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1 Introduction and summary

The conformal bootstrap [3–5] can be used to place rigorous bounds on scaling dimensions

and operator product expansion (OPE) coefficients of operators that appear in the confor-

mal block decomposition of a given four-point function or of a given system of four-point

functions [6]. Generally, these bounds get more and more stringent as one explores a larger

and larger set of crossing symmetry constraints.1 Quite remarkably, in certain cases, the

bounds include small islands of allowed regions in theory space that contain well-known

1For a numerical implementation, one has to truncate the set of crossing constraints of given four-point

function(s) to a finite number of equations controlled by a parameter Λ. It is customary to perform this

truncation by only considering derivatives of the crossing equations at the crossing-symmetric point whose

total order is at most Λ.
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CFTs [7–9].2 For a generic point within the allowed region3 formed by these bounds, there

are generally many different solutions to the crossing equations obeying unitarity con-

straints. At the boundary of the allowed region, however, there is believed to be a unique

such solution, which can then be used to read off the CFT data (scaling dimensions and

OPE coefficients) that enters the conformal block decomposition of the given four-point

function(s). This solution can be found, for instance, using the extremal functional method

of [11, 36, 37]. If we have reasons to believe that a known CFT lives on this boundary, we

can therefore potentially determine at least part of its CFT data.

A notable application of this method is to the 3d Ising model. In [37], it was argued

that the critical Ising model has the minimal value of the stress tensor coefficient cT (to be

defined more precisely shortly) in the space of possible 3d CFTs with Z2 symmetry, and thus

it is believed to sit at the boundary of the region of allowed values of cT . Reconstructing

the corresponding unique solution of the crossing equations using the extremal functional

method, one can then read off all low-lying CFT data in the critical Ising model. See [38–41]

for other cases where this method was applied.

In this paper, we will apply the extremal functional method to maximally supersym-

metric (N = 8) superconformal field theories (SCFTs) in 3d. To do so, we would first need

to argue that the 3d N = 8 SCFTs of interest to us saturate some numerical bounds on

OPE coefficients or scaling dimensions. Indeed, using supersymmetric localization we will

be able to calculate the values of certain OPE coefficients that we can also bound using

the numerical bootstrap technique. As we will show, for N = 8 SCFTs with holographic

duals, these OPE coefficients come very close to saturating the bootstrap bounds obtained

numerically. We conjecture that these OPE coefficients for some of these theories precisely

saturate the bootstrap bounds in the limit of very precise numerics.

Let us now provide more background and summarize our results. There are only a few

known infinite families of N = 8 SCFTs, and they can all be realized (in N = 3 SUSY

notation) as Chern-Simons (CS) theories with a product gauge group G1 × G2 coupled

to two matter hypermultiplets transforming in the bifundamental representation. These

families are: the SU(2)k×SU(2)−k reformulation [42, 43] of the theories of Bagger-Lambert-

Gustavsson (BLG) [44–47], which are indexed by an arbitrary integer Chern-Simons level k;

the U(N)k×U(N)−k theories of Aharony-Bergman-Jafferis-Maldacena (ABJM) [1], which

are labeled by the integer N and k = 1, 2; and the U(N + 1)2 × U(N)−2 theories [48] of

Aharony-Bergman-Jafferis (ABJ) [2], which are labeled by the integer N . We will denote

these theories as BLGk,
4 ABJMN,k, and ABJN , respectively. When N = 1, the ABJM1,1

theory describes a free SCFT equivalent to the theory of eight massless real scalars and

eight Majorana fermions. When N > 1, ABJMN,1 flows to two decoupled SCFTs in the

2For other examples where the numerical bootstrap was used to obtain bounds on the OPE coefficients

and/or scaling dimensions, see [10–35].
3Here, we mean the limit of the allowed region as we remove the cutoff that controls the truncation of

the crossing equation to a finite number.
4There are actually two BLG type theories, with gauge groups SU(2)k × SU(2)−k and (SU(2)k ×

SU(2)−k)/Z2. The difference between them will not matter for the four-point function that we consider in

this paper, so we denote both by BLGk.
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infrared: a free SCFT isomorphic to ABJM1,1, and a strongly coupled interacting SCFT.

The ABJ(M) theories can be interpreted as effective theories on N coincident M2-branes

placed at a C4/Zk singularity in the transverse direction, so that when N → ∞ they

contain a sector described by weakly coupled supergravity. The BLG theories, in contrast,

do not have a known M-theory interpretation except when k ≤ 4, in which case they are

dual to an ABJ(M) theory [48–51].

N = 8 SCFTs were first studied using the conformal bootstrap in [52, 53], in which

upper and lower bounds were placed on the CFT data that enters the conformal block

expansion of the four-point function of the stress-tensor multiplet. These bounds were

computed as a function of cT , which is defined as the coefficient appearing in the two-point

function of the canonically-normalized stress-tensor,

〈Tµν(~x)Tρσ(0)〉 =
cT
64

(PµρPνσ + PνρPµσ − PµνPρσ)
1

16π2~x2
, Pµν ≡ ηµν∇2 − ∂µ∂ν .

(1.1)

This coefficient can be computed exactly using supersymmetric localization for any N ≥ 2

SCFT with a Lagrangian description (see [54] and [55]). In (1.1), cT is normalized such

that it equals 1 for a (non-supersymmetric) free massless real scalar or a free massless

Majorana fermion. Thus, cT = 16 for the free N = 8 theory of eight massless real scalars

and eight massless Majorana fermions (equivalent to ABJM1,1), and

cT ≈
64

3π

√
2kN3/2 (1.2)

for ABJ(M) theory at large N . By varying cT over the range cT ∈ [16,∞), one could

obtain non-perturbative information about M-theory, albeit only in the form of bounds.

In [49], the OPE coefficients of the half and quarter-BPS operators that appear in the

stress-tensor four-point function were computed for BLG3 and the interacting sector of

ABJM3,1.
5 This calculation was made possible due to the observation that N = 4 SCFTs

(of which N = 8 SCFTs are a particular class) contain 1d topological sectors [53, 56, 57]

that can be accessed explicitly using supersymmetric localization [58]. The OPE coefficients

were found to saturate the lower bounds obtained numerically in [53], just as cT saturated

the lower bounds in the Ising model, which suggests that the extremal functional approach

can be used in this case.

In this work, we generalize the computation of [49] to all N = 8 SCFTs mentioned

above. Instead of working directly in the 1d topological theory obtained from supersym-

metric localization [58], we argue that one can relate certain integrated correlators in the

1d theory to derivatives of the partition function of an N = 4-preserving mass deformation

of the SCFT on S3. For each theory, this mass-deformed S3 partition function can be

expressed as a matrix integral using the results of Kapustin, Willet, and Yaakov [59]. For

BLGk, the matrix integral can be computed exactly for all k. For ABJ(M) theory, the

corresponding integrals can be computed either exactly at small N , or to all orders in the

5These theories are conjectured to be dual [49], so the OPE coefficients are in fact identical for both

theories.
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1/N expansion using the Fermi gas methods in [60]. From the mass-deformed partition

function, one can then determine the integrated four-point function in the 1d theory, and

from it, as well as from crossing symmetry, one can extract the OPE coefficients of interest.

