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1 Introduction

In this paper we consider two seemingly completely unrelated physical problems: calculat-
ing the WKB approximation of the harmonic oscillator wave functions and counting the
number of Feynman diagrams in many-body physics, which correspond to the diagrams
one would obtain from QED if Furry’s theorem were not applicable. As we will show, the
answers to both problems can actually be obtained from a single formalism, the topological
recursion of Eynard and Orantin, applied to an algebraic curve of genus zero encoded in
a natural way in the Schrödinger equation for the harmonic oscillator. Given the one-to-
one correspondence [17] between the above Feynman diagrams and rooted ribbon graphs,
we also obtain a link between a topological problem and the WKB expansion of the har-
monic oscillator.

Inspired by the loop equations of matrix models, the topological recursion of Eynard
and Orantin - that we will now simply refer to as topological recursion - offers an algorithm
to generate an infinite hierarchy of multi-differentials starting from a spectral curve and,
at least in the case of genus zero curves, no other input. The nomenclature of spectral
curves originates from the first applications where the curves were associated to the spec-
tra of matrix models but the formalism has by now been applied to much more general
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situations, where curves may have no connection to any matrix model. What has gener-
ated much interest in this formalism is that, with judicious choices of spectral curves, these
multi-differentials solve a large number of enumerative problems, in the sense that the coef-
ficients of well-chosen series expansions of these multi-differentials count various quantities
of topological or combinatorial interest. For example, topological recursion has been used to
reproduce the Witten-Kontsevich intersection numbers of moduli spaces of curves, the Weil-
Petersson volumes of moduli spaces of hyperbolic surfaces, the stationary Gromov-Witten
invariants of P1, simple Hurwitz numbers and their generalizations, Gromov-Witten invari-
ants of toric Calabi-Yau threefolds and much more (see for example [14] for an overview of
some applications).

In addition to the construction of generating functions for enumerative problems, the
multi-differentials may be used to construct a so-called wave function defined as the expo-
nential of a sum of integrals of the multi-differentials. One then defines a quantum curve
as a differential operator annihilating this wave function. For a large class of genus zero
curves, a quantum curve so defined is obtained from the corresponding spectral plane alge-
braic curve of equation P (x, y) = 0 by making the simple substitutions x→ x, y → ~d/dx
(note that y does not correspond to the canonical momentum of quantum mechanics) and
by making a specific choice of ordering when ordering ambiguities are present, see [6]. In
those instances, the construction of the wave function using the differentials of topological
recursion can be shown to coincide with the usual WKB expansion. When the dependence
on y is at most quadratic, the application of the quantum curve on the wave function to
give zero takes the form of the Schrödinger equation. The situation is more delicate for
higher genera, see for example [5] and references therein.

In the present paper, we focus on one of the simplest genus zero spectral curves y2 =

x2− c2, for which the quantum curve is simply ~2d2/dx2−x2 + c2 and topological recursion
reproduces the WKB expansion of the quantum harmonic oscillator [6, 11].

However, we notice, following [13] and [18], that in addition to giving the WKB expan-
sion of the wave function, the same differentials can be used to compute certain numbers
Cg,n(µ1, . . . , µn) which are objects of study in combinatorics, see [20–24]. They represent
the numbers of maps (graphs drawn on a compact orientable surface in a way that each face
is a topological disc) on a genus g surface having n ordered vertices of respective degrees µi
and such that at each vertex one of the half-edges incident to this vertex is marked. It has
been known for some time that using these numbers, one can count the number of rooted
maps (that is maps with a distinguished half-edge) of genus g with e edges [22]. It has been
recently realized, see [17] and [19], that the rooted maps are in one-to-one correspondence
with the Feynman diagrams of the two-point function of a charged scalar field interacting
with a neutral scalar field through a cubic term φ†Aφ. These diagrams also correspond to
the electron propagator in QED if Furry’s theorem is not applied or in many-body physics,
including tadpoles. In the rest of the paper we will follow the example of [10] and refer to
our diagrams as QED diagrams and call the two types of particles electrons and photons,
but one must keep in mind that our diagrams will include electron loops connected to ar-
bitrary numbers of photons. We will also give formulas for the number of QED diagrams
with Furry’s theorem enforced in section 7.
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In [17] it is shown that in order to extend this correspondence between the QED Feyn-
man diagrams of the electron propagator and rooted maps to Feynman diagrams containing
an arbitrary number of external electrons, one is naturally led to introducing the notion of
N -rooted maps, that is maps with N distinguished half edges. In this paper, we show that
it is also possible to use the Cg,n(µ1, . . . , µn) to compute the number of N -rooted maps
with a given number of edges.

The application of topological recursion to the harmonic oscillator spectral curve there-
fore provides a curious bridge between three apparently unrelated problems: one mathe-
matical, the enumeration of a certain type of maps, and the other two physical, the compu-
tation of the WKB expansion of the wave function and of the number of Feynman diagrams
in QED.

The paper is organized as follows. In section 2 we review the topological recursion
of Eynard and Orantin as applied to the harmonic oscillator curve and we show how to
compute differentials Wg,n(µ1, . . . , µn) used to obtain the coefficients Cg,n(µ1, . . . , µn). In
section 3, we show how the differentials obtained in the previous section are used to ob-
tain the WKB approximation of the harmonic oscillator wave functions. In section 4, we
introduce ribbon graphs and maps and describe how their enumeration is encoded in a set
of coefficients Cg,n(µ1, . . . , µn). In section 5, we show how closed form formulas for the
coefficients Cg,n(µ1, . . . , µn) can be obtained from the differentials Wg,n(µ1, . . . , µn) gener-
ated by topological recursion. In section 6 we present the formula giving the number of
N -rooted maps in terms of the Cg,n(µ1, . . . , µn) and explain how they can be used to count
QED diagrams. Section 7 shows the expression for the first non trivial WKB correction to
the harmonic oscillator in terms of certain coefficients Cg,n(µ1, . . . , µn). In the appendix
we provide additional explicit expressions for some Cg,n.
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2 Topological recursion for the harmonic oscillator curve

The Eynard-Orantin topological recursion is a procedure which constructs an infinite hi-
erarchy of multi-differentials defined on a given algebraic curve. Let us assume that the
curve C defined by a polynomial P (x, y) = 0 is of genus zero and the ramified covering
x : C → CP 1 has only simple ramification points. The original definition for any curve

– 3 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
2

with simple ramification is given in [15] and [6] gives the recursion formula adapted to an
arbitrary ramification.

Under our assumptions, the Eynard-Orantin topological recursion takes the following
form:

Wg,n(p1, . . . , pn) =

=

m∑
i=1

res
q=Ai

K(q, p1)

Wg−1,n+1(q, q∗, p2, . . . , pn) (2.1)

+

no (0,1)∑
g1+g2=g

ItJ={2,...,n}

Wg1,|I|+1(q, pI)Wg2,|J |+1(q∗, pJ)

 ,

where

• q, pi ∈ C are points on the genus zero curve C;

• Ai are simple ramification points of the covering x : C → CP 1;

• q∗ denotes the image of the local Galois involution of a point q ∈ C lying in a neigh-
bourhood of a simple ramification point Ai (that is the points q and q∗ belong to the
two sheets meeting at Ai and project to the same value of x on CP 1, the base of the
covering);

• the second sum excludes the value (0, 1) for (g1, k) and (g2, k);

• the initial “unstable” differentials W0,1 andW0,2 are given by (being points on a genus
zero curve p, p1, p2 ∈ C can be thought of as complex numbers):

W0,1(p) = y(p)dx(p) , W0,2(p1, p2) =
dp1dp2

(p1 − p2)2
; (2.2)

• the recursion kernel K is defined by

K(q, p1) =
1

2

∫ q∗
q W0,2(ξ, p1)

W0,1(q)−W0,1(q∗)
. (2.3)

This is a recursion with respect to the number 2g − 2 + n > 0. The obtained multi-
differentials Wg,n are invariant under arbitrary permutation of their arguments p1, . . . , pn,
have poles at the ramification points Ai with respect to each of the arguments and no other
singularities, see [15].

Let us consider a family of harmonic oscillator curves parameterized by c ∈ C, that is
a family of algebraic curves given by the equation

y2 = x2 − c2 . (2.4)
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The following local parameter can be chosen everywhere on the (non-compactified)
curve (2.4):

z =

√
x− c
x+ c

.

