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Abstract: We have studied the P → γ?γ? transition form-factors (P = π0, η, η′) within

a chiral invariant framework that allows us to relate the three form-factors and evaluate

the corresponding contributions to the muon anomalous magnetic moment aµ = (gµ−2)/2,

through pseudoscalar pole contributions. We use a chiral invariant Lagrangian to describe

the interactions between the pseudo-Goldstones from the spontaneous chiral symmetry

breaking and the massive meson resonances. We will consider just the lightest vector and

pseudoscalar resonance multiplets. Photon interactions and U(3) flavor breaking effects

are accounted for in this covariant framework. This article studies the most general cor-

rections of order m2
P within this setting. Requiring short-distance constraints fixes most

of the parameters entering the form-factors, consistent with previous determinations. The

remaining ones are obtained from a fit of these form-factors to experimental measurements

in the space-like (q2 ≤ 0) region of photon momenta. No time-like observable is included

in our fits. The combination of data, chiral symmetry relations between form-factors and

high-energy constraints allows us to determine with improved precision the on-shell P -pole

contribution to the Hadronic Light-by-Light scattering of the muon anomalous magnetic

moment: we obtain aP,HLbLµ = (8.47 ± 0.16) · 10−10 for our best fit. This result was ob-

tained excluding BaBar π0 data, which our analysis finds in conflict with the remaining

experimental inputs. This study also allows us to determine the parameters describing the

η − η′ system in the two-mixing angle scheme and their correlations. Finally, a prelimi-

nary rough estimate of the impact of loop corrections (1/NC) and higher vector multiplets

(asym) enlarges the uncertainty up to aP,HLbLµ = ( 8.47±0.16sta±0.091/NC

+0.5
−0 asym) ·10−10.
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1 Introduction

The electron anomalous magnetic moment, ae = (ge − 2)/2, is the most precisely mea-

sured [1] and predicted [2] observable in nature. There is, however, a greater interest in

the muon anomalous magnetic moment, aµ = (gµ − 2)/2, since heavy physics beyond the

Standard Model (SM) would have an effect of order (mµ/me)
2 ∼ 4×104 times bigger in aµ

than in ae [3–6]. Similarly, aτ should be ∼ 280 times more sensitive to heavy new physics

than aµ. However, the significantly lower mean lifetime of the τ lepton makes particularly

difficult to measure this property (see e.g. refs. [7, 8]), which by now is still consistent

with zero [1].

The most accurate measurement from Brookhaven [9] of aµ seems at odds with the

SM prediction [5, 10–16] with a 3.5σ discrepancy [1]1 and, both, FNAL muon g-2 and

1The same deviation is quoted in the updated analysis of the leading hadronic vacuum polarization

contribution in ref. [17], while it is 3.7σ according to the most recent study in [18]. See ref. [19] for a

discussion on the Monte Carlo needs for these accurate predictions.
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the J-PARC E34 collaborations have announced new experiments that will reduce the

current Brookhaven error by, at least, a factor 4 [20, 21]. Therefore, it becomes necessary

to make a more accurate prediction for this observable with reduced uncertainty so as to

be able to confront the forthcoming results from both collaborations with a SM result of

comparable accuracy.

The main source of uncertainty comes from the hadronic contributions, so these are

where our activity should focus on (see in ref. [22] an early discussion of this issue). All

such contributions can be divided into two, the Hadronic Vacuum Polarization (HVP) and

the Hadronic Light-by-Light Scattering (HLbL). The HVP can be completely data-driven

through dispersion relations [23, 24],2 while the latter cannot be obtained completely in this

way yet. However, there have been remarkable advances in determining the HLbL part in a

model independent way, by means of Lattice QCD [38–40] and dispersion relations [41–49].

Therefore, it is the HLbL contribution to the muon anomalous magnetic moment, aHLbLµ ,

which calls for a dedicated theory effort [50].

We will focus on the leading contribution to the HLbL [5], which is given by the pseu-

doscalar exchange,3 aP,HLbLµ . To evaluate such contribution, a necessary ingredient is the

P → γ?γ? transition form-factor (TFF), FPγ?γ? , which cannot be computed analytically in

the underlying theory of strong interactions. However, as for the HLbL part, there have also

been remarkable advances in determining the TFF in a model independent way by means

of Lattice QCD [53] and dispersion relations [54–57]. We calculate it by means of the exten-

sion of Chiral Perturbation Theory (χPT) [58–60] that incorporates the lightest resonance

multiplets in a chiral invariant framework [61, 62], called Resonance Chiral Theory (RχT).

We work within the large-NC limit and assume a 1/NC expansion, in such a way that we

have a spontaneous chiral symmetry breaking pattern U(3)L×U(3)R/U(3)L+R, which gives

place to a nonet of chiral (pseudo) Goldstones. We consider a RχT Lagrangian, LRχT , that

includes U(3) symmetric operators and terms that introduce quark mass corrections in the

even and odd-intrinsic parity sectors [63–67]. Previous works [67] and [68] analyzed U(3)

symmetric TFFs, given in the chiral limit. The novelty of the present approach is that the

TFFs are studied beyond the massless pseudo-Goldstone limit, accounting for its leading

order corrections in powers of the pseudo-Goldstone bosons squared masses, m2
P , which

explicitly break U(3) flavor symmetry. We will see that all but eight parameters (including

among them the four η − η′ mixing parameters) are fixed by short distance constraints.

These eight unknown couplings will be determined through a fit to the experimental data

in the space-like region of photon four-momenta q2 ≤ 0 (note that the pseudoscalar pole

contribution to aµ can be written in terms of just the space-like TFFs [69]). Since the data

for the π0 transition form-factor given by BaBar collaboration [70] seems to be at odds

with its Brodsky-Lepage high-energy limit [71, 72] and the η and η′ TFFs, we will discuss

its validity and consistency with other data. We will perform various alternative analyses

and take as our reference fit the one without this set of data.

Our approach intends to introduce the U(3) breaking through a chiral invariant La-

grangian, where quark mass effects enter in a covariant way. This gives slightly simpler

2Also lattice QCD simulations have recently managed to give accurate determinations. See, e.g., refs. [25–

37].
3This dominance is not fully understood from a first-principles derivation [51, 52].
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expressions for these form-factors and the short-distance constraints for the Lagrangian

parameters, contrary to the strategy followed in ref. [73], which allows a completely gen-

eral U(3) breaking pattern. Despite giving an accurate description of data, is a little less

straightforward to employ and does not rely on chiral symmetry (where quark mass correc-

tion must enter through a more restricted pattern). Likewise, ref. [73] also used data from

both time- and space-like regions, whereas the present article will only rely on space-like

data. We will work in the large-NC limit and hadron loop effects will be neglected, so

time-like observables (e.g., partial widths) will be excluded from our fits, as they require

a dedicated analysis of the 1/NC corrections. In addition, photon radiative corrections to

P → γ(?)γ(?) decays also play a non negligible role [74].

The paper is organized as follows: in section 2, we recall the relevant pieces of the

Resonance Chiral Lagrangian needed for our study. Particularly, we explain the flavor-

breaking corrections that we include for the first time in this kind of analysis (see, how-

ever, ref. [75] for a related discussion within vector-meson dominance, constituent-quark

loops, the QCD-inspired interpolation by Brodsky-Lepage, and Chiral Perturbation The-

ory). Then, in section 3 we collect our results for the transition form-factors including

the contribution from intermediate vector and pseudoscalar resonances. In section 4 we

discuss the short-distance constraints on the Resonance Chiral Lagrangian parameters that

are obtained by demanding the QCD short-distance behaviour to the VVP Green’s func-

tion and the pseudo-Goldstone form-factors (P -TFF). Our fits to data are presented in

section 5, where we also quote our results for the parameters describing the η − η′ mixing

in the double angle scheme, including their correlations. We also compare our approach to

other recent articles on the subject in section 5.2. Finally, the branching ratio predictions

for P → γ(?)γ(?) processes are compared to their respective experimental measurements in

section 5.3. The corresponding P pole contributions to aµ are obtained in section 6, with

a careful statistical treatment and highlighting the influence of π0 transition form-factor

BaBar data. Finally, our conclusions are summarized in section 7. The three appendices

collect, respectively, the Wess-Zumino-Witten Lagrangian, the relevant formulae used to

evaluate the P pole contribution to aµ, and the correlation matrices for the two alternative

fits considered in our analysis.

2 RχT Lagrangian

2.1 Relevant operators for the TFF

In modeling the TFF we make use of RχT, an extension of χPT that also includes the

lightest resonance multiplets [61, 62]. The Wess-Zumino-Witten action [76, 77] describes

the local Pγγ interaction vertex, whereas a dressed photon description is needed to assure

the ultraviolet convergence of the pseudo-Goldstone exchange contribution to aHLbLµ [5].

Within our approach, this is done by considering the vector resonances exchange between

the pseudo-Goldstone and the final state photons. To include such interactions one needs

to consider the odd-intrinsic parity sector with operators including a pseudo-Goldstone

and, either two vector resonances or one vector resonance and one external photon.
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The complete odd-intrinsic parity basis involving pseudo-Goldstones and either two

vector resonances or a vector resonance and a photon was given in [67]. We will rely,

however, on the operators given in ref. [66], since these conform a complete basis for

describing vertices involving only one pseudo-Goldstone. Also, this basis is simpler for the

problem at hand (optimized for the study of this type of processes) and, as proven in [78],

equivalent to the complete basis of ref. [67] for a single pseudo-Goldstone field. In order

to compare and employ results from [67], pseudoscalar resonances P ′ are also included in

our description of the TFF. Ref. [68] found that the effect of the latter on the form-factors

was equivalent to adding a second vector multiplet. Such P ′ interactions are taken from

ref. [67] within the chiral limit, which give their first corrections to the TFF at O(m2
P ) and

will be addressed in subsection 2.2.

The Lagrangian describing the interaction between the lightest multiplet of pseu-

doscalars (the chiral pseudo-Goldstones) and massive meson resonances, R, can be or-

ganized according to the number of heavy fields:

L = Lnon−R +
∑
R

(
LKin
R + LR

)
+
∑
R,R′

LRR′ +
∑

R,R′,R′′

LRR′R′′ + . . . (2.1)

We will not consider operators with four or more resonance fields since they cannot con-

tribute to the P → γ?γ? TFFs at the tree-level –considered in this analysis–. We will

describe the spin-1 resonance fields in the antisymmetric tensor representation [61, 62]. In

this formalism, as a general feature, the simplest operators in the even-intrinsic parity sector

contain an O(p2) chiral tensor (with two derivatives or equivalent scales) [61, 62] in addition

to the resonance field, while in the odd-intrinsic parity sector the light-pseudoscalar tensor

accompanying the resonance fields usually starts at O(p4) [66, 67]. Furthermore, the RχT

Lagrangian will be divided in even and odd-intrinsic parity sectors, the latter containing

the anomalous Wess-Zumino-Witten Lagrangian, LWZW . We will present now the RχT

operators that provide the relevant interactions between photons, γ, pseudo-Goldstones,

φa, and vector resonances, V :

• Operators without resonance fields: the operators in Lnon−R only contain pseudo-

Goldstone fields φa and start in the even-intrinsic parity sector at O(p2) (given by

Gasser and Leutwyler’s LO(p2)
χPT Lagrangian) and at O(p4) for the anomalous odd-

intrinsic parity sector (where the lowest order contribution is provided by LWZW ).

However, as we want to study the most general possible U(3) breaking we will also

consider operators with the structure of the odd-intrinsic parity O(p6) χPT La-

grangian [79]. Thus our non-resonant part of the RχT Lagrangian is given by

Leven
non−R =

F 2

4
〈uµuµ + χ+〉 ,

Lodd
non−R = LWZW +

∑
j=7,8,22

CWj OWj , (2.2)

where 〈A〉 stands for the trace in flavour space of A, the operators OWj can be

found in table 1 and the well-known –though lengthy– form of LWZW is given in

– 4 –
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OW7 iεµναβ〈χ−fµν+ fαβ+ 〉
OW8 iεµναβ〈χ− 〉 〈 fµν+ fαβ+ 〉
OW22 iεµναβ〈uµ{∇ρfρν+ , fαβ+ } 〉

Table 1. Relevant non-resonant odd-intrinsic parity operators.

appendix A [76, 77, 79]. Although this non-resonant Lagrangian was considered

in the chiral and large-NC limit VVP Green’s function analysis [67], an appropriate

description of physical P → γ?γ? processes requires further pseudo-Goldstone bilinear

terms not shown above [80, 93, 138, 139], which dress the φa wave-functions and

induce the η− η′ mixing. This details are discussed in the later section 2.2. In order

to explore the U(3) breaking in the η− η′ system in more generality we have allowed

here the presence of the double-trace operator CW8 . Although it is subleading in 1/NC

and it should be dropped from our analysis, 1/NC corrections play an important

role in the description of the η − η′ mixing so one could argue that this operator

might be numerically relevant. We will show, nonetheless, that after demanding

that the TFFs follow the high-energy QCD behaviour this subleading coupling CW8
vanishes. We want to emphasize that Lnon−R in eq. (2.2) is not the low-energy χPT

Lagrangian; it belongs to RχT Lagrangian which describes the meson interactions in

the range of high and intermediate energies and the CWj and CW,χPT
j couplings must

not be confused.

