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1 Introduction

Quantum quench is a unitary process during which a physical system, typically prepared

in the ground state of the unperturbed Hamiltonian, is subject to an evolution under

a prescribed time-dependent change in the parameters of the Hamiltonian. Thus, for

instance, one can think of varying the couplings inherent to the system or introducing a

time-dependent background field into the Hamiltonian. The specific choice of the time-

dependent profile for these parameters is conventionally referred to as a quench protocol,

and the so-called quench rate is used to classify various scenarios. Usually the quench

rate is identified with a characteristic inverse time scale, δt−1, over which the parameters

experience a significant change.

The aspiration to understand the non-equilibrium dynamics in general and mechanism

of relaxation in particular is one of the major theoretical motivations behind the studies of

quantum quenches. Thus, for instance, one of the particularly interesting class of quenches

drives the system through a critical phase [1, 2], where the dynamics is governed by a

conformal field theory (CFT). When the system is sufficiently close to criticality the

quench rate δt−1 becomes large compared to any other scale in the system, and therefore

adiabatic approximation breaks down. As a result, the entire system is driven far away

from equilibrium, and its subsequent relaxation is in the spot light of both experimental

and theoretical research.

Moreover, the interest in quantum quenches has been recently increased due to the

successful experiments with cold atoms trapped in optical lattices [3–7]. Such systems
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exhibit a quantum critical regime, and can be driven through a critical point by changing

the optical lattice spacing, while preserving the quantum coherence of the system for a

sufficiently long time. Therefore these systems serve as an ideal experimental setup for the

study of quantum quenches.

Remarkably, quantum quenches reveal a unique laboratory where the dynamics of

thermalization can be studied. Of course, if the initial state of the system is pure, it remains

pure at all times due to the unitary evolution. However, an isolated quantum mechanical

system at late times can be accurately described using the equilibrium statistical mechanics

provided that the system as a whole respects the Eigenstate Thermalization Hypothesis [8].

Moreover, if the state is reduced to a small subsystem, it is tempting to address the question

whether the full, closed system serves as a good heat bath for itself, so that the subsystems

can be described by a certain thermal ensemble. Furthermore, it is natural to explore in this

context whether equilibration process bears universal merits, and estimate, for example,

the characteristic time it takes for the system to approach the equilibrium state [5–7, 9].

In fact, the observables, such as the vacuum expectation values and correlation func-

tions of the physical operators in the quenched two-dimensional quantum field theories,

have been extensively studied in the literature. One of the earlier works in this di-

rection considers a system which is prepared in the ground state of the Hamiltonian

Hλ = HCFT + λO, where O is a relevant scalar operator and HCFT governs the dynam-

ics of a CFT [10, 11]. At t = 0 the coupling λ is instantaneously tuned to zero, and

the subsequent relaxation of the system is studied. It has been demonstrated that re-

laxation of the observables following the instantaneous (also known as ‘sudden’) quantum

quench, exhibits a universal behavior governed by the CFT scaling dimensions [10, 11];

also see [12, 13] for recent developments in perturbative formulation of the instantaneous

quan- tum quench problem near criticality in the 1 + 1-dimensional case.

The opposite regime of smooth rather than sudden quenches is not tractable in general.

Holography, however, provides a necessary toolkit where the quench dynamics with a finite

quench rate can be addressed. Thus, for instance, inspired by the earlier works of [14,

15], the authors of [16, 17] used numerical methods in the holographic setup to study

the response of a strongly-coupled CFT to a smooth quantum quench of the scalar and

fermionic mass. The dimensionless parameter Tδt, where T is the temperature of the

initial state, was used by the authors to distinguish between the fast (Tδt � 1) and slow

(Tδt � 1) quenches. In the case of a fast quench it has been found that the observables

in the system, such as the one-point correlation function 〈O〉 of an operator adjoint to the

quenched parameter λ, exhibit a new universal scaling behavior with respect to the quench

rate. This conclusion has been further generalized analytically in [18], concluding that the

fast quench of a strongly-coupled CFT in d dimensions manifests a universal scaling at

early times, e.g., 〈O〉 ∼ λδtd−2∆, where d/2 < ∆ < d is the conformal dimension of the

scalar operator O.

The universal scaling behavior has further been shown to exist in the free quantum field

theories [19–21], where response of the system to the quench of a mass has been studied.

It has subsequently been argued that the universal scaling is a general property inherent

to any quantum field theory following the quench dynamics [22–25]. In other words, the
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response of an operator to the quantum quench is determined by the ultra-violet (UV)

CFT properties of the system, namely the UV conformal dimension of that operator. To

extend and generalize the results of [22–24], the authors of [25] scrutinized the response of

one- and two-point correlation functions of scalar operators in the framework of conformal

perturbation theory around a generic CFT.

One salient feature of the universal scaling law 〈O〉 ∼ λδtd−2∆ exhibited by the systems

subjected to a fast quantum quench, is its singular behavior in the instantaneous quench

limit δt → 0, for the operators of scaling dimension ∆ ∈
(
d
2 , d
)
. This is contrasted with

the finite behavior in the case of an instantaneous quench [10, 11]. Such a discrepancy

has been argued to follow from the non-commutativity of the instantaneous quench limit,

δt→ 0, and the limit of taking the UV cutoff to infinity [17–24].

In this paper we study the effect of quantum quenches on the correlation functions of

spin-1 and spin-1/2 operators in a theory with UV fixed point. We assume that the quench

rate is the shortest scale compared to any other scale inherent to the system (except

for the UV cutoff). In this regime the quenched correlation functions at early times are

dominated by the vicinity of the UV fixed point provided that the typical distance between

the operators is sufficiently small. In particular, one can employ the conformal perturbation

theory to study the effect of quench on the correlators. Following this approach we derive

the universal scaling behavior of the spinning correlation functions in various regimes.

The rest of the paper is organized as follows. In section 2 we briefly review the essentials

of the perturbation theory used by us in the context of quantum quenches. In section 3

we study the linear response of the quenched current-current correlation functions. The

scaling dimensions of the currents are arbitrary, and therefore they are not necessarily

conserved. In the limit of fast but smooth quenches we find that correlation functions scale

universally with δt. We point out that in certain regimes our results can be derived using

the OPE techniques. In section 4 we repeat a similar set of calculations for the correlation

functions of two spinors and find qualitative similarity between the results obtained for the

currents in section 3 and for the scalars in [25]. We discuss our results in section 5.

2 Preliminary remarks

In this section we outline the quench protocol and briefly overview the necessary formalism

of conformal perturbation theory that will be used in the next sections.

Consider a d-dimensional QFT deformed by the scalar operator O

H = H0 + λ(t)

∫
dd−1xO(x) , (2.1)

where H0 denotes the Hamiltonian of the unperturbed QFT, whereas the quench protocol

has the form

λ(t) = δλ f(ξ) , ξ =
t

δt
, δλ ∼ `∆−d , (2.2)

where ∆ is the scaling dimension of O, f(ξ) is a smooth pulse function supported on the

interval ξ ∈ (−1, 1) and ` is a characteristic length scale introduced by the quench into the

state of the QFT. This profile represents a quantum bump of characteristic width δt.
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We assume that initially the system resides in the vacuum state |0〉 of the QFT gov-

erned by H0

|Ψ(t)〉 −→
t→−∞

|0〉 . (2.3)

Of course, in the absence of external deformation the system clings to the vacuum state

forever. However, the quench typically results in a complicated dynamics. Expanding the

state of the system in power series in λ(t), yields

|Ψ(t)〉 = e−iH0(t−t′)
(

1− i
∫ t

t′
dt1 λ(t1)O(t1) + . . .