Then we have

x = −cz
2 + 1

z2 − 1
, y = ε

2cz

z2 − 1
, dx =

4czdz

(z2 − 1)2
, (2.5)

where ε = ±1 is an arbitrary choice of sign reflecting the arbitrariness in the choice of the
sign of the square root defining the parameter z. The simple ramification points of the
curve are at z = 0,∞ and the Galois involution ∗ acts by z∗ = −z which corresponds to
(x, y)∗ = (x,−y).

With this data definitions (2.1)–(2.3) give (the superscript H reflects the fact that the
quantities are calculated using the harmonic oscillator family of curves (2.4)):

WH
0,1(z) = ydx = ε

8c2z2 dz

(z2 − 1)3
, WH

0,2(z1, z2) =
dz1dz2

(z1 − z2)2
(2.6)

and

KH(z, z1) =
ε

16c2

(z2 − 1)3 dz1

(z2 − z2
1)z dz

. (2.7)

Now, computing differentialsWg,n for the harmonic oscillator curve reduces to plugging
these data into recursion formula (2.1) and computing residues of some rational expressions.
Here are a few examples taken from [11].

The first generation, with 2g − 2 + n = 1:

WH
0,3(z1, z2, z3) = ε

dz1dz2dz3

23c2

(
1− 1

z2
1z

2
2z

2
3

)
;

WH
1,1(z1) = ε

(z2
1 − 1)3 dz1

26 c2 z4
1

.

The second generation, with 2g − 2 + n = 2:

WH
0,4(z1,z2,z3,z4) =

dz1dz2dz3dz4
26c4

 3

(z1z2z3z4)2

4∑
i=1

1

z2i
− 9

(z1z2z3z4)2
−
∑
i<j

1

(zizj)2
−9+3

4∑
i=1

z2
i

 ;

WH
1,2(z1,z2) =

dz1dz2
29c4

(
5

(z1z2)2

2∑
i=1

1

z4i
+

3

(z1z2)4
− 18

(z1z2)2

2∑
i=1

1

z2i
+

27

(z1z2)2
−4

2∑
i=1

1

z2i

+27−18

2∑
i=1

z2
i +5

2∑
i=1

z4
i +3(z1z2)2

)
. (2.8)

3 WKB wave function

We will briefly review how the WKB expansion for the harmonic oscillator can be obtained
from the WH

g,n, see [11, 13] for more details.
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Let us write the one-dimensional time independent Schrödinger equation in the form

−~2 d
2

dx2
Ψ(x, ~) + 2MV (x) Ψ(x, ~) = 2MEΨ(x, ~) .

Let us define
2MV (x) = f(x)

and
c2 = 2ME,

so that Schrödinger’s equation becomes(
~2 d2

dx2
− f(x) + c2

)
Ψ(x, ~) = 0. (3.1)

This differential operator is called the quantum curve and corresponds to the algebraic
(spectral) curve of the equation y2 − f(x) + c2 = 0 . For a large class of curves, see [6], the
WKB wave functions can be calculated from the Wg,n of the corresponding spectral curve.
Here we outline this calculation for the example of the harmonic oscillator curves (2.4),
that is specializing to the case V (x) = Mω2x2/2 and setting Mω = 1. We first introduce
the functions FHg,n with 2g − 2 + n > 0 defined by integrating WH

g,n as follows

FHg,n(z1, . . . , zn) =
1

2n

∫ z1

−z1
· · ·
∫ zn

−zn
WH
g,n(z′1, . . . , z

′
n). (3.2)

For example, one finds

FH0,3(z1,z2,z3) =
ε

23c2

(
z1z2z3+

1

z1z2z3

)
;

FH1,1(z1) =
ε

26 c2

(
z3

1

3
−3z1−

3

z1
+

1

3z3
1

)
.

FH0,4(z1,z2,z3,z4) =
1

26 c4

 1

z1z2z3z4

4∑
i=1

1

z2
i

− 9

z1z2z3z4

−
∑

i<j,k<l
i 6=k 6=l 6=j

zkzl
zizj
−9z1z2z3z4+z1z2z3z4

4∑
i=1

z2
i

 ;

FH1,2(z1,z2) =
1

29 c4

(
1

z1z2

2∑
i=1

1

z4
i

+
1

3z3
1z

3
2

− 6

z1z2

2∑
i=1

1

z2
i

+
27

z1z2
+4

z1

z2
+4

z2

z1

+27z1z2−6z1z2

2∑
i=1

z2
i +z1z2

2∑
i=1

z4
i +

1

3
z3

1z
3
2

)
.

Then the WKB expansion of the wave function satisfying eq. (3.1) is given by

Ψ(x, ~) = exp
∞∑
m=0

~m−1Sm(x) (3.3)
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with

S0(x) = −1

2

∫ (x,y)

(x,−y)
y dx ,

S1(x) = −1

2
log y ,

Sm(x) =
∑

2g+n−2=m−1

1

n!
FHg,n(z, z, . . . z) , m ≥ 2, (3.4)

where in the last equation z =
√

(x− c)/(x+ c). Thus we obtain in the region x > c ,

S0(x) = − ε c
2

2
ln
(√

x2 − c2 + x
)

+
ε x

2

√
x2 − c2,

S1(x) = −1

2
ln
(√

x2 − c2
)
,

S2(x) =
1

3!
FH0,3(z, z, z) + FH1,1(z)

=
ε

24c2
6c2x− x3

(x2 − c2)3/2
,

S3(x) =
1

4!
FH0,4(z, z, z, z) +

1

2
FH1,2(z, z)

=
3c6 + 9c4x2 − 3c2x4 + x6

32 c4(x2 − c2)3
.

Using these expressions in eq. (3.3) reproduces the WKB expansion of the harmonic oscil-
lator wave functions if we set ε = −1.

4 Ribbon graphs and maps

Initiated by the work of Tutte [20, 21], enumeration of maps, that is graphs embedded in
a compact orientable surface in a way that each face is a topological disc, received much
attention in the last century, see [1, 3, 4, 16, 22–24]. More recently this topic was extended
to counting maps on non-orientable surfaces, see [2, 8, 9] and references therein.

Central to this paper is a notion of a connected ribbon graph, which is equivalent to
that of a map. Intuitively, a ribbon graph is a graph whose vertices are replaced by small
discs and edges are replaced by ribbons. This can be done in a canonical way once the
cyclic order of edges is fixed at every vertex.

In [22], a closed form expression was given for the number of ribbon graphs with e edges
and with one half edge marked that can be drawn on a genus g surface (as will be defined
more precisely below). In [17] this result was rederived using quantum field theory and
generalized to an arbitrary number of marked half edges. Before explaining this connection
in more details, let us define more precisely the quantities we will be using.

Definition 1. A ribbon graph, or simply graph, is a data Γ = (H,α, σ) consisting of a set
of half-edges H = {1, . . . , 2e} with a positive integer e and two permutations α, σ ∈ S2e on
the set of half-edges such that

• α is a fixed point free involution,

• the subgroup of S2e generated by α and σ acts transitively on H.
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Figure 1. A genus one ribbon graph.

The involution α is a set of transpositions each of which pairs two half-edges that form
an edge. Cycles of the permutation σ correspond to vertices of the ribbon graph Γ; each
cycle gives the ordering of half-edges at the corresponding vertex. Cycles of the permutation
σ−1 ◦ α correspond to faces of Γ. The condition of transitivity of the group 〈σ, α〉 on the
set of half-edges ensures the connectedness of the graph Γ.

Example 1. For the graph in figure 1, we have H = {1, 2, 3, 4} , α = (12)(34) , σ = (1324) ,

and σ−1α = (1324), so there is one face.

A ribbon graph defines a connected compact orientable surface. This surface is recon-
structed by gluing discs to the faces of the ribbon graph. Let us denote by n the number of
vertices of a ribbon graph Γ = (H,α, σ), that is the number of cycles in the permutation σ.
Denote by f the number of faces, that is the number of cycles in the permutation σ−1 ◦ α.
Then the genus of the surface corresponding to Γ is defined through the Euler characteristic
of the graph:

n− e+ f = 2− 2g . (4.1)

The genus of the surface is called the genus of the ribbon graph.