• Operators with one vector resonance field: at tree-level, the P -TFF will have con-

tributions from V − γ and V − γ − φa vertices, with the vector multiplet Vµν =∑8
a=0

1√
2
λaV a

µν described in the antisymmetric tensor formalism [61, 62]:4

LKin
R = −1

2
〈∇λV λν∇ρVρν 〉+

1

4
M2
V 〈VµνV µν 〉 ,

Leven
V =

FV

2
√

2
〈Vµνfµν+ 〉+

λV√
2
〈Vµν{fµν+ , χ+} 〉 ,

Lodd
V =

∑
j=1,2,3,5,6

cj
MV
OjV JP . (2.3)

A quark mass correction to the V − γ transitions is allowed in Leven
V to account for

the U(3) breaking in this vertex, where the only single-trace operator at O(m2
P ) is

given by the λV term, given in ref. [63] by OV6 with coupling λV6 = λV /
√

2. Table 2

provides the full list of OjV JP operators [66], containing those (j = 1, 2, 3, 5, 6) that

contribute to the V − γ − φa vertex. Notice that the c3 term is the only one that

explicitly breaks the U(3) symmetry, via the tensor χ−, proportional to the quark

masses. Nonetheless, the other cj couplings will also enter in the U(3) breaking

contributions to the TFFs once the external pseudo-Goldstones are set on-shell and

their wave function renormalizations and mixings are taken into account.

4The operator ∆L = i

2
√
2
GV 〈Vµν [uµ, uν ] 〉 [61, 62] is not included here in Leven

V since it does not con-

tribute to the studied processes at tree-level. The same applies to other Lagrangian operators from refs. [61–

63, 67] not quoted here.

– 5 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
0

O1
V JP εµνρσ〈

{
V µν , fρα+

}
∇αuσ〉

O2
V JP εµνρσ〈

{
V µα, fρσ+

}
∇αuν〉

O3
V JP iεµνρσ〈

{
V µν , fρσ+

}
χ−〉

O4
V JP iεµνρσ〈V µν

[
fρσ− , χ+

]
〉

O5
V JP εµνρσ〈

{
∇αV µν , fρα+

}
uσ〉

O6
V JP εµνρσ〈

{
∇αV µα, fρσ+

}
uν〉

O7
V JP εµνρσ〈

{
∇σV µν , fρα+

}
uα〉

Table 2. Full list of OjV JP operators [66], containing those (j = 1, 2, 3, 5, 6) that contribute to the

V − γ − φa vertex.

O1
V V P εµνρσ〈{V µν , V ρα}∇αuσ〉
O2
V V P iεµνρσ〈{V µν , V ρσ}χ−〉
O3
V V P εµνρσ〈{∇αV µν , V ρα}uσ〉
O4
V V P εµνρσ〈{∇σV µν , V ρα}uα〉

Table 3. Full list of OjV V P operators [66], containing those (j = 1, 2, 3) that contribute to the

V − V − φa vertex.

• Operators with two vector resonance fields: operators with two vector fields give

quark mass corrections to the resonance mass term (although we have preferred

to keep it as a perturbation instead of including it in LKin
V ) and contribute to the

V − V − φa vertices:

Leven
V V = −eVm〈VµνV µνχ+ 〉 ,

Lodd
V V =

∑
j=1,2,3

djOjV V P . (2.4)

The quark mass splitting induces a U(3) mass breaking in the vector nonet, in fair

agreement with the phenomenology [64, 65]. We note that in ref. [64, 65] the eVm
Lagrangian is loosely written as eRm〈RRχ+ 〉 for a generic resonance. Table 3 provides

the full list of OjV V P operators [66], containing those (j = 1, 2, 3) that contribute to

the V − V − φa vertex. Only the d2 operator breaks explicitly U(3).

The chiral building blocks are defined as [79]

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − i`µ)u†

]
,

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − i`µ)u†

]
,

∇µ· = ∂µ ·+[Γµ, ·] , fµν± = uFµνL u† ± u†FµνR u ,

χ± = u†χu† ± uχ†u, χ = 2B0(s+ ip) ,

u = exp

(
iΦ√
2F

)
, Φ =

8∑
a=0

λaφ
a

√
2
, (2.5)

– 6 –
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where the φa fields provide the U(3) nonet of the chiral pseudo-Goldstone fields (the η′

becomes a chiral Goldstone under the chiral and large-NC limits), the scalar-pseudoscalar

densities are set to the quark masses, s+ ip =diag(mu,md,ms) (isospin symmetry will be

assumed from now on, so mu = md ≡ mq 6= ms), and F is the pion decay constant (Fπ =

92.2 MeV [1]) in the chiral limit. The left and right sources are respectively `µ = vµ−aµ =

eQAµ+ . . . and rµ = vµ+aµ = eQAµ+ . . . (with Aµ the photon field, Q =diag
(

2
3 ,−

1
3 ,−

1
3

)
),

FµνL = ∂µ`ν − ∂ν`µ − i[`µ, `ν ] = eQF µν + . . . and FµνR = FµνL |`→r = eQF µν + . . . are their

associated field strengths (with the photon field strength tensor Fµν = ∂µAν − ∂νAµ),

and the dots stand for gauge boson fields not contributing to the P → γ?γ? TFF. For the

Levi-Civita tensor we use the standard convention ε0123 = 1.

The main contribution to the TFF is provided by the previous operators, as the pseu-

doscalar resonances P ′ can only enter via the P ′ − φa mixing, suppressed by the ratio

m2
P /M

2
P ′ of the light pseudo-Goldstone and heavy pseudoscalar resonance masses. How-

ever, the P ′ multiplet is crucial to recover the right behaviour prescribed by the OPE for

the VVP Green’s function [67, 78]. In order to use the short-distance constraints therein,

for consistency, one needs to also include the pseudoscalar resonance operators in [67] that

contribute to the TFF [61, 62, 67]:

∆Leven
P ′ =

1

2
〈∇µP ′∇µP ′ 〉+ idm〈P ′χ− 〉 , (2.6)

∆Lodd
P ′ = εµναβ〈κP5 {f

µν
+ , fαβ+ }P ′ + κPV3 {V µν , fαβ+ }P ′ + κPV V V µνV αβP ′〉 ,

with P ′ =
∑8

a=0 λaP
′ a/
√

2. Our final results will crucially rely on the asymptotic be-

haviour imposed by QCD on the TFFs at high-energies [71, 72].

2.2 U(3) breaking in the Φ and V nonets

A more accurate analysis of the P -TFF can be done by including corrections up to O(m2
P ),

with mP referring to the mass of the pseudo-Goldstones. In order to do this, one needs

to take into account all possible corrections to interaction vertices, resonance masses and

field renormalizations.

For the vector resonance nonet we will assume an ideal mixing, such that

(V µν
11 , V

µν
22 , V

µν
33 ) =

(
(ρ0µν + ωµν)/

√
2, (−ρ0µν + ωµν)/

√
2, φµν

)
, as prescribed by the large-

NC limit. We will include only the lowest order terms in mq/s that break the U(3) symme-

try. The quark mass corrections to the vector masses stemming from the operator of Leven
V V

do not modify this mixing. In the large-NC and isospin limits, this Lagrangian yields the

vector resonance mass pattern [64, 65],

M2
ρ = M2

V − 4eVmm
2
π , (2.7a)

M2
ω = M2

V − 4eVmm
2
π , (2.7b)

M2
K∗ = M2

V − 4eVmm
2
K , (2.7c)

M2
φ = M2

V − 4eVm∆2
2Kπ , (2.7d)

in fair agreement with the phenomenology, with ∆2
2Kπ = 2m2

K − m2
π. The K∗ mass is

provided to complete the information on the U(3) splitting of the vector nonet, although

– 7 –
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it will not be relevant for this work, obviously. Similar relations can be obtained for the

pseudoscalar resonances (see ref. [64, 65]), however these will not be needed. These effects

would only correct the amplitudes at O(m4
P ) and are beyond the scope of this work.

In the same way, the λV term in Leven
V Lagrangian will introduce an U(3) breaking in

the V − γ transitions, such that we will have to make the replacements:

ρ− γ : FV −→ FV + 8m2
πλV , (2.8a)

ω − γ : FV −→ FV + 8m2
πλV , (2.8b)

φ− γ : FV −→ FV + 8∆2
2KπλV . (2.8c)

To compute the transition P → γγ one has to establish the pseudo-Goldstone mass

eigenstates and, in particular, the η − η′ mixing. For this we will use a two-angle mixing

scheme [80–82] consistent with the large NC limit of QCD [83–85], where the octet and

singlet bare fields φa are related to the physical fields through

(Φ11,Φ22,Φ33) =

(
Cππ

0 + Cqη + C ′qη
′

√
2

,
−Cππ0 + Cqη + C ′qη

′
√

2
,−Csη + C ′sη

′

)
, (2.9)

where Φ =
∑8

a=0
1√
2
φaλa is the pseudo-Goldstone matrix in terms of the bare pseudoscalar

fields φa. These fields are related to the physical ones through a rescaling of the form

φ3 = (Φ11 − Φ22)/
√

2 = Cππ
0, with Cπ = F/Fπ in the large-NC limit [86–88]. In the

most general case, when loops and other corrections are taken into account C2
π is just the

wave-function renormalization Zπ.

Within the two-angle mixing scheme, the mixing constants are parametrized in the

most general form through

Cq :=
F√

3 cos(θ8 − θ0)

(
cos θ0

f8
−
√

2 sin θ8

f0

)
, (2.10a)

C ′q :=
F√

3 cos(θ8 − θ0)

(√
2 cos θ8

f0
+

sin θ0

f8

)
, (2.10b)

Cs :=
F√

3 cos(θ8 − θ0)

(√
2 cos θ0

f8
+

sin θ8

f0

)
, (2.10c)

C ′s :=
F√

3 cos(θ8 − θ0)

(
cos θ8

f0
−
√

2 sin θ0

f8

)
, (2.10d)

in terms of two couplings f8/0 and two mixing angles θ8/0 [82, 89–92]. The physical fields

can be identified through the mixing parameters as a linear combination of the ‘bare’ SU(3)

octet (bare η8 = φ8) and singlet (bare η0 = φ0) fields in Φ. In the large NC limit, one has

ηq = η and ηs = η′, where the former is an isosinglet combination uū+ dd̄ and the latter is

a pure ss̄ state. These parameters have been computed in U(3) large-NC χPT at LO [80]

(where θ8 = θ0 ≈ −20◦ and f8 = f0 = F ), next-to-leading order (NLO) [80] and next-

to-next-to-leading order (NNLO) [93]. These calculations point out an important issue in

the treatment of the η and η′ mesons with the large-NC and/or chiral limit: 1/NC and

– 8 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
0

quark mass corrections to the U(3) pseudo-Goldstone properties happen to be of a similar

order of magnitude and compete with each other. For instance, the lowest contribution to

the η′ mass is dominated by the O(N−1
C m0

q) contribution from the U(1)A chiral anomaly

whereas the O(N0
Cm

1
q) contributions mostly determine the π0 mass. It is illustrative to

observe the two limits separately: in the large-NC limit, the physical states are given by

the ideal mixing angles θ8/0 = − arcsin
(√

2/3
)
≈ −55◦ and couplings f8/0 = F , which

imply Cq = C ′s = 1 and C ′q = Cs = 0, all up to quark mass corrections; in the chiral limit,

θ0 = θ8 = 0, f8 = F and f0 = F [1 + O(N−1
C )], which imply Cq =

√
1/3, C ′q = F

f0

√
2/3,

Cs =
√

2/3 and C ′s = F
f0

√
1/3.