)
|Ψ(t′)〉 , (2.4)

where O(t) represents the Heisenberg operator

O(t) =

∫
dd−1xO(t,x) , O(t,x) = eiH0(t−t′)O(x)e−iH0(t−t′) . (2.5)

The above expansion is formal and needs justification. In fact, it cannot be truncated

in general. However, in sections 3 and 4 we are going to use (2.4) to calculate the linear

response of the spinning correlators under the assumption that the quenched QFT has

an UV fixed point, and δt is the shortest scale in the system (except for the UV cutoff)

satisfying δλδtd−∆ � 1, where d/2 < ∆ < d is the scaling dimension of O at the UV

fixed point. In this case, as argued in [25] (see also earlier works, e.g., [18, 23]), the

correlation functions are dominated by the UV CFT, and the leading order effect can be

derived by replacing |0〉 and H0 with conformal vacuum and conformal Hamiltonian, HCFT,

respectively.

3 Quenched currents

Let us consider a QFT governed by the Hamiltonian (2.1). Motivated by the earlier

works [18, 19, 25] we aim at deriving the universal scaling of the correlation function

of two not necessarily identical or conserved currents

G(JJ)
µν (t1,x1; t2,x2) ≡

〈
J (1)
µ (t1,x1)J (2)

ν (t2,x2)
〉
. (3.1)

Both currents are associated with the unperturbed QFT governed by H0 and the expecta-

tion value is taken in the state satisfying (2.3), (2.4). We assume that H0 has conformal

UV fixed point and the quench rate, δt−1, is much larger than any other scale in the system.

The linear response of the above current-current correlator to a quench protocol out-

lined in the previous section is given by

δ(1)G(JJ)
µν (t1,x1; t2,x2) = i

∫ t2

−∞
dt′ λ(t′)

∫
dd−1y〈[O(t′,y), J (1)

µ (t1,x1)J (2)
ν (t2,x2)]〉0

+ i

∫ t1

t2

dt′ λ(t′)

∫
dd−1y〈[O(t′,y), J (1)

µ (t1,x1)]J (2)
ν (t2,x2)〉0 .

(3.2)
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where we combined (2.3), (2.4) with (3.1) and the subscript 0 indicates that the correlation

functions are evaluated in the vacuum state of H0. This result can be also derived using

the standard Keldysh-Schwinger path integral interpretation of (3.1).

As was argued in [18, 19, 25], at early times and rapid quench rate, i.e., δλδtd−∆ � 1,

the full dynamics of the quenched QFT is dominated by the UV fixed point. In particular,

as we lower the dimensionless parameter δλδtd−∆ (δλ fixed while δt → 0), the linear re-

sponse function δ(1)G
(JJ)
µν (t1,x1; t2,x2), with |0〉 and H0 replaced by the conformal vacuum

and HCFT respectively, takes over the terms associated with either higher order corrections

in δλ or other scales inherent to the system.

Hence, in the regime of fast and smooth quenches the response of the current-current

two-point function is completely universal. It is determined by the linear term in δλ which

is dominated by the correlation function entirely fixed by the conformal symmetry

G(JJO)
µν (x1, x2, x3) =

〈
J (1)
µ (x1)J (2)

ν (x2)O(x3)
〉

CFT

. (3.3)

The embedding space formalism [26, 27] is the most efficient way to calculate the above

correlator. We delegate the details to appendix B. The final answer factorizes into a product

of scalar factor and a scale-invariant tensor structure

G(JJO)
µν (x1, x2, x3) = S(JJO)(x1, x2, x3)T (JJO)

µν (x1, x2, x3) , (3.4)

S(JJO)(x1, x2, x3) =
1

x∆123
12 x∆132

13 x∆231
23

, (3.5)

T (JJO)
µν (x1, x2, x3) = c1

(
ηµν −

2x12µ x12 ν

x2
12

)
(3.6)

+ c2

(
x13µx12 ν

x2
13

− x12µx23 ν

x2
23

− x12µx12 ν

x2
12

+
x2

12

x2
13x

2
23

x13µx23 ν

)
,

where xij = xi−xj for i, j = 1, 2, 3, c1 and c2 are constants, and for brevity we introduced

the following notation

∆ijk = ∆i + ∆j −∆k , i, j, k = 1, 2, 3 , (3.7)

where ∆1, ∆2 and ∆3 denote the scaling dimensions of the primary fields J
(1)
µ , J

(2)
ν andO re-

spectively. If one of the currents is conserved, say J
(1)
µ , then the following constraints hold1

∆1 = d− 1 , c2 =
∆132

∆2 −∆3
c1 . (3.8)

If, however, both J
(1)
µ and J

(2)
µ are conserved then on top of the above constraints we also

have ∆2 = d− 1.

1The relation between c1 and c2 follows from ∆1 = d− 1 and

0 =
〈
∂µJ(1)

µ (x1) J(2)
ν (x2)O(x3)

〉
CFT

=

(
c2(∆2 −∆3)− c1∆132

)
(x12νx

2
23 + x23νx

2
12)

(x2
12)

∆123
2

+1 (x2
13)

∆132
2

+1 (x2
23)

∆231
2

.

See [27] for the analysis of conservation condition and conformal invariance in the case of general spin.
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Now let us evaluate the equal time correlation between the temporal components of

the two currents. In this case (3.2) simplifies

δ(1)G
(JJ)
00 (t,x; t, 0) = i

∫ t

−∞
dt′ λ(t′)

∫
dd−1y

〈[
O(t′,y), J

(1)
0 (t,x)J

(2)
0 (t, 0)

]〉
CFT

. (3.9)

Note that the right ordering of operators within the three-point function on the right hand

side is achieved by introducing a small imaginary component to the Lorentzian times. An

operator that is to the ‘left’ of another should have smaller imaginary part. In particular,

the above expression can further be written as

δ(1)G
(JJ)
00 (t,x; t, 0) = −2 Im

∫ t

−∞
dt′ λ(t′)

(
c1
J(t− t′,x; ∆132,∆231, d)

|x|∆123

− c2
(t− t′)2 J(t− t′,x; ∆132 + 2,∆231 + 2, d)

|x|∆123−2

)
, (3.10)

where J is defined and calculated in appendix C, see (C.1) and (C.10). It has the following

asymptotic behavior

J(t,x; δ1, δ2, d)
∣∣∣
δt/|x|�1

= π
d−1

2

Γ
(

1−d+δ1
2

)
Γ
(
δ1
2

) δtd−1−δ1

|x|δ2
(
−(ξ − iε)2

) d−1−δ1
2 + (1↔ 2) ,

(3.11)

J(t,x; δ1, δ2, d)
∣∣∣
δt/|x|�1

=
π
d−1

2 Γ
(
δ1+δ2−d+1

2

)
δt

d−1−δ1−δ2
2

Γ
(
δ1+δ2

2

)
(−( ξ − iε)2)

δ1+δ2−d+1
2

, (3.12)

where we used the dimensionless parameter ξ = t/δt.

Note that the linear response function vanishes in the limit δt→ 0 if the time instant

t � ` is fixed. Therefore at late times one has to resort to higher orders in δλ. However,

this is not true at early times. In this range the response function exhibits an interest-

ing universal scaling behavior. Setting for simplicity t = 0 and using (3.11) and (3.12),

we obtain2

δ(1)G
(JJ)
00 (0,x; 0, 0)

∣∣∣
δt�|x|

=
2π

d+1
2

Γ
(

∆132
2

)
Γ
(

1+d−∆132
2

) Cδλ δtd−∆132

|x|2∆2

∫ 0

−∞
dξ

f(ξ)

(−ξ)∆132+1−d

+ (∆1 ↔ ∆2) . (3.13)

δ(1)G
(JJ)
00 (0,x; 0, 0)

∣∣∣
|x|�δt

=
2π

d+1
2

Γ (∆3) Γ
(

1+d−2∆3
2

) c1 δλ
δtd−2∆3

|x|∆123

∫ 0

−∞
dξ

f(ξ)

(−ξ)2∆3−d+1
.