Definition 2. An isomorphism between two ribbon graphs Γ = (H,α, σ) and Γ′ = (H,α′, σ′)

is a permutation ψ ∈ S2e, that is ψ : H → H, such that α′ ◦ ψ = ψ ◦ α and σ′ ◦ ψ = ψ ◦ σ.

That is two graphs are isomorphic if the data of one of them can be obtained from
another by relabeling ψ : H → H of the half-edges. Two isomorphic ribbon graphs are iden-
tified.

Definition 3. For a given graph Γ = (H,α, σ), an automorphism is a permutation ψ :

H → H, such that α ◦ ψ = ψ ◦ α and σ ◦ ψ = ψ ◦ σ. The group of automorphisms of Γ is
denoted by Aut(Γ).

In other words, an automorphism of a ribbon graph is a relabeling of its half-edges that
does not change the permutations α and σ.

Example 2. The graph in figure 1 has the following automorphism ψ = (1423), meaning
that in the new labeling the half-edge 1 is labeled by 4, the half-edge 4 is labeled by 2, the
half-edge 2 is labeled by 3. The group of automorphisms of this graph is Z4 .
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1 2 3

1 12 23 3

Figure 2. Graphs forming the set G0,3(1, 4, 1) .

Definition 4. A marked graph is a ribbon graph whose vertices are labeled with consecu-
tive integers starting at 1. We call an unmarked graph a ribbon graph whose vertices are
not labeled.

Definition 5. A marked isomorphism between two marked ribbon graphs is an isomorphism
of the corresponding unmarked graphs which acts trivially on the set of vertices, that is on
the set of cycles of σ.

Let us denote by Γv a marked graph whose underlying unmarked graph is Γ. For a
given marked graph Γv, the group of automorphisms of Γ which fix every vertex is the
group of marked automorphisms of Γv denoted by Autv(Γv).

Example 3. For the ribbon graph Γ given by H = {1, 2, 3, 4} , α = (12)(34) , and σ =

(13)(24), we have Autv(Γv) = Z2 . That is there are two marked automorphisms - the
identity and the exchanging of the two edges: ψ = (13)(24) . However, if we do not impose
that the automorphism fixes the vertices, there is an additional automorphism exchanging
the two vertices: ψ = (12)(34) and we have Aut(Γ) = Z2 × Z2 .

Lemma 1. Let Γv be a marked graph with more than two vertices. Then |Autv(Γv)| = 1.

Given that the group Autv(Γv) does not depend on a particular marking of the un-
derlying graph Γ, we also write Autv(Γ) for the automorphisms of Γ that fix the set of
vertices pointwise.

4.1 The numbers Cg,n

Let us denote by Gg,n(µ1, . . . , µn) the set of distinct marked graphs of genus g with n

vertices for which the vertex labeled i has µi half-edges incident to it. We say that the
vertex has degree µi. Since we only consider connected graphs, it is assumed that the
degrees µi are positive integers for n > 1. If n = 1 the set G0,1(0) consists of one graph
which is a single point.

As a less trivial example, consider G0,3(1, 4, 1) which consists of the graphs with three
ordered vertices drawn on a sphere with degrees one, four, and one. There are three such
graphs, as shown in figure 2.

Following notation of [18] we let Dg,n(µ1, . . . , µn) stand for the number of marked
graphs in the set Gg,n(µ1, . . . , µn) where each marked graph Γv is counted with the weight
1/|Autv(Γv)|:

Dg,n(µ1, . . . , µn) =
∑

Γv∈Gg,n(µ1,...,µn)

1

|Autv(Γv)|
. (4.2)
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For example, D0,2(2, 2) = 1/2 and D0,1(2) = 1/2. Due to Lemma 1, for n > 2, the number
Dg,n(µ1, . . . , µn) is an integer that counts distinct marked graphs in the set Gg,n(µ1, . . . , µn).
For example, D0,3(1, 4, 1) = 3.

For every graph of the set Gg,n(µ1, . . . , µn), let us put an arrow on one of the µi half-
edges incident to vertex i for all i = 1, . . . , n. Two such decorated marked graphs are
identified if they are isomorphic as marked graphs and the marked isomorphism maps an
arrowed half-edge to an arrowed one. We denote the resulting set of distinct decorated
marked graphs by Ĝg,n(µ1, . . . , µn). The number of graphs in the set Ĝg,n(µ1, . . . , µn) is
given by the following integer, see [18]:

Cg,n(µ1, . . . , µn) = µ1 · · ·µn ×Dg,n(µ1, . . . , µn). (4.3)

For example, C0,2(1, 1) = 1, C0,2(1, 3) = 3, and C0,3(1, 1, 4) = 12. As mentioned, all degrees
µi should be positive integers with the exception of a one-vertex graph. Thus for n > 1 we
have Cg,n(µ1, . . . , µn) = 0 if one of the µi is zero, however C0,1(0) = 1. Note also that the
sum of µi should be even for the corresponding Cg,n to be nonzero.

Remark 1. In [13, 18] the numbers Cg,n were called generalized Catalan numbers because
in the case of one vertex, C0,1(2m) is the mth Catalan number. In [22], the term dicings
was used for the decorated graphs from the set Ĝg,n(µ1, . . . , µn).

The precise relation between the coefficients Cg,n and the enumeration of Feynman
diagrams will be explained in section 6.3.

5 The numbers Cg,n and the topological recursion

The following recursion formula for Cg,n was derived in [22] and then rediscovered in [13, 18]
in the context of the topological recursion:

Cg,n(µ1, . . . , µn) =

n∑
j=2

µjCg,n−1(µ1 + µj − 2, µ2, . . . , µ̂j , . . . , µn)

+
∑

α+β=µ1−2

Cg−1,n+1(α, β, µ2, . . . , µn) +
∑

g1+g2=g
ItJ={2,...,n}

Cg1,|I|(α, µI)Cg2,|J |(β, µJ)

 , (5.1)

where we use the notation from [13, 18], namely |I| denotes the number of elements in the
set I, the symbol t stands for disjoint union, µI = (µi)i∈I , and the hat symbol marks the
omitted argument.

In [13, 18], this recursion formula was shown to be related by a Laplace transform to
the topological recursion of Eynard-Orantin. Here we describe this relationship.

Consider the following infinite hierarchy of differentials defined, for (g, n) such that
2g − 2 + n > 0, in terms of the Cg,n by

WC
g,n(t1, . . . , tn) = (−1)n

∑
(µ1,...,µn)∈Zn+

Cg,n(µ1, . . . , µn)e−〈w,µ〉dw1 · · · dwn , (5.2)
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where w = (w1, . . . , wn), µ = (µ1, . . . , µn), the scalar product is defined by 〈w, µ〉 =∑
µiwi, and the variables ti are related to wi by

ewi =
ti + 1

ti − 1
+
ti − 1

ti + 1
for i = 1, 2, . . . , n. (5.3)

It was shown in [13, 18] that differentials WC
g,n (5.8) with (g, n) such that 2g− 2 + n >

0 except WC
1,1 satisfy the Eynard-Orantin topological recursion on the curve defined by

the equation

x̃+ ỹ +
1

ỹ
= 0 . (5.4)

For this curve, one considers two parameters ỹ and t away from the point at infinity (x̃, ỹ) =

(∞,∞) related to each other by

ỹ =
1 + t

1− t
,

which from eq. (5.4) gives

x̃ = 2
t2 + 1

t2 − 1
.

The Galois involution in terms of these parameters becomes ỹ∗ = 1/ỹ and t∗ = −t and the
simple ramification points are located at ỹ = ±1 or t = 0,∞.

However, to obtain differentials (5.2) by recursion on the curve (5.4) the definition of
one of the initial differentials W0,2 is modified in [13, 18] as follows:

WC
0,2(t1, t2) =

dt1 · dt2
(t1 − t2)2

− dx̃1 · dx̃2

(x̃1 − x̃2)2
=

dt1 · dt2
(t1 + t2)2

. (5.5)

With this W0,2 and with the standard WC
0,1 = ỹdx̃ = 8t(t + 1)dt/(t2 − 1)3, the recursion

kernel according to the above definition is

KC(t, t1) = − 1

64

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
dt1
dt

. (5.6)

It turns out, see [11], that all “stable” (2g − 2 + n > 0) differentials WC
g,n produced by

this recursion on the curve (5.4) can be obtained by recursion (2.1)–(2.3) starting with the
following harmonic oscillator curve from the family (2.4):

y2 = x2 − 2 . (5.7)

Moreover, the recursion on the curve (5.7) also produces WC
1,1 which required a special

treatment in [13, 18]. The next theorem is a corollary of results from [13, 18] and [11].