Therefore, in the present work, we will always keep the full mixing coefficients C
(′)
q/s,

not expanded; on the other hand, the large-NC limit will be assumed everywhere else

in our space-like TFF analysis and resonance widths, meson loops or multi-trace RχT

operators will be considered negligible for our study. Obviously, these subleading effects

must be properly taken into account in the analysis of time-like observables (vector and

pseudoscalar branching ratios, e+e− → Pγ production, etc.). We are, however, modelling

the large-NC limit of RχT with the infinite tower of resonant states truncated at the first

multiplet. Still, we expect that this approximation will affect very mildly our prediction

for aP,HLbLµ . The reason for this is that the integration kernel of the these contributions

is completely dominated by the [0.1, 1] GeV2 region for both photon virtualities q2
1,2 [69],

which suppresses the contributions from higher resonance excitations. Nonetheless we will

use the [0, 100] GeV2 region for both photon momenta in the form-factor when computing

aP,HLbLµ . According to our results, ∼ 85% of the whole contribution comes from the

[0.1, 1] GeV2 region for both photon virtualities. Furthermore, if the upper limit in both

squared momenta is set to 400 GeV2, the prediction for aP,HLbLµ changes by less than 0.005%

with respect to our reference value. In addition to this, we will see in section 5 that current

TFF data (extending up to roughly 35 GeV2) do not show any hint of a sizable contribution

from excited resonances and that their effect can be captured by a small shift of the lightest

vector resonance parameters. It is illustrative to compare the present results with more

involved studies including higher resonance poles [69, 73, 94].

3 Transition form-factors in RχT

The transition amplitude P (p) → γ?(q1, ε1)γ?(q2, ε2) with an on-shell light pseudoscalar

and two photons with virtualities q2
1 and q2

2 (polarizations ε∗1(q1) and ε∗2(q2)) can be

parametrized in terms of a scalar function, the form-factor FPγ?γ?(q2
1, q

2
2), in the form

MPγ?γ? = ie2εµνρσq1µq2νε
∗
1ρε
∗
2σ FPγ?γ?

(
q2

1, q
2
2

)
, (3.1)

where Bose symmetry implies FPγ?γ?(q2
1, q

2
2) = FPγ?γ?(q2

2, q
2
1).

This amplitude can be divided into three kinds depending on the number of intermedi-

ate vector resonances contributing to each diagram. First we have contributions involving

no resonances, as that shown in figure 1, which can be computed by means of the Wess-

Zumino-Witten functional [76, 77] (of chiral order p4) and the O(p6) χPT Lagrangian [79].
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P 0

γ

γ

Figure 1. Local contribution to the P 0 → γγ decay.

CP0 CP7 CP8

π 1 m2
π 0

η
(
5Cq −

√
2Cs

)
/3

(
5Cqm

2
π −
√

2Cs∆
2
2Kπ

)
/3 2Cqm

2
π −
√

2Cs∆
2
2Kπ

η′
(
5C ′q +

√
2C ′s

)
/3

(
5C ′qm

2
π +
√

2C ′s∆
2
2Kπ

)
/3 2C ′qm

2
π +
√

2C ′s∆
2
2Kπ

Table 4. Values of CPi
for the local interaction.

P 0

γ

γV 0

Figure 2. Contribution to the P 0 → γγ decay with one resonance exchange.

This gives

MLoc = iεµνρσq1µq2νε
∗
1ρε
∗
2σ

2e2

3F

×
{
−
[
NC

8π2
+ 8(q2

1 + q2
2)CW22

]
CP0 + 32CW7 CP7 + 64CW8 CP8

}
, (3.2)

where the constants CP0 , CP7 and CP8 depend on the pseudo-Goldstone boson considered

and are given in table 4.

The contributions involving one vector resonance exchange (figure 2) are

M1R = −iεµνρσq1µq2νε
∗
1ρε
∗
2σ

4
√

2e2

3MV F
(3.3)

×
∑

i=ρ0,ω,φ

CVi

{
4c3(Cm1R)i + (Cd1R)i

[
q1 · q2(c1 + c2 − c5) + q2

1(c2 − c6) + q2
2c1

]
M2
i − q2

1

+(q1↔q2)

}
,

where the constants CV are

CVi =


1

3
(FV + 8m2

πλV ) for ω,

(FV + 8m2
πλV ) for ρ0,

√
2

3

(
FV + 8∆2

2KπλV
)

for φ,

(3.4)

and the constants Cd1R and Cm2R are given in table 5.
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Cd1R ω ρ0 φ

π0 3 1 0

η Cq 3Cq −2Cs

η′ C ′q 3C ′q 2C ′s

Cm1R ω ρ0 φ

π0 3m2
π m2

π 0

η m2
πCq 3m2

πCq −2∆2
2KπCs

η′ m2
πC
′
q 3m2

πC
′
q 2∆2

2KπC
′
s

Table 5. Values of Cd1R (left) and Cm1R (right) for the couplings between different mesons.

Cd2R ωω ρ0ρ0 ωρ0 φφ

π0 0 0
√

2 0

η
√

2Cq
√

2Cq 0 −2Cs

η′
√

2C ′q
√

2C ′q 0 2C ′s

Cm2R ωω ρ0ρ0 ωρ0 φφ

π0 0 0
√

2m2
π 0

η
√

2m2
πCq

√
2m2

πCq 0 −2∆2
2KπCs

η′
√

2m2
πC
′
q

√
2m2

πC
′
q 0 2∆2

2KπC
′
s

Table 6. Values of Cm2R (up) and Cm2R (bottom) for the couplings between different mesons.

P 0

γ

γ

V 0
1

V 0
2

Figure 3. Contribution to the P 0 → γγ decay with two resonances exchange.

The two-vector meson exchange contributions (figure 3) are given by

M2R = iεµνρσq1µq2νε
∗
1ρε
∗
2σ

2
√

2e2

F
(3.5)

×
∑

i,j=ρ0,ω,φ

CV iCV j
8d2(Cm2R)ij + (Cd2R)ij

[
2(d1 − d3)q1 · q2 + d1(q2

1 + q2
2)
]

(M2
i − q2

1)(M2
j − q2

2)
,

where the values for the constants Cd2R and Cm2R can be read from table 6.

Adding up the various π0 → γ?γ? contributions we obtain the π0-TFF,

Fπ0γ?γ?(q
2
1, q

2
2) =

2

3Fπ

{
−NC

8π2
+ 32m2

πC
W
7 +

[
−8q2

1C
W
22

+
2(FV + 8m2

πλV )2
(
d3(q2

1 + q2
2) + d123m

2
π

)
Dρ(q2

1)Dω(q2
2)

−
√

2(FV + 8m2
πλV )

MV

(
m2
πc1235 − q2

1c1256 + q2
2c125

)
×
(

1

Dρ(q2
1)

+
1

Dω(q2
1)

)
+ (q1 ↔ q2)

]}
, (3.6)
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where DR(s) = M2
R − s. Note that the pion wave-function renormalization changes the

global F−1 factor to F−1
π in the large-NC limit [86–88].

For simplicity, in addition to the couplings c3 and d2, we will use the following combi-

nations of constants:

c1235 = c1 + c2 + 8c3 − c5, (3.7a)

c1256 = c1 − c2 − c5 + 2c6, (3.7b)

c125 = c1 − c2 + c5, (3.7c)

d123 = d1 + 8d2 − d3. (3.7d)

For the η meson we find the TFF,

Fηγ?γ?(q2
1, q

2
2) =

2

3F

{
−
(
5Cq −

√
2Cs

)
3

[
8(q2

1 + q2
2)CW22 +

NC

8π2

]
+32CW7

5Cqm
2
π −
√

2Cs∆
2
2Kπ

3
+ 64CW8

(
2Cqm

2
π −
√

2Cs∆
2
2Kπ

)
+

[
−
√

2Cq
3MV

(FV + 8m2
πλV )

(
−8c3∆2

ηπ + c1235m
2
η − c1256q

2
1 + c125q

2
2

)
Dρ(q2

1)

−3
√

2Cq
MV

(FV + 8m2
πλV )

(
−8c3∆2

ηπ + c1235m
2
η − c1256q

2
1 + c125q

2
2

)
Dω(q2

1)

+
4Cs
3MV

(FV + 8∆2
2KπλV )

(
c1235m

2
η − c1256q

2
1 + c125q

2
2 + 8c3∆2

2Kπη

)
Dφ(q2

1)

+
3Cq(FV + 8m2

πλV )2
(
−8d2∆2

ηπ + d123m
2
η + d3(q2

1 + q2
2)
)

Dρ

(
q2

1

)
Dρ

(
q2

2

)
+
Cq(FV + 8m2

πλV )2
(
−8d2∆2

ηπ + d123m
2
η + d3(q2

1 + q2
2)
)

3Dω

(
q2

1

)
Dω

(
q2

2

)
−

2
√

2Cs(FV + 8∆2
2KπλV )2

(
d123m

2
η + d3(q2

1 + q2
2) + 8d2∆2

2Kπη

)
3Dφ

(
q2

1

)
Dφ

(
q2

2

)
+(q1 ↔ q2)

] }
, (3.8)

where ∆2
ηπ = m2

η−m2
π and ∆2

2Kπη = 2m2
K−m2

π−m2
η. The result for the η′ can be obtained

from the previous one by substituting Cq → C ′q, Cs → −C ′s and mη → mη′ . Notice that

by taking the chiral limit one recovers the expressions given previously in refs. [67, 68].

We would like to remark that the value of pseudoscalar decay constant in the chiral

limit, F , is not required in our RχT description. In the π0-TFF it combines into the global

F−1
π factor in eq. (3.6), with Fπ = 92.2 MeV [1]. In the same way, the η and η′ form-

factors only depend on the combinations Cq/F , Cs/F , C ′q/F and C ′s/F which, in turn,

only depend on the mixing angles θ8, θ0 and the value of f8 and f0 (not on their ratios

f8/F and f0/F ).

Since we want to make use of the V V P Green’s function short-distance constraints [67],

the analysis is incomplete if the pseudoscalar resonance multiplet, P ′, –included in ref. [67]–
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is not considered. The dm operator introduces a mixing between P ′ and the pseudo-

Goldstone states P proportional to the quark masses. Thus, the contributions from the

heavy pseudoscalar nonet to the P -TFFs begin at O(m2
P ) and, at that order, take the form

FP→P ′?→γ?γ? = CP7 ×
2
√

2dm

FM2
P ′
F
P
′?
I=1(p)→γ?γ?

∣∣∣∣
p2→0

, (3.9)

in terms of the P ′?(p) → γ?(q1)γ?(q2) transition amplitude in the chiral and large-NC

limits, provided here for the isospin I = 1 resonance by

F
P
′?
I=1(p)→γ?γ? =

8
√

2

3

[
4κP5 −

√
2κPV3 FV

(
1

M2
V − q2

1

+
1

M2
V − q2

2

)
+

κPV V F 2
V

(M2
V − q2

1)(M2
V − q2

2)

]
, (3.10)

where CP7 = O(m2
P ) and MP ′ is the P ′ mass in the chiral and large-NC limits. U(3)

breaking effects in the P ′ multiplet would contribute to our P -TFFs at higher orders in m2
P .

This result for the off-shell P
′?γ?γ? transition is in agreement with ref. [67] and the U(3)

limit of eq. (3.9) (given by mπ = mK in CP7) coincides with U(3) symmetric contribution

to the P -TFFs in ref. [68]. Comparing these expressions for the P ′ contributions with those

in eqs. (3.6) and (3.8), it becomes evident that these contributions can be included merely

by a redefinition of three parameters, namely, CW7 , c3, d2:5

CW7 −→ CW7
?

= CW7 +
2dmκ

P
5

M2
P ′

, (3.11a)

c3 −→ c?3 = c3 +
dmMV κ

PV
3

M2
P ′

, (3.11b)

d2 −→ d?2 = d2 +
dmκ

PV V

2M2
P ′

. (3.11c)

Note that the RχT couplings c1,2,5,6 and d1,3 do not need to be corrected. However, in

order to take the P ′ contributions into account, we will also need to shift our auxiliary

combinations

c1235 −→ c?1235 = c1 + c2 + 8c?3 − c5 , (3.12a)

d123 −→ d?123 = d1 + 8d?2 − d3 . (3.12b)

4 Short distance constraints

We will constrain the RχT parameters by imposing on the FPγ?γ? TFFs (P = π0, η, η′)

the high energy behaviour prescribed by QCD [71, 72, 95, 96]:

FPγ?γ?(q2, q2)
Q2→∞−→ 0 , FPγ?γ?(q2, 0)

Q2→∞−→ 0 , (4.1)

5One does not need to take into account the corrections from λV and eVm in eq. (3.10) for these redefi-

nitions, as we are only interested in the P ′ contributions to the P -TFFs at O(m2
P ).
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with Q2 = −q2. These conditions are applied order by order in the m2
P expansion, sep-

arately: first in the massless limit, at O(m0
P ), and then at O(m2

P ). We emphasize that

in this work we are not matching the precise QCD predictions for the coefficients of the

1/Q2 expansion [71, 72, 95, 96], just requiring the vanishing of the TFF at high momen-

tum transfer. We will see that these results are found to be compatible with previous

results [67, 78] from the analysis of the VVP Green’s function and other observables. The

constraints from O(m4
P ) or higher are not taken into account, as we did not considered

RχT operators contributing at that order.