The analytic expressions for the OPE coefficients can then be compared to the numer-

ical bootstrap bounds. We find that the lower bound is close to being saturated by these

OPE coefficients in ABJN and the interacting sector of ABJMN,1 for all N , in ABJMN,2

for all N 6= 2, and in BLGk only when k = 3, 4. These are exactly the cases when these

theories have a unique stress tensor and have M-theory duals.6 The formulae for these

OPE coefficients become k-dependent beyond order 1/cT , so only one of these curves could

saturate the numerical bounds at infinite precision, but the analytic expressions are too

similar to distinguish between them at the current level of numerical precision. This moti-

vates our conjecture that all N = 8 theories with holographic duals saturate the bootstrap

bounds at large cT , and that at least one of them saturates the bounds for all cT , so that

we can apply the extremal functional method to it. Using this technique, we read off all the

low-lying CFT data in the stress-tensor four-point function, including that of unprotected

operators, for theories that are dual to M-theory. This provides a complete numerical

non-perturbative description of M-theory for the operators in this sector.

The rest of this paper is organized as follows. In section 2 we review the conformal

block decomposition of the four-point function of the scalar operator at the bottom of

the N = 8 stress tensor multiplet. In section 3, we explain our method for computing

the OPE coefficients, and we perform this computation for BLG and ABJ(M) theory. In

section 4, we present our evidence for the conjecture that holographic theories saturate the

bootstrap bounds on the OPE coefficients we computed in section 3. In section 5, we use

the extremal functional method to read off all the low-lying CFT data for theories that

saturate the bootstrap bounds. Finally, in section 6, we end with a discussion of our results

and of future directions.

2 Four-point function of stress-tensor

Let us begin by reviewing some general properties of the four-point function of the stress-

tensor multiplet in an N = 8 SCFT, and of the constraints imposed by the osp(8|4)

superconformal algebra (for more details, the reader is referred to e.g. [61–63]).

Unitary irreps of osp(8|4) are specified by the quantum numbers of their bottom com-

ponent, namely by its scaling dimension ∆, Lorentz spin j, and so(8) R-symmetry irrep

with Dynkin labels [a1 a2 a3 a4], as well as by various shortening conditions. There are

twelve different types of multiplets that we list in table 1.7 There are two types of short-

ening conditions denoted by the A and B families. The multiplet denoted by (A, 0) is a

long multiplet and does not obey any shortening conditions. The other multiplets of type

6(SU(2) × SU(2))/Z2 BLG is dual to ABJM2,1, which is a product of a free and interacting theory.

ABJM2,2 is dual to SU(2)× SU(2) BLG and (SU(2)× SU(2))/Z2 BLG is dual to two copies of ABJ1. Both

BLG theories have the same stress tensor four-point function, which makes ABJM2,2 a product theory in

this sector. For k = 3, 4, BLGk is dual to the interacting sector ABJM3,1 and ABJ2, respectively.
7The convention we use in defining these multiplets is that the supercharges transform in the 8v = [1000]

irrep of so(8)R.

– 4 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
9

Type BPS ∆ Spin so(8)R
(A, 0) (long) 0 ≥ ∆0 + j + 1 j [a1a2a3a4]

(A, 1) 1/16 ∆0 + j + 1 j [a1a2a3a4]

(A, 2) 1/8 ∆0 + j + 1 j [0a2a3a4]

(A, 3) 3/16 ∆0 + j + 1 j [00a3a4]

(A,+) 1/4 ∆0 + j + 1 j [00a30]

(A,−) 1/4 ∆0 + j + 1 j [000a4]

(B, 1) 1/8 ∆0 0 [a1a2a3a4]

(B, 2) 1/4 ∆0 0 [0a2a3a4]

(B, 3) 3/8 ∆0 0 [00a3a4]

(B,+) 1/2 ∆0 0 [00a30]

(B,−) 1/2 ∆0 0 [000a4]

conserved 5/16 j + 1 j [0000]

Table 1. Multiplets of osp(8|4) and the quantum numbers of their corresponding superconformal

primary operator. The conformal dimension ∆ is written in terms of ∆0 ≡ a1+a2+(a3+a4)/2. The

Lorentz spin can take the values j = 0, 1/2, 1, 3/2, . . .. Representations of the so(8) R-symmetry

are given in terms of the four so(8) Dynkin labels, which are non-negative integers.

A have the property that certain so(2, 1) irreps of spin j−1/2 are absent from the product

between the supercharges and the superconformal primary. The multiplets of type B have

the property that certain so(2, 1) irreps of spin j ± 1/2 are absent from this product, and

consequently, the multiplets of type B are smaller.8

The stress-tensor multiplet is of (B,+) type,9 with its superconformal primary being

a dimension 1 scalar operator transforming in the 35c = [0020] irrep of so(8). Let us

denote this superconformal primary by OStress,IJ(~x). (The indices here are 8c indices, and

OStress,IJ(~x) is a rank-two traceless symmetric tensor.) In order to not carry around the

so(8) indices, it is convenient to contract them with an auxiliary polarization vector Y I

that is constrained to be null Y · Y ≡
∑8

I=1(Y
I)2 = 0, thus defining

OStress(~x, Y ) ≡ OStress,IJ(~x)Y IY J . (2.1)

In the rest of this paper we will only consider the four-point function of OStress(~x, Y ).

Superconformal invariance implies that it takes the form

〈OStress(~x1, Y1)OStress(~x2, Y2)OStress(~x3, Y3)OStress(~x4, Y4)〉

=
(Y1 · Y2)2(Y3 · Y4)2

|~x12|2 |~x34|2
∑

M∈ osp(8|4) multiplets

λ2MGM(u, v;σ, τ) ,

(2.2)

8This description is correct only when j > 0. When j = 0, the definition of the multiplets also requires

various conditions when acting on the primary with two supercharges.
9Whether it is (B,+) or (B,−) is a matter of convention. The two choices are related by the triality of

so(8)R.
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Type (∆, j) so(8)R irrep spin j Name

(B,+) (2, 0) 294c = [0040] 0 (B,+)

(B, 2) (2, 0) 300 = [0200] 0 (B, 2)

(B,+) (1, 0) 35c = [0020] 0 Stress

(A,+) (j + 2, j) 35c = [0020] even (A,+)j
(A, 2) (j + 2, j) 28 = [0100] odd (A, 2)j
(A, 0) ∆ ≥ j + 1 1 = [0000] even (A, 0)j,n

Table 2. The possible superconformal multiplets in the OStress×OStress OPE. The so(3, 2)⊕so(8)R
quantum numbers are those of the superconformal primary in each multiplet.

where

u ≡ ~x212~x
2
34

~x213~x
2
24

, v ≡ ~x214~x
2
23

~x213~x
2
24

, σ ≡ (Y1 · Y3)(Y2 · Y4)
(Y1 · Y2)(Y3 · Y4)

, τ ≡ (Y1 · Y4)(Y2 · Y3)
(Y1 · Y2)(Y3 · Y4)

,

(2.3)

and the GM correspond to the irreducible representationsM of the superconformal algebra

that appear in the OPE OStress ×OStress. In table 2, we list the supermultiplets that may

appear in this four-point function, following the constraints discussed in [64]. Since these

are the only multiplets we will consider in this paper, we denote the short multiplets other

than the stress-tensor as (B,+) and (B, 2), the semi short multiplets as (A, 2)j and (A,+)j
where j is the spin, and the long multiplet as (A, 0)j,n, where n = 0, 1, . . . denotes the nth

lowest multiplet with that spin — See the last column of table 2. For explicit expressions

for the functions GM, see [52].