2We rely on the identities

lim
ε→0

(−ξ2 ± iε)p = ξ2p e±iπp ,

Γ(z)Γ(1− z) =
π

sin(πz)
.
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where

C = c1 + c2
1− d+ ∆132

∆132
. (3.14)

The terms in (3.13) dominate the behavior of the full two-point function in the limit

δt → 0, δλ fixed. Moreover, the two-point function is singular in this limit provided that

either ∆132 > d or ∆231 > d. In particular, our calculation demonstrates that the scaling

of the spatial correlation function of two spin-1 currents flows from δtd−2∆3 for x ∼ δt

to δtd−∆132 or δtd−∆231 for |x| � δt. From this perspective G
(JJ)
00 scales similarly to its

scalar counterpart [25]. The precise transmutation of one scaling into the other is given

by the linear response function (3.10). Furthermore, this scalings are manifest in any

continuous field theory with UV fixed point if the quench rate δt−1 is sufficiently rapid,

and therefore (3.13) is universal.

Note also that if J
(1)
µ is conserved, then according to (3.8) C in (3.14) vanishes. Thus

δ(1)G
(JJ)
00 (0,x; 0, 0) is given by the exchange (1 ↔ 2) term in (3.13). Of course, if both

currents are conserved, then both terms in (3.13) vanish. However, in general the case

∆1 = ∆2 is not particularly interesting at large separation δt � |x|, since it follows

from (3.13) that in this case the linear response function vanishes in the limit δt → 0 for

relevant deformations (∆3 < d).

In fact, (3.13) has simple interpretation in terms of OPE. Consider first the limit

δt� |x|. The integrand in (3.9) can be written as follows[
J

(1)
0 (0,x)J

(2)
0 (0, 0),O(t′,y)

]
= J

(1)
0 (0,x)

[
J

(2)
0 (0, 0),O(t′,y)

]
+
[
J

(1)
0 (0,x),O(t′,y)

]
J

(2)
0 (0, 0) . (3.15)

By causality we thus conclude that the non-zero contribution to (3.9) comes from the

regions where O(t′,y) is within the light cone of either J
(1)
0 (0,x) or J

(2)
0 (0, 0), otherwise

commutators simply vanish. However, in the limit |x| � δt the domain defined by the

overlap of these light cones with the strip where λ(t′) 6= 0 is space-like separated from the

third operator insertion (either J
(1)
0 (0,x) or J

(2)
0 (0, 0) in the above expression). Thus to

calculate δ(1)G
(JJ)
00 (0,x; 0, 0) in this limit, it is sensible to use the following OPE, see (3.4)

J (2)
ν (0)O(x) ∼ 1

NJ

c1 δ
µ
ν x2 + c2 xν x

µ

(x2)
∆231

2
+1

J (1)
µ (0) + . . . , (3.16)

where ellipsis encode various operators which do not contribute to the leading order effect

we aim to calculate, xµ = (t′ + iε, y) and NJ is a normalization constant defined by3

〈J (i)
µ (x)J (j)

ν (0)〉 = NJ
δij

(x2)∆i

(
ηµν − 2

xµxν
x2

)
. (3.17)

For the temporal component, we thus get

J
(2)
0 (0, 0)O(t′,y) ∼ 1

NJ

−(c1 + c2) (t′ + iε)2 + c1|y|2

(−(t′ + iε)2 + |y|2)
∆231+2

2

J
(1)
0 (0, 0)

− c2

NJ

(t′ + iε) yi

(−(t′ + iε)2 + |y|2)
∆231+2

2

J
(1)
i (0, 0) + . . . , (3.18)

3The iε prescription is fixed by the ordering of operators on the left hand side of (3.16).
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Or equivalently,

[J
(2)
0 (0, 0),O(t′,y)] =

2i

NJ
J

(1)
0 (0, 0) Im

−(c1 + c2) (t′ + iε)2 + c1|y|2

(−(t′ + iε)2 + |y|2)
∆231+2

2

− 2i

NJ
J

(1)
i (0, 0) Im

c2 (t′ + iε) yi

(−(t′ + iε)2 + |y|2)
∆231+2

2

. . . , (3.19)

Substituting (3.15) and (3.19) into (3.9), and carrying out the integral over y results in the

first equation in (3.13).

In the opposite regime, |x| � δt, the appropriate OPE is

J (1)
µ (0)J (2)

ν (x) ∼ 1

NO (x2)
∆123

2

(
c1 ηµν − (2 c1 + c2)

xµ xν
x2

)
O(0) + . . . , (3.20)

where xµ = (t′ + iε, x) and NO is the normalization constant defined by

〈O(x)O(y)〉 =
NO

|x− y|2∆3
. (3.21)

For temporal components at equal times (3.20) simplifies

J
(1)
0 (0,x)J

(2)
0 (0, 0) ∼ − c1

NO |x|∆123
O(0) + . . . . (3.22)

Plugging it into (3.9) we see that in the limit |x| � δt the linear response function

δ(1)G
(JJ)
00 (t,x; t, 0) reduces to δ(1)〈O(0)〉. Hence, using [25]

δ(1)〈O(0)〉 = − 2π
d+1

2 NO

Γ(∆3)Γ
(
d−2∆3+1

2

) δλ ∫ 0

−∞
dt′

f(t′/δt)

(−t′)2∆3−d+1
, (3.23)

we recover the second expression in (3.13).

The correlation function between the spatial components of the currents can be calcu-

lated in a similar way. This time

δ(1)G
(JJ)
ij (t,x; t, 0) = i

∫ t

−∞
dt′ λ(t′)

∫
dd−1y

〈[
O(t′,y), J

(1)
i (t,x)J

(2)
j (t, 0)

]〉
CFT

, (3.24)

can be written in terms of the integrals (C.1), (C.11), (C.12) (see appendix C) as follows

δ(1)G
(JJ)
ij (t,x; t, 0) =

2

|x|∆123
Im

∫ t

−∞
dt′ λ(t′)

(
c2 |x|2Jij(t− t′′,x; ∆132 + 2,∆231 + 2, d)

+ c2 xixjJ(t− t′′,x; ∆132 + 2,∆231, d)− c2 xjJi(t− t′′,x; ∆132 + 2,∆231, d)

+ c2 xiJj(t− t′′,x; ∆132,∆231 + 2, d)− c2 xi|x|2Jj(t− t′′,x; ∆132 + 2,∆231 + 2, d)

+

(
c1 δij −

(2 c1 + c2)xixj
|x|2

)
J(t− t′,x; ∆132,∆231, d)

)
. (3.25)
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Setting t = 0 and substituting (2.2), we arrive at

δ(1)G
(JJ)
ij (0,x; 0, 0)

∣∣∣
δt�|x|

=
2π

d+1
2

Γ
(

∆132
2

)
Γ
(

1+d−∆132
2

) δλ C(1)
ij

δtd−∆132

|x|2∆2

∫ 0

−∞
dξ

f(ξ)

(−ξ)∆132+1−d

+ (∆1 ↔ ∆2) . (3.26)

δ(1)G
(JJ)
ij (0,x; 0, 0)

∣∣∣
|x|�δt

=
−2π

d+1
2

Γ (∆3) Γ
(
d+1−2∆3

2

) δλ C(2)
ij

δtd−2∆3

|x|∆123

∫ 0

−∞
dξ

f(ξ)

(−ξ)2∆3−d+1
,

where

C(1)
ij (x̂) =

(
c2

∆231
+ c1

) (
2xixj
|x|2

− δij
)
, C(2)

ij (x̂) = c1

(
δij − 2

xixj
|x|2

)
− c2

xixj
|x|2

. (3.27)

As before, the scaling behavior (3.26) is universal and can be derived using the OPE

technique. The full linear response function (3.25) interpolates between the scalings in two

extreme limits. For instance, the limit δt � |x| is reproduced using (3.16) with spatial ν.