Theorem 1. Differentials WC
g,n (5.2) satisfy the Eynard-Orantin topological recursion on

the harmonic oscillator curve (5.7).

Proof. Note that the following change of variables

x = −c x̃
2
, y = c

(
ỹ +

x̃

2

)

– 11 –
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transforms the curve (2.4) into the curve (5.4) x̃+ ỹ+ 1/ỹ = 0 , which implies the following
relation on the respective local parameters: t = −εz. With this identification, the recursion
kernel KH coincides with the kernel (5.6) from [13] if we put c2 = 2 , that is if we specialize
to the curve (5.7).

Given that the initial differential W0,1 does not enter the recursion formula (2.1) (it is
only used for obtaining the recursion kernel K), the only difference in running the recursion
for the curves (5.4) and (5.7) is due to the difference between the initial differentials WC

0,2

andWH
0,2 . However, a careful examination of the recursion formula (2.1) shows that starting

at the indices (g, n) satisfying 2g−2+n ≥ 2 in the left hand side, the differential W0,2 only
enters in the following combination: W0,2(q∗, pk) −W0,2(q, pk). This quantity is obviously
the same for W0,2 = WH

0,2(z1, z2) and W0,2 = WC
0,2(t1, t2). Therefore, starting from the sec-

ond generation ofWg,n, that is from the indices (g, n) such that 2g−2+n ≥ 2, the recursion
formula (2.1) applied to the harmonic oscillator curve and the recursion from [13] coincide.

It can be shown by direct computation, see [11], that the recursion for the curve (5.7)
produces WC

1,1 and WC
0,3 from [13]. Thus WH

g,n(z1, . . . , zn) = WC
g,n(t1, . . . , tn) with t = −εz

and c2 = 2 . �

5.1 Obtaining the Cg,n from the WH
g,n

Once theWH
g,n(z1, . . . , zn) have been obtained by topological recursion, it is simple to extract

the Cg,n(µ1, . . . , µn) using

WH
g,n(t1, . . . , tn) = (−1)n

∑
(µ1,...,µn)∈Zn+

Cg,n(µ1, . . . , µn)e−〈w,µ〉dw1 · · · dwn . (5.8)

From now on we will use the identifications from the proof of Theorem 1, namely

t = −εz and c2 = 2,

and writeWH
g,n(t1, . . . , tn) for the differentials after these substitutions have been made. We

first invert eq. (5.3), choosing the sign in order to be in agreement with eq. (5.8),

ti = −
√

1 + 2e−wi√
1− 2e−wi

. (5.9)

Had we chosen not to include the factor (−1)n in eq. (5.8), a positive sign would have been
required in eq. (5.9). We will also need

dti =
2e−wi

(1− 2e−wi)2

√
1− 2e−wi

1 + 2e−wi
dwi .

After expressing the WH
g,n(t1, . . . , tn) in terms of the variables w1, . . . , wn, we expand

the results in powers of e−wi . According to eq. (5.8), the coefficient of e−〈w,µ〉 dw1 . . . dwn,
where (µ1, µ2, . . . , µn) ∈ Zn+, is equal to (−1)nCg,n(µ1, . . . , µn).

As an example, consider

WH
1,1(z1) = ε

(z2
1 − 1)3

26c2z4
1

dz1 and thus WH
1,1(t1) = −(t21 − 1)3

26c2t41
dt1 .

– 12 –
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Expressed in terms of w1, this becomes

WH
1,1(w1) = − 2

c2

e−4w1

(1− 4e−2w1)5/2
dw1 .

Taylor expanding, we obtain

WH
1,1(w1) = − 2

3c2

∞∑
k=0

2k (2k + 3)!!

k!
e−(2k+4)w1 dw1 .

From eq. (5.8), this is equal to −
∑∞

µ1=1C1,1(µ1)e−µ1w1dw1. We therefore obtain

C1,1(2k + 4) =
1

3c2

2k+1

k!
(2k + 3)!! , k = 0, 1 . . . . (5.10)

For calculating the numbers C1,1, the power of the topological recursion approach is
evident, as we have a closed form expression for C1,1(µ1) instead of having to use the
laborious recursion relation (5.1), which requires an ever increasing number of terms as
µ1 increases.

Even though eq.(5.8) defines only “stable” (2g− 2 +n > 0) differentials by the Laplace
transform, let us consider the “unstable” WH

0,1 and WH
0,2. For WH

0,1(t1), we obtain in terms
of w1

WH
0,1(w1) = −

√
1− 4e−2w1

2e−2w1
dw1 .

If we define si := e−wi , what multiplies dw1 is

−
√

1− 4s2
1

2s2
1

which we recognize as the generating function of the Catalan numbers minus 1/(2s2
1), see [13,

18]. To be precise,

−
√

1− 4s2
1

2s2
1

=
∑
n=0

Cn s
2n
1 −

1

2s2
1

(5.11)

where the n-th Catalan number is given by

Cn =
1

n+ 1

(
2n

n

)
.

Writing

W0,1(w1) =: −dw1

2s2
1

+

∞∑
k=0

C0,1(2k) s2k
1 dw1

= − dw1

2e−2w1
+
∞∑
k=0

C0,1(2k) e−2kw1 dw1 ,

we obtain

C0,1(2k) = Ck

=
1

k + 1

(
2k

k

)
, (5.12)
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while C0,1(n) is zero when the argument is odd. Consider now W0,2(t1, t2). It is given by

W0,2(t1, t2) =
dt1dt2

(t1 − t2)2

=
4t1t2

(t21 − t22)2
dt1dt2 +

dt1dt2
(t1 + t2)2

.

As shown in [13], the second term generates the C0,2(µ1, µ2). Going to the variables
w1, w2 and using the notation e−wi = si, we find

W0,2(w1, w2) =
s1s2

(s1 − s2)2
dw1dw2

+
4s1s2√

(1− 4s2
1)(1− 4s2

2)

dw1dw2(√
(1 + 2s1)(1− 2s2) +

√
(1 + 2s2)(1− 2s1)

)2

=

 s1s2

(s1 − s2)2
+

∞∑
µ1,µ2=1

C0,2(µ1, µ2) sµ11 sµ22

 dw1dw2 ,

from which one can compute the C0,2(µ1, µ2). Let us first introduce the function

g(µ) = 2[µ
2

]

(
2
[
µ−1

2

]
+ 1
)

!![
µ−1

2

]
!

(5.13)

where [x] denotes the integer part of the real number x. In terms of this function, we find

C0,2(µ1, µ2) =
(1 + (−1)µ1+µ2)

µ1 + µ2
g(µ1) g(µ2) , (5.14)

which agrees with [13].
We find for W0,3:

W0,3(w1, w2, w3) = −1

2

(
1−

3∏
i=1

1− 2si
1 + 2si

)
3∏
j=1

sj

(1− 2sj)3/2
√

1 + 2sj
dw1dw2dw3

= −1

2

3∏
i=1

 ∞∑
pi,ki=0

(−1)ki
(1 + 2pi)!!(2ki − 1)!!

pi!ki!
s1+pi+ki
i

 dw1 dw2 dw3

+
1

2

3∏
i=1

 ∞∑
p=0

2pi(1 + 2pi)!!

pi!
(1− 2si)s

2pi+1
i

 dw1 dw2 dw3

= −2s2
1s2s3 − 2s1s

2
2s3 − 2s1s2s

3
3 − 12s4

1s2s3 − 12s1s
4
2s3 − 12s1s2s

4
3

− 8s2
1s

2
2s

2
3 − 12s3

1s
2
2s3 + . . . ,

which, using once more eq. (5.8), is equal to

−
∞∑

µ1,µ2,µ3=1

C0,3(µ1, µ2, µ3) sµ11 sµ22 sµ33 dw1 dw2 dw3 .
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We can now obtain a closed form expression for the coefficients C0,3(µ1, µ2, µ3):

C0,3(µ1, µ2, µ3) =
1

2

(
1 + (−1)µ1+µ2+µ3

) 3∏
i=1

g(µi) , (5.15)

where g(µi) was defined in eq. (5.13).
Proceeding similarly, one can obtain closed form formulas for any given Cg,n(µ1, . . . ,µn).