The high-energy analysis of the TFF leads to the relations:

• π0-TFF, O(m0
P ):

CW22 = 0, (4.2a)

c125 = 0, (4.2b)

c1256 =− NCMV

32
√

2π2FV
, (4.2c)

d3 =−
NCM

2
V

64π2F 2
V

. (4.2d)

• π0-TFF, O(m2
P ):

λV =− 32π2FV
NC

CW?
7 , (4.3a)

c?1235 =
NCMV e

V
m

8
√

2π2FV
+
NCM

3
V λV

4
√

2π2F 2
V

. (4.3b)

• Additional η-TFF constraints, O(m2
P ):

CW8 = 0, (4.4a)

c?3 =
c?1235

8
=

NCMV e
V
m

64
√

2π2FV
+
NCM

3
V λV

32
√

2π2F 2
V

. (4.4b)

Notice that the implicit κPV3 cancels out in the last equation so it should be actually

read as c3 = c1235/8. This, in combination with the constraint (4.2b), yields c1 =

c2 − c5 = 0.

• No additional η′-TFF constraints: up to O(m2
P ), the analysis of the η′-TFF casts the

same relations provided by the π0 and η form-factors.

We note that we did not need to perform the m2
P expansion of the mixing coefficients

C
(′)
q/s. One obtains the previous set of consistent relations for any value of C

(′)
q/s: our

conditions are actually requiring a good high-energy behaviour to the bare φa → γ?γ?

TFFs, which is inherited by the physical π0, η and η′ TFFs after taking into account the

field renormalizations and mixings provided by Cπ and C
(′)
q/s.
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This allows us to by-pass the cumbersome problem of the large-NC limit in the η − η′

mixing [80], where 1/NC and quark mass corrections are found to be of a similar numerical

order [80–82, 93].

We will supplement these TFF constraints with the additional conditions derived from

the short-distance analysis of the VVP Green’s function Π(p2, q2, r2) [67]. By matching the

leading terms of the QCD OPE at p2, q2, r2 → ∞ within the chiral and large-NC limits,

ref. [67] obtains,6

• V V P Green’s function, O(m0
P ):

c125 = c1235 = 0 , c1256 = − NCMV

32
√

2π2FV
,

d3 = − NCM
2
V

64π2F 2
V

+
F 2

8F 2
V

+
4
√

2dmκ
PV
3

FV
, d123 =

F 2

8F 2
V

, κP5 = 0 ,

CW7 =CW8 = CW22 = 0 . (4.5)

In the last line, we added the VVP constraints for the RχT couplings CWj in Lnon−R. It

is remarkable that these relations are compatible with our TFF relations above, being the

relations for c125, c1256, CW8 and CW22 identical. Combining these VVP constraints [67]

with the previous ones from the high-energy TFF analysis up to O(m2
P ), we conclude

the constraints

c1 = c2 − c5 = c3 = c125 = c1235 = 0 ,

c?1235 = 8c?3 =
8dmκ

PV
3 MV

M2
P ′

=
NCe

V
mMV

8
√

2π2FV
,

d?123 =
F 2

8F 2
V

+
4dmκ

PV V

M2
P ′

, d123 =
F 2

8F 2
V

,

d3 = −
NCM

2
V

64π2F 2
V

, c1256 = − NCMV

32
√

2π2FV
,

CW7
?

=λV = 0 , κP5 = 0 , CW7 = CW8 = CW22 = 0. (4.6)

The relations obtained in this way fix all the parameters in the form-factors except for

d?123, d?2, MV , eVm and the four η−η′ mixing parameters. Particularly, among the operators

violating U(3) explicitly, those with coefficients c3, CW7
?
, CW8 and λV vanish, according to

eq. (4.6). Although there is a relation for d123 from the OPE study of the VVP Green’s

function, d?123 is not well known since the κPV V coupling remains unconstrained [67]. The

unrestricted parameters are fitted in this work using FPγ?γ?(q2, 0) experimental data for

π0, η and η′. The results are given in the next section. There is one more constraint for

κPV3 from the combination of the TFF and VVP relations for d3 in the chiral and large-NC

6In this article we use the notation from ref. [66]. It relates to the Lagrangian [67] through c1235 =

MV (2κV12 + 8κV14 + κV16), c1256 = MV (2κV12 + κV16), c125 = MV (2κV12 + κV16 − 2κV17), c3 = MV (κV13 + κV14),

d123 = 8κV V2 − κV V3 and d3 = κV V3 [78].
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limits [67], which, however will not be considered in detail in this work:

8dmκ
PV
3 = − F 2

4
√

2FV
< 0 . (4.7)

In principle, this, together with the previous constraints, leads to a negative vector mass

splitting parameter eVm, in agreement with previous phenomenology [64, 65] and our later

fits. This prediction eVm = −2π2F 2/(NCM
2
P ′) is, however, one order of magnitude smaller

for F ∼ Fπ and MP ′ ∼ 1.3 GeV than the values required by the phenomenology. Nonethe-

less, one should be very cautious with the theoretical determinations of the P ′ couplings:

under the lightest P ′ and V resonance multiplet approximation it is possible to obtain a

good high-energy behaviour for the π0-TFF and VVP Green’s function in the chiral limit

but at the price of a P ′ → γ?γ TFF (3.10) which does not vanish at large momentum

transfer. For this reason we have decided to leave κPV3 –or equivalently eVm– as a phe-

nomenological parameter in our later fits, postponing further studies on the structure of

the P ′ Lagrangian for a future work.

After using the SD constraints, the π0-TFF results simplified into the form

Fπγ?γ?(q2
1, q

2
2) =

32π2m2
πF

2
V d

?
123 −NCM

2
VM

2
ρ

12π2FπDρ(q2
1)Dρ(q2

2)
, (4.8)

Also the η-TFF is simplified to

Fηγ?γ?(q2
1, q

2
2) =

1

12π2FDρ(q2
1)Dρ(q2

2)Dφ(q2
1)Dφ(q2

2)
(4.9)

×
{
−
NCM

2
V

3

[
5CqM

2
ρDφ(q2

1)Dφ(q2
2)−

√
2CsM

2
φDρ(q

2
1)Dρ(q

2
2)
]

+
32π2F 2

V d
?
123m

2
η

3

[
(5CqDφ(q2

1)Dφ(q2
2)−

√
2CsDρ(q

2
1)Dρ(q

2
2)
]

−
256π2F 2

V d
?
2

3

[
(5Cq∆

2
ηπDφ(q2

1)Dφ(q2
2) +

√
2Cs∆

2
2KπηDρ(q

2
1)Dρ(q

2
2)
]}

.

The constrained η′-TFF is given by this expression with the same replacements indicated

after eq. (3.8): Cq → C ′q, Cs → −C ′s and mη → mη′ .

In the chiral and large-NC limits one has mP → 0 and we recover the previous result

from ref. [69]:

Fπ0γ?γ?(q
2
1, q

2
2) = − NCM

4
V

12π2F (M2
V − q2

1)(M2
V − q2

2)
, (4.10)

and Fηγ?γ?(q2
1, q

2
2) = Fπ0γ?γ?(q

2
1, q

2
2) × (5Cq −

√
2Cs)/3. The result for the η′ TFF is

analogous with Cq → Cq′ and Cs → −Cs′ [68].7 We find again at O(m2
P ) the issue pointed

7The values of C
(′)
q/s will depend on whether we take first the chiral or the large-NC limit, i.e, on the

hierarchy of the associated scales. Nonetheless, in the U(3) symmetric limit mq, N
−1
C → 0 (also for the

aHLbLµ integration kernels), the sum of the η and η′ contributions to the anomalous magnetic moment is

proportional [(5Cq−
√

2Cs)/3]2+[(5C′q+
√

2C′s)/3]2 = F 2[f−2
8 +8f−2

0 +4
√

2f−1
8 f−1

0 sin (θ8 − θ0)]/[3 cos(θ8−
θ0)] = 3, regardless of the order in which the limits are taken.
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out in previous studies of the TFF with only one vector multiplet at O(m0
P ) [69]: it is not

possible to match the 1/q2 coefficient prescribed by QCD at deep virtual momentum Q2 →
∞ at the same time for both kinematical configurations FPγ?γ?(q2, 0) ≈ 2F/q2 [71, 72]

and FPγ?γ?(q2, q2) ≈ 2F/(3q2) [95, 96]. We will see that, even though the first limit is not

imposed, our TFFs fitted to data approximately recover the asymptotic behaviour 2F/q2.

On the other hand, for the doubly off-shell TFFs we always find FPγ?γ?(q2, q2)
Q2→∞

=

O(1/q4). This deficiency of our description might lead to a slight underestimation of our

result for aP,HLbLµ that will be later discussed.

We would like to remark that the Pγ?γ? and V V P short-distance relations provided

here are fully compatible with the constraints from τ → P−γντ [97] and τ → (PV )−ντ [98].

The high-energy conditions from τ → (KKπ)−ντ [99] and τ → ηπ−π0ντ [100] are also

compatible with the relations in the present article provided FV =
√

3F [78]. Nevertheless,

the outcomes in this article will not rely on this last relation, even though it will be useful

for comparison.

5 Form factor experimental data analysis

5.1 Fit to experimental TFF

After demanding the high-energy TFF and V V P conditions, these form-factors depend only

on the vector mass parameters MV and eVm, the combinations F 2
V d

?
123 and, in the η and η′

cases, F 2
V d

?
2 and the coefficients C

(′)
q/s/F (which only depend on the mixing parameters θ8,

θ0, f8 and f0).8 All fitted parameters (but MV ) break explicitly the U(3) flavor symmetry.

We will determine these 8 parameters by means of a fit to the available space-like

experimental data. Notice, however, that our fit will be completely insensitive to FV , since

it only appears in the form-factors multiplying d?2 and d?123. Therefore, for convenience and

to ease the comparison we will show the results for the combinations

d̄2 ≡
F 2
V d

?
2

3F 2
π

, d̄123 ≡
F 2
V d

?
123

3F 2
π

, (5.1)

with Fπ = 92.2 MeV [1].

Since we are mainly focused on the application of the transition Form Factor in the

pseudoscalar exchange contribution to the aHLbLµ , we will only perform fits to data with

negative squared photon momenta, q2 ≤ 0. There are two reasons for this, the first one

is that being a NLO effect in the 1/NC expansion, the width of the resonances is needed

to obtain a finite result in the q2 > 0 region of momenta, and to be consistent, we would

need to consider also all NLO terms in the 1/NC expansion; the other one is that the

observables in the time-like region may get large contributions from disregarded photon

radiative corrections [74].

The Γ(P → γγ) decay widths give relevant information of the form-factor at very

low energies and help reduce the error in the η − η′ mixing parameters. The values for

8Instead of F 2
V d

?
123 and F 2

V d
?
2 we could have chosen κPV V and d2 for our set of independent fit parameters,

related through eqs. (3.11c) and (4.6). However, we have preferred to use the former ones for sake of clarity.
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the Γ(P → γγ) decays are taken from the Particle Data Group (PDG) [1]. The relation

between the form-factor and the on-shell photons decay width is given by

|FPγ?γ?(0, 0)|2 =
64π

(4πα)2

Γ(P → γγ)

m3
P

. (5.2)

We use CLEO [101], CELLO [102], LEP [103], BaBar [70, 104] and Belle [105] data

of the form-factors along with the decay width to real photons. Since the PDG takes into

account LEP data at q2 = 0 for the η′ → γγ transition, we have removed this bin to avoid

double counting. We fit our form-factors for π0, η and η′ to all these data, simultaneously.