Of particular importance will be the OPE coefficient which the stress tensor multiplet

enters in the four-point function (2.2). In the conventions of [52], if we normalize OStress

such that the OPE coefficient of the identity operator is λId = 1, then

λ2Stress =
256

cT
, (2.4)

where cT is the coefficient appearing in the two-point function (1.1) of the canonically nor-

malized stress tensor. The cT coefficient was computed using supersymmetric localization

in [52] for the known N = 8 SCFTs with Lagrangian descriptions, and in the next section

we will reproduce this result from a different calculation.

It is worth pointing out two limits in which the four-point function (2.2) is known

exactly and one can extract all OPE coefficients. The first limit is the free theory of eight

real scalars XI and eight Majorana fermions mentioned in the Introduction. The scalar

OStress,IJ in this case is given by

OStress,IJ = XIXJ −
δIJ
8
XKX

K . (2.5)

Performing Wick contractions with the propagator 〈XI(~x)XJ(0)〉 = δIJ
4π|~x| , we then find

that (2.2) equals:

2

(4π)4
(Y1 · Y2)2(Y3 · Y4)2

|~x12|2 |~x34|2

[
1 + uσ2 +

u

v
τ2 + 4

√
uσ + 4

√
u

v
τ + 4

u√
v
στ

]
. (2.6)
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Type M Free theory λ2M generalized free field theory λ2M
(B, 2) 0 32/3 ≈ 10.667

(B,+) 16 16/3 ≈ 5.333

(A, 2)1 128/21 ≈ 6.095 1024/105 ≈ 9.752

(A, 2)3 2048/165 ≈ 12.412 131072/8085 ≈ 16.212

(A, 2)5 9273344/495495 ≈ 18.715 33554432/1486485 ≈ 22.573

(A,+)0 32/3 ≈ 10.667 64/9 ≈ 7.111

(A,+)2 20992/1225 ≈ 17.136 16384/1225 ≈ 13.375

(A,+)4 139264/5929 ≈ 23.489 1048576/53361 ≈ 19.651

(A, 0)0,0 4 32/35 ≈ 0.911

(A, 0)2,0 4 2048/693 ≈ 2.955

(A, 0)4,0 4 1048576/225225 ≈ 4.656

Table 3. Values of OPE coefficients in the free and generalized free field theory limits for the (B, 2)

and (B,+) multiplets, the (A, 2)j multiplet for spin j = 1, 3, 5, the (A,+)j multiplet for j = 0, 2, 4,

and the (A, 0)j,n multiplet for j = 0, 2, 4 and n = 0, which is the lowest multiplet with that spin.

By comparing this to the conformal block expansion, we can read off the OPE coefficients

listed in table 3, where the scaling dimensions of the long multiplet are given by

∆free
(A,0)j,n

= j + δn,0 + 2n , (2.7)

with n = 0, 1, 2, . . ..

Another limit in which we can compute (2.2) explicitly is in the generalized free field

theory (GFFT) where the dimension one operator OGFFT
Stress,IJ(~x) is treated as a general-

ized free field with two-point function 〈OStress(~x, Y1)OStress(0, Y2)〉 = (Y1·Y2)2

|x|2 . The GFFT

describes the cT → ∞, i.e. λ2Stress = 0, limit of N = 8 theories. Performing the Wick

contractions, we then find

(Y1 · Y2)2(Y3 · Y4)2

|~x12|2 |~x34|2

[
1 + uσ2 +

u

v
τ2
]
. (2.8)

By comparing this to (2.2), we can read off the OPE coefficients listed in table 3, where

the scaling dimensions of the long multiplet are given by

∆GFFT
(A,0)j,n

= j + 2 + 2n , (2.9)

with n = 0, 1, 2, . . ..

3 Computation of OPE coefficients

A crucial input into the numerical bootstrap analysis, which we will use to isolate the N = 8

SCFTs with holographic duals, is that we can compute the squared OPE coefficients λ2Stress,

λ2(B,+), and λ2(B,2) in all Lagrangian N = 8 SCFTs using supersymmetric localization.

Conceptually, this computation can be split into several parts, each of which we discuss

– 7 –
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in separate subsections. In section 3.1, we explain how, in N = 4 SCFTs with flavor

symmetries, one can relate the fourth derivative of the mass-deformed S3 partition function

with respect to the mass parameter to certain OPE coefficients. In section 3.2, we apply

this analysis to N = 8 SCFTs. In section 3.3, we use the existing results for the mass-

deformed partition function of ABJM and BLG theories in order to extract λ2Stress, λ
2
(B,+),

and λ2(B,2) from the results of the previous two sections.

3.1 Topological sector of N = 4 SCFTs from mass-deformed S3 partition

function

In this subsection, let us discuss some general results for N = 4 SCFTs. N = 4 SCFTs

are invariant under the superconfomal algebra osp(4|4), which contains, as its bosonic

subalgebra, the conformal algebra so(3, 2) as well as an so(4)R symmetry which we write

as su(2)H ⊕ su(2)C . We will use a, b, c, etc. for the su(2)H fundamental indices and ȧ, ḃ, ċ,

etc. for the su(2)C fundamental indices. These indices are raised and lowered with the

anti-symmetric ε symbol, for instance φa = εabφb or φa = εabφ
b, with ε12 = −ε12 = 1.

It was shown in [53, 56] that each 3d N = 4 SCFT contains 1d topological sectors

that capture information on the half-BPS spectrum of the 3d theory. There are two such

sectors whose abstract constructions mirror each other by simply flipping the roles played

by su(2)H and su(2)C . For our final goal of computing λ2Stress, λ
2
(B,+), and λ2(B,2) in a given

N = 8 theory, it does not matter which of the two 1d sectors of the 3d N = 4 SCFT we

focus on, so let us focus on the one built from su(2)C-invariant operators. (This sector is

associated with the Higgs branch in the terminology of [53, 56].) The construction of the 1d

operators that descend from 3d local operators is quite simple and proceeds as follows. The

3d theory generically has 1/2-BPS “Higgs branch” operators Oa1...a2jH
(~x) that are Lorentz

scalars invariant under su(2)C and that have scaling dimension equal to the su(2)H spin,

∆ = jH . If the 1d sector lies along the x3 axis parameterized by ~x = (0, 0, x), then the 1d

operators are

O(x) = Oa1...a2jH
(0, 0, x)ua1(x) · · ·ua2jH (x) , u1(x) = 1 , u2(x) =

x

2r
. (3.1)

Here, r is a parameter with dimensions of length that was introduced in order for the

expression for O(x) to be dimensionally correct. That the operators (3.1) are topological

follows abstractly from properties of the superconformal algebra: these operators are in the

cohomology of a nilpotent supercharge with respect to which translations in x are exact.

While (3.1) was written for the case of an SCFT defined on R3, one can perform a

similar construction on any conformally flat space. In particular, using the stereographic

projection, the 3d SCFT can also be placed on a round three-sphere of radius r such that

the 1d line gets mapped to a great circle parameterized by ϕ = 2 arctan x
2r . In this case

the 1d operators O(ϕ) are periodic on this circle if jH is an integer and anti-periodic if

jH is a half odd-integer. Defining the 1d theory on a great circle of S3 as opposed to

a line in R3 has the benefit that when the 3d SCFT has a Lagrangian description, then

it is possible to perform supersymmetric localization on S3 in order to obtain an explicit

Lagrangian description of the 1d sector itself. In the case where the Lagrangian of the 3d

– 8 –
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theory involves only hypermultiplets and vector multiplets, the 1d theory Lagrangian was

derived in [58].