In the appendix the expressions for C0,4(µ1, . . . ,µ4) and C1,2(µ1,µ2) are given. Calculating
expressions for WH

g,n and Cg,n for larger values of the indices poses no technical difficulties
but they are quite lengthy.

Remark 2. For a given Cg,n(µ1, . . . , µn), the sum of the degrees µi satisfies an inequality
that can be derived from the Euler relation (4.1). Replacing e by 1

2

∑
µi in eq. (4.1),

we obtain
n∑
i=1

µi = 4g − 4 + 2f + 2n .

Clearly the sum of the degrees must be even, as noted previously, but they satisfy an
additional constraint coming from the fact that the number of faces is at least equal to one,
giving

n∑
i=1

µi ≥ 2(2g + n− 1) . (5.16)

This shows for example that C1,1(µ) is nonzero at the condition that µ ≥ 4 as is made
explicit in the general formula, eq. (5.10). The smallest degrees giving a nonzero value of
C0,4(µ1, . . . µ4) satisfy µ1 + µ2 + µ3 + µ4 = 6, in agreement with the expression given in
the appendix. Two other examples that will be of use in section 6.2 are that C1,2(µ1, µ2)

is nonzero only for µ1 + µ2 ≥ 6 and C1,3(µ1, µ2, µ3) is nonzero at the condition that µ1 +

µ2 + µ3 ≥ 8.

6 Rooted graphs

It is convenient to introduce a root in a ribbon graph in order to remove the nontrivial
automorphisms of the graph.

Definition 6. A rooted graph is an unmarked ribbon graph with a distinguished half-edge,
the root of the graph. The vertex incident to the root is called the root vertex.

Remark 3. A ribbon graph consisting of one vertex and no edges is considered to be a
rooted graph.

Definition 7. An isomorphism, or a rooted isomorphism, between two rooted graphs is an
isomorphism between the ribbon graphs that maps the root to the root.

An isomorphism of a rooted graph to itself is called a rooted automorphism of the graph.
For a given rooted graph, the group of its rooted automorphisms is trivial, see [22].
In [17] the following generalization of the concept of a rooted graph was introduced.

– 15 –
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Definition 8. An N -rooted graph is the data of a ribbon graph, Γ = (H,α, σ), with the
choice of N distinct ordered vertices, called the root vertices, and the choice of N half-edges,
called the root half-edges, or roots, such that each root half-edge is incident to one of the
root vertices. We call the kth root the root half-edge incident to the kth root vertex.

In other words, an N -rooted graph is obtained from a ribbon graph by choosing N
distinct vertices, labeling them with numbers from 1 to N , and at each of the chosen
vertices placing an arrow on one of the half-edges incident to it.

Definition 9. An isomorphism, or an N -rooted isomorphism, between two N -rooted graphs
is an isomorphism between the underlying ribbon graphs that maps kth root to the kth root.

Two isomorphic N -rooted graphs are identified. Similarly, an N -rooted automorphism
of an N -rooted graph is an automorphism of the underlying ribbon graph which preserves
the set of N root vertices pointwise and maps roots to roots. Clearly, the only N -rooted
automorphism of an N -rooted graph is the identity.

6.1 Counting N -rooted graphs

We have shown how to obtain the generalized Catalan numbers Cg,n from the topological
recursion on the harmonic oscillator curve (5.7). Here we show that one can express the
number of N -rooted maps in terms of the Cg,n. In the case N = 1 we get the formula for
one-rooted maps obtained in [22].

Let µ = (µ1, . . . , µn) be a partition of an even integer 2e into n strictly positive parts.
It is convenient to regroup the parts µi into groups of equal values, that is we suppose
that among the parts of µ there are ρ(µ) distinct values with ki copies of the value αi for
i = 1, . . . , ρ(µ). Clearly, for µ = (µ1, . . . , µn) we have

ρ(µ)∑
i=1

ki = n and
ρ(µ)∑
i=1

αiki =
n∑
j=1

µj = 2e . (6.1)

Given e ∈ N, let us denote by mN (e) the number of distinct N -rooted graphs with
e edges.

Theorem 2. Let the numbers Cg,n(µ1, . . . , µn) be as defined in section 4.1, and e,N positive
integers. The number mN (e) of N -rooted graphs with e edges is given by

mN (e) =

e+1∑
n=N

[ 1+e−n
2

]∑
g=0

∑
µ1+···+µn=2e

µi≥1

µ1 · · ·µN
(n−N)!

Cg,n(µ1, . . . , µn)

µ1 · · ·µn
, (6.2)

where [1+e−n
2 ] denotes the integer part of the argument. Note that for a given choice of N ,

the minimum possible value e may take is N − 1.

Proof. Using notation from section 4, let Γv ∈ Gg,n(µ1, . . . , µn) and let Γ be its un-
derlying unmarked graph. There are k1! · · · kρ(µ)! ways to mark vertices of Γ so that the
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resulting marked graph is in Gg,n(µ1, . . . , µn). Among these ways there might be equiva-
lent ones - those giving rise to identical marked graphs. If there is a non-trivial unmarked
automorphism φ ∈ Aut(Γ)/Autv(Γ), which acts non-trivially on the set of vertices, then
for every ordering of vertices Γv there is an equivalent ordering given by φ(Γv). Therefore
the number of distinct marked graphs Γv ∈ Gg,n(µ1, . . . , µn) having Γ as the underlying
unmarked graph is

k1! · · · kρ(µ)!

|Aut(Γ)/Autv(Γ)|
. (6.3)

Let us denote by DΓ
g,n(µ1, . . . , µn) the contribution to the number Dg,n(µ1, . . . , µn) of all

the marked graphs whose underlying graph is Γ:

DΓ
g,n(µ1, . . . , µn) =

∑
Γv∈Gg,n(µ1,...,µn)
Γ is the underlying

unmarked graph for Γv

1

|Autv(Γv)|
.

Then we have
Dg,n(µ1, . . . , µn) =

∑
Γ

DΓ
g,n(µ1, . . . , µn) ,

where the summation is over all distinct unmarked graphs Γ for which there exists a marking
Γv ∈ Gg,n(µ1, . . . , µn) having Γ as the underlying unmarked graph. Using this notation and
definition (4.2) of the number Dg,n, we deduce from eq. (6.3)

DΓ
g,n(µ1, . . . , µn) =

k1! · · · kρ(µ)!

|Aut(Γ)|
. (6.4)

Now note that the third sum in the right hand side of (6.2) can be seen as two
nested sums: ∑

µ1+···+µn=2e

=
∑
µ` 2e

µ=(µ1, µ2,...,µn)

∑
orderings

of (µ1, µ2,...,µn)

, (6.5)

where the first sum in the right hand side is over all (unordered) partitions µ of 2e and the
second sum is taken over the orderings of the n-tuple (µ1, µ2, . . . , µn). Here an ordering is a
multiset permutation of the n-tuple (µ1, µ2, . . . , µn), that is a permutation not distinguish-
ing between repeated values. Let us use the following notation: denote by τ an ordering of
µ = (µ1, µ2, . . . , µn) and denote the resulting n-tuple by τ(µ) = (µ

(τ)
1 , µ

(τ)
2 , . . . , µ

(τ)
n ) .

Consider for example one partition of 6 given by µ = (µ1, µ2, µ3) = (1, 1, 4); there
are three different orderings of the triple: τ1(µ) = (µ

(τ1)
1 , µ

(τ1)
2 , µ

(τ1)
3 ) = (1, 1, 4), τ2(µ) =

(µ
(τ2)
1 , µ

(τ2)
2 , µ

(τ2)
3 ) = (1, 4, 1), and τ3(µ) = (µ

(τ3)
1 , µ

(τ3)
2 , µ

(τ3)
3 ) = (4, 1, 1).

