4.9) into the associated bulk counterterms implies that

T sugra|sugra : A(g=1)
analytic ⊃ R4

T sugra|(m′,n′) : A(g=1)
analytic ⊃ cm′n′∂6+4m′+6n′R4

T (m,n)|(m′,n′) : A(g=1)
analytic ⊃ cmncm′n′∂12+4(m+m′)+6(n+n′)R4

(4.10)

where cmn is defined in (4.5). We now compare this to A(g=1)
analytic. The first few terms of

A(g=1)
analytic are (e.g. (4.43) of [25])

A(g=1)
analytic(σ̂2, σ̂3) =

π

3

(
1 +

ζ3

3
σ̂3 +

97

1080
ζ5 σ̂2σ̂3 +

1

30
ζ2

3

(
σ̂3

2 +
61

36
σ̂2

3

)
+ . . .

)
(4.11)

From the perspective of the derivative expansion around 10d supergravity, A(g=1)
analytic reg-

ulates UV divergences that arise when computing one-loop amplitudes using the quartic

vertices implied by the α′-expansion of the Virasoro-Shapiro amplitude. Thus, both the

orders in α′ and the transcendentality of the coefficients in A(g=1)
analytic can be understood by

“squaring” the Virasoro-Shapiro amplitude.18 This is precisely the form of (4.10).

4.2 Non-analytic terms: the flat space limit

We now take the flat space limit of our amplitudes T x|y and match them to the non-analytic

genus-one amplitude, A(g=1)
non−analytic.

18For instance, the 1 regulates the quadratic divergence of 10d supergravity; the σ̂3 regulates the diver-

gence of the one-loop triangle involving a R4 vertex; and so on. Likewise, the absence of ∂4R4 and ∂8R4

terms in A(g=1)
analytic follows from the absence of R3 and ∂2R4 terms in A(g=0), respectively [25].
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4.2.1 Flat space limit of dDisc

In [9] a very simple quantitative way to relate the AdS amplitude in the flat-space (i.e.

bulk-point) limit to the higher-dimensional amplitude was described: the bulk-point limit

of the double-discontinuity of H equals the discontinuity of A10. The picture is summarized

by figure 7 of that paper. From the CFT perspective, the bulk-point limit is implemented

in two steps: encircle z = 0, then send z → z̄. Parameterizing this limit as

z = z̄ + 2xz̄
√

1− z̄ with x→ 0 (4.12)

the result is
dDisc [zz̄(z̄ − z)H(z�, z̄)]

4π2
→ 2πi× Γ(m)

(2x)m
× g2(z̄) (4.13)

Then

g2(z̄) = −Discs(A10(s, t)) where s→ 1− z̄
z̄

and t→ 1 . (4.14)

See [9] for a detailed discussion.

In this limit, the special functions S
(q)
L (z, z̄) have simple behavior:

S
(q)
0 (z, z̄)→ 2πi

Γ(6 + 2q)

(2x)6+2q

(
−8

(
1− z̄
z̄

)q−3
)

S
(q)
2 (z, z̄)→ 2πi

Γ(6 + 2q)

(2x)6+2q

(
−8

(
1− z̄
z̄

)q−5 6
(
(q + 4)z̄2 + 2(q + 5)z̄ + q + 4

)
(2q + 9)z̄2

) (4.15)

Note that the analytic continuation around z = 0 changes the power of x from the naive

guess (3.21). We see that only the functions with q = qmax contribute to the flat space limit

of the amplitudes T . Combining this with (4.13), (3.22) and the functions S
(q)
L (z, z̄), one can

read off the functional form of the flat space discontinuity for arbitrary T (m,n)|(m′,n′)(z, z̄).

For later use, we also note that in the limit z̄ → 0, the right-hand side behaves as z̄q−3 for

both L = 0, 2. This appears to persist for all spins L.