In particular, this time we get (t′ < 0)

[J
(2)
j (0, 0),O(t′,y)] =

2i

NJ
J

(1)
k (0, 0) θ(t′2 − |y|2)

c1 δ
k
j (−t′ 2 + |y|2) + c2 yj y

k

(t′2 − |y|2)
∆231+2

2

sin

(
π

∆231

2

)
+

2i

NJ
J

(1)
0 (0, 0) θ(t′2 − |y|2)

c2 yj t
′

(t′2 − |y|2)
∆231+2

2

sin

(
π

∆231

2

)
+ . . . .

(3.28)

Substituting this commutator into

δ(1)G
(JJ)
ij (0,x; 0, 0) = −i

∫ 0

−∞
dt′ λ(t′)

∫
dd−1y

〈
J

(1)
i (0,x)

[
J

(2)
j (0, 0),O(t′,y)

]〉
−i
∫ 0

−∞
dt′ λ(t′)

∫
dd−1y

〈[
J

(1)
i (0,x),O(t′,y)

]
J

(2)
j (0, 0)

〉
,

(3.29)

and integrating over y, we recover the first equation in (3.26).

To compute the opposite limit, |x| � δt, we repeat essentially the same steps as in the

calculation of δ(1)G
(JJ)
00 (0,x, 0, 0). The OPE (3.20) takes the form

J
(1)
i (0,x)J

(2)
j (0, 0) =

C(2)
ij (x̂)

NO|x|∆123
O(0) + . . . . (3.30)

Now one can repeat the steps following (3.22) to verify the second equation in (3.26).

Finally, let us study the two-point function (3.2) with currents inserted at different

instants in time, but at the same point in space. We set x = 0 since the quench protocol

respects tranlational symmetry. Furthermore, for simplicity we focus on the temporal

components only and define

Ti = ti − t′ − iε , i = 1, 2 . (3.31)
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The essential ingredient in the calculation is encoded in the following integral

U(T1, T2; δ1, δ2, d) =

∫
dd−1y

1

(−T 2
1 + |y|2)

δ1
2 (−T 2

2 + |y|2)
δ2
2

, (3.32)

which can be evaluated in terms of the hypergeometric functions

U = (−T 2
2 )

d−1−δ1−δ2
2 π

d−1
2

Γ
(
δ2−d+1

2

)
Γ
(
δ2
2

) (
−T 2

2

−T 2
1

) δ1
2

2F1

(
d− 1

2
,
δ1

2
,
d+ 1− δ2

2
;
T 2

2

T 2
1

)

+
Γ
(
d−1−δ2

2

)
Γ
(

1−d+δ1+δ2
2

)
Γ
(
d−1

2

)
Γ
(
δ1
2

) (
−T 2

2

−T 2
1

) 1+δ1+δ2−d
2

× 2F1

(
δ2

2
,

1− d+ δ1 + δ2

2
,

3− d+ δ2

2
;
T 2

2

T 2
1

))
. (3.33)

Moreover, it simplifies if we set t2 = 0 and take the limit of fast quenches, t1 � δt, while

assuming δ2 > d

U(T1, T2; δ1, δ2, d)
∣∣∣
t1�δt

= (−T 2
2 )

d−1−δ1−δ2
2 π

d−1
2

Γ
(
δ2−d+1

2

)
Γ
(
δ2
2

) (
−T 2

2

−T 2
1

) δ1
2

. (3.34)

In this case the linear response function takes the form

δ(1)G(JJ)
µν (t1, 0, 0, 0)

∣∣∣
t1�δt

= 2π
d−1

2 δλ

(
c1 + c2

1− d+ ∆231

∆231

) Γ
(

∆231−d+1
2

)
Γ
(

∆231
2

) e−iπ
∆123

2

× c1
δtd−∆231

t2∆1
1

sin

(
π
d− 1− 2∆3

2

)∫ 0

−∞
dξ

f(ξ)

(−ξ)∆231−d+1

− 2π
d−1

2 δλ

(
c1 + c2

1− d+ ∆231

∆231

) Γ
(

∆231−d+1
2

)
Γ
(

∆231
2

) eiπ
d−1−2∆2

2

× c1
δtd−∆231

t2∆1
1

sin

(
π∆132

2

) ∫ ∞
0

dξ
f(ξ)

ξ∆231−d+1
. (3.35)

4 Quenched fermions

In this section we study quantum quenches in the presence of Dirac field ψ. Our conventions

are reviewed in appendix D. We start from considering the linear response of the equal time

two-point correlation function

G(ψψ)(t,x; t, 0) ≡
〈
ψ1(t,x)ψ̄2(t, 0)

〉
. (4.1)

To ensure validity and universality of the calculations, we focus on the regime when the

separation, |x|, time of observation, t, and the duration of quench, δt, are much smaller

than any physical scale inherent to the system or its state. The scaling dimensions of the
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Dirac fields are denoted by ∆1 and ∆2 respectively, whereas the scaling dimension of the

deformation is denoted by ∆3. The linear response of the above correlation function is

given by

δ(1)G(ψψ)(t,x; t, 0) = i

∫ t

−∞
dt′ λ(t′)

∫
dd−1y

〈[
O(t′,y), ψ1(t,x)ψ̄2(t, 0)

]〉
CFT

. (4.2)

As usual, the ordering of operators within the three-point function on the right hand

side is achieved by adding a small imaginary component to the Lorentzian time of the

operators.4 Using the three-point function (D.37) derived in appendix D, we get

〈
[
O(t′,y), ψ1(t,x)ψ̄2(t, 0)

]
〉 =

b1 xj γ
j

|x|∆123+1
(
y2 − (t′ − t− iε)2

)∆231
2
(
(y − x)2 − (t′ − t− iε)2

)∆132
2

+
b2
(
(t′ − t− iε)γ0 + (x− y)jγ

j
)(

(t′ − t− iε)γ0 − yjγj
)

|x|∆123
(
y2 − (t′ − t− iε)2

)∆231+1
2
(
(y − x)2 − (t′ − t− iε)2

)∆132+1
2

− (ε→ −ε) . (4.3)

where b1,2 are constants. In particular, we find it convenient to split the linear response

term into two parts proportional to b1 and b2 respectively and evaluate them separately,

δ(1)G(ψψ)(t,x, t, 0)〉 = b1 δ
(1)
1 G(ψψ)(t,x, t, 0) + b2 δ

(1)
2 G(ψψ)(t,x, t, 0) . (4.4)

Thus, for instance, one can write

δ
(1)
1 G(ψψ)(t,x; t, 0) = −2

γixi
|x|∆123+1

Im

∫ t

−∞
dt′ λ(t′)J(t′ − t,x; ∆132,∆231, d) , (4.5)

where J(t′− t,x; ∆132,∆231, d) is defined in (C.1) and evaluated in appendix C, see (C.10).

Similarly, using (C.14), (C.15) yields

δ
(1)
2 G(ψψ)(t,x; t, 0) (4.6)

= 2

∫ t

−∞
dt′ λ(t′)

(t− t′)xiγiγ0 + (t− t′)2

|x|∆123
Im J(t′ − t,x; ∆132 + 1,∆231 + 1, d)

− 2 δij

|x|∆123
Im

∫ t

−∞
dt′ λ(t′)Jij(t

′ − t,x; ∆132 + 1,∆231 + 1, d)

+ 2
xjγ

jγi

|x|∆123
Im

∫ t

−∞
dt′ λ(t′) Ji(t

′ − t,x; ∆132 + 1,∆231 + 1, d) ,

where Ji and Jij are evaluated in appendix C. Both can be written in terms of J .