Regardless of whether the 1d theory has a Lagrangian description or not, let us describe

a procedure for calculating certain integrated correlation functions in the 1d theory. We

will be interested in the case where the 1d operator J(ϕ) comes from a 3d operator Jab(~x)

with ∆ = jH = 1. Such a 3d operator is the bottom component of a superconformal

multiplet (Jab,Kȧḃ, jµ, χaȧ) that in addition to Jab also contains the following conformal

primaries: a pseudoscalar Kȧḃ of scaling dimension 2, a fermion χaȧ of scaling dimension

3/2, and a conserved current jµ. Thus, this is a conserved flavor current multiplet, and all

its operators transform in the adjoint representation of the flavor symmetry. To exhibit

the adjoint indices, we will write (JAab,K
A
ȧḃ
, jAµ , χ

A
aȧ), where A runs from 1 to the dimension

of the flavor symmetry Lie algebra.

Let us choose a basis for this Lie algebra where the two-point function of the current

multiplets is diagonal in the adjoint indices:

〈jAµ (~x)jBν (0)〉 = δAB
τ

64π2
(
∂2δµν − ∂µ∂ν

) 1

|~x|2
,

〈JAab(~x)JBcd(0)〉 = −δAB τ

256π2
1

|~x|2
(εacεbd + εadεbc) ,

〈KA
ȧḃ

(~x)KB
ċḋ

(0)〉 = −δAB τ

128π2
1

|~x|4
(εȧċεḃḋ + εȧḋεḃċ) .

(3.2)

Let us also normalize the current jAµ canonically, meaning that for an operator O trans-

forming in a representation R of the flavor symmetry, we have jAµ (~x)O(0) ∼ xµ
4π|~x|3T

AO(0),

where TA is the corresponding generator in representation R. In particular, we then have

jAµ (~x)jBν (0) ∼ xµ
4π|~x|3 if

ABCjCν (0), where the structure constants are defined by [TA, TB] =

ifABCTC .10

At the linearized level, such a current multiplet couples to a background N = 4 vector

multiplet (AAµ ,Φ
A
ȧḃ
, DA

ab, λ
A
aȧ):∫

d3x
[
AµAjAµ + iDabAJAab + ΦȧḃAKA

ȧḃ
+ (fermions)

]
. (3.3)

(Quadratic terms in the background vector multiplet are also required in order to preserve

gauge invariance and supersymmetry.)

Let us provide a prescription for computing correlation functions of the integrated

operator
∫
dϕJA(ϕ). To obtain this prescription, first place the SCFT on a round S3,

then introduce an N = 4-preserving (adjoint valued) real mass parameter m = mATA.

Introducing such a parameter requires the following background vector multiplet fields:

ΦA
ȧḃ

= mAh̄ȧḃ , DA
ab = −m

A

r
hab , AAµ = λAaȧ = 0 . (3.4)

10For example, a free hypermultiplet has su(2) flavor symmetry and a current multiplet as de-

scribed. Indeed, we can write the hyper scalars as qai and the hyper fermions as ψȧi, with

the two-point functions 〈qai(~x)qbj(0)〉 =
εabεij
4π|x| and 〈ψαȧi(~x)ψβḃj(0)〉 =

εabεijx
µγµαβ

4π|~x| . Then jAµ =

1
2
σAij

[
iεabqai∂µqbj − 1

2
εȧḃψαȧiγ

αβ
µ ψβḃj

]
, JAab = 1

8
σAij(qaiqbj + qbiqaj), and KA

ȧḃ
= i

8
σAij(ψȧiψḃj + ψḃiψȧj).

We have τ = 2 for the su(2) flavor symmetry of a hyper.
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Here, we follow the conventions of [58] for the hypermultiplet and vector multiplet fields

and their SUSY variations. The quantities h and h̄ are constant matrices, normalized such

that habh
ab = h̄ȧḃh̄

ȧḃ = −2. The mass-deformed theory is invariant under the superalgebra

su(2|1) ⊕ su(2|1), and the mass parameter m appears as a central charge in this algebra.

Up to linear order in m, the mass deformation amounts to adding

mA

∫
d3x
√
g

[
−i1
r
habJAab + h̄ȧḃKA

ȧḃ

]
(3.5)

to the conformal action on S3. The S3 partition function Z(m) can be computed using

supersymmetric localization [59] even for N = 4 theories for which the localization to the

1d sector performed in [58] does not apply.

However, Z(m) also computes the partition function of the 1d theory deformed by

−4πr2mA

∫ π

−π
dϕJA(ϕ) . (3.6)

Such a statement can be proven explicitly11 in the case where the results of [58] apply,

but it should hold more generally. This statement should simply follow from the super-

symmetric Ward identities, as was shown in similar 4d examples in [65, 66]; it would be

nice to investigate this more precisely in the future. In other words, we claim that the

supersymmetric Ward identity must imply that the expressions (3.5) and (3.6) are equal

up to Q-exact terms.

Consequently, we have that〈∫
dϕJA1(ϕ) · · ·

∫
dϕJAn(ϕ)

〉
=

1

(4πr2)n
1

Z

dnZ

dmA1dmA2 · · · dmAn

∣∣∣∣
m=0

. (3.8)

This is the main result of this subsection.

As a particular case, we can consider n = 2. From (3.2), we see that on a line in R3,

we have 〈JA(x)JB(0)〉 = − τ
512π2r2 δ

AB, and so〈∫
dϕJA(ϕ)

∫
dϕJB(ϕ)

〉
= − τ

128r2
δAB . (3.9)

Comparing to (3.8), we deduce

τ = − 8

π2
1

Z

d2Z

d(rmA)2

∣∣∣∣
m=0

=
8

π2
d2FS3

d(rmA)2

∣∣∣∣
m=0

(3.10)

11Let us consider N hypermultiplets (qai, ψȧi), where i = 1, . . . , 2N , charged under a vector multiplet

with gauge group G and generators tα and flavor symmetry GF with generators TA, respectively. Both

G and GF are embedded into the flavor symmetry USp(2N) of N ungauged free hypers. We then have

JAab = 1
4
TAij(qaiqbj +qbiqaj), where TAij is a symmetric matrix in the ij indices. Consequently, using (3.1),

we have JA = JAabu
aub = 1

2
TAijQiQj , with Qi = qaiu

a. In [58], it was shown that the partition function of

the 1d topological theory, defined on a circle, is described by the partition function

Z =

∫
Cartan of g

dσ det adj(2 sinh(πσ))

∫
DQe−2πr

∫
dϕ (ΩijQi∂ϕQj−σαtαijQiQj−rmATAijQiQj) . (3.7)

So deforming the 3d theory by a mass parameter m is equivalent to deforming the 1d theory by (3.6). For

a single free hyper, we have N = 1, Ωij = εij and TAij = 1
2
σAij for the SU(2) flavor symmetry — see

footnote 10.
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(with no summation over A), where we defined the S3 free energy FS3 = − logZ. This

formula agrees with the result of [67]. (For an N = 4 mass-deformed SCFT on S3, the free

energy is real, so one does not have to take its real part as in [67].)

3.2 Application to N = 8 SCFTs

In order to apply the above results to N = 8 SCFTs, one would first have to go through the

exercise of decomposing the various representations of the N = 8 superconformal algebra

into representations of the N = 4 superconformal algebra in order to establish which of

the N = 8 irreps contain Higgs branch scalar operators with ∆ = jH and jC = 0. In the

notation introduced in table 1, it can be checked that these irreps are of (B, 2), (B, 3),

(B,+), and (B,−) type. So these are the N = 8 multiplets that are captured by the 1d

topological sector discussed above. In performing the decomposition from N = 8 to N = 4,

one should also keep track of an su(2)F ⊕ su(2)F ′ flavor symmetry that commutes with

so(4)R inside so(8).