For the explicit amplitudes in (3.24) and (3.29), we find

g
sugra|R4

2 (z̄) = − ζ3

720

(
1− z̄
z̄

)4

g
R4|R4

2 (z̄) = − ζ2
3

3360

(
1− z̄
z̄

)7

g
sugra|∂4R4

2 (z̄) =
ζ5

8

(
45b0 − 56b3

120960

(
1− z̄
z̄

)6

− (1− z̄)4

7560z̄6

(
73z̄2 − 143z̄ + 73

))

g
R4|∂4R4

2 (z̄) = −ζ3ζ5

8

14(5b3 + 98)− 55b0
332640

(
1− z̄
z̄

)9

(4.16)

g
∂4R4|∂4R4

2 (z̄) = −
(
ζ5

8

)2
(

455b20 − 20b0(63b3 + 1010) + 4(231b23 + 6524b3)

17297280

(
1− z̄
z̄

)11

+
(1− z̄)9

4324320z̄11

(
62044z̄2 − 123672z̄ + 62044

))
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We also give two all-orders predictions for the functional form of the discontinuity:

i) (m′, n′)×R4. Consider all diagrams involving an R4 vertex. Because they can be

written in terms of S
(q)
0 (z, z̄) alone, the answer is simply

g
sugra|R4

2 (z̄) ∝
(

1− z̄
z̄

)4

g
(m′,n′)|R4

2 (z̄) ∝
(

1− z̄
z̄

)7+2m′+3n′
(4.17)

Similarly, the discontinuities coming from amplitudes involving an ∂4R4 or ∂6R4 vertex

are linear combinations of the L = 0, 2 functions in (4.15) with q = qmax given in (3.23).

ii) z̄→ 0. Consider the limit z̄ → 0 after taking the bulk-point limit (4.12) (i.e. a “bulk-

point-Regge” limit). These are the kinematics relevant for comparing to the forward limit

of A10. Assuming that the observation below (4.15) is correct, we find

g
sugra|(m′′,n′′)
2 (z̄ → 0) ∝ z̄−(7+2m′′+3n′′)

g
(m′,n′)|(m′′,n′′)
2 (z̄ → 0) ∝ z̄−(10+2(m′+m′′)+3(n′+n′′))

(4.18)

4.2.2 String amplitude

We now turn to the discontinuity of A(g=1)
non−analytic. In [25], technology was developed to

compute the discontinuity at arbitrary order in α′. Assembling various ingredients there,

the formula for the s-channel discontinuity is19

DiscsA(g=1) = −2πi

(
α′s

4

)7 1

120

×
∑
m′,n′

∑
m′′,n′′

cm′n′cm′′n′′

∫ π

0
dθ sin7 θ

∫ 2π

0
dφ sin6 φ (σ̂′2)m

′
(σ̂′3)n

′
(σ̂′′2)m

′′
(σ̂′′3)n

′′
(4.19)

where σ̂′i = σ̂i(s, t
′, u′) and σ̂′′i = σ̂i(s, t

′′, u′′) with

t′ = −s
2

(1− cos θ) , u′ = −s− t′

t′′ = −s
2

(1 + cos θ cos ρ+ sin θ cosφ sin ρ) , u′′ = −s− t′′

ρ = arccos

(
t− u
s

) (4.20)

The total discontinuity of A(g=1) is given by the above plus t- and u-channel crossings.20

Though not obviously manifest, the integral is symmetric under (m′, n′)↔ (m′′, n′′). Note

that σ̂′2 =
(
α′s
4

)2
(7 + cos 2θ) and σ̂′3 =

(
α′s
4

)3
3
4 sin2 θ.

19We have used the relation 2κ2
10 = (2π)7α′4. The prefactor corrects some typos in [25]; in particular,

there are factor of two discrepancies among their (4.44), (4.45), (5.27) and appendix E, that we believe we

have fixed below. Our formula is consistent with their (5.27).
20These discontinuities arise from logarithmic terms in the amplitude of the form s# log(sα′/µ) (plus

crossings) for some scale µ which is determined by a perturbative string theory calculation α′ [25]. The one-

loop CFT amplitude will, using α′ = L2
AdS/

√
λ, have O(log λ) terms. The scales µ will manifest themselves

in CFT as truncated solutions to crossing at a given order in 1/λ, with coefficient ∝ log µ. Conveniently,

the flat space limit of our CFT correlator, computed via dDisc, lands on the discontinuity itself.
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We list some low-lying terms in the α′ expansion, using the same superscript notation

as (4.16):

(DiscsA(g=1))sugra|R4
= −2πi× 4πζ3

45

(
α′s

4

)4

(DiscsA(g=1))R
4|R4

= −2πi× 2πζ2
3

105

(
α′s

4

)7

(DiscsA(g=1))sugra|∂4R4
= −2πi× πζ5

1260

(
α′s

4

)6
(

87 +

(
t− u
s

)2
)

(DiscsA(g=1))R
4|∂4R4

= −2πi× 4πζ3ζ5

135

(
α′s

4

)9

(DiscsA(g=1))∂
4R4|∂4R4

= −2πi× πζ2
5

41580

(
α′s

4

)11
(

479 +

(
t− u
s

)2
)

(4.21)

where sugra|R4 = (0,−1)× (0, 0) + (0, 0)× (0,−1), R4|R4 = (0, 0)× (0, 0), and so on.