In order to stabilize the fit, we have added a contribution to the χ2 given by the values

of the parameters θ8/0 and f8/0 from previous determinations [80–82, 82, 89–92], namely

θ8 = (−21.2± 1.6)◦, (5.3a)

θ0 = (−9.2± 1.7)◦, (5.3b)

f8 = (1.26± 0.04)Fπ = (116.2± 3.7) MeV, (5.3c)

f0 = (1.17± 0.03)Fπ = (107.9± 2.8) MeV. (5.3d)

This gives a very small contribution ∆χ2 ≈ 1.5. These inputs could be understood as a

prior distribution for the mixing parameters given by [80–82, 82, 89–92]. If one, however,

takes the numbers given in ref. [93],9 f0 and θ0 coincide with the results of our best fit

in table 7, but we get θ8 = (−23.8 ± 0.9)◦ and f8 = (151 ± 9) MeV, which is no longer

compatible with the results from table 7. Also, since eVm and MV are correlated to the

mixing parameters, these values change to MV = (777±10) MeV and eVm = (−51±17)·10−2.

This input rises the χ2 by ∼ 12. Despite the different values of these parameters, we get

a value for aP,HLbLµ still compatible with the result from our best fit (see section 7). If

one uses F instead of Fπ in eqs. (5.3c) and (5.3d), the values for the parameters are

completely compatible with those from our best fit. With this input we also get a result

compatible with our best fit aP,HLbLµ (see sections 6 and 7). If, furthermore, we remove the

stabilizing conditions, eqs. (5.3a)–(5.3d), we end up with values for the mixing parameters

that are incompatible with previous determinations [80–82, 82, 89–93]: θ8 = (−27 ± 4)◦,

θ0 = (−5 ± 8)◦, f8 = (220 ± 40) MeV and f0 = (110 ± 30) MeV (though this leads to

aP,HLbLµ = (8.81 ± 0.16) · 10−10, compatible with our best fit in sections 6 and 7). The

reason for this is that, as can be seen in table 8 (and tables 14 and 15), there is a large

correlation between P1 and θ8 and between P2 and θ0 and f0 (in addition to the strong

correlations between the four mixing parameters).10 Therefore, the fit to the TFF data

alone is not really sensitive to the four mixing parameters but to combinations of them

and P1,2. The stabilizing conditions in eq. (5.3) lessen the effect of such high correlations

avoiding, thus, a non-physical region for the mixing parameters.

9U(3) large-NC χPT, NNLO Fit-B to lattice data [93]: θ8 = (−27.9±1.0±1.4)◦, θ0 = (−6.8±0.9±3.7)◦,

f8 = (126.5± 1.2± 11.8) MeV and f0 = (109.1± 1.3± 5.9) MeV.
10This correlations are even stronger if the contribution from eq. (5.3) is removed from the fit (excluding

BaBar π0-TFF data): θ8, θ0 and f0 are highly correlated with P2 (with correlations 0.882, -0.887 and

-0.914, respectively); f8 also shows strong correlations with P1 (0.469), MV (-0.474) and eVm (-0.440).
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(Best Fit)

‘fit 1’ ‘fit 2’ ‘fit 3’

With π0-BaBar Without π0-BaBar Fixing MV and eVm

P1 −0.2± 1.0 0.0± 1.0 0.0± 1.0

P2 0.5± 1.0 0.0± 0.5 0.0± 1.0

d̄2 (−2.9± 1.7) · 10−2 (−2.7± 1.7) · 10−2 (−3± 2) · 10−2

d̄123 (−2.5± 1.5) · 10−1 (−2.3± 1.5) · 10−1 (−3± 2) · 10−1

MV (799± 5) MeV (791± 6) MeV 764.3 MeV †

eVm −0.35± 0.10 −0.36± 0.10 −0.228 †

θ8 (−19.5± 0.9)◦ (−19.5± 0.9)◦ (−21.7± 0.9)◦

θ0 (−9.5± 1.6)◦ (−9.5± 1.6)◦ (−10.4± 1.6)◦

f8 (118± 4) MeV (118± 3) MeV (118± 3) MeV

f0 (108± 3) MeV (107.5± 1.0) MeV (107± 3) MeV

χ2/dof 150./101 69./84 101./86

Table 7. Values for the fitted parameters with (first column) and without (second column) BaBar

data on the π0 form-factor. We fit the parameters MV , eVm and the mixing couplings together

with P1 and P2, not d̄2 and d̄123; these are reconstructed from the fitted values for P1 and P2 and

eqs. (5.4a) and (5.4b) and shown here for illustration. The third column shows the parameters

fitted excluding BaBar π0 data and fixing MV and eVm (marked with †) according to refs. [64, 65].

The last row collects the χ2 per degree of freedom (dof).

P1 P2 MV eVm θ8 θ0 f8 f0

P1 1 0.085 0.511 0.638 0.495 0.017 −0.107 −0.025

P2 0.085 1 0.434 0.439 −0.157 −0.616 −0.058 0.434

MV 0.511 0.434 1 0.444 0.321 −0.054 −0.129 0.351

eVm 0.638 0.439 0.444 1 −0.081 0.059 −0.179 0.319

θ8 0.495 −0.157 0.321 −0.081 1 −0.046 −0.486 −0.184

θ0 0.017 −0.616 −0.054 0.059 −0.046 1 −0.020 −0.424

f8 −0.107 −0.058 −0.129 −0.179 −0.486 −0.020 1 −0.156

f0 −0.025 0.434 0.351 0.319 −0.184 −0.424 −0.156 1

Table 8. Correlation matrix for our best fit (excluding BaBar π0-TFF data).

We now focus on the fit to TFF data and eqs. (5.3a)–(5.3d). A preliminary fit with

f8/0, θ8/0, MV , eVm and d̄2 and d̄123 shows a correlation between the latter two close to one.

Hence, instead of considering d̄2 and d̄123, we will fit the parameters P1 and P2 provided

by the linear combinations

d̄2 = α2 +
σd2√

2

(√
1 + r P1 −

√
1− r P2

)
, (5.4a)

d̄123 = α123 +
σd123√

2

(√
1 + r P1 +

√
1− r P2

)
, (5.4b)

with α2 = −0.0272, α123 = −0.233, σd2 = 10.49 · 10−3, σd123 = 81.28 · 10−3 and r =
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0.995. A fair estimate of the constants σd2 , σd123 and r that minimize these fit correlations

can be extracted from the errors and correlation between d̄2 and d̄123, respectively, in

the preliminary fit. This transformation greatly reduces the correlation between both fit

parameters, improving the efficiency and reliability of the numerical fit. We note that

these constants σd2 , σd123 and r will change if one considers a different data set or fixes

some parameters, e.g., MV and eVm. In this case, the fit to all the available space-like

TFF data casts the mean values and errors given in table 7 (first column of results; d̄2,123

were reconstructed from P1,2 by means of eqs. (5.4a) and (5.4b)). Further details on the

correlations for this ‘fit 1’ have been relegated to table 14 in appendix C.

However, this first fit points out that the π0 BaBar data [70] is in conflict with η and η′-

TFF data, related through chiral symmetry, and with Belle data (see e.g. refs. [106–114]).

Likewise, it is at odds with the asymptotic π0 form-factor behaviour Fπ0γ?γ? ∼ O(Q−2)

expected in high-energy QCD [71, 72]. Indeed, this set of π0 data is exclusively responsible

for the important deviation in χ2 (150.) from the number of degrees of freedom of this

‘fit 1’ (101). Once the BaBar π0 data set is removed from the analysis, the ratio χ2/dof

drops and our theoretical expressions provide a good description for all the π0, η and η′

experimental data. Thus, we will take this ‘fit 2’ as our best fit. The corresponding mean

values and marginal standard deviations are given in table 7 (second column of results)

and their correlations can be found in table 8. In order to reduce the correlations in ‘fit 2’

(π0 BaBar data excluded), we have used transformations (5.4a) and (5.4b) with the same

values for σd2 , σd123 and r as ‘fit 1’ (π0 BaBar data included).

The values of MV obtained from these fits seem rather at odds with what one expects

from the measured mass of the lowest-lying resonances: Mρ = Mω ≈ 807 MeV and Mφ ≈
1126 MeV. In principle, this is not a problem for our analysis, as we are considering a purely

space-like analysis within the lightest resonance multiplet and large-NC approximation.

Thus, the parameters employed here are not truly those of the full theory with the large-

NC infinite tower of resonances. Thus, the lightest vector couplings become slightly shifted

to compensate for the heavier resonances missing in our RχT description. This could

mean that resonances from heavier multiplets (e.g., ρ′) might be giving a contribution to

the experimental data of the form-factor which is not fully negligible in our approach.

Therefore, we decided to make yet another fit fixing the mass and the U(3) splitting

parameter, excluding the π0 data from BaBar, in order to study how this affects our results.

This ‘fit 3’ gives the values shown in the third column of table 7, and the correlation

among parameters in table 15 in appendix C. As done in the previous fits, the d̄2 and

d̄123 parameters were transformed in the same way, however, for this fit the values of the

decorrelating transformation constants read α2 = −2.95 · 10−2, α123 = −0.254, σd2 =

6.88 · 10−3, σd123 = 5.04 · 10−2 and r = 0.992. The comparison of the second and third

columns of results in table 7 shows only small changes in the fitted parameters and the

fit quality, which supports the values obtained for MV and eVm in the first two fits of

table 7. Based on this discussion, we consider the second column of results in table 7 as

our reference fit.

In figure 4, we show the comparison between our best fit (excluding the BaBar π0

TFF) and the fit to all the data (Q2 = −q2). The π0-TFF from the fit to all data is
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Figure 4. Comparison between the π0 (top), η (middle) and η′ (bottom) TFFs from the fit to

all data (darker red band with dashed borders) and the fit after removing BaBar π0 data (clearer

green band with dotted borders). See the text for details.
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Figure 5. Comparison between the π0 (top), η (middle) and η′ (bottom) TFFs from the fit with

MV and eVm fixed (darker red band with dashed borders) and with these parameters included in

the fit (clearer green band with dotted borders). BaBar π0 data is not fitted in both cases. The

remaining notation is the same as in figure 4.
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represented by the darker red band with dashed borders and the fit after removing BaBar

π0 data is given by the clearer green band with dotted borders. These bands provide the

TFF 1σ uncertainty stemming from the corresponding fit, taking into account correlations.

These results are shown together with the experimental data from BaBar [70, 104] (full

diamonds), Belle [105] (squares), CLEO [101] (empty diamonds) and CELLO [102] (trian-

gles). The outcomes from both fits are very similar for the π0 TFF and essentially identical

for the η and η′ form-factors. We have also plotted the QCD asymptotic 1/q2 coefficient

limQ2→∞ q
2FPγ?γ?(q2, 0) in figure 4 (horizontal line), estimated by 2F ×CP0 with the cen-

tral values from our best fit and F ≈ Fπ for illustration [71, 72].11 Since the experimental

TFFs (barring BaBar π0 data) are compatible with this asymptotic behaviour, our the-

oretical form-factors also approximately agree with it, even though the matching of the

asymptotic 1/q2 coefficient from QCD was not among our high-energy constraints.

The comparison of our best fit with that disregarding the π0 data from BaBar but

fixing MV and eVm is given in figure 5. The TFF from the fit with MV and eVm fixed is

given by the darker red band with dashed borders. It is compared to our best fit, where

MV and eVm are fitted together with the other six parameters, provided by the clearer green

band with dotted borders. The remaining notation is the same as in the previous plots in

figure 4. The results for the η and η′ TFFs happen to be compatible –though less precise

for our best fit–. On the other hand, there is some small discrepancy in the π0-TFF: the

1σ bands do not overlap and the asymptotic value for the π0 form-factor is slightly smaller

in the case with fixed MV and eVm, yielding a poorer χ2/dof. Notice that the worsening of

the fixed-(MV , e
V
m) fit is due to the π0-TFF.

The departure of all three values for d̄123 in table 7 from the prediction d123 = 1/24 ≈
4 · 10−2 [78] shows the impact of pseudoscalar resonances in this particular coupling. Our

fitted values of d̄2 exhibit a similar deviation with respect to those obtained in ref. [117],

where d2 ∈ [4, 7] · 10−2 (see also ref. [118]), pointing again to the relevance of pseudoscalar

resonance contributions to V V P vertices.