As mentioned in section 2, we are interested in analyzing the 4-point function of the

35c = [0020] scalar in the same N = 8 superconformal multiplet as the stress tensor, so

we should only focus on the stress tensor multiplet ((B,+)[0020]) as well as the multiplets

(B,+)[0040] and (B, 2)[0200] (for short referred to as (B,+), and (B, 2) above) that appear

in the OPE of two stress tensor multiplets. These multiplets contain the following Higgs

branch operators (HBOs)

Stress ⊃ HBOs with ∆ = jH = 1 in (3,1) of flavor su(2)F ⊕ su(2)F ′ ,

(B,+) ⊃ HBOs with ∆ = jH = 2 in (5,1) of flavor su(2)F ⊕ su(2)F ′ ,

(B, 2) ⊃ HBOs with ∆ = jH = 2 in (1,1) of flavor su(2)F ⊕ su(2)F ′ .

(3.11)

Thus, from the N = 4 perspective, each local N = 8 SCFT contains a conserved

current multiplet (JAab,K
A
ȧḃ
, jAµ , χ

A
aȧ), which transforms in the adjoint of an su(2)F flavor

symmetry (A = 1, 2, 3 in this case). This multiplet is embedded in the N = 8 stress tensor

multiplet, with su(2)F embedded into so(8)R. Consequently, the coefficient τ appearing in

the two-point function (3.2) of the canonically normalized currents must be proportional

to coefficient cT appearing in the two-point function (1.1) of the canonically normalized

stress tensor. In a free N = 8 theory we have12 cT = 16 and τ = 2, so

τ =
cT
8
. (3.12)

The precise projection to 1d was performed in [53]. Converting to the notation here,13

we have

〈JA(ϕ1)J
B(ϕ2)J

C(ϕ3)J
D(ϕ4)〉 =

τ2

(256π2r2)2

[(
1 +

1

16
λ2(B,2)

)
δABδCD

12In N = 4 notation, an N = 8 free theory is a product between a theory of a free hypermultiplet and a

free twisted hypermultiplet. The su(2)F acts on the hypermultiplet only, so τ has the same value as in the

free hypermultiplet theory, namely τ = 2, as explained in footnote 10.
13Up to an overall constant, eq. (3.31) of [53] gives the 4-point function of JAσAij ȳ

iȳj , where ȳi are

auxiliary polarization variables, and σAij ≡ (−iσ2τ
A)ij , where τA are the standard Pauli matrices.
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+
1

4
sgn(ϕ12ϕ13ϕ24ϕ34)λ

2
Stress(δ

ACδBD − δADδBC)

+
3

16
λ2(B,+)

(
δACδBD + δADδBC − 2

3
δABδCD

)]
.

(3.13)

The crossing symmetry of this four-point function implies

4λ2Stress − 5λ2(B,+) + λ2(B,2) + 16 = 0 . (3.14)

Let us now use the results of the previous section in order to extract the OPE co-

efficients λ2Stress, λ
2
(B,+), and λ2(B,2). Eq (3.12) gives a way to compute λ2Stress. From

λ2Stress = 256/cT and (3.12) we obtain λ2Stress = 32/τ , and from (3.10) we further obtain

λ2Stress = − 4π2

1
Z

d2Z
d(rmA)2

∣∣∣∣
m=0

, cT = −64

π2
1

Z

d2Z

d(rmA)2

∣∣∣∣
m=0

.
(3.15)

The other OPE coefficients can be calculated by specializing the four-point function (3.13)

to A = B = C = D and integrating over ϕ:〈(
dϕ

∫
JA(ϕ)

)4
〉

=
9

5

τ2

(32r2)2

[
1 +

1

16
λ2(B,2) +

λ2Stress
9

]
. (3.16)

Comparing with (3.8), we obtain

λ2(B,2) = 16

−1 +
4π2

9

1
1
Z

d2Z
d(rmA)2

+
5

9

1
Z

d4Z
d(rmA)4(

1
Z

d2Z
d(rmA)2

)2
 ∣∣∣∣∣

m=0

. (3.17)

From (3.14) we can then also obtain λ2(B,+):

λ2(B,+) =
16

9

− π2

1
Z

d2Z
d(rmA)2

+

1
Z

d4Z
d(rmA)4(

1
Z

d2Z
d(rmA)2

)2
 ∣∣∣∣∣

m=0

. (3.18)

3.3 OPE coefficients in BLG and ABJ(M) theory

Let us now apply the formulas (3.15), (3.17), and (3.18) to the specific examples of ABJ(M)

and BLG theories. For simplicity, let us turn on a mass parameter m through the Cartan

of su(2)F , thus dropping the superscript A from (3.15)–(3.18). We also set r = 1 for

simplicity.

The mass-deformed partition function of the U(N)k × U(M)−k ABJ(M) theory takes

the form

ZABJ(M)(m) =
1

N !M !

∫
dNλdMµeiπk[

∑
i λ

2
i−

∑
j µ

2
j ]

×
∏
i<j

(
4 sinh2[π(λi − λj)]

)∏
i<j

(
4 sinh2[π(µi − µj)]

)∏
i,j (4 cosh[π(λi − µj +m/2)] cosh[π(µi − λj)])

,

(3.19)
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For BLG theory, we take N = M = 2 in the formula above and insert δ(λ1 +λ2)δ(µ1 +µ2)

in the integrand, thus obtaining

ZBLG(m) =
1

32

∫
dλdµe2πik[λ

2−µ2] sinh2(2πλ) sinh2(2πµ)∏
i,j cosh[π(λi − µj +m/2)] cosh[π(µi − λj)]

, (3.20)

where now λi = (λ,−λ) and µi = (µ,−µ).

3.3.1 BLG theory

For BLG theory, one can use the identity

sinh(2πλ) sinh(2πµ)

4
∏
i,j cosh[π(λi − µj +m/2)]

= det

(
1

2 cosh[π(λ−µ+m/2)]
1

2 cosh[π(λ+µ+m/2)]
1

2 cosh[π(−λ−µ+m/2)]
1

2 cosh[π(−λ+µ+m/2)]

)
(3.21)

and change variables to x = (λ+ µ)/2 and y = (λ− µ)/2, to show that

ZBLG(m) =
k

32

∫
dx

x

sinh(πkx)

[
sech2

(
mπ

2

)
− sech

(
mπ

2
− x
)

sech

(
mπ

2
+ x

)]
. (3.22)

One can then plug this expression into (3.15)–(3.18), which gives

λ2Stress =
8I2,k

2I2,k − I4,k
, cT = 32

(
2−

I4,k
I2,k

)
,

λ2(B,2) =
16
(

6I22,k − 3I24,k − 12I2,kI4,k + 10I2,kI6,k

)
3(I4,k − 2I2,k)2

,

λ2(B,+) =
32I2,k (3I2,k − 3I4,k + I6,k)

3(I4,k − 2I2,k)2
,

(3.23)

where we defined the integral

In,k ≡
∫ ∞
−∞

dx
x

sinh(πkx)
tanhn(πx) . (3.24)

This integral can be evaluated explicitly using contour integration. We give the expressions

for n = 2, 4, 6 in the appendix.