We can also give the discontinuity to all orders in two cases.

i) (m′, n′)×R4. The first is for all terms involving a R4 vertex. It is easy to see

from (4.19) that (m′′, n′′) = (0, 0) has no ρ-dependence. Then since t′ ∝ s, the result

must be proportional to s7+2m′+3n′ , with prefactor given by a simple class of trigonometric

integrals, which we explicitly evaluate:

(DiscsA(g=1))(m′,n′)|R4
= −2πi

(
α′s

4

)7+2m′+3n′ (3

4

)n′ πζ3

96
cm′n′Im′,n′ (4.22)

where

Im′,n′ ≡
∫ π

0
dθ (7 + cos 2θ)m

′
(sin θ)2n′+7 =

23m′+1(2n′ + 6)!!

(2n′ + 7)!!
2F1

(
−m′, n′ + 4;n′ +

9

2
;

1

4

)
(4.23)

The integral was evaluated using cos 2θ = 1− 2 sin2 θ and the binomial expansion.

ii) Forward limit. In the forward limit, t → 0 for fixed s. We see from (4.20) that in

this limit, the parameter ρ→ 0, hence t′′ → u′ = − s
2(1 + cos θ) and

σ̂′′i (s, t′′, u′′)→ σ̂′i(s, t
′, u′) (forward limit) . (4.24)

So the functional form of the discontinuity is identical to the case we just considered

involving R4 vertices, because the integral boils down to powers of σ′i only. Assembling

factors, the discontinuity in the forward limit may be written as a sum21

(DiscsA(g=1))
∣∣∣
t→0

= −2πi
π

192

∑
m′,n′

∑
m′′,n′′

cm′n′cm′′n′′

(
α′s

4

)7+2(m′+m′′)+3(n′+n′′)(3

4

)n′+n′′
× Im′+m′′,n′+n′′ (4.25)

21In the notation of [25], our result (4.25) gives a closed-form expression for Discs
(∫
RL

d2τ
τ22
f

(m,0)
an (τ, τ̄)

)
,

specifically its L-independent part, where mthere = 7+2(m′+m′′)+3(n′+n′′). We note that in the forward

limit, the analytic and non-analytic parts are both controlled by f
(m,0)
an (τ, τ̄), integrated over different parts

of the fundamental domain of SL(2,Z).
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4.2.3 Matching

Let us now compare the results (4.18) to (4.25), (4.17) to (4.22), and (4.16) to (4.21),

recalling that we should set s → (1 − z̄)/z̄ and t → 1 in the string theory results. To

facilitate comparison, we work in units α′ = 4.

First we match the functional form of the all-orders results. The R4 discontinuity

predicted by (4.17) manifestly matches the discontinuity (4.22) computed from perturbative

string theory. Next, we match in the forward limit, which corresponds to z̄ → 0. We again

see that the powers match between (4.18) and (4.25).

We now compare the explicit amplitudes at low orders. Starting with sugra ×R4, we

find a match up to overall normalization. Comparing ratios henceforth, we again find a

match for the next term, R4 ×R4:

g
R4|R4

2

g
sugra|R4

2

=
(DiscsA(g=1))R

4|R4

(DiscsA(g=1))sugra|R4 (4.26)

Moving onto ∂4R4, we use two of the three amplitudes to fix b0 and b3. Without loss

of generality, take these to be sugra × ∂4R4 and R4 × ∂4R4. Demanding equality of the

ratios yields

b0 = 0 , b3 = −2 (4.27)

This implies that the genus-zero Mellin amplitude Mp, given in (2.23), has parameters

β1(p) = b1 + p(p(b2 − 2p(p+ 9)) + 40)

β2(p) = 2p(p− 2)
(4.28)

Having fixed b0 and b3, we compare ∂4R4 × ∂4R4 and once again find a match,

g
∂4R4|∂4R4

2

g
sugra|R4

2

=
(DiscsA(g=1))∂

4R4|∂4R4

(DiscsA(g=1))sugra|R4 (4.29)

This final match is a strong consistency check of this entire calculation, including the

parameterization of β1(p) and β2(p).