Let us now fix N ≤ n and consider the following sum over all orderings of µ∑
τ ∈ orderings

of (µ1, µ2,...,µn)

µ
(τ)
1 µ

(τ)
2 · · ·µ

(τ)
N ,

For the previous example of (µ1, µ2, µ3) = (1, 1, 4), for which there are three orderings,
let us consider the case N = 2. Then the above sum over all orderings would give
1 · 1 + 1 · 4 + 4 · 1 = 9,.
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This expression can be rewritten summing over all permutation of the µi’s treating the
repeated values as distinct. Denoting by Sn the symmetric group of permutations, we have∑

τ ∈ orderings
of (µ1, µ2,...,µn)

µ
(τ)
1 µ

(τ)
2 · · ·µ

(τ)
N =

∑
σ∈Sn

µσ(1) µσ(2) · · ·µσ(N)

k1!k2! · · · kρ(µ)!
.

We can write this sum over all permutation of n values as follows:

(n−N)!

k1!k2! · · · kρ(µ)!

∑
choice of

N terms out
of (µ1, . . . , µn)

∑
γ∈SN

µγ(1) µγ(2) · · ·µγ(N),

where the factor (n−N)! comes from the permutations of the remaining (n−N) values of
µi not entering the product in the numerator.

The last sums give the number of ways to choose N ordered roots in the graph Γ

disregarding the fact that there might be choices producing equivalent N -rooted graphs.
Introducing notation RΓ

N for the number of choices of an ordered subset of N half-edges in
a given graph Γ, we obtain∑

τ ∈ orderings
of (µ1, µ2,...,µn)

µ
(τ)
1 µ

(τ)
2 · · ·µ

(τ)
N =

(n−N)!

k1!k2! · · · kρ(µ)!
×RΓ

N . (6.6)

Denote by mΓ
N (e) the contribution to the number mN (e) of all the N -rooted graphs

whose underlying unrooted unmarked graph is Γ. Every non-trivial automorphism φ ∈
Aut(Γ) allows for identification of N -rooted graphs included in the number RΓ

N . Therefore,
the contribution of Γ to mN (e) is

mΓ
N (e) =

RΓ
N

|Aut(Γ)|
.

On the other hand, obtaining |Aut(Γ)| from (6.4) and RΓ
N from (6.6), we have

mN .
Γ(e) =

DΓ
g,n(µ1, . . . , µn)

(n−N)!

∑
τ ∈ orderings

of (µ1, µ2,...,µn)

µ
(τ)
1 µ

(τ)
2 · · ·µ

(τ)
N .

Summing this over all distinct unmarked graphs Γ for which there exists a marking Γv ∈
Gg,n(µ1, . . . , µn) having Γ as the underlying unmarked graph, we see that the contribution
to mN (e) that comes from a given partition µ of 2e is given by

Dg,n(µ1, . . . , µn)

(n−N)!

∑
τ ∈ orderings

of (µ1, µ2,...,µn)

µ
(τ)
1 µ

(τ)
2 · · ·µ

(τ)
N . (6.7)

Now, using (4.3) and summing (6.7) over all unordered partitions (µ1, . . . , µn) of 2e with n
positive parts, we obtain the contribution to mN (e) of all the graphs of genus g with n ver-
tices. Summing further over all possible values of g and n and determining the summation
limits using eqs. (4.1) and (5.16), we obtain the statement of the theorem. �
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6.2 One-rooted graphs

The following formula for the number m1(e, g) of rooted maps (that is maps with a distin-
guished half-edge) of genus g with e edges was derived in [22]:

m1(e, g) =
∞∑
n=1

2e

n!

∑
µ1+µ2+···+µn=2e

Cg,n(µ1, . . . , µn)

µ1 . . . µn
. (6.8)

Our theorem, eq. (6.2), predicts for this quantity

m1(e, g) =

∞∑
n=1

∑
µ1+µ2+···+µn=2e

µ1

(n− 1)!

Cg,n(µ1, . . . , µn)

µ1 . . . µn
. (6.9)

To prove the equivalence of these two expressions, let us replace the sum in eq. (6.9)
by two nested sums over partitions and over orderings, as in eq. (6.5). Since the
Cg,n(µ1, . . . , µn) do not depend on the ordering of the arguments, we may rewrite eq. (6.9) as

m1(e, g) =
1

(n− 1)!

∞∑
n=1

∑
µ` 2e

µ=(µ1, µ2,...,µn)

Cg,n(µ1, . . . , µn)

µ1 . . . µn

∑
τ ∈ orderings

of (µ1, µ2,...,µn)

µ
(τ)
1 . (6.10)

Recall that µ(τ)
1 may take ρ(µ) distinct values denoted α1, . . . , αρ(µ) and that each of these

values appear a number of k1, . . . , kρ(µ) times, respectively. The sum over orderings is then
given by ∑

τ ∈ orderings
of (µ1, µ2,...,µn)

µ
(τ)
1 = α1

(n− 1)!

(k1 − 1)! k2! . . . kρ(µ)!
+ . . .+ αρ(µ)

(n− 1)!

k1!k2 . . . (kρ(µ) − 1)!

=
(n− 1)!

k1!k2! . . . kρ(µ)!

ρ(µ)∑
i=1

kiαi

= 2e
(n− 1)!

k1!k2! . . . kρ(µ)!
,

where in the last step we have used eq. (6.1). Using this result in eq. (6.10) we obtain

m1(e, g) =
∞∑
n=1

∑
µ` 2e

µ=(µ1, µ2,...,µn)

2e

k1!k2! . . . kρ(µ)!

Cg,n(µ1, . . . , µn)

µ1 . . . µn
.

Using now ∑
τ ∈ orderings

of (µ1, µ2,...,µn)

1 =
n!

k1!k2! . . . kρ(µ)!
,

we finally have

m1(e, g) =

∞∑
n=1

∑
µ` 2e

µ=(µ1, µ2,...,µn)

∑
τ ∈ orderings

of (µ1, µ2,...,µn)

2e

n!

Cg,n(µ1, . . . , µn)

µ1 . . . µn

=

∞∑
n=1

2e

n!

∑
µ1+µ2+···+µn=2e

Cg,n(µ1, . . . , µn)

µ1 . . . µn
,

which is eq. (6.8).
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6.3 Counting Feynman diagrams

We can now state the relation between the N-rooted graphs counted by mN (e) as given in
eq. (6.2) and Feynman diagrams. Our first result is that, as proven in [17], mN (e) counts
the number of many-body Feynman diagrams, or QED diagrams when Furry’s theorem is
not valid (due to the nature of the ground state) and, in particular, tadpoles are present.
However we will show below how eq. (6.2) may be trivially modified to remove all tadpole
diagrams or to enforce Furry’s theorem. The number mN (e) also counts the number of
connected Feynman diagrams in the quantum field theory of a two scalar fields, one real
and one complex, with for only interaction the cubic term Aφ†φ. It is using this latter
quantum field theory that the number of Feynman diagrams was determined using the
path integral approach in [17].

In this correspondence, N represents the number of external electron lines and e is the
number of internal photons lines (we consider diagrams with no external photon lines). The
order in the coupling constant is therefore simply 2e.

In the sums of eq. (6.2), the index n counts the total number of electrons lines in the
Feynman diagram, both internal and external. In the language of Feynman diagrams it is
then obvious that, for a fixed number e of photons, the smallest value of n is N (when all
electron lines are external lines) and the maximum value of n is e+ 1 (which occurs when
N − 1 photons connect the external lines together and the remaining e+ 1−N photons are
part of tadpoles so that there are e+ 1−N fermion loops).

The degrees µ1, . . . , µn specify the number of photon lines connected to each of the
fermion lines in the diagram. Since there are no external photon lines, we clearly have∑n

i=1 µi = 2e, which is twice the number of photon lines and the order in the cou-
pling constant.

We must warn against a possible source of confusion here: in the Euler relation,
eq. (4.1), the number n counts the number of vertices in the ribbon graph, which does
not represent the number of vertices in the corresponding Feynman diagram but the num-
ber of electron lines.

To make this more clear, let us describe how to associate a ribbon graph to a Feynman
diagram. To do so, one must draw all photon lines connected to electron loops on the
outside of the electron loop. In addition, all photon lines connected to a given external
electron line must be drawn on the same side of the electron line.

Then the photon lines (but not the electron lines) are thickened to turn them into
ribbons and the external electron lines and electron loops are shrunk into small disks which
become the vertices of the corresponding ribbon graph. The number of vertices in the
ribbon graph is then equal to the number of electron lines in the corresponding Feynman
diagram and the number of ribbons connecting the vertices is the number of photon lines
in the Feynman diagram.