3.3.2 ABJ(M) theory

For ABJ(M) theory, one can use (3.19) and (3.15)–(3.18) to evaluate λ2Stress, λ
2
(B,+), and

λ2(B,2). The number of integrals increases with N , however, and unlike the BLG case where

analytical formulas were possible for the entire family of theories, in the ABJ(M) case we

can perform these integrals analytically only for small values of N — See table 4.

One can also perform a 1/N expansion, where M = N or M = N + 1. There are

several approaches for developing a 1/N expansion: one can either work more generally in

the ’t Hooft limit where N is taken to be large while N/k is held fixed [68], and then take

N/k large; or one can work at fixed k while taking N large [69, 70]. We will follow the

approach originating in [70], where for m = 0 it was noticed in [70] that the S3 partition

function for ABJM theory can be rewritten as a partition function of a non-interacting
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λ2
Stress
16 = 16

cT
λ2(B,+) λ2(B,2)

ABJM1,k 1 16 0

ABJMint
2,1
∼= ABJ1

3
4 ≈ 0.75 64

5 ≈ 12.8 0

BLG1
∼= ABJM2,1

3
7 ≈ 0.429 384

245 ≈ 9.731 256
49 ≈ 5.224

ABJM2,2
∼= BLG2

∼= ABJ21
3
8 ≈ 0.375 136

15 ≈ 9.067 16
3 ≈ 5.333

BLG3
∼=ABJMint

3,1
π−3

10π−31 ≈ 0.340 16(π−3)(840π−2629)
15(10π−31)2 ≈ 8.676 62208+16π(420π−2557)

3(10π−31)2 ≈ 5.593

BLG4
∼=ABJ2

3π2−24
18π2−160 ≈ 0.318 32(π2−8)(315π2−2944)

15(80−9π2)2
≈ 8.444 16(16384−3872π2+225π4)

3(80−9π2)2
≈ 5.883

BLG5 0.302 8.300 6.156
...

...
...

...

BLG∞
1
4 ≈ 0.25 8 8

ABJ(M)∞ 0 16
3 ≈ 5.333 32

3 ≈ 10.666

Table 4. OPE coefficients of 1
2 and 1

4 BPS operators that appear in OStress × OStress for N = 8

theories. “∼=” denotes that theories have the same stress tensor four-point function.

Fermi gas of N particles with kinetic energy T (p) = log cosh(πp) and potential energy

U(q) = log cosh(πq). Phase space quantization and statistical physics techniques allow one

to calculate the S3 partition function to all orders in 1/N , and this expansion resums into

an Airy function. The S3 partition function in the presence of a mass deformation was

computed using the same method in [60].

Up to non-perturbative corrections in 1/N and an overall m-independent prefactor,

the result of [60] gives14,15

Z(m) ≈ eAC−
1
3 Ai

[
C−

1
3 (N −B)

]
,

C =
2

π2k(1 +m2)
, B =

π2C

3
− 2 +m2

6k(1 +m2)
− k

12
+
k

2

(
1

2
− M −N

k

)2

,

A =
1

4
(A[k(1 + im)] +A[k(1− im)] + 2A[k]) ,

(3.25)

where k > 0, M ≥ N , and the function A is given by

A(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞
0

dx
x

ekx − 1
log
(
1− e−2x

)
. (3.26)

In order to plug this expression into (3.15)–(3.18), one needs the following derivatives of A:

A′′(1) =
1

6
+
π2

32
, A′′(2) =

1

24
,

A′′′′(1) = 1 +
4π2

5
− π4

32
, A′′′′(2) =

1

16
+
π2

80
. (3.27)

14The result of [60] is only for N = M , but here we generalize it to N 6= M using the results of [71].
15In the notation of [60], we can take ζ1 = im and ζ2 = 0, or equivalently ξ = −im and η = 0.
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λ2
Stress
16 = 16

cT
λ2(B,+) λ2(B,2)

large N ABJMint
2,1 0.7500 12.7982 −0.0100

exact ABJMint
2,1

3
4 ≈ 0.75 64

5 ≈ 12.800 0

large N ABJM2,2 0.3759 9.0513 5.1995

exact ABJM2,2
3
8 ≈ 0.375 136

15 ≈ 9.0667 16
3 ≈ 5.3333

large N ABJ2 0.3173 8.4533 5.9618

exact ABJ2
3π2−24

18π2−160 ≈ 0.3177 32(π2−8)(315π2−2944)
15(80−9π2)2

≈ 8.4436
16(16384−3872π2+225π4)

3(80−9π2)2
≈ 5.8831

Table 5. Comparison of the large N formulae to the exact values for N = 2 for OPE coefficients of
1
2 and 1

4 BPS operators that appear in OStress ×OStress for the interacting sector of ABJ(M). The

excellent agreement shows that the asymptotic formulas are reliable for all N ≥ 2.

Using (3.15), we then find

c
ABJMN,1

T = 1− 112

3π2
−

8(9 + 8N)Ai′
[
(N − 3/8) (π2/2)1/3

]
3(π2/2)2/3Ai

[
(N − 3/8) (π2/2)1/3

] ,
c
ABJMN,2

T = −112

3π2
−

64(1 + 2N)π2/3Ai′
[
(N − 1/4)π2/3

]
3π2Ai

[
(N − 1/4)π2/3

] ,

cABJN
T = −112

3π2
−

32(3 + 4N)π2/3Ai′
[
Nπ2/3

]
3π2Ai

[
Nπ2/3

] ,

(3.28)

which are expressions valid to all orders in 1/N . The analogous expressions for λ2(B,2) are

rather complicated, so we delegate them to appendix B. The formulas for λ2(B,+) can then

be determined from (3.14).

A comment is in order for the ABJMN,1 theory. This theory is a direct product between

a free sector, identified with ABJM1,1, and an interacting sector. Since the free sector has

cT = 16, we have that the interacting sector of the ABJMN,1 theory has

c
ABJMN,1

T,int = c
ABJMN,1

T − 16 . (3.29)

Extracting the value of λ2(B,2) of just the interacting sector knowing λ2(B,2) for the full

theory requires more thought. In the free theory one has λ2(B,2) = 0, as such a multiplet

does not exist as can be checked explicitly by decomposing the 4-point function of OStress

in superconformal blocks [52]. Using this fact, and the general formulas for how squared

OPE coefficients combine when taking product CFTs [53], one has

(
λ
ABJMN,1

(B,2)

)2
=

2c
ABJMN,1

T,free c
ABJMN,1

T,int λ2(B,2),GFFT +
(
c
ABJMN,1

T,int

)2(
λ
ABJMN,1

(B,2),int

)2(
c
ABJMN,1

T

)2 . (3.30)

where λ2(B,2),GFFT = 32/3 is the generalized free theory value of the λ2(B,2) OPE coefficient

as given in (3).

In table 5 we compare λ2(B,2), λ
2
(B,+) and cT to the exact values for N = 2 and find

excellent agreement.
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We can also expand λ2(B,2) and λ2(B,+) directly in terms of cT , by comparing the large

N expansions. When expanding the Airy functions in (3.28) and (B.1) for large N , one

should be careful to expand in terms of the entire argument of the Airy function, and not

just N , which is how these functions were originally defined in [70]. We find that the large

cT expansion is the same for ABJN and ABJMN,2, while the expansions for ABJMN,k are

(
λ
ABJMN,k

(B,2)

)2
=

32

3
− 1024(4π2 − 15)

9π2
1

c
ABJMN,k

T

+
40960

π
8
3

(
2

9k2

) 1
3 1(
c
ABJMN,k

T

) 5
3

+O
((
c
ABJMN,k

T

)−2)
,

(
λ
ABJMN,k

(B,+)

)2
=

16

3
+

1024(π2 + 3)

9π2
1

c
ABJMN,k

T

+
8192

π
8
3

(
2

9k2

) 1
3 1(
c
ABJMN,k

T

) 5
3

+O
((
c
ABJMN,k

T

)−2)
,

(3.31)

where note that the leading order correction is independent of k.