For the quench protocol (2.2) and δt� t� `, the above linear response functions are

proportional to δt and therefore vanish in the limit δt → 0. Thus, at late times dynamics

of the system is governed by the non-linear corrections. However, the scaling structure is

4An operator that is to the ‘left’ of another should have smaller imaginary part.
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rich and universal at early times t ∼ δt. Setting for simplicity t = 0, and substituting the

quench profile (2.2), we find (where x̂i = xi/|x|)

δ
(1)
1 G(ψψ)(0,x; 0, 0)

∣∣∣
|x|�δt

' −2π
d+1

2

Γ
(

∆132
2

)
Γ
(
d−∆132+1

2

) δλ

δt∆132−d
γix̂i
|x|2∆2

∫ 0

−∞
dξ

f(ξ)

(−ξ)∆132−d+1

+(1↔ 2) , (4.7)

δ
(1)
1 G(ψψ)(0,x, 0, 0)

∣∣∣
|x|�δt

' −2π
d+1

2

Γ (∆3) Γ
(
d−2∆3+1

2

) δλ

δt 2∆3−d
γix̂i
|x|∆123

∫ 0

−∞
dξ

f(ξ)

(−ξ)2∆3−d+1
.

Similarly,

δ
(1)
2 G(ψψ)(0,x, 0, 0)

∣∣∣
|x|�δt

' 2π
d+1

2

Γ
(

∆132+1
2

)
Γ
(
d−∆132

2

) δλ

δt∆132−d
γiγ0x̂i
|x|2∆2

∫ 0

−∞
dξ

f(ξ)

(−ξ)∆132−d+1

+(1↔ 2) , (4.8)

δ
(1)
2 G(ψψ)(0,x, 0, 0)

∣∣∣
|x|�δt

' −2π
d+1

2

Γ (∆3) Γ
(
d−2∆3+1

2

) δλ

δt2∆3−d
1

|x|∆123

∫ 0

−∞
dξ

f(ξ)

(−ξ)2∆3−d+1
.

One can understand (4.7), (4.8) using the OPE approach. For instance, to recover

the results in the regime |x| � δt, we first observe that δ(1)G(ψψ)(0,x; 0, 0) can be written

as follows

δ(1)G(ψψ)(0,x; 0, 0) = −i
∫ 0

−∞
dt′ λ(t′)

∫
dd−1y

〈
ψ1(0,x)

[
ψ̄2(0, 0),O(t′,y)

]〉
−i
∫ 0

−∞
dt′ λ(t′)

∫
dd−1y

〈 [
ψ1(0,x),O(t′,y)

]
ψ̄2(0, 0)

〉
. (4.9)

Obviously, causality compels O(t′,y) to run within the light cone of either ψ1(0,x) or

ψ̄2(0, 0) to ensure the commutators do not vanish. However, in the limit |x| � δt the

domain defined by the overlap of these light cones with the region where λ(t′) 6= 0 is space-

like separated from the third operator insertion (either ψ1(0,x) or ψ̄2(0, 0) in the above

correlation function). Thus to calculate δ(1)G(ψψ)(0,x; 0, 0) in this limit, it is sensible to

use the following OPE,5 see (D.37)

ψ̄2(0, 0)O(t′,y) ∼ ψ̄1(0, 0)

Nψ

(
b1

1

(−(t′ + iε)2 + |y|2)
∆231

2

+ b2
−(t′ + iε)γ0 + yi γ

i

(−(t′ + iε)2 + |y|2)
∆231+1

2

)

+ . . . , (4.11)

5The iε is introduced to match the ordering of operators on the left hand side, whereas the Dirac fields

are normalized as follows

〈ψi(x)ψ̄j(0)〉 = δij Nψ
/x

(x2)∆i+1/2
. (4.10)
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and similarly for ψ1(0, 0)O(t′,y). In particular, the commutator for t′ < 0 takes the form

[ψ̄2(0, 0),O(t′,y)] ∼ − 2 i b1
Nψ

ψ̄1(0, 0)
θ(t′2 − |y|2)

(t′2 − |y|2)
∆231

2

sin

(
π

∆231

2

)
(4.12)

+
2 i b2
Nψ

ψ̄1(0, 0) (t′γ0 − yiγi)
θ(t′2 − |y|2)

(t′2 − |y|2)
∆231+1

2

sin

(
π

∆231 + 1

2

)
+ . . . .

Plugging it into the expression for δ(1)G(ψψ)(0,x; 0, 0), carrying out the integrals over y

and simplifying the resulting expression gives (4.7), (4.8).

In the opposite limit, |x| � δt, one should use a different OPE to calculate

δ(1)G(ψψ)(0,x; 0, 0), namely

ψ1(0,x)ψ̄2(0, 0) ∼
(
b1
γix

i

|x|
+ b2

)
1

NO

1

|x|∆123
O(0) + . . . , (4.13)

which also follows from (D.37). It is now a straightforward calculation to show that the

final answer is consistent with (4.7), (4.8).

Consider now the linear response of the fermionic two-point function with operator

insertions at different instants in time, but at the same point in space. Analogously to (3.2)

we have this time

δ(1)G(ψψ)(t1, 0; t2, 0) = i

∫ t2

−∞
dt′ λ(t′)

∫
dd−1y〈[O(t′,y), ψ1(t1, 0)ψ2(t2, 0)]〉CFT

+ i

∫ t1

t2

dt′ λ(t′)

∫
dd−1y〈[O(t′,y), ψ1(t1, 0)]ψ2(t2, 0)〉CFT . (4.14)

Repeating exactly the same steps as in the previous section, e.g., setting for simplicity

t2 = 0 and considering the limit t1 � δt, we get the following result

δ(1)G(ψψ)(t1, 0, 0, 0)
∣∣∣
t1�δt

= −2π
d−1

2 δλ e−iπ
∆123

2
δtd−∆231

t2∆1
1

sin
(
π d−1−2∆3

2

)
Γ
(

∆231
2

) (4.15)

×
(
b1 Γ

(
∆231 − d+ 1

2

)
γ0 +

2ib2
∆231

Γ

(
∆231 − d+ 2

2

))∫ 0

−∞
dξ

f(ξ)

(−ξ)∆231−d+1

− 2π
d−1

2 δλ eiπ
d−1−2∆2

2
δtd−∆231

t2∆1
1

sin
(
π ∆123

2

)
Γ
(

∆231
2

)
×
(
b1 Γ

(
∆231 − d+ 1

2

)
γ0 +

2ib2
∆231

Γ

(
∆231 − d+ 2

2

))∫ 0

−∞
dξ

f(ξ)

(−ξ)∆231−d+1
.

5 Discussion

In this paper we continued the study of quantum field theories with UV fixed point under-

going smooth quantum quenches characterized by the quench rate larger than any scale

in the system except for the UV-cutoff. Specifically we considered a field theory deformed
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by a relevant scalar operator with time-dependent coupling. Regime of sufficiently rapid

quench admits application of the conformal perturbation theory. In particular, working in

this framework we focused on the studies of correlation functions of two spin-1 primary

currents and two spin-1/2 Dirac fields of general scaling dimension. We showed that during

the quench these correlation functions exhibit a universal scaling behavior with respect to

the quench rate. This is consistent with known results in the literature regarding the one-

and two-point correlation functions of the scalar operators in field theories undergoing a

fast quench. We verified our results in the regimes where the spatial separation between the

operators is small or large compared to the inverse quench rate by performing the operator

product expansion analysis.

The study of quantum quenches is partly motivated by the aspiration to understand

relaxation in field theories out of equilibrium. While the whole system remains in a pure

state, it is instructive to study the local dynamics of a subsystem, which under certain

circumstances can be described in terms of thermal ensemble at late times. Hence, we

explored the late time behavior of the spinning two-point correlation functions with op-

erator insertions at different instants in time. Yet, the complete analysis of the late-time

thermalization requires going beyond the regime of the conformal perturbation theory, and

we leave it for future work. The similarities of the scaling behavior manifested in the

scalar, fermion, and current correlation functions also suggest that it would be interesting

to generalize our results to the correlation functions of operators of arbitrary spin.
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A Projective null cone

In this appendix we give a brief outline of the embedding space formalism needed for our

calculations. Our presentation makes use and relies on the work by others [26–28].