5 Open problems

Let us mention some open problems/food for thought:

• It would be very interesting to understand the simplest way to fix the subleading

terms β1, β2 in (2.23), which appear in the vertex ∂4R4, by CFT considerations

alone. The determination of β2 in this paper gives a target for planar integrability

studies of four-point functions in N = 4 SYM in the strongly coupled regime. This

is an especially non-trivial one because, unlike the λ−3/2 correction, it is not fixed by

the flat space limit matching to the Virasoro-Shapiro amplitude.

– 24 –



J
H
E
P
0
6
(
2
0
1
9
)
0
1
0

• Related to the point above, for large but finite λ there is an infinite number of

intermediate single-trace operators. In [46] it was shown that the truncated solutions

arise naturally from these operators getting heavier and heavier, as λ grows. The

details of this process depend on the dimensions and OPE coefficients of the single-

trace operators. This information should in principle be available from integrability.

• More generally in AdS/CFT, it would be fascinating if our procedure could be system-

atically iterated at successively higher loops, to make a clear map between subleading

terms in AdS tree-level amplitudes and higher-dimensional loop-level amplitudes.

• We would like to extend these methods to higher genera, where the flat space string

amplitude is not known, even in an α′ expansion. In type IIA and IIB, state-of-

the-art explicit computations stop at genus two at finite α′ [47], and genus three at

leading order in α′ � 1 [48]. Extending the CFT-inspired computations herein to

higher loops would involve several challenging, but conceptually familiar, steps.

• It would also be quite interesting to make contact with recent investigations of the

underlying modular properties of the genus-one (and higher) string amplitude [49, 50],

for instance, to find a manifestation of SL(2,Z) modular graph forms in non-planar

N = 4 SYM correlators.

• We have found the amplitudes T x|y to have a very simple structure, which allowed a

match to string theory in the flat space limit. This simple structure arises because we

have mixing, which is connected to the R-symmetry of the CFT under consideration.

In particular, note that the corresponding anomalous dimensions squared have only

single poles, but without mixing they would have double poles. This seems to suggest

a much finer constraint on the question of which large N CFT’s have a local string

theory dual.
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A Truncated solutions in space-time and results to the mixing problem

In order to solve the mixing problem encountered in the body of the paper, it is convenient

to have the solution Hg=0
p (z, z̄) in space time. This can be written in terms of D̄-functions,

which admit the following representation

D̄∆1∆2∆3∆4(z, z̄) =

∫ i∞

−i∞

dsdt

(4πi)2
|z|s|1−z|tΓ(s/2+t/2+∆2)Γ(s/2+t/2+∆−∆4) (A.1)

×Γ(−s/2)Γ(−t/2)Γ(−t/2+∆−∆2−∆3)Γ(−s/2−∆+∆3+∆4)
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where |z|2 = zz̄, |1 − z|2 = (1 − z)(1 − z̄) and ∆ = 1
2

∑
i ∆i. The integration contour is

chosen such that the poles of each gamma function lie on one side or the other. We will

then consider the following solutions in space-time

Hg=0
p (z, z̄) =

p

Γ(p−1)
|z|2p

(
1

2
D̄p,p+2,2,2(z, z̄)+α0(p)D̄p+2,p+2,4,4(z, z̄)+α1(p)D̄p+2,p+2,5,5(z, z̄)

+α2(p)
(
1+|z|2+|1−z|2

)
D̄p+3,p+3,5,5(z, z̄)+· · ·

)
(A.2)

whose Mellin transform is

Mp(s, t) =
p

Γ(p−1)

(
4

(s−2)(t−p)(u−p) +

(
α0(p)+2α1(p)−α2(p)

2
(p2−4p−4)

)
−α1(p)

2
s+

α2(p)

4
σ2+· · ·

)
.

(A.3)

This takes the form (2.23) after redefining parameters as

α0(p) =
α

λ3/2
+

1

λ5/2

(
(p2 − 4p− 4)β + β1 + 4β2

)
α1(p) = − 2β2

λ5/2

α2(p) =
4β

λ5/2
.

(A.4)

As already mentioned, the intermediate operators are generically degenerate, meaning that

there is more than one double-trace operator with a specific n and `. Such operators are

of the form

[O2,O2]n,`, [O3,O3]n−1,`, · · · , [O2+n,O2+n]0,`, (A.5)

and eigenfunctions of the dilatation operator ΣI are linear combinations of those. We can

choose a normalisation in which these operators are orthonormal,22 namely 〈ΣIΣJ〉 = δIJ .