We also evaluated the mixing parameters C
(′)
q and C

(′)
s according to our best fit (BaBar

π0 data excluded). Since our fit determines f8 and f0 rather than their respective ra-

tios f8/F and f0/F with the chiral limit decay constant F , we define the quantities

C
(′)
q/s ≡ C

(′)
q/s × (Fπ/F ). These quantities only depend now on the angles θ8/0 and the

ratios f8/0/Fπ and can be easily translated into the actual mixing coefficients C
(′)
q/s once

the value of the ratio Fπ/F is provided. They are given in table 9, where the mean values,

the marginal standard deviations and the correlation matrix are quoted. The errors have

been propagated from the fit parameters taking into account correlations by means of a

MonteCarlo.

5.2 Comparison with other recent TFF determinations

Our description of the Transition Form Factor provides fairly simple expressions that can be

implemented in the computation of Pγγ observables, despite the lack of NLO contributions

11A detailed analysis of the singlet contribution [115] tends to reduce (increase) slightly the value for the

asymptotic 1/q2 coefficient in the η (η′) TFFs (see also the discussion in ref. [116]), in closer agreement

with the trend shown by data.
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Cq Cs C
′
q C

′
s Mean value ±1σ Czyż et al. [73]

Cq 1 0.404 0.334 −0.469 0.69± 0.03 0.61± 0.05

Cs 0.404 1 0.127 0.008 0.47± 0.03 0.14± 0.06

C
′
q 0.334 0.127 1 −0.820 0.60± 0.03 0.56± 0.06

C
′
s −0.469 0.00754 −0.820 1 0.58± 0.02 0.74± 0.08

Table 9. Correlation matrix for the η− η′ mixing parameters, mean values and marginal standard

deviations according to our best fit analysis. These results are compared to the corresponding

values from ref. [73].

Czyż et al. [73] This work

fV1
1
Mρ

(FV + 8m2
πλV )

Fω1 1

Fφ1
Mρ

Mφ

(FV +8∆2
2KπλV )

(FV +8m2
πλV )

hπ0V1
1

MVMρ
(−c1256M

2
ρ + c?1235m

2
π)

hηV1
1

MVMρ
(−c1256M

2
ρ + c?1235m

2
η − 8c?3∆2

ηπ)

Hω1 1

Aπ01 0

hηV1

[
2Cs −

(
5√
2
Cq − Cs

)
Aη1

]
Cs

MVMφ
(−c1256M

2
φ + c?1235m

2
η − 8c?3∆2

2Kπη)

σπ0V1 − 1
MρMω

[
d?123m

2
π + d?3(M2

ρ +M2
ω)
]

σηV1 − 1
M2
ρ

[
d?123m

2
η − d?2∆2

ηπ + 2d?3M
2
ρ

]
Aπ

0

φω,1 0

Aηφω,1 0
σηV1
Fφ1

[
5CqA

η
1 −
√

2Cs(A
η
1 + 2)

]
2Cs
M2
φ

[
d?123m

2
η − d?2∆2

2Kπη + 2d?3M
2
φ

]
Table 10. Relations between the parameters in the model of ref. [73] and this work. The expressions

have been derived comparing various on-shell vertices, as explained in the text. The relations for

η′ are again obtained from the η ones as explained after eq. (3.8).

in the 1/NC expansion (barring those in the η − η′ mixing). This derives from the also

simple short distance constraints (4.6), contrary to those in ref. [73], where much more

involved ultraviolet restrictions are reported. These are the result of a more general U(3)

breaking pattern, not introduced in the chirally covariant form proposed in this article,

and the inclusion of several vector multiplets. Their fits are done to observables in both

q2 regimes, time-like and space-like, without considering photon radiative corrections [74]

which may become important for some observables.

This model is analogous to ours in the sense that all the parameters in our model can be

expressed in terms of those in ref. [73], when restricted to the first multiplet given by i = 1.12

12In this regard, it is interesting to note that the earlier analysis by Czyz et al. [119] did not need to

include these higher radial excitations when fitting only space-like data.
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In our approach the Lagrangian couplings are quark mass independent and the structure

of mq/s corrections is dictated by the operators and the kinematics ((q1 +q2)2 = p2 = m2
P ).

On the other hand, the effective parameters in [73] encoded an important part of the

quark mass corrections. Note, however, that the U(3) splitting in ref. [73] is not fully

general and assumes some restrictions: their vector-photon-pseudoscalar (hVi) and vector-

vector-pseudoscalar (σVi) couplings are the same for the three pseudo-Goldstones. The

equivalences are given in table 10. In order to do the comparison, we have translated our

resonance Lagrangian in the antisymmetric tensor Vαβ formalism into the Proca four-vector

V̂ρ realization considered in [73] through the transformation V µν
i → −(∂µV̂ ν

i − ∂ν V̂
µ
i )/MVi

for each vector Vi = ρ, ω, φ, ρ′ . . . [120, 121]. Once our LRχT is expressed in terms of

Proca fields, the operators are set with their particles on-shell and identified with the

corresponding notation in [73].

In table 11 we give the numerical values of the parameters in table 10 for both de-

scriptions (‘fit 2’ results are used in the comparison). It can be seen that, in spite of

the differences in both descriptions, a very good agreement is found among the numerical

values for table 11. It is worth mentioning that, despite the very different results for θ8,

θ0, f8 and f0, the mixing parameters C
(′)
q are in good agreement but Cs and C ′s show

some discrepancy (more significant for the latter), as it can be seen in table 9. However,

if the relations of eqs. (5.3) are not imposed in our fits, the values obtained for the mixing

parameters in this way get closer to those in ref. [73].

On the other hand, descriptions of the TFF such as those in ref. [94] by means of Padé

approximants provide a neat and simple approach, which can also incorporate asymptotic

QCD information [71, 72, 95, 96]. However, the lack of a Lagrangian in such method makes

it complicated to combine information from the π0 and η(′) TFFs. As a result, one needs

to perform a separate Padé analysis for each quantity, needing a set of similar statistical

quality data to describe a closely related process with a comparable accuracy.

5.3 B(P → γ(?)γ(?)) predictions vs. data

As a quality check of the fitted parameters and the RχT description, we give our esti-

mates for different branching ratios related to P → γ(?)γ(?) processes, uncertainties are

naively obtained by independently varying the RχT parameters within their 1σ ranges

without considering correlations among them.13 These are provided by our best fit in

the table 12 (all parameters are floated and BaBar π0 data is excluded). The width of

the resonances is needed to obtain finite results. A momentum dependent width is em-

ployed for the ρ meson, following ref. [122]; for the ω and φ, we use the total widths

from PDG [1] neglecting any off-shellness dependence, as they are rather narrow. This is

accomplished by changing the denominator of the corresponding resonance propagator to

DR(s) = (Mphys
R )2−s−iMRΓR(s), with the physical masses Mphys

R taken from the PDG [1].

Except for the resonances masses in the propagators DR(s), all parameters correspond to

those from our best fit. For the computation of our predicted branching ratios we have

13We will study these and other related processes in a forthcoming paper [123], where uncertainties and

their correlations will be discussed in detail.
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Czyż et al. [73] This work

fV1 0.2020± 0.0008 0.198± 0.003

Fω1 0.88± 0.01 1

Fφ1 0.783± 0.005 0.72± 0.04

hV1 0.0377± 0.0008 0.0326± 0.0005

Hω1 1.02± 0.03 1

Aπ01 −0.083± 0.002 0

hηV1

[
2Cs −

(
5√
2
Cq − Cs

)
Aη1

]
0.39± 0.09 0.36± 0.07

σπV1 0.264± 0.007 0.240± 0.008

σηV1 0.264± 0.007 0.2± 0.3

ση
′

V1
0.264± 0.007 0.3± 0.8

−hη
′

V1

[
2C ′s +

(
5√
2
C ′q + C ′s

)
Aη
′

1

]
−0.37± 0.11 −0.45± 0.07

Aπ
0

φω,1 −0.21± 0.04 0

Aηφω,1 −0.027± 0.007 0
σηV1
Fφ1

[
5CqA

η
1 −
√

2Cs(A
η
1 + 2)

]
−0.42± 0.03 −0.27± 0.02

ση
′
V1

Fφ1

[
5C ′qA

η′

1 +
√

2C ′s(A
η′

1 + 2)
]

0.43± 0.16 0.33± 0.05

Table 11. Numerical values for the linear combinations of constants shown in table 10, reported

in ref. [73], compared to the values obtained from our analysis.

divided our RχT results for the partial widths by the experimental total decay width (no

theoretical prediction is considered here for the latter).

The second and third column of table 12 agree at less than two standard deviations

in all cases (theory uncertainties are not discussed in these estimates), which corroborates

our best fit results. We note that no experimental limit is known for the decays in the

last three lines of table 12. We emphasize that our space-like analysis is missing several

features which may be crucial in time-like observables, such as subleading 1/NC effects

as, e.g., resonance widths and the impact of higher resonance multiplets. Thus, the RχT

branching ratios in table 12 should be taken with a grain of salt. Nonetheless, the fair

agreement with data is remarkable, giving support to the hypotheses and approximations

assumed in this work and the final results for the anomalous magnetic moment in the

next section.

6 Pseudo-Goldstone pole contribution to aHLbLµ

6.1 Pole prediction with one vector resonance multiplet

For the evaluation of the pseudoscalar pole contribution to the HLbL, aP,HLbLµ , we used

the expressions for the loop integrals given in ref. [69].14 Dispersion relations [41–49] show

14The specific formulae used can be found in appendix B.
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Process Predicted branching fraction PDG value

π0 → e+e−γ (1.16± 0.06) · 10−2 1.174(35) · 10−2

η → e+e−γ (7.1± 0.8) · 10−3 6.9(4) · 10−3

η → µ+µ−γ (3.4± 0.3) · 10−4 3.1(4) · 10−4

η′ → e+e−γ (5.3± 1.1) · 10−4 4.73(30) · 10−4

η′ → µ+µ−γ (1.3± 0.3) · 10−4 1.09(27) · 10−4

π0 → 2e+2e− (3.24± 0.16) · 10−5 3.34(16) · 10−5

η → 2e+2e− (2.4± 0.3) · 10−5 2.40(22) · 10−5

η → 2µ+2µ− (4.0± 0.4) · 10−9 < 3.6 · 10−4

η → e+e−µ+µ− (2.4± 0.2) · 10−6 < 1.6 · 10−4

η′ → 2e+2e− (2.2± 0.5) · 10−6 No bounds

η′ → 2µ+2µ− (2.2± 0.5) · 10−8 No bounds

η′ → e+e−µ+µ− (1.2± 0.2) · 10−7 No bounds

Table 12. Predicted branching fractions of the fitted parameters excluding BaBar π0 data com-

pared to PDG data. PDG upper bounds are given at the 90 % confidence level.

that the HLbL is determined by the various physical absorptive channels of the V V V V

Green’s function of four electromagnetic currents. The lightest absortive cut is given by

the meson pole topologies γ?γ? → P → γ?γ?. Additional intermediate states (PP cuts,

multiparticle states or with heavy resonances, etc.) will add further corrections to aHLbLµ .

These were effectively included before in the so-called meson-exchange contributions (with

off-shell mesons) [5]. In a dispersive framework, however, the analyticity structure of the

amplitudes is encoded in their poles and cuts alone, in such a way that their residues and

imaginary parts (discontinuities) are uniquely related to on-shell form factors and scattering

amplitudes [41–49].

Notice that the O(m2
π) correction to the form-factor from considering a non-vanishing

pseudo-Goldstone mass given in ref. [68] is automatically included in our analysis. Since

no U(3)-splitting parameter was considered in the analysis of the form-factor in ref. [68],

such correction was underestimated. This contribution accounts for a relative variation of

the form-factor of ∆ ∼ −2.5 · 10−2,15 while in ref. [68] this correction is reported to be

∆ ∼ 5.9 ·10−3. However, as stated there, additional corrections come as further suppressed

powers of m2
P .

The total pseudo-Goldstone pole contribution is estimated by means of a MonteCarlo

run with 5000 events, which randomly generates the eight fit parameters with a normal

distribution according to their mean values, errors and correlations between parameters.

It integrates at the same time all three contributions from π0, η and η′ exchanges, thus

taking into account the correlations between the π0, η and η′ TFF contributions. Our best

15The precise definition of ∆ can be found in ref. [68].