As an example, a three point function Feynman diagram is shown in figure 3 with its
corresponding permutations and the corresponding ribbon graph is shown in figure 4.

Remark 4. The genus g that appears in the coefficients Cg,n refers to the genus of the
corresponding ribbon graph, which is straightforward to determine. It is however possible
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1

4

5

6

13

14

2

12

3

7

9 8

10

11

Figure 3. Feynman diagram corresponding to the permutations α =

(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14), σ = (1̂)(2̂ 7 3 9)(1̂1 10 8 12)(4 6 14 5 13) on the set of
half-edges H = {1, 2, . . . , 14}. The associated ribbon graph is shown in figure 4. A different choice
of labelling of half edges and the resulting permutations define an equivalent ribbon graph.

3
 

1 

2 

3 

1 

2 3 

7 

8 

9 

11 

12 

10 

14 

6 

4 

5 

13 

Figure 4. The ribbon graph corresponding to figure 3. The three vertices with marked half edges
correspond to the external electron lines and the labels 1 to 14 on the half edges are the same as
the ones shown in figure 3.

to determine the genus directly from the Feynman diagram without closing the external
electron lines. The number of faces is equal to the total number of closed paths necessary to
cover both sides of all ribbons and all segments of electron lines connecting different ribbons.
Note that the segments of the electron lines between the two sides of each ribbon are never
covered. Here it is understood that when one exits the Feynman diagram through one
extremity of an external electron line, one then re-enters it through the second extremity.
Once the number of faces is determined this way, one uses Euler’s formula,

g = 1− f/2 + e/2− n/2 (6.11)

to obtain the genus where, as already noted, e is the number of photon lines and n is the
number of electron lines.

Example 4. Consider the Feynman diagram of figure 5. The corresponding ribbon graph
is shown in figure 6 with the two paths (one made of a dashed line and the second shown
as a continuous line) needed to cover the graph. The number of faces is then two and since
e = 4 and n = 2, the genus of the ribbon graph corresponding to this Feynman diagram is
equal to one.
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Figure 5. Feynman diagram corresponding to the ribbon graph shown in figure 6.

6 

8 

5 

7 1 

3 

2 

4 

1 

Figure 6. The ribbon graph corresponding to figure 5. It is specified by the permutations α =

(1 2)(3 4)(5 6)(7 8), σ = (1̂ 3 2 4 5 7)(6 8) on the set of half-edges H = {1, 2, . . . , 8}. The two paths
required to cover the graph are shown as a dashed line and as a continuous line. This graph therefore
has two faces.

Example 5. As a second example, consider the ribbon graph of figure 4. In that case, three
paths are required to cover the graph so there are three faces. There are four vertices so
n = 4 and there are seven edges so e = 7, giving a genus g = 1.

Remark 5. Since we are considering diagrams with no external photon lines and N external
fermion lines, there are n − N fermion loops and the number of loops due to the photon
propagators is e + 1 − n, if e is the number of photons. We therefore obtain the following
result: the total number of loops (in the sense of Feynman diagrams) is given by e+ 1−N .
In other words, the number of N -rooted graphs with e edges is equal to the number of
Feynman diagrams with e+ 1−N loops.

This number is never negative since, for a given N , the smallest possible value of e
is N − 1.

It is a simple matter to modify the formula (6.2) to count special types of Feynman
diagrams. For example, it is trivial to exclude all diagrams with tadpoles by imposing that
all closed electron loops must connect to more than one photon. Recall that in eq. (6.2),
the first N indices refer to the external electron lines and the remaining indices, from N +1

to n refer to electron loops. To eliminate all tadpole diagrams, it is therefore only necessary
to multiply the right hand side of eq. (6.2) by a product of Heaviside functions forcing the
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degrees of all the electron loops be at least equal to two:

H[µN+1 − 2]H[µN+2 − 2] · · ·H[µn − 2] (6.12)

where we use the convention H[x] = 1 for x ≥ 0.
It is also easy to enforce Furry’s theorem. This amounts to imposing that the degrees

of all the electron loops be even, which is achieved by simply multiplying eq. (6.2) by

1

2n−N
(1 + (−1)µN+1 ) (1 + (−1)µN+2 ) . . . (1 + (−1)µn) . (6.13)

Let us now show some examples of using eq. (6.2).
In the case of one external electron line, N = 1, (so we are considering the corrections

to the electron propagator), the number of such diagrams as a function of the number of
photon lines (which in this case gives also the number of loops) is well known [10] and
given by

1, 2, 10, 74, 706, 8 162, 110 410 . . . (6.14)

for e = 0, 1, 2, . . .. The two diagrams for e = 1 are the usual one-loop self-energy diagram
plus the diagram with one tadpole. Our formula for m1(e) reproduces trivially the results
for e = 0 and e = 1. Consider the next term in the series, corresponding to two photon
lines, e = 2. The formula gives

m1(2) =

3∑
n=1

[ 1+2−n
2 ]∑

g=0

∑
µ1+···+µn=4

µi≥1

µ1

(n− 1)!

Cg,n(µ1, . . . , µn)

µ1 · · ·µn

= C0,1(4) +
C0,2(1, 3)

3
+
C0,2(2, 2)

2
+ C0,2(3, 1)

+
1

2

(
C0,3(1, 1, 2)

2
+
C0,3(1, 2, 1)

2
+ C0,3(2, 1, 1)

)
+ C1,1(4) . (6.15)

Using eqs. (5.10), (5.12), (5.14) and (5.15) we obtain m1(2) = 10, in agreement with
eq. (6.14).

Each term eq.(6.15) for m1(2) corresponds to a certain type of Feynman diagram.
Since we are considering here one external electron line, n − 1 is equal to the number of
electron loops. The degrees µi give the number of photon lines attached to the i-th electron
line, with µ1 being distinguished as the number of photons attached to the single external
electron line.

For example consider the term

1

4
C0,3(1, 1, 2) ,

which corresponds, for N = 1, to the diagram with one photon connecting the external
fermion line to a first fermion loop, and a second photon line going from this first fermion
loop to a second fermion loop, which is a tadpole. Clearly the term with C0,3(1, 2, 1) leads
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Figure 7. Feynman diagram corresponding to the contribution of C1,1(4) in m1(2). The corre-
sponding ribbon graph shown in figure 1.

to the same diagram. Combining these two contributions and using C0,3(1, 2, 1) = 2 from
eq. (5.15), we find

1

4
C0,3(1, 1, 2) +

1

4
C0,3(1, 2, 1) = 1 ,

which means that there is one such diagram.
Consider now the term

1

2
C0,3(2, 1, 1) = 1 .

This corresponds to the unique diagram with two tadpoles attached to the external elec-
tron line.

The term C0,2(3, 1) = 3 in m1(2) counts the number of Feynman diagrams with one
external electron line, one closed fermion loop, three electron-photon vertices on the external
line and only one photon attached to the fermion loop. There are clearly three such diagrams
corresponding to the tadpole attached before, between, or after the one loop self energy
correction to the electron propagator.

The term C1,1(4) in m1(2) corresponds to a Feynman diagram with one electron line,
n = 1, one external electron line, N = 1, and two photons (since the number fo photons is
equal to half the sum of the degrees) and whose ribbon graph is of genus one. The ribbon
graph is shown in figure 1 and the corresponding Feynman diagram is presented in figure 7.
The ribbon graph has one face, one vertex and two edges, leading to g = 1 according to
eq. (6.11).

The following generating function for m1(e) was found in [1] and rederived in [17] from
a path integral approach:

m1(e) =

e∑
k=0

(−1)k
∑

a1+...+ak+1=e+1
ai≥1

k+1∏
j=1

(2aj − 1)!! .

This formula is more efficient than eq. (6.2) to calculate the total number of Feynman
diagrams for a corresponding number e of internal photon lines, but eq. (6.2) has the
advantage of isolating the contributions from each type of Feynman diagrams, i.e. according
to the number of electron loops and the number of photon lines attached to each external
electron line and to each electron loop. In particular, it is possible to remove the tadpoles
or to enforce Furry’s theorem by using eq. (6.2) multiplied by either eq. (6.12) or eq. (6.13).
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For example, let’s impose Furry’s theorem to m1(2) as given by eq. (6.15). Multiplying
by the factors of eq. (6.13) means that we drop all the Cg,n(µ1, . . . , µ2) with µ2, . . . , µn odd
in eq. (6.15). This leaves

m1(2)
∣∣∣
(Furry)

= C0,1(4) +
C0,2(2, 2)

2
+ C1,1(4)

= 4 .