In order to solve the mixing problem, one needs in principle to consider the family of four

point functions 〈OqOqOpOp〉 at order c0 and c−1. From these correlators it is possible to

extract the averages
∑

I a
(0)
I and

∑
I a

(0)
I γI from which we build the mixing matrix

M =


γ|2222 γ|2233 γ|2244 . . . γ|22pp

γ|3322 γ|3333 γ|3344 . . . γ|33pp

...

γ|qq22 γ|qq33 γ|qq44 . . . γ|qqpp

 (A.6)

where we used the shorthand notation

γ|qqpp =

∑
I

(
a

(0)
I,ppa

(0)
I,qq

)1/2
γI∑

I

(
a

(0)
I,ppa

(0)
I,qq

)1/2
. (A.7)

22For the singlet representation, the one relevant here, the degeneracy is lifted completely to order 1/c,

see [12], so that mixing can be resolved completely.
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To reconstruct 〈O2O2O2O2〉 at O(1/c2), we are interested in
∑

I a
(0)
I γ2

I , which is the ele-

ment (1,1) of the product M ·M . To compute this term, instead of fully solving the mixing

problem, namely extracting each a
(0)
I and γI , we only need one row and one column of the

mixing matrix: 
γ|2222 γ|2233 γ|2244 . . . γ|22pp

γ|3322 γ|3333 γ|3344 . . . γ|33pp

...

γ|qq22 γ|qq33 γ|qq44 . . . γ|qqpp

 (A.8)

Notice that this simplifies enormously the computations, since we only need to consider

correlators of the form 〈O2O2OpOp〉. Thus we can perform the decomposition in conformal

blocks of (A.2) and we can solve the mixing problem. At order c0 we have that averages

of squared three point functions 〈a(0)
n,`〉, for any p, are [11]

24(`+1)n!(`+2n+6)Γ2(n+3)Γ(`+n+2)Γ2(`+n+4)Γ(n+p+3)Γ(`+n+p+4)

p2(p+1)Γ(n+5)Γ(2n+5)Γ(p−1)Γ3(p)Γ(`+n+6)Γ(2`+2n+7)Γ(n−p+3)Γ(`+n−p+4)
(A.9)

Remarkably, the mixing problem can be solved for arbitrary parameters αi(p). The

final expression has the following form

〈(γ(g=0))2〉n,` =
n+2∑
p=2

(
f sugra
` (n,p)+f

(0)
` (n,p)α0(p)+f

(1)
` (n,p)α1(p)+f

(2)
` (n,p)α2(p)+· · ·

)2

(A.10)

where f sugra
` (n, p) 6= 0 for all values of `, whereas f

(0)
` (n, p), f

(1)
` (n, p) contribute only to

` = 0, f
(2)
` (n, p) to ` = 0, 2, and so on. For sugra we find, at ` = 0, 2,

f sugra
0 (n, p) = (n+ 2)(n+ 4)p

√
(n+ 1)(n+ 5) (p2 − 1) (n− p+ 3)

48(n+ p+ 3)
(A.11)

f sugra
2 (n, p) = p

√
(n+ 1)3(n+ 5)3 (p2 − 1) (n− p+ 3)3

432(n+ p+ 3)3
.

For f
(0)
` (n, p) and f

(1)
` (n, p) we find

f
(0)
0 (n, p) =

(n+ 2)2(n+ 3)3(n+ 4)2p

(2n+ 5)(2n+ 7)(p+ 2)(p+ 3)
c1(n, p)

f
(1)
0 (n, p) = − n(n+ 2)2(n+ 3)3(n+ 4)2(n+ 6)p

(2n+ 5)(2n+ 7)(p+ 2)(p+ 3)(p+ 4)
c1(n, p)

and zero for all ` > 0, while for f
(2)
` (n, p) we find

f
(2)
0 (n,p) =

p(n+2)2(n+3)3(n+4)2

2(2n+3)(2n+5)(2n+7)(2n+9)(p+2)4
c1(n,p)h(n,p)

f
(2)
2 (n,p) =

p(n+2)3/2(n+3)5/2(n+4)3(n+5)(n+6)3/2

3(2n+5)(2n+7)(2n+9)(2n+11)(p+2)4
c1(n,p)

√
(4+n−p)2(4+n+p)2

– 27 –



J
H
E
P
0
6
(
2
0
1
9
)
0
1
0

and zero for all ` > 2. The functions c1(n, p) and h(n, p) are

c1(n, p) =

√
(n+ 1)3(n+ 5)3(p− 1)(n− p+ 3)(n+ p+ 3)

48(p+ 1)

and

h(n, p) = 685 + 756p+ 179p2

+ (1 + n)(5 + n)(539 + 460p+ 86p2 + (1 + n)(5 + n)(172 + 13n(6 + n) + (16− 9p)p)) .