It is well known that the connected part of the conformal group in a d-dimensional

Minkowski space can be realized as linear transformations SO(d, 2) in Rd,2. In particular, if

we denote the coordinates of the d+2-dimensional embedding space by XM , (M = +,−, µ),

then the d-dimensional CFT is accommodated on a section of the light cone,

ηMNX
MXN = 0 , XMdXM = 0 , (A.1)

parametrized by

Xµ = xµ , X+ = f(xµ) , X+X− = x2 , (A.2)

where xµ are coordinates of the CFT, X+ = f(x) defines the light cone section, and X−

is fixed by the light cone constraint. We denoted the light-cone coordinates as

X± = X6 ±X5 . (A.3)
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The metric of the ambient space,

ds2 = ηMNdX
MdXN = −dX+dX− + ηµνdX

µdXν , (A.4)

determines the induced metric on the light cone section where CFT lives. For a flat section

a convenient choice is f(x) ≡ 1, in which case the light cone constraint yields X− = x2.

As a result, the d-dimensional CFT lives on the subspace of Rd,2 defined by

XM (x) = (1, x2, xµ) , (A.5)

whereas the conformal group consists of SO(d, 2) transformations

XM → ΛMNX
N . (A.6)

To ensure X+ = 1 holds after the above linear transformation takes place we supple-

ment it with rescaling XM → λ(x)XM of the form

λ(x) =
(
Λ+

+ + Λ+
−x

2 + Λ+
µx

µ
)−1

. (A.7)

Since the light cone constraint XMXM = 0 is invariant under both transformations, such

a combination of boost plus scaling defines a diffeomorphism of the subspace (A.5). In

particular, the induced metric remains invariant up to a scale factor. This can be seen

from the following sketchy argument

dX2 → dX ′2 = d(λ(X)X)2 = λ(x)2dX2 , (A.8)

where the light cone condition (A.1) was used in the last equality.

The primary fields of the CFT correspond to tensors of SO(d, 2) living on a light cone

and satisfying certain conditions. For instance, a scalar primary O(x) with scaling dimen-

sion ∆O is uplifted to a scalar O(X) defined on the light cone (A.4) and satisfying the homo-

geneity condition O(λX) = λ−∆O O(X). Similarly, a primary vector field, Jµ(x), is uplifted

to a vector, JM (X), of SO(d, 2) satisfying the homogeneity and transversality conditions

JM (λX) = λ−∆J JM (X) , XM JM (X) = 0 , (A.9)

where ∆J stands for the scaling dimension of Jµ(x). The connection between the fields is

provided by6

O(x) = O(X)
∣∣∣
XM (x)

, Jµ(x) =
∂XM

∂xµ
JM (X)

∣∣∣
XM (x)

. (A.10)

B Current-current-scalar correlation function

In this appendix we derive the three point function of primary scalar and two spin-1 currents

used in the text. This is a particular case of the three point function calculated in [27].

The corresponding correlator in Rd,2 is given by

G
(JJO)
MN =

〈
J

(1)
M (X1)J

(2)
N (X2)O(X3)

〉
. (B.1)

6Note that XM is projected to zero because of (A.1) and (A.10). Hence, (A.10) projects any JM (X) and

JM (X) + αXM onto the same vector Jµ(x). Furthermore, since transversality condition eliminates one of

the component of JM (X), the match between Jµ(x) and JM (X) is one-to-one up to JM ∼ XM .
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Let us denote by ∆J1 ,∆J2 and ∆O the scaling dimensions of JM (X1), JN (X2) and O(X3)

respectively. Based on the homogeneity of operators under rescaling of their argument and

simple transformation rule under SO(d, 2) group in the ambient space, we deduce that the

most general ansatz for G
(JJO)
MN can be written as a product of the scalar three-point function

S(JJO)(X1, X2, X3) =
1

(X1 ·X2)
∆J1J2 O

2 (X1 ·X3)
∆J1 O J2

2 (X2 ·X3)
∆J2 O J1

2

, (B.2)

where for brevity

∆ABC = ∆A + ∆B −∆C , A,B,C = J1, J2,O , (B.3)

and the scale-invariant tensor

T
(JJO)
MN (X1, X2, X3) = ηMN + c1

X2MX1N

X1 ·X2
+ c2

X3MX1N

X1 ·X3
+ c3

X2MX3N

X2 ·X3

+ c4
X1MX2N

X1 ·X2
+ c5

X1MX3N

X1 ·X3
+ c6

X3MX2N

X2 ·X3

+ c7
X1MX1N X2 ·X3

X1 ·X2X1 ·X3

+ c8
X2MX2N X1 ·X3

X1 ·X2X2 ·X3

+ c9
X3MX3N X1 ·X2

X1 ·X3X2 ·X3
, (B.4)

where ci’s are arbitrary constants that can be related to each other by imposing transver-

sality and light cone constraints

Xn ·Xn = 0 , n = 1, 2, 3 , XM
n

∂XnM

∂xµi
= 0 , (B.5)

XM
1 JM (X1) = 0 , XN

2 JN (X2) = 0 . (B.6)

Considering that projection is carried out through the use of (A.5) and (A.10), we

can ignore terms proportional to c4,5,6,7,8 as their projection eventually vanishes because

of (B.5). For the rest of c’s (B.6) results in

c1 = −1− c

2
, c2 =

c

2
, c3 =

c

2
, c9 = − c

2
. (B.7)

Combining altogether gives

T
(JJO)
MN (X1, X2, X3) = ηMN −

X2MX1N

X1 ·X2
(B.8)

+
c

2

(
X3MX1N

X1 ·X3
+
X2MX3N

X2 ·X3
− X2MX1N

X1 ·X2
− X1 ·X2X3MX3N

X1 ·X3X2 ·X3

)
+ . . . ,

where ellipsis encode terms which are annihilated by projection (A.10). This result is in

full agreement with [27].

– 16 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
8

Furthermore, on a sub-manifold (A.5) where the CFT lives, we have

∂XM

∂xµ
=
(
0, 2xµ, δ

M
µ

)
, (B.9)

ηMLX
M
2

∂XL
1

∂xµ1
= x2µ − x1µ , (B.10)

X1 ·X2 = −1

2
x2

12 , x2
12 = |x1 − x2|2 . (B.11)

Hence, after applying projection (A.10) the scalar and tensor parts of the conformal cor-

relation function (3.3) take the form (3.5) and (3.6).

C Master integrals

Here we calculate the integrals encountered in the text numerous times

J(t,x; δ1, δ2, d) ≡
∫
dd−1y

1

(−(t− iε)2 + (y − x)2)
δ1
2 (−(t− iε)2 + y2)

δ2
2

. (C.1)

Introducing Feynman parameter u, and then shifting the integration variable, y →
y + ux, we obtain

J(t,x; δ1, δ2, d) =
Γ
(
δ1+δ2

2

)
Γ
(
δ1
2

)
Γ
(
δ2
2

) ∫ 1

0
duu

δ1
2
−1(1− u)

δ2
2
−1

×
∫
dd−1y

1

(−(t−iε)2+|y|2+u(1−u)|x|2)
δ1+δ2

2

. (C.2)

The integral over y is now straightforward,

J(t,x; δ1, δ2, d) =
π
d−1

2 Γ
(
δ1+δ2−d+1

2

)
Γ
(
δ1
2

)
Γ
(
δ2
2

)
×
∫ 1

0
duu

δ1
2
−1(1− u)

δ2
2
−1 (−(t−iε)2+u(1−u)|x|2)

d−1−δ1−δ2
2 . (C.3)

Next we introduce a convenient variable

z =
|x|2

(t− iε)2
, (C.4)

which allows us to rewrite

J(t,x, ; δ1, δ2, d) =
π
d−1

2 Γ
(
δ1+δ2−d+1

2

)
Γ
(
δ1
2

)
Γ
(
δ2
2

) (−(t−iε)2)
d−1−δ1−δ2

2

×
∫ 1

0
duu

δ1
2
−1(1− u)

δ2
2
−1 (1−u(1−u)z)

d−1−δ1−δ2
2 . (C.5)
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Using definition of the Pochhammer symbol

(a)k = a(a+ 1) · · · (a+ k − 1) , (a)0 = 1 , (C.6)

its property

(a)2k = 22k
(a

2

)
k

(
a+ 1

2

)
k

, (C.7)

and representation of the generalized hypergeometric function

3F2(a1, a2, a3; b1, b2; z) =
∞∑
k=0

(a1)k(a2)k(a3)k z
k

(b1)k(b2)k k!
, (C.8)

we can calculate the integral over u∫ 1

0
duu

δ1
2
−1(1− u)

δ2
2
−1 (1−u(1−u)z)

d−1−δ1−δ2
2

=

∞∑
k=0

zk( δ1+δ2−d+1
2 )k

k!