– 27 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
0

fit (‘fit 2’ –excluding BaBar π0 data–) leads to our final result

aP,HLbLµ = (8.47± 0.16) · 10−10 , (6.1)

which perfectly agrees with previous results [38, 39, 67–69, 94, 124–134]16 and with a

reduced uncertainty. In general, all evaluations are in agreement, as can be seen from

table 13. Noticeable exceptions are (we consider the last result from every group as the

reference one) those using Melnikov-Vainshtein short-distance constraints [134], obtaining

∼ 13.5·10−10 and the results obtained within the non-local chiral quark model by Dorokhov

et al., ∼ 5.85·10−10 [130]. Although the lattice result of ref. [38] (5.35±1.35)·10−10 (see also

refs. [40, 53, 135, 136]), might seem at odds with other determinations, one still has to take

into account potentially large finite-volume systematics, finite-lattice-spacing corrections

and the limited statistics for the leading disconnected contribution, all of which are being

refined and could bring in reasonable agreement this result with the remaining predictions.

From these numbers and comparing ours with those previously quoted, it seems that further

orders in m2
P might be neglected in our analyses.

For comparison we also provide the pole contribution for the anomalous magnetic

moment stemming from the other two types of fits done in this article:

Including BaBar π0 data ‘fit 1’: aP,HLbLµ = (8.58± 0.16) · 10−10.

Fixing MV and eVm ‘fit 3’: aP,HLbLµ = (8.50± 0.13) · 10−10, (6.2)

The values given by BaBar for the π0-TFF at high energies are much larger than the form-

factor derived from the η and η′ TFFs through chiral symmetry. This leads to a slightly

higher value for aP,HLbLµ in comparison to our best fit, with BaBar π0 data excluded,

which shows a very good compatibility between the π0, η and η′ data. Both results are still

compatible within errors. On the other hand, the fit where the vector masses are fixed gives

a 1σ confidence interval fully included in the 1σ interval of our best determination (6.1),

although with a slightly smaller error, as expected. Given the abovementioned tension

between QCD-driven predictions and BaBar π0 transition form-factor data, we consider

the result (6.1) excluding these data from the fits as our reference value, aP,HLbLµ = (8.47±
0.16) · 10−10.

From the fit considering the conditions given in eqs. (5.3), but taking F ≈ 87 MeV

(chiral limit) instead of Fπ, we get aP,HLbLµ = (8.47 ± 0.17) · 10−10. If, instead of the

values of eqs. (5.3), we use the η − η′ mixing conditions from the NNLO U(3) χPT fit to

lattice data [93], we get aP,HLbLµ = (8.57± 0.16) · 10−10. These results are compatible with

our reference value in eq. (6.1), showing that our result is not fixed by the precise input

given for the numerical values used to stabilize the η − η′ mixing parameters. For the fit

without the stabilizing conditions, eqs. (5.3), we get aP,HLbLµ = (8.87± 0.16) · 10−10, which

is 2.5σ away from our reference determination in eq. (6.1), aP,HLbLµ = (8.47± 0.16) · 10−10.

However, this result is not reliable since part of the phase space generated by a Gaussian

random distribution of the parameters according to such fit are not physical and must be

16Comparisons should be made with evaluations of the pseudoscalar on-shell pole contributions.

– 28 –



J
H
E
P
0
6
(
2
0
1
8
)
1
6
0

Reference 1010 · aP,HLbLµ

Knecht and Nyffeler (2002) [69] 8.3 ± 1.2

Hayakawa and Kinoshita (2002) [124] 8.3 ± 0.6

Bijnens, Pallante and Prades (2002) [125] 8.5 ± 1.3

Goecke, Fischer and Williams (2012) [129] 8.1 ± 1.2

Roig, Guevara and López Castro (2014) [68] 8.60 ± 0.25

Masjuan and Sánchez-Puertas (2017) [94] 9.4 ± 0.5

Czyż, Kisza and Tracz (2018) [73] 8.28 ± 0.34

This work 8.47 ± 0.16

Table 13. Comparison of different predictions for the pseudoscalar-pole contributions to aHLbLµ .

discarded.17 This shows the need to employ our stabilizing conditions for the η−η′ mixing

in eqs. (5.3).

Since the separate contributions of the P mesons are interesting in their own (i.e., some

papers only consider the π0 contribution, which is highly restricted by chiral symmetry,

contrary to the η(′) cases; data quality varies from channel to channel, etc.), we quote

their values in the following. The pole contributions from each separate pseudo-Goldstone

exchange are computed for our best fit via a 5000 event MonteCarlo in the same way

described before, giving the following values for our best fit:

aπ
0,HLbL
µ = (5.81± 0.09) · 10−10, (6.3a)

aη,HLbLµ = (1.51± 0.06) · 10−10, (6.3b)

aη
′,HLbL
µ = (1.15± 0.07) · 10−10 . (6.3c)

Notice that despite the slightly higher (absolute) uncertainty in the π0 contribution,18 the η

has an uncertainty reduced by a factor of four compared with previous determinations [68].

Also, the η′ contribution has a mildly reduced uncertainty. We note that the sum in

quadrature (uncorrelated) of the errors for the individual contributions in the preceding

equations yields an error estimate (∼ 0.13 · 10−10), which is a bit smaller than the one in

eq. (6.1) because of the correlations, accounted in the latter: performing the simultaneous

integral of the three contributions leads to eq. (6.1).

As a check of the size of these corrections, we have additionally computed the P pole

contributions using our form-factor in the chiral and large-NC limits. We have taken the

central values of the vector mass MV and mixing parameters from our best fit, though

keeping the physical pseudo-Goldstone masses in the integration kernels. As a result, we

find (F/Fπ)2 aP,HLbLµ = 8.27 · 10−10, where the change is essentially given by the aη,HLbLµ

17Since a Gaussian distribution accounting for correlation is used to compute aP,HLbLµ , there are some

points of the generated phase space that give negative squared resonance masses, leading to spurious

divergences. Therefore, these points were dropped in order to obtain a finite result.
18Our result for this contribution is in agreement at the 1.7 σ level with the very recent dispersive

evaluation of Hoferichter et al. [137], aπ
0,HLbL
µ = (6.26+0.30

−0.25) · 10−10.
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contribution. For F ≈ Fπ, the small change in the mean value of the pseudo-Goldstone

pole contribution in the chiral and large-NC limits (∼ −2.5%, up to corrections in F/Fπ)

suggests that NNLO corrections, suppressed by further powers of m2
P , must be negligible.

An effect on this ballpark could already be inferred by comparing aP,HLbLµ in the U(3)

symmetric analysis of ref. [68] with our present result. To check the compatibility between

the present fit and that done in ref. [68] we compare the values obtained for the relevant

combination F 2
V d3 in the TFF: F 2

V d3/(3F
2
π ) = (−116.2 ± 1.8) · 10−3 for this work and

F 2
V d3/(3F

2
π ) = (−110.7 ± 8.3) · 10−3 for that in ref. [68], which show a good agreement

between both determinations.

The study of the so-called off-shell pole contribution to aHLbLµ will not be discussed

in this article. The P -TFF with an off-shell pseudo-Goldstone (p2 6= m2
P ) is by con-

struction an ill-defined quantity (arbitrary off-shell contributions can be obtained through

pseudoscalar field redefinitions). One should actually rather analyze the Green’s function

of four electromagnetic currents 〈T{JµEM(0)JνEM(x)JαEM(y)JβEM(z)} 〉, which is free of these

ambiguities. However, its study within the RχT framework is a more cumbersome problem

than just accounting for the pseudo-Goldstone tree-level exchanges provided by the TFFs,

and has been postponed for a future work.

6.2 Further error analysis

As said previously, only the leading order terms in 1/NC have been considered in the com-

putation of aP,HLbLµ . However, one must include a non-zero width in the vector resonance

propagators in order to get finite values for the branching fractions of subsection 5.3. In

particular, the ρ meson width plays the most important role. Intermediate ππ and KK

loops account for the main NLO corrections in 1/NC to the ρ propagator [122]:

M2
ρ − q2 −→ M2

ρ − q2 +
q2M2

ρ

96π2F 2
π

(
Aπ(q2) +

1

2
AK(q2)

)
, (6.4)

where

AP (q2) = ln
m2
P

M2
ρ

+ 8
m2
P

q2
− 5

3
+ σ3

P (q2) ln

(
σP (q2) + 1

σP (q2)− 1

)
, (6.5)

being σP (q2) =
√

1− 4m2
P

q2
. Note that AP (q2) is real for q2 < 4m2

P . Thus, the ρ propagator

provided by eq. (6.4) is real in the whole space-like region q2 < 0.

We perform the NLO replacement in the ρ propagators given in eq. (6.4) of the func-

tions gVi(q
2) in appendix B, which enter in the aP,HLbLµ integral representation [69]. The

ω and φ propagators in the gVi(q
2) are left unchanged. Likewise, we keep f(q2) = 0, as

it is found at LO in 1/NC after imposing the short distance constraints. This leads to

a decreasing in the theoretical prediction, aP,HLbLµ |LO+NLO − aP,HLbLµ |LO = −0.09 · 10−10,

essentially dominated by the contribution in the virtuality range [0.1, 1] GeV2, as before.

This is, nonetheless, just one of the possible NLO corrections in 1/NC to the anomalous

magnetic moment. One-loop modifications to the π0V V ′ vertex can be, e.g., equally im-

portant in the space-like domain and may lead to a positive contribution to aP,HLbLµ . Thus,

we take the absolute value of this shift as a crude estimate of the 1/NC effects:

(∆aP,HLbLµ )1/NC
= ±0.09 · 10−10 . (6.6)
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Other source of unaccounted error originates in the lightest meson dominance assump-

tion of the present work. As shown in [69], a TFF with only one vector multiplet fails to re-

produce at the same time the correct asymptotic behaviour q2FPγ?γ?(0, q2) = −2F [71, 72]

and q2FPγ?γ?(q2, q2) = −2F/3 [95, 96] for q2 → −∞. In our one-multiplet study, we were

able to reproduce FPγ?γ?(0, q2) ≈ −2F/q2 at large momentum transfer but the doubly

off-shell form-factor behaved like FPγ?γ?(q2, q2)
q2→∞∼ O(q−4). However, both QCD limits

can be correctly recovered by considering a second multiplet of vector resonances. In the

chiral limit, the π0-TFF including ρ and ρ′ takes then the form

Fπ0γ?γ?(q
2
1, q

2
2) =

−1

12π2F
(
M2
ρ − q2

1

) (
M2
ρ − q2

2

) (
M2
ρ′ − q2

1

)(
M2
ρ′ − q2

2

)
×

[
− q2

1q
2
2

(
NCM

4
ρ′ − 48π2F 2M2

ρ′ + 4π2F 2
(
q2

1 + q2
2

))
+NCM

4
ρM

4
ρ′ − 8π2F 2M2

ρ

(
3
(
q2

1 + q2
2

)
M2
ρ′ − q2

1q
2
2

)
+64π2F 2

ρ d
(ρ,ρ)
3 M2

ρ q
2
1q

2
2

(
1−

M2
ρ′

M2
ρ

)2

−16π2
√

2Fρc
(ρ)
125

Mρ
q2

1q
2
2

(
q2

1 − q2
2

)
2

(
1−

M2
ρ′

M2
ρ

)]
. (6.7)

The Lagrangian operators for these second vector multiplet have the same structure as

those in tables 2 and 3 involving couplings c
(V )
j and d

(V,V ′)
j , with the indices V, V ′ ∈ {ρ, ρ′}

indicating the resonances in the vertex. In the chiral and large-NC limits all the vectors

in a multiplet are degenerate, so we generically denote a resonance from the first (second)

multiplet as ρ (ρ′). The comparison of the one-vector-multiplet and two-vector-multiplet

TFF provides a rough estimate of the uncertainty introduced in aπ
0,HLbL
µ by the incorrect

Fπ0γ?γ?(q
2, q2) asymptotic behaviour. Accordingly, we compared the predictions from the

chiral limit TFF in eqs. (4.10) and (6.7) for aπ
0,HLbL
µ . After imposing that the form-

factor follows exactly the QCD asymptotic behaviour from refs. [71, 72, 95, 96], the two-

multiplet TFF only depends on two free resonance couplings, which here have been chosen

to be c
(ρ)
125 and d

(ρ,ρ)
3 (the superindex shows the multiplet to which it couples to). One of

the short distance conditions is that Fρc
(ρ)
125/M

3
ρ + Fρ′c

(ρ′)
125/M

3
ρ′ = 0. If one assumes that

the lightest multiplet dominates in this high-energy relation, then one would expect that

each multiplet contribution cancels on its own, yielding c
(ρ)
125 = c

(ρ′)
125 = 0, in agreement

with the constraint for c
(ρ)
125 in the single-resonance analysis. Thus, we will use this and

the condition F 2
ρ d

(ρ,ρ)
3 = −NCM

2
ρ/(64π2) from eq. (4.6) in section 4. We have taken

the chiral limit π0-TFF and the inputs Mρ = 0.77 GeV, Mρ′ = 1.45 GeV and F ' Fπ

in the aπ
0,HLbL
µ integral representation [69], while keeping the physical pion mass in the

integration kernels. Hence, we observe that the second vector multiplet increases aπ
0,HLbL
µ

by an amount ∼ 0.5 · 10−10. This increasing is not unexpected: since our single-resonance

Fπ0γ?γ?(q
2, q2) vanishes too fast at high energies, it provides an underrated prediction in

comparison with the asymptotic QCD TFF and, consequently, an underrated anomalous
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magnetic moment prediction. We therefore expect that all modifications of the latter TFF

that arrange its asymptotic behaviour will push aP,HLbLµ upwards. We thus have the rough

estimate,

(∆aP,HLbLµ )asym = +0.5
−0 · 10−10 . (6.8)

We assume the correction to the π0 contribution as the dominant effect and neglect here

the corrections in aη,HLbLµ and aη
′,HLbL
µ [69]. A more rigourous and detailed analysis will be

performed in a future work [123], where we will consider all the short distance constraints

beyond the chiral limit and extract the free parameters from a fit to the experimental data.