Notice that in the solution (A.10), the index p corresponds to the level of the KK modes

that participate in the mixing at twist n.

B Flat space limit of AdS5 × S5 amplitudes and the type IIB S-matrix

In this appendix we present the Mellin space version of the 4d N = 4 superconformal

Ward identity and the flat space limit formula of the 4d N = 4 Mellin amplitudes. Com-

bining them yields formulas relating the structure of the type IIB four-particle scattering

amplitude to the flat space limit of the 4d N = 4 Mellin amplitude.

In this appendix only, we useM to denote the full Mellin amplitude, and M̃ to denote

the reduced amplitude, as in [33].

B.1 Superconformal Ward identity

Our superconformal Ward identity discussion follows [33]. For now, the following applies

to a general four-point correlator 〈Op1Op2Op3Op4〉. Define

U = zz̄ , V = (1− z)(1− z̄) (B.1)

The Mellin amplitudeM(s, t;σ, τ) for the full connected correlator Gconn(z, z̄;σ, τ) is related

to the reduced Mellin amplitude M̃(s, t;σ, τ) for the dynamical function H(s, t;σ, τ) by a

difference operator, R̂:

M(s, t;σ, τ) = R̂ ◦ M̃(s, t;σ, τ) (B.2)

with

R̂ ≡ τ + (1− σ − τ)V̂ + (τ2 − τ − στ)Û + (σ2 − σ − στ)ÛV + σV̂ 2 + στÛ2 (B.3)

The hatted powers act as

ÛmV n◦M̃(s, t;σ,τ)≡M̃(s−2m,t−2n;σ,τ)

×
(
p1+p2−s

2

)
m

(
p3+p4−s

2

)
m

(
p2+p3−t

2

)
n

(B.4)

×
(
p1+p4−t

2

)
n

(
p1+p3−u

2

)
2−m−n

(
p2+p4−u

2

)
2−m−n

The polarization cross-ratios (σ, τ) we given in (2.3). We are interested in the case

(p1, p2, p3, p4) = (p, p, 2, 2). Denote the Mellin and reduced Mellin amplitudes by Mp

and M̃p, respectively. The inverse Mellin transform of M̃p, given in (2.15), yields the

function H(z, z̄) considered in the body of the paper. Note that neither M̃p nor H(z, z̄)

are functions of σ, τ .
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B.2 Flat space limit

Following the logic of [51] where the AdS7 × S4 case was considered, we adapt Penedones’

formula [3] to the case of four-point functions of KK modes with S5 momentum. (See

also [52] for the p = 2 case in AdS4 × S7.) The result is

lim
L→∞

L(L5V5)Mp(L
2s, L2t;σ, τ) =

1

Γ(p)

∫ ∞
0

dβ βp−1e−βA10
p (2βs, 2βt;σ, τ) (B.5)

where L ≡ LAdS = LS5 and L5V5 = π3 is the S5 volume. We interpret A10
p as the 10d

flat space amplitude of four supergravitons, with momenta ki restricted to a five-plane

R5 ' AdS5|L→∞, integrated against the S5 wavefunctions of φp and φ2 and contracted

with SU(4)R polarization vectors yi. On general grounds [51],

lim
s,t→∞

Mp(s, t;σ, τ) = A10
⊥ (s, t;σ, τ) · c(p) (B.6)

for some constant function c(p). The amplitude A10
⊥ (s, t;σ, τ) is the 10d amplitude in the

transverse kinematics yi · ki = 0,

(y1 · y2)2(y3 · y4)2A10
⊥ (s, t;σ, τ) ≡ A10|ki·yi=0 (B.7)

These kinematics arise because we are taking the flat space limit of an AdS5×S5 amplitude,

of modes of the 10d graviton with polarizations along the S5 and momenta in AdS5.

Recall for what follows that A10 has the form (4.3). K̂ is equivalent to the t8t8R4

tensor, where Rµνρσ is the linearized Weyl curvature in momentum space, and t8 is the

same tensor structure appearing in theR4 term in the action. It may be defined as (e.g. [53])

K̂ = ((m1m2)(m3m4)− 4(m1m2m3m4) + (perms))2 , (B.8)

where

mµν
i ≡ ζ

[µ
i p

ν]
i , (mimj) ≡ mµν

i mνµ
j , (mimjmkml) ≡ mµν

i mνρ
j m

ρσ
k m

σµ
l . (B.9)

where ζi and pi are the polarization vector and momenta of the i’th 10d graviton, respec-

tively. In the conventions of [53] and [25], K̂ = 26R4. See e.g. appendix 9.A of [54] for the

explicit form of t8.