∫ 1

0
duu

δ1
2
−1+k(1− u)

δ2
2
−1+k

=
Γ
(
δ1
2

)
Γ
(
δ2
2

)
Γ
(
δ1+δ2

2

) 3F2

(
δ1

2
,
δ2

2
,
δ1 + δ2 − d+ 1

2
;
δ1 + δ2

4
,
δ1 + δ2 + 2

4
;
z

4

)
. (C.9)

Hence,

J(t,x; δ1, δ2, d) =
π
d−1

2 Γ
(
δ1+δ2−d+1

2

)
Γ
(
δ1+δ2

2

)
(−(t−iε)2)

δ1+δ2−d+1
2

(C.10)

× 3F2

(
δ1

2
,
δ2

2
,
δ1 + δ2 − d+ 1

2
;
δ1 + δ2

4
,
δ1 + δ2 + 2

4
;
|x|2

4(t− iε)2

)
.

Using this result we can readily evaluate two additional integrals used in the text

Ji(t,x, ; δ1, δ2, d) ≡
∫
dd−1y

yi

(−(t− iε)2 + (y − x)2)
δ1
2 (−(t− iε)2 + y2)

δ2
2

, (C.11)

Jij(t,x, ; δ1, δ2, d) ≡
∫
dd−1y

yi yj

(−(t− iε)2 + (y − x)2)
δ1
2 (−(t− iε)2 + y2)

δ2
2

. (C.12)

Indeed, based on the definition (C.1), we have

Ji(t,x, ; δ1, δ2, d) =

(
− 1

δ1

∂

∂xi
J(t,x, ; δ1, δ2, d)

) ∣∣∣∣∣
δ1→δ2−2 , δ2→δ1

(C.13)

Jij(t,x, ; δ1, δ2, d) =

(
1

δ1(δ1 + 2)

∂2

∂xi∂xj
J(t,x, ; δ1, δ2, d)

+
δij

δ1 + 2
J(t,x, ; δ1 + 2, δ2, d)

)
δ1→δ2−4 , δ2→δ1

.
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Taking derivatives of (C.12) and rearranging terms, yields

Ji(t,x, ; δ1, δ2, d) = xi
δ1

2π
J(t,x; δ1 + 2, δ2, d+ 2) , (C.14)

Jij(t,x, ; δ1, δ2, d) =
δij
2π

J(t,x; δ1, δ2, d+ 2) +
δ1(δ1 + 2)

4π2
xi xj J(t,x; δ1 + 4, δ2, d+ 4) .

(C.15)

D Fermion-fermion-scalar correlation function

In this appendix we use the embedding space formalism to derive the conformal three-

point function of two primary Dirac fields ψ1,2(x) and a primary scalar O(x) in Rd−1,1.

The scaling dimensions of the fields are denoted by ∆ψ1 , ∆ψ2 and ∆O respectively.

Our analysis closely follows [26]. In particular, we do not impose X+ = 1 throughout

this appendix, and the points of Rd−1,1 are identified with the light cone generating rays.

The connection between the coordinates of Rd−1,1 and Rd,2 is provided by the formula

xµ =
Xµ

X+
, X− = X+ x2 . (D.1)

As in the case of tensor fields with integer spin, the primary spinors ψ1,2(x) are uplifted

to Dirac fields Ψ1,2(X) living on the light cone in Rd,2 and obeying homogeneity and

transversality conditions

Ψ1,2(λX) = λ
1/2−∆ψ1,2 Ψ1,2(X) , (X · Γ)Ψ1,2(X) = 0 , (D.2)

where our choice for the representation of gamma matrices, ΓM , in Rd,2 is [29]

Γµ =

(
γµ

0

0

−γµ

)
, µ = 0, . . . , d− 1 , Γ+ =

(
0

0

2

0

)
, Γ− =

(
0

−2

0

0

)
, (D.3)

with 2[ d2 ]×2[ d2 ] matrices γµ, µ = 0, . . . , d−1 representing Clifford algebra in d-dimensional

spacetime.7

The rows and columns of the supermatrices in (D.3) will be labelled by ± index. Thus,

for instance, the 2[ d2 ]+1-component Dirac field takes the form

Ψ =

(
Ψ+

Ψ−

)
. (D.5)

It transforms in a standard way under the generators, JMN , of the SO(d, 2) group

i[JMN ,Ψ] = (XN∂M −XM∂N )Ψ− iJMNΨ , (D.6)

where JMN = [ΓM ,ΓN ]/(4i) build the Dirac representation of the SO(d, 2) Lie algebra.

7In even dimensional space-time there exists the so-called chirality gamma matrix. In Rd−1,1 and Rd,2,

we define them as follows

γ5 = i
2−d

2

d−1∏
µ=0

γµ ,

Γ5 ≡
(i)−

d+2
2

4

[
Γ−,Γ+] d−1∏

µ=0

Γµ =

(
−1

0

0

1

)
. (D.4)
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The spinor Ψ should be related to the Dirac field ψ in Rd−1,1 such that the latter obeys

the following transformation rules under the generators of conformal group

i[Jµν , ψ] = (xν∂µ − xµ∂ν)ψ − i jµνψ , (D.7)

i[Pµ, ψ] = −∂µψ , (D.8)

i[Kµ, ψ] = (2xµxλ∂λ − x2∂µ + 2∆xµ)ψ + 2i jµνxνψ , (D.9)

i[S, ψ] = (xλ∂λ + ∆)ψ , (D.10)

where jµν = [γµ, γν ]/(4i) form the Dirac representation of the Lorentz group Lie algebra,

whereas the generators translations, Pµ, dilations, S, and special conformal transforma-

tions, Kµ, are simply related to their counterparts JMN

Pµ = J+µ , Kµ = J−µ , S =
1

2
J−+ . (D.11)

To construct the desired relation between Ψ and ψ, we start from defining an auxil-

iary spinor

ζ =

(
ζ+

ζ−

)
= (X+)∆− 1

2 Ψ . (D.12)

According to (D.2) it does not change under scaling, i.e., by definition the auxiliary spinor

is invariant along the rays that generate the light cone. Hence, ζ a well-defined function of

xµ, and we can think of it as an object in Rd−1,1 satisfying the constraint

XM ΓM ζ = 0 ⇒
(
xµγ

µ

1

−x2

−xµγµ

)(
ζ+

ζ−

)
= 0 ⇒ ζ+ = xµγ

µζ− . (D.13)

The auxiliary spinor ζ cannot be directly identified with a smaller ψ living in Rd−1,1.