Consider now m2(e), which begins at e = 1 and corresponds to two external electrons.
One finds

m2(e) = 1, 13, 165, 2 273, 34 577, 581 133, . . . (6.16)

for e = 1, 2, . . .. Again, an explicit expression for m2(e) for arbitrary e can be found in [17]
but that expression is also not useful to isolate contributions from specific types of Feynman
diagrams. In fact, [17] gives an algorithm to produce a closed form expression for mN (e)

with arbitrary values of N and e but all these expressions do not separate the contributions
from different classes of Feynman diagrams as eq. (6.2) does.

Let us reproduce the result m2(2) = 13 using eq. (6.2) which gives

m2(2) =

3∑
n=2

[ 3−n2 ]∑
g=0

∑
µ1+···+µn=4

µi≥1

µ1 µ2

(n− 1)!

Cg,n(µ1, . . . , µn)

µ1 · · ·µn

= C0,2(1, 3) + C0,2(3, 1) + C0,2(2, 2) + C0,3(2, 1, 1) + C0,3(1, 2, 1) +
1

2
C0,3(1, 1, 2)

= 13 .

The presence of non trivial automorphisms in
Applying Furry’s theorem here means discarding the terms with three vertices for which

the degree of the third vertex is odd (the first two degrees giving the number of vertices on
the two external electron lines). This leaves

m2(2)
∣∣∣
(QED)

= C0,2(1, 3) + C0,2(3, 1) + C0,2(2, 2) +
1

2
C0,3(1, 1, 2)

= 9 .

As a more involved example, consider diagrams with three external electron lines, N = 3

and e ≥ 2. The first few values are

m3(e) = 6, 172, 3 834, 81 720, 1 775 198 . . .

for e = 2, 3 . . ..
Equation (6.2) gives

m3(2) = 3C0,3(1, 1, 2)

= 6,

m3(3) = 3C0,3(1, 1, 4) + C0,3(2, 2, 2) + 6C0,3(1, 2, 3)

+
1

3
C0,4(1, 1, 1, 3) + 3C0,4(1, 1, 3, 1) +

3

2
C0,4(1, 1, 2, 2) + 3C0,4(1, 2, 2, 1)

= 172 . (6.17)
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7 Expressing the WKB expansion in terms of the coefficients Cg,n

We have now seen how applying topological recursion to the harmonic oscillator curve gen-
erates the multi-differentialsWH

g,n which may be used to both construct the WKB expansion
of the wave functions and to calculate the coefficients Cg,n which we used to count QED
Feynman diagrams.

The formulas needed to obtain the WKB expansion are given in eqs. (3.2) and (3.4),
while the equations necessary to calculate the Cg,n are eqs. (5.8) and (5.9). These two cal-
culations imply that it is possible to express the WKB expansion in terms of the coefficients
Cg,n . For example, consider

S2(x) =
1

24c2

x3 − 6c2x

(x2 − c2)3/2

=:
1

24c2
+

1

c2

∑
k=1

G(2k)
( c

2x

)2k
, (7.1)

where c is the constant that appeared in our elliptic curve and whose square we found to be
c2 = 2. We find it convenient to leave it as a parameter here to show the explicit dependence
of S2 on c. The x independent term in eq. (7.1) is inconsequential as it contributes only an
overall factor to the wave function. Using eqs. (3.2) and (3.4), one finds

G(n) := − 2

3!

 ∑
i+j+k=n
i,j,k≥1

C0,3(i, j, k)

ijk
+

3

2

∑
i+j=n
i,j≥1

C̃0,3(i, j, 0)

ij
+

3

4n
C̃0,3(0, 0, n)


− 2

C1,1(n)

n
H[n− 4] ,

with the coefficients C1,1 and C0,3 given in eqs. (5.10) and (5.15).
This expression requires some explanations. As mentioned previously, the

Cg,n(µ1, . . . , µn) are taken to be zero whenever one of the degrees µi is zero, except for
C0,1(0) = 1. In the above equation, the C̃0,3 are given by the same equation as the C0,3,
eq. (5.15), except that we allow the degrees to be zero.

This expression shows explicitly how a coefficient in the WKB expansion of the har-
monic oscillator wavefunctions can be expressed in terms of the coefficients Cg,n(µ1, . . . , µn)

and we have seen how the same coefficients can be used to count Feynman diagrams in many
body physics or in QED.

8 C0,4(µ1µ2, µ3, µ4) and C1,2(µ1, µ2)

Here we give the expressions for the coefficients C0,4 and C1,2 without presenting the deriva-
tions. One finds

C0,4(µ1,µ2,µ3,µ4) =



µ1+µ2+µ3+µ4−4
2 g(µ1)g(µ2)g(µ3)g(µ4) if all the µi are odd,

µ1+µ2+µ3+µ4−2
2 g(µ1)g(µ2)g(µ3)g(µ4)

if all the µi are even
or if only two are even,

0 otherwise,
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where it is understood that µi > 0 and the function g(µ) is defined in eq. (5.13). Let us
recall that W0,4(s1, s2, s3, s4) is then given by

WH
0,4(s1, s2, s3, s4) =

∞∑
µ1,µ2,µ3,µ4=1

C0,4(µ1, µ2, µ3, µ4) sµ11 sµ22 sµ33 sµ44 dw1 dw2 dw3 dw4

where si := e−wi .
In order to present C1,2, it proves convenient to first introduce the following function:

F(µ) :=

2(µ
2

) (µ+5)!!
5!!(µ

2
)!

if µ is an even integer ≥ 0,

0 otherwise.

The coefficients C1,2(µ1, µ2) are nonzero only if µ1 and µ2 have the same parity. When the
two are even, one finds

C1,2(µ1, µ2) = 4F(µ1 − 4)F(µ2 − 2) + 4F(µ1 − 2)F(µ2 − 4) + 4F(µ1 − 6)F(µ2 − 2)

+ 4F(µ1 − 2)F(µ2 − 6)− 52F(µ1 − 4)F(µ2 − 4)− 16F(µ1 − 4)F(µ2 − 6)

− 16F(µ1 − 6)F(µ2 − 4) + 320F(µ1 − 6)F(µ2 − 6) .

Since the function F vanishes when its argument is negative, we see that the first nonzero
terms in WH

1,2 have a sum of the exponents of s1 and s2 equal to six, in agreement with
eq. (5.16). Moreover, we see directly from the above that these terms are given by 4s4

1s
2
2 +

4s2
1s

4
2.
When both arguments are odd, one obtains

C1,2(µ1,µ2) = 5F(µ1−5)F(µ2−1)+5F(µ1−1)F(µ2−5)+3F(µ1−3)F(µ2−3)

−52F(µ1−5)F(µ2−3)−52F(µ1−3)F(µ2−5)+208F(µ1−5)F(µ2−5) ,

which shows again that the terms of lowest exponents are 5s5
1s2 + 5s1s

5
2 + 3s3

1s
3
2.

Let us write the first few terms of WH
1,2 obtained using the above expressions:

WH
1,2(s1, s2) =

∞∑
µ1,µ2=1

C1,2(µ1, µ2) sµ11 sµ22 dw1 dw2

= dw1 dw2

(
5s5

1s2 + 5s1s
5
2 + 4s4

1s
2
2 + 4s2

1s
4
2 + 3s3

1s
3
2 + 70s7

1s2 + 70s1s
7
2 + 60s6

1s
2
2

+ 60s2
1s

6
2 + 60s5

1s
3
2 + 60s3

1s
5
2 + 60s4

1s
4
2 + 630s9

1s2 + 630s1s
9
2 + 560s8

1s
2
2

+ 560s2
1s

8
2 + 630s7

1s
3
2 + 630s3

1s
7
2 + 600s6

1s
4
2 + 600s4

1s
6
2 + 600s5

1s
5
2 + . . .

)
.

One can verify that this indeed reproduces the Taylor expansion of W1,2 given in eq. (2.8)
after making the change of variable

zi = −ε ti
= ti

= −
√

1 + 2e−wi√
1− 2e−wi

= −
√

1 + 2si√
1− 2si

.
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