B.3 Relation

We now want to relate the preceding formulas to the flat space limit of the 4d N = 4

superconformal Ward identity. Taking the large s, t limit of (B.2) (in which u→ −s− t),
we find

lim
s,t→∞

Mp(s, t;σ, τ) =
Θflat

4 (s, t;σ, τ)

16
M̃p(s, t)|s,t→∞ (B.10)

where

Θflat
4 (s, t;σ, τ) ≡ (tu+ tsσ + suτ)2 (B.11)
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(B.10) actually holds for arbitrary (p1, p2, p3, p4). Note that the right-hand side of (B.10)

is independent of p, unlike the analogous result in AdS7 × S4 [51]. As shown in [51],

K̂
∣∣
ki·yi=0

= 4(y1 · y2)2(y3 · y4)2Θflat
4 (s, t;σ, τ) (B.12)

We now equate (B.6) with (B.10). Given (4.3), this gives an N = 4 SYM-based deriva-

tion of the overall kinematic factor in the type IIB string theory amplitude at arbitrary

genus. Moreover, we read off the relation

lim
s,t→∞

M̃p(s, t) = 64 c(p)f(s, t) (B.13)

The constant c(p) cancels out of a ratio of terms at different orders in the derivative ex-

pansion.

At genus zero, f(s, t) equals the Virasoro-Shapiro amplitude. This admits an analytic

expansion in powers of s, t,

f (g=0)(s, t) = 1 +

∞∑
k=0

α′3+m+3n/2fm,n(s, t) (B.14)

The first term represents the 10d supergravity amplitude, while the rest contain the mono-

mials σm2 σ
n
3 , i.e. the ∂2kR4 contributions with 2m+ 3n = 2k. Similarly, the 1/λ expansion

of the reduced Mellin amplitude M̃p at tree-level was written in (2.20). Using (B.13), we

derive the relation between fm,n(s, t) and the flat space limit of M̃(g=0)
p|m,n(s, t):

fm,n(s, t) =
λ−(k+3)/2

2k+5(p+ 1)k+3
stu lim

s,t→∞
M̃(g=0)

p|m,n(s, t) (B.15)

where 2k = 2m + 3n. This is the main formula of this appendix. Note, in particular, the

p-dependence.

Taking k = 0, corresponding to the R4 term, on the IIB side we have, from the

Virasoro-Shapiro amplitude (4.5),

fR4(s, t) =
ζ3

26
α′3σ3 (B.16)

In the parameterization of (2.23), M̃(g=0)
p|R4 (s, t) = α. Plugging into (B.15) and using

α′/L2
AdS = 1/

√
λ yields

α = ζ3(p+ 1)3 (B.17)

as reported in (2.24).

Taking k = 2, corresponding to the ∂4R4 term, and plugging

f∂4R4(s, t) =
ζ5

210
α′5σ2σ3 (B.18)

and

M̃(g=0)
p|∂4R4(s, t) = βσ2 + β1 + β2s (B.19)

into (B.15) yields

β =
ζ5

8
(p+ 1)5 (B.20)

as reported in (2.24).
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C Explicit form of solutions S
(q)
0 (z, z̄)

In (3.14) we introduced the family of functions S
(q)
L (z, z̄) in terms of which the double-

discontinuities under consideration can be written. In this appendix we give their explicit

form for the simplest case L = 0. For q = 0 we obtain

S
(0)
0 (z, z̄) =

P
(5)
0 (z, z̄) log(1− z̄)− P (5)

0 (z̄, z) log(1− z) + P
(5)
1 (z, z̄)

(z − z̄)7
(C.1)

where

P
(5)
0 (z, z̄) = 48z2z̄2(2− z − z̄)

(
z2 + 8zz̄ − 10z + z̄2 − 10z̄ + 10

)
(C.2)

P
(5)
1 (z, z̄) = −16z2z̄2(z − z̄)

(
11z2 + 38zz̄ − 60z + 11z̄2 − 60z̄ + 60

)
(C.3)

From this expression we can generate all S
(q)
0 (z, z̄) by a chain of differential operators