Furthermore, ζ does not have the usual commutation relations with the generators of

conformal group in Rd−1,1. Thus, for instance, using (D.6) and (D.11), gives

i[Pµ, ζ+] = −∂µζ+ + γµζ− , (D.14)

i[Pµ, ζ−] = −∂µζ− . (D.15)

Similarly,

i[Kµ, ζ+] = (2xµxλ∂λ − x2∂µ + (2∆− 1)xµ)ζ+ , (D.16)

i[Kµ, ζ−] = (2xµxλ∂λ − x2∂µ + (2∆− 1)xµ)ζ− + γµζ+ , (D.17)

and

i[S, ζ+] = (xλ∂λ + ∆− 1)ζ+ , (D.18)

i[S, ζ−] = (xλ∂λ + ∆)ζ− . (D.19)

However, using the transversality constraint (D.13), we can rewrite (D.17) as follows

i[Kµ, ζ−] = (2xµxλ∂λ − x2∂µ + 2∆xµ)ζ− + 2i jµν xνζ− , (D.20)
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In particular, it follows from (D.15), (D.19) and (D.20) that ζ− transforms according

to (D.7)–(D.10) under the conformal group in Rd−1,1. Hence, correct identification takes

the form

ψ = ζ− = (X+)∆− 1
2 Ψ− . (D.21)

Now let us define the Dirac adjoints in Rd−1,1 and Rd,2 as ψ̄ ≡ iψ†γ0and Ψ̄ ≡ Ψ†β

respectively, where

β =
i

2
Γ0
(
Γ+ + Γ−

)
=

(
0

iγ0

iγ0

0

)
, β−1 = β† = β , βΓMβ = (ΓM )† . (D.22)

Thus,

Ψ̄ = Ψ†β =
(
iΨ†−γ

0 iΨ†+γ
0
)
,

ψ̄ ≡ iζ†−γ
0 = (X+)∆− 1

2 iΨ†−γ
0 = (X+)∆− 1

2 Ψ̄+ . (D.23)

Next we note that the most general ansatz for the SO(d, 2) invariant three-point func-

tion in Rd,2 is

GΨΨO(X,Y, Z) ≡ 〈Ψ1(X)Ψ̄2(Y )O(Z)〉
= C1 + C2X · Γ + C3 Y · Γ + C4 Z · Γ

+ C5 [X · Γ, Y · Γ] + C6 [Y · Γ, Z · Γ] + C7 [X · Γ, Z · Γ] (D.24)

+ C8 (X · Γ) (Z · Γ) (Y · Γ) ,

where all Ci’s are scalar functions of X · Y , X · Z, Y · Z. The term proportional to C8 is

not antisymmetrized to simplify imposing the transversality constraints (D.2) associated

with the conical section. Antisymmetrization of this term amounts to simple redefinition

of other terms in the ansatz.

The transversality constraints (D.2) give

(X · Γ)GΨΨO(X,Y, Z) = 0 , GΨΨO(X,Y, Z) (Y · Γ) = 0 . (D.25)

They lead to a set of relations obeyed by various Ci’s. To display these relations explicitly,

we use the following identities

(X · Γ) (Y · Γ)(X · Γ) = 2(X · Y ) (X · Γ) ,

(X · Γ) (Y · Γ) = X · Y +
1

2
[X · Γ, Y · Γ] ,

ΓM [ΓN ,ΓK ] = 2ηMNΓK − 2ηMKΓN +
1

3
Γ[MΓNΓK] ,[

ΓM ,ΓN
]

ΓK = 2ηNKΓM − 2ηMKΓN +
1

3
Γ[MΓNΓK] ,
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where the square brackets around the indices stand for antisymmetrization.8 In particular,

we obtain

0 = (X · Γ)GΨΨO(X,Y, Z)

= C3X · Y + C4X · Z
+
(
C1 − 2C5X · Y − 2C7X · Z

)
(X · Γ)− 2C6 (X · Z) (Y · Γ) + 2C6 (X · Y ) (Z · Γ)

+
1

2

(
C3XMYN + C4XMZN

)
Γ[MΓN ] +

1

3
C6XMYNZKΓ[MΓNΓK] . (D.26)

Recalling now that I, ΓM and antisymmetrized products of gamma matrices are linearly

independent, yields

C3 = C4 = C6 = 0 , C1 = 2C5X · Y + 2C7X · Z . (D.27)

Similarly,

0 = GΨΨO(X,Y, Z)Y · Γ = C2X · Y + 2C7 (Y · Z) (X · Γ)

+
(
C1 − 2C5X · Y

)
Y · Γ− 2C7(X · Y )(Z · Γ)

+
1

2
C2XMYN Γ[MΓN ] +

1

3
C7XMZNYKΓ[MΓNΓK] .

Or equivalently,

C2 = C7 = 0 , C1 = 2C5X · Y . (D.28)

Combining altogether, we thus get

GΨΨO(X,Y, Z) = C1

(
1 +

[X · Γ, Y · Γ]

2X · Y

)
+ C8X · ΓZ · ΓY · Γ . (D.29)

The remaining scalar functions C1,8 can be fixed by imposing the scaling transforma-

tion (D.2) for Dirac’s spinors and O(λX) = λ−∆O O(X) for the scalar,

GΨΨO(X,Y, Z) ≡
B1

(
1 + [X·Γ,Y ·Γ]

2X·Y

)
+B2

X·ΓZ·ΓY ·Γ√
X·Y X·Z Y ·Z

(X · Y )
∆123−1

2 (X · Z)
∆132

2 (Y · Z)
∆231

2

, (D.30)

where B1,2 are some constants and ∆ijk = ∆i + ∆j −∆k (for i, j, k = 1, 2, 3) with ∆1,2 =

∆ψ1,2 , ∆3 = ∆O.

Representation of the gamma matrices (D.3) makes it simple to project the above

SO(d, 2) invariant correlation function onto Rd−1,1. For instance, using the relations (D.21)

and (D.23) between the Dirac fields ψ and Ψ, we obtain

〈ψ1(x)ψ̄2(y)O(z)〉 = (X+)∆1− 1
2 (Y +)∆2− 1

2 (Z+)∆3〈Ψ1−(X)Ψ̄2+(Y )O(Z)〉 . (D.31)

Thus we only need to identify −+ block of the appropriate supermatrix in (D.30). In

particular, up to an overall constant, the term proportional to B1 projects to

GψψO(1) (x, y, z) ≡ γµ(x− y)µ(
(x− y)2

)∆123+1
2
(
(y − z)2

)∆231
2
(
(z − x)2

)∆132
2

, (D.32)

8We do not include 1/3! factor in the definition of antisymmetrization.

– 22 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
8

where we used (D.1) and

X · Y = −1

2
X+ Y + (x− y)2 . (D.33)

Next let us calculate projection of the term proportional to B2 in (D.30). It boils down

to finding the −+ block of

Ad+2 ≡ (X · Γ) (Z · Γ) (Y · Γ) (D.34)

The only triples of the gamma matrices (D.3) with non-zero −+ blocks are ΓµΓνΓ−,

Γ−ΓµΓν , ΓµΓ−Γν and Γ−Γ+Γ−. Hence,

Ad+2
−+ = X+Y +Z+

(
(xµzν − xµyν + zµyν)γµγν − z2

)
. (D.35)

Therefore, up to an overall constant, the B2 term of (D.30) projects to

GψψO(2) ≡ (x− z)µ(y − z)νγ
µγν(

(x− y)2
)∆123

2
(
(x− z)2

)∆132+1
2
(
(y − z)2

)∆231+1
2

. (D.36)

Combining, we finally obtain

〈ψ1(x)ψ̄2(y)O(z)〉 = b1G
ψψO
(1) (x, y, z) + b2G

ψψO
(2) (x, y, z) (D.37)

=
1(

(x− y)2
)∆123

2
(
(y − z)2

)∆231
2
(
(z − x)2

)∆132
2

×

 b1 (/x− /y)(
(x− y)2

) 1
2

+
b2 (/x− /z)(/y − /z)(
(x− z)2(y − z)2

) 1
2


where b1,2 are some constants and /x = γµxµ.
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