This issue has also been discussed in [69]: the difference between the VMD result (repro-

duced here by (4.10) and failing to fulfill the OPE constraint [95, 96]) and the LMD+V

rational approximation (with a good short-distance behaviour) was used to estimate an un-

certainty ∆aπ
0,LbL
µ = ±1.0 ·10−10. This error was essentially dominated by the uncertainty

in one of the LMD+V parameters, namely h2 [69].

7 Conclusions

We have given a more accurate description of the form-factor by including terms up to

order m2
P , for the first time in a chiral invariant Lagrangian approach with the quark

mass corrections introduced covariantly. In addition to chiral symmetry, the high-energy

conditions from the TFF (up to O(m2
P )) and the VVP Green’s funtion (at O(m0

P )) were

crucial to fix the various unknown Lagrangian parameters. These short distance constraints

were found to be consistent with previous determinations in the chiral and large-NC limits.

We have also been able to fix various V JP couplings for the first time: c1 = c2−c5 = c3 = 0.

By fitting to the different sets of data for the TFF of the pseudo-Goldstones we were

able to confirm that BaBar data for the π0-TFF is not compatible with measurements of the

η(′) transition form-factors. However, in order to stabilize the fit, some prior distribution for

the mixing parameters were provided. Otherwise, the fit leads to an η−η′ mixing in strong

conflict with current phenomenology –though still yielding a fair aP,HLbLµ determination–.

After assuming previous phenomenological determinations [80–82, 82, 89–92] as inputs, we

obtain as a by-product of our analysis, the correlated η − η′ mixing parameters, given in

table 9, which may be useful for future analyses involving these mesons. The contribution

from the four mixing inputs fpheno
8/0 and θpheno

8/0 in eqs. (5.3a)–(5.3d) to the χ2 turns out to

be very small (∆χ2 ∼ 1.5) and yielded values very similar to previous determinations of

such parameters, correlated and with a reduced marginal error. These results depended

very mildly on the mixing inputs.

Comparing our results with other recent determinations, we find that the TFFs pre-

sented in this article turn into rather simple expressions after demanding the correct high

energy QCD behaviour while, at the same time, they contain the corresponding O(m2
P )

corrections and implement chiral symmetry. We also have obtained values for the param-

eters that are compatible with those obtained in ref. [73] despite the lack of heavier copies

of the resonances in our approach. This shows that, even though these heavier multiplets

are not taken into account, our result should be compatible with the aP,HLbLµ considering

these resonances.
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We have determined the pseudo-Goldstone pole contribution to the aHLbLµ with an

improved precision,

aP,HLbLµ = (8.47 ± 0.16) · 10−10 , (7.1)

with respect to previous works by using a more accurate description of the Resonance

Chiral Lagrangian: we have considered corrections up to O(m2
P ) in the form-factor within

the lightest V and P resonance multiplet approximation. We have performed some checks

which suggest that contributions suppressed by higher powers of m2
P are negligible at the

present level of precision.

Future works will be directed towards an improved estimate of the impact from

higher resonance multiplets and 1/NC corrections, assumed negligible in most of this work.

Nonetheless, a rough estimate of possible further uncertainties was performed in subsec-

tion 6.2, yielding

aP,HLbLµ = ( 8.47 ± 0.16sta ± 0.091/NC

+0.5
−0 asym ) · 10−10 , (7.2)

where the first error (sta) comes from the fit, the second one (1/NC) from the estimate

of NLO effects in 1/NC and the last one (asym) stems from the incorrect FPγ?γ?(q2, q2)

asymptotic behaviour and the impact of higher resonance multiplets. Likewise, a more

throrough HLbL determination should go beyond the meson-pole contribution, demanding

a future study of the V V V V four-point Green’s function.
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A Wess-Zumino-Witten Lagrangian

Here we provide the full Wess-Zumino-Witten Lagrangian [76, 77, 79]:

S[U, `, r]WZW = − iNC

240π2

∫
dσijklm

〈
ΣL
i ΣL

j ΣL
kΣL

l ΣL
m

〉
(A.1)

− iNC

48π2

∫
d4x εµναβ

(
W (U, `, r)µναβ −W (1, `, r)µναβ

)
,

W (U, `, r)µναβ =

〈
U`µ`ν`αU

†rβ +
1

4
U`µU

†rνU`αU
†rβ (A.2)

+iU∂µ`ν`αU
†rβ + i∂µrνU`αU

†rβ − iΣL
µ`νU

†rαU`β

+ΣL
µU
†∂νrαU`β − ΣL

µΣL
νU
†rαU`β + ΣL

µ`ν∂α`β + ΣL
µ∂ν`α`β

−iΣL
µ`ν`α`β +

1

2
ΣL
µ`νΣL

α`β − iΣL
µΣL

νΣL
α`β

〉
− (L↔ R) ,
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where

ΣL
µ = U †∂µU , ΣR

µ = U∂µU
† , (A.3)

and (L↔ R) stands for the interchanges U ↔ U †, `µ ↔ rµ and ΣL
µ ↔ ΣR

µ . The case

with an axial vector singlet as well is somewhat more complicated and is discussed in

ref. [138, 139].

B The P form-factor in the evaluation of aHLbLµ

For the evaluation of aHLbLµ the form-factor is conveniently written as follows [69]

FP 0γ?γ?(q
2
1, q

2
2) =

F

3

f(q2
1) +

∑
Vi

1

M2
Vi
− q2

2

gVi(q
2
1)

 , (B.1)

where, for P 0 = π0 the f and g functions are given by

f(q2) =
2

FFπ

−NC

8π2
+ 32m2

πC
W?
7 −

∑
Vi

2d3(FV + 8m2
πλV )2

M2
Vi
− q2

−
√

2(FV + 8m2
πλV )

MV

2c1256 +
∑
Vi

c?1235m
2
π − c1256q

2

M2
Vi
− q2

 , (B.2)

gVi(q
2) =

2

FFπ

[
√

2(FV + 8m2
πλV )

c1256M
2
Vi
− c?1235m

2
π

MV

+2(FV + 8m2
πλV )2

d3(M2
Vi

+ q2) + d?123m
2
π

M2
V ′i
− q2

]
, (B.3)

where MV ′i
= MωδρVi + MρδωVi , being δ the Kronecker delta. Notice that since in the π0

decays, no photon comes from a φ meson at the large NC limit (as can be seen in the values

of Cd1R, Cm1R, Cd2R and Cm2R in tables 5 and 6) the sum in the π0-TFF must only contain

the ρ and ω resonances.

For the η-TFF one gets the following f and g functions

f(q2) =
2

F 2

{
−(5Cq −

√
2Cs)NC

24π2
+ 32CW?

7

5Cqm
2
π −
√

2Cs∆
2
2Kπ

3

+64CW8 (2Cqm
2
π −
√

2Cs∆
2
2kπ)− 2(FV + 8m2

πλV )2

3

∑
Vi

hVi
M2
Vi
− q2

−
√

2(FV + 8m2
πλV )

3MV

2c1256(5Cq −
√

2Cs) +
∑
Vi

fVi(q
2)

M2
Vi
− q2

 , (B.4)

where

hρ = 9Cqd3, (B.5)

hω = Cqd3, (B.6)
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hφ = −2
√

2Csd3, (B.7)

fρ(q
2) = Cq

(
c?1235m

2
η − c1256q

2 − 8c?3∆2
ηπ

)
, (B.8)

fω(q2) = 9fρ(q
2), (B.9)

fφ(q2) = −2
√

2Cs
(
c?1235m

2
η − c1256q

2 + 8c?3∆2
2Kπη

)
, (B.10)

and

gρ(q
2) =

2

F 2

[√
2(FV + 8m2

πλV )Cq
3MV

(
c1256M

2
ρ − c?1235m

2
η + 8c?3∆2

ηπ

)
+6(FV + 8m2

πλV )2Cq
d3(M2

ρ + q2) + d?123m
2
η − 8d?2∆2

ηπ

M2
ρ − q2

]
, (B.11)

gω(q2) =
2

F 2

[
3
√

2(FV + 8m2
πλV )Cq

MV

(
c1256M

2
ω − c?1235m

2
η + 8c?3∆2

ηπ

)
+

2(FV + 8m2
πλV )2Cq

3

(
d3(M2

ω + q2) + d?123m
2
η − 8d?2∆2

ηπ

M2
ω − q2

)]
, (B.12)

gφ(q2) =
2

F 2

{
−

4(FV + 8∆2
2KπλV )Cs

3MV

(
c1256M

2
φ − c?1235m

2
η − 8c?3∆2

2Kπη

)
(B.13)

−
4
√

2(FV + 8∆2
2KπλV )2Cs

3

d3(M2
φ + q2) + d?123m

2
η + 8d?2∆2

2Kπη

M2
φ − q2

}
.

Note that the fρ,ω,φ and hρ,ω,φ in these equations do not refer to the constants employed

in ref. [73] and discussed in tables 10 and 11.

Just as explained for the case of the η′ − TFF below eq. (3.8), one can obtain the

expressions for the η′ in the form given by eq. (B.1) by replacing Cq → C ′q, Cs → −C ′s and

mη → m′η including ∆2
ηπ → ∆2

η′π and ∆2
2Kπη → ∆2

2Kπη′ .

It is worth noticing that, in agreement with refs. [67, 68], by imposing the short distance

constraints, one obtains

f(q2) = 0 , (B.14)

for the three pseudo-Goldstone bosons, which greatly simplifies the numerical computation

of aP,HLbLµ .

C Additional information on the fit correlations

We collect in this appendix the correlations between fitted parameters in the two main

alternative fits discussed in the paper: i) ‘fit 1’, in which all sets of data are analyzed; ii)

‘fit 3’, where BaBar π0 TFF data is excluded from the fits with MV and eVM fixed to the

values from [64, 65]. These can be read in tables 14 and 15, respectively.
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P1 P2 MV eVm θ8 θ0 f8 f0

P1 1 0.041 0.751 0.636 0.481 0.033 −0.101 0.024

P2 0.041 1 0.174 0.317 −0.169 −0.413 −0.087 −0.789

MV 0.751 0.174 1 0.502 0.416 −0.021 −0.106 0.005

eVm 0.636 0.317 0.502 1 −0.134 0.064 −0.186 −0.021

θ8 0.481 −0.169 0.416 −0.134 1 −0.031 −0.443 0.024

θ0 0.033 −0.413 −0.021 0.064 −0.031 1 −0.015 −0.001

f8 −0.101 −0.087 −0.106 −0.186 −0.443 −0.015 1 0.023

f0 0.024 −0.789 0.005 −0.021 0.024 −0.001 0.023 1

Table 14. Correlation of fitted parameters including the π0 form-factor BaBar data, ‘fit 1’.

P1 P2 θ8 θ0 f8 f0

P1 1 0.005 0.778 −0.012 0.009 0.078

P2 0.005 1 0.021 0.467 0.010 −0.861

θ8 0.778 0.021 1 −0.002 −0.434 0.033

θ0 −0.012 0.467 −0.002 1 0.033 −0.020

f8 0.009 0.010 −0.434 0.033 1 0.002

f0 0.078 −0.861 0.033 −0.020 0.002 1

Table 15. Correlation of fitted parameters with fixed MV and eVm excluding the π0 form-factor

BaBar data, ‘fit 3’.
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