S
(q+1)
0 (z, z̄) = DqS(q)

0 (z, z̄) (C.4)

where

Dq =
(q + 3)(z − 1)z2z̄(qz̄ − 2q − 4)

(z − z̄)(qzz̄ − qz − qz̄ − 2z − 2z̄)
∂z −

(q + 3)z(z̄ − 1)z̄2(qz − 2q − 4)

(z − z̄)(qzz̄ − qz − qz̄ − 2z − 2z̄)
∂z̄ (C.5)

This allows reconstruction of the contributions containing R4, as certain differential oper-

ator acting on S
(0)
0 (z, z̄). Note that each action of Dq increases the power of (z − z̄)−1 by

two, so S
(q)
0 (z, z̄) ∝ (z− z̄)−7−2q. A similar structure seems to be present for the functions

S
(q)
2 (z, z̄), but in this case the differential operator is much more involved.

D From the double-discontinuity to the anomalous dimension

In this appendix we derive the precise one-dimensional inversion integral that leads to

the anomalous dimensions from the double-discontinuity for the present case. We follow

closely [9]. The idea is as follows. Consider the conformal block expansion of H(z, z̄),

keeping only the piece of the conformal block that can lead to a double-discontinuity

at z̄ = 1,

H(z, z̄) =
∑
n,`

an,`(zz̄)
τn,`

2

z̄`+1F τn,`
2

+1
(z)F τn,`

2
+`+2

(z̄)

z̄ − z + regular (D.1)

where we have introduced the twist τn,` = ∆n,` − ` and the regular contribution diverges

at most as a single conformal block. From now on we will omit these contributions. In

case of degenerate operators the sum over species is implicit, but this will not affect our

analysis. The twist admits the following expansion

τn,` = 4+2n+
1

c

(
γ

(g=0|sugra)
n,` +

1

λ3/2
γ

(g=0|R4)
n,` +· · ·

)
+

1

c2

(
γ

(g=1|sugra)
n,` +

1

λ3/2
γ

(g=1|R4)
n,` +· · ·

)
+· · · (D.2)
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The corrections γ
(g=1|R4)
n,` and beyond are our main concern in this paper. For concreteness

we demonstrate with the λ−3/2 term. Plugging this expansion into the above decomposition

we find

H(g=1)(z, z̄)
∣∣∣

1

λ3/2
log z

=
1

2

∑
n,`

a
(0)
n,`γ

(g=1|R4)
n,` (zz̄)2+n z̄

`+1Fn+3(z)Fn+4+`(z̄)

z̄ − z (D.3)

and similarly for other contributions. One may worry that at O(1/c2) we may have other

contributions to the term proportional to log z. However, this is not the case, since the

solutions γ
(g=0,1)
n,` are truncated in the spin, and hence cannot contribute to the double-

discontinuity. Next we project on a given twist, using the projectors

1

2πi

∮
dz

z
zn
′
Fn′+3(z)

F−2−n(z)

zn
= δn,n′ (D.4)

which leads to

1

2

∑
`

a
(0)
n,`γ

(g=1|R4)
n,` z̄2+nz̄`+1Fn+4+`(z̄) =

1

2πi

∮
dz

zn+3
F−2−n(z)(z̄ − z) H(g=1)(z, z̄)

∣∣∣
1

λ3/2
log z

(D.5)

where the projection over a given n, not summed over, has been performed. The task

is to invert a
(0)
n,`γ

(g=1|R4)
n,` knowing the r.h.s. This problem has been solved in [7] in a 1/`

expansion, while in [8] an elegant inversion formula was proposed. Both approaches are

equivalent and it turns out that only the double-discontinuty of the r.h.s. is necessary. The

final result can be repackaged as

1

2
a

(0)
n,`γ

(g=1|R4)
n,` =

(7 + 2n+ 2`)r4+n+`

π2

∫ 1

0
dt

∫ 1

0
dz̄
z̄n+`+2(t(1− t))n+`+3

(1− tz̄)`+n+4
(D.6)

× 1

2πi

∮
dz

zn+3
F−2−n(z)dDisc

[
(z̄ − z) H(g=1)(z, z̄)

∣∣∣
1

λ3/2
log z

]

where rh ≡ Γ(h)2/Γ(2h−1). The t integral is just the integral representation of F`+n+4(z̄),

but swapping the order of integration with z̄ leads to easier evaluation. This is the expres-

sion used in the body of the paper. It applies identically to higher vertices beyond R4.
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