4 Bootstrap bound saturation

4.1 Numerical bootstrap setup

We will now briefly review how the numerical bootstrap can be applied to the stress-tensor

multiplet four-point function in N = 8 theories. For further details, see [52]. Invariance of

the four-point function (2.2) under the exchange (x1, Y1) ↔ (x3, Y3) implies the crossing

equation of the form

∑
M∈ osp(8|4) multiplets

λ2M
~dM = 0 , (4.1)

where M ranges over all the superconformal multiplets listed in table 2, ~dM are functions

of superconformal blocks, and λ2M are squares of OPE coefficients that must be positive by

unitarity. As in [52], we normalize the OPE coefficient of the identity multiplet to λId = 1,

and parameterize our theories by the value of λStress, which is related to cT through (2.4).

To find upper/lower bounds on a given OPE coefficient of a multipletM′ that appears

in the OStress×OStress OPE, then ifM′ is not a long multiplet we consider linear functionals

α satisfying

α(~dM′) = s , s = 1 for upper bounds, s = −1 for lower bounds ,

α(~dM) ≥ 0 , for all short and semi-short M /∈ {Id, Stress,M′} ,

α(~d(A,0)j,0) ≥ 0 , for all j with ∆(A,0)j,0 ≥ j + 1 .

(4.2)
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If M′ is a long multiplet (A, 0)j′,n′ , then we consider linear functionals α satisfying

α(~dM′) = s , s = 1 for upper bounds, s = −1 for lower bounds ,

α(~dM) ≥ 0 , for all short and semi-short M /∈ {Id, Stress} ,

α(~d(A,0)j,0) ≥ 0 , for all j 6= j′ with ∆(A,0)j,0 ≥ j + 1 ,

α(~d(A,0)j′,n) ≥ 0 , for all n < n′, and fixed ∆(A,0)j′,n
,

α(~d(A,0)j′,n′+1
) ≥ 0 , with ∆(A,0)j′,n′+1

> ∆(A,0)j′,n′
.

(4.3)

In either case, if such a functional α exists, then this α applied to (4.1) along with the

positivity of all λ2M except, possibly, for that of λ2M′ implies that

if s = 1, then λ2M′ ≤ −α(~dId)− λ2Stressα(~dStress) ,

if s = −1, then λ2M′ ≥ α(~dId) + λ2Stressα(~dStress) .
(4.4)

Note that the final condition ∆(A,0)j′,n′+1
> ∆(A,0)j′,n′

whenM′ is a long multiplet (A, 0)j′,n′

is so that M′ is isolated from the continuum of possible long multiplets. To obtain the

most stringent upper/lower bound on λ2M′ , one should then minimize/maximize the r.h.s.

of (4.4) under the constraints (4.2).

The numerical implementation of the minimization/maximization problem described

above requires two truncations: one in the number of derivatives used to construct α and

one in the range of multipletsM that we consider. We used the same parameters as in [38],

namely spins in {0, . . . , 64} ∪ {67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88} and derivatives pa-

rameter Λ = 43. The truncated minimization/maximization problem can now be rephrased

as a semidefinite programing problem using the method developed in [13]. This problem

can be solved efficiently using SDPB [72].

4.2 Bounds on OPE coefficients

Let us now compare the analytical values of the OPE coefficients λ2(B,2), λ
2
(B,+), and

λ2Stress = 256/cT found in section 2 to the numerical bootstrap bounds obtained using the

method outlined in the previous subsection [52]. As noted in [52], the numerical bounds

on these OPE coefficients exactly satisfy the constraint (3.14), so it suffices to discuss

the bounds on just two of them, which for simplicity we choose to be λ2(B,2) and λ2Stress.

The main lesson from this comparison will be that λ2(B,2) saturates the lower bounds for

all N = 8 theories with holographic duals at large cT , so we can use the extremal func-

tional method to read off the spectrum of all operators in the OPE OStress×OStress in this

regime. At smaller values of cT , we expect that one of these holographic theories saturates

the bounds, so the results for the extremal functional hold for that theory.

In figure 1, we show upper and lower bounds on λ2(B,2) as a function of λ2Stress/16 =

16/cT . (The quantity 16/cT ranges from 0 (GFFT limit) to 1 (free theory limit).) We show

our most accurate bounds with Λ = 43 (solid line) as well as less accurate bounds with

Λ = 19 (dashed line), to show how converged the bounds are. The upper bounds seem to

be converging at the same rate for all cT , whereas the lower bounds seem more converged

for larger cT . The vertical dotted line shows the numerical point where λ2(B,2) = 0. The

– 17 –
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BLGk

ABJMN,1
int

ABJN

ABJMN,2

ABJM1,1

0.2 0.4 0.6 0.8 1.0

16
cT

2

4

6

8

10

λ(B,2)
2

Figure 1. Upper and lower bounds on the λ2(B,2) OPE coefficient in terms of the stress-tensor

coefficient cT , where the orange shaded region are allowed, and the plot ranges from the generalized

free field theory limit cT →∞ to the free theory cT = 16. The blue dots denote the exact values in

table 4 in BLGk for k ≥ 1. The magenta dot denotes the free ABJM1,1 theory, the gray and green

dots denote the exact values in table 4 for ABJMN,2 and ABJN , respectively, for N = 1, 2,∞, and

the red dots denote ABJMint
N,1 for N = 2, 3,∞. The red, gray, and green dotted lines show the large

N formulae (3.28) and (B.1) for these theories for all N ≥ 2. The black dotted line denotes the

numerical point 16
cT
≈ .71 above which λ2(B,2) = 0. The solid lines were computed with Λ = 43. To

show the level of convergence, the dashed lines are upper and lower bounds that were computed

with Λ = 19.

red, gray, blue, and green dots denote some exact values listed in table 4 for the interacting

sector of ABJMN,1, ABJMN,2, BLGk, and ABJN , respectively, where in all cases the dots

go right to left for increasing k,N . We also list the free theory ABJM1,1 as a magenta

dot.16 The red, gray, and green dotted lines show the large N values for these theories for

N ≥ 2 as given in (3.28) and (B.1).

There are several features of the BLGk plot that we would like to emphasize. For

k = 1, 2, which are the values where BLGk theory is dual to a product theory (see footnote

6), the OPE coefficients lie in bulk of the allowed region. This is expected, because as

described in [52], all product theories generically lie in the bulk region. On the other hand,

for k = 3, 4, which are the values where BLGk theory is dual to the interacting sector of

ABJM3,1 and ABJ2, respectively, the OPE coefficients are close to saturating the lower

bound. Lastly, for k > 4, where it is not known whether the BLGk theories have an M-

theory interpretation, the OPE coefficients of the BLGk theories interpolate between the

lower and upper bounds. The k → ∞ value is a little off from the upper bound, which is

likely explained by the fact that the upper bound numerics are not fully converged.

16ABJM1,2 is not a free theory, but has the same stress tensor four-point function as a free theory.
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Figure 2. Bounds on λ2(B,2) in terms of the λ2(A,+)0
OPE coefficients at the ABJM3,1 point with

16
cT
≈ 0.340. The orange shaded region is the allowed island, while the red dotted line shows the

exactly known value given in table 4 for λ2(B,2) in this theory. These bounds were computed with

Λ = 43.

The ABJ(M) plot also has two interesting features. We first note that the ABJ1
∼=

ABJMint
2,1 theory is close to the numerical point where λ2(B,2) = 0. In fact, this is the only

known interacting theory with λ2(B,2) = 0 [53], so we suspect that with infinite accuracy the

numerics would converge to this theory. We next note that all the ABJ(M) values seem to

saturate the lower bound up to numerical error, with the exception of ABJM2,2, which as

explained before has the same stress tensor four-point function as a product theory and so

must lie in the bulk.

The fact that λ2(B,2) for all unique ABJ(M) theories is close to saturating its lower

bound may at first suggest that inputing any value of this OPE coefficient (within the

bounds in figure 1) into the numerical bootstrap code could uniquely specify that theory.

To test this idea, in figure 2 we plot upper/lower bounds of λ2(B,2) as a function of λ2(A,+)0

at the ABJM3,1 point with 16
cT
≈ 0.340 as given in table 4. While the allowed region is

a small island, it does not shrink to a point. On the other hand, as the zoomed in plot

shows, when λ2(B,2) is at its extremal values then λ2(A,+)0
is uniquely fixed. This matches

the general numerical bootstrap expectation that all CFT data in the relevant four-point

function is fixed at the boundary of an allowed region. Since the extremal value is very

close to the exactly known value, as shown by the red dotted line, if we assume that it

would exactly saturate the bound at infinite precision, then we can read off the spectrum of

ABJM3,1 by looking at the functional α that extremizes λ2(B,2). Similar plots can be made

for all the other unique ABJ(M) theories, so that λ2(B,2) minimization gives the spectra of

all theories with holographic duals that saturate the lower bound.
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5 Operator spectrum from numerical bootstrap

We now report our numerical results for the scaling dimensions and OPE coefficients of low-

lying operators that appear in the OPE of OStress with itself. We are interested in theories

with holographic duals, and the lowest such known theories are ABJMint
2,1 and ABJ1 with

16
cT

= .75 and λ2(B,2) = 0. As we see from figure 1, our numerics are not completely converged

in that region, so we find that λ2(B,2) = 0 at the numerical point 16
cT
≈ .71. As such, in the

following plots we will show results for 16
cT
> .71.

Let us describe the (A, 0) unprotected operators that we expect to see in the spectrum.

At the cT →∞ generalized free field value we have the dimension j + 2 + 2n double trace

operators [OStressOStress]n,j of the schematic form

[OStressOStress]n,j = OStress�
n∂µ1 . . . ∂µjOStress + . . . , (5.1)

where n = 0, 1, 2, . . . and µi are space-time indices. The OPE coefficients of these oper-

ators are given in table 3. At infinite N , these are the only operators with nonzero OPE

coefficients. At large but finite N , there are also m-trace operators [OStress]
m
n,j , with m > 1,

whose scaling dimension ∆m
n,j and OPE coefficients λmn,j scale as [73]

∆m
n,j =j +m+ 2n+O(1/cT ) , (λmn,j)

2 = O(1/cmT ) , (5.2)

as well as single trace operators whose scaling dimension scales with N . For all ABJ(M)

theories, cT ∼ N3/2 [68, 74] to leading order in large N , so the OPE coefficient squared

of m-trace operators is suppressed as N−3m/2. Even for the lowest trace operator after

[OStress]
2
n,j , i.e. the triple trace operator [OStress]

3
n,j , this suppression is extremely strong

for even N ∼ 10. As a result, we do not expect the numerical bootstrap bounds to be

sensitive to these higher trace operators at the currently feasible levels of precision. The

situation is similar to high spin operators, which also have OPE coefficients that are highly

suppressed [75–77], and so one can restrict to a finite number of operators with spin below

some cutoff without affecting the numerics. It is the ability to ignore higher spin operator

which in fact makes the numerical bootstrap possible at all.

For small N , we would expect the OPE coefficients of these higher trace operators

to become large enough that they start to affect the numerics. However, in this regime

there is no clear distinction between higher trace and single trace operators because of

trace relations. Moreover, since the unprotected single trace operators are expected to

have large scaling dimensions at large N , it is really not clear whether at small N there

should be an operator of small dimension that is continuously connected to the, say, triple

trace operator at large N .

5.1 (A, 0) scaling dimensions

We can read off the scaling dimensions by looking at the zeros of the functional α(∆(A,0)j,n)

that minimizes λ2(B,2). We trust those scaling dimensions that remain stable as we increase

the number of derivatives Λ in the bootstrap numerics. We observed that ∆(A,0)j,n for
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Figure 3. The scaling dimensions ∆(A,0)j,n for the two lowest n = 0, 1 long operators with spins

j = 0, 2, 4 in terms of the stress-tensor coefficient cT , where the plot ranges from the generalized free

field theory limit cT →∞ to the numerical point 16
cT
≈ .71 where λ2(B,2) = 0. The red dots denote

the known values ∆
(n),GFFT
j = j + 2 + 2n for the generalized free field theory, while the red dotted

lines show the linear fit for large cT given in (5.3). These bounds were computed with Λ = 43.

j = 0, 2, 4 and n = 0, 1 are stable, and have values that in fact coincide with the upper

bounds that we can independently compute for these quantities.

In figure 3 we show our numerical results for ∆(A,0)j,n for n = 0, 1 and j = 0, 2, 4.

All three of these plots show the same qualitative features. As described above, we only

observe double trace operators, whose OPE coefficients are not suppressed at large N ,

i.e. small cT . We can gauge how accurate these plots are by comparing to the cT → ∞
generalized free field values given in (2.7). The plots seem to match the generalized free

field theory values quite accurately. For large cT , we find the following best fits

∆(A,0)0,0 ≈ 2.01− 109

cT
, ∆(A,0)2,0 ≈ 4.13− 49

cT
, ∆(A,0)4,0 ≈ 6.00− 33

cT
,

∆(A,0)0,1 ≈ 4.03− 261

cT
, ∆(A,0)2,1 ≈ 6.02− 145

cT
, ∆(A,0)4,1 ≈ 8.00− 111

cT
.

(5.3)

As we see from figure 3, these linear fits are only accurate for large cT .

5.2 (A, 0), (A, 2), and (A,+) OPE coefficients

Now that we have read off the low-lying scaling dimensions ∆(A,0)j,n from the extremal

functional α, we can compute low-lying OPE coefficients in the (A, 0), (A, 2), and (A,+)

multiplets by inputing ∆(A,0)j,n back into the bootstrap and computing upper and lower
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Figure 4. The λ2(A,2)j
and λ2(A,+)j

OPE coefficients with spins j = 1, 3, 5 and j = 0, 2, 4, re-

spectively, in terms of the stress-tensor coefficient cT , where the plot ranges from the generalized

free field theory limit cT → ∞ to the numerical point 16
cT
≈ .71 where λ2(B,2) = 0. The red dots

denotes denote the known values at the generalized free field theory points given in table 3, while

the red dotted lines show the linear fit for large cT given in (5.4). These bounds were computed

with Λ = 43.

bounds on a given OPE coefficient. Since in the previous sections we only computed

long multiplets with n = 0, 1, we will input the exact values for n = 0 and then bound

the continuum above the n = 1 value, so that we can only extract long multiplet OPE

coefficients with n = 0. We find that the upper and lower bounds coincide, which matches

our expectation that the extremal functional fixes these values. Note that in principle we

could have extracted the OPE coefficients directly from α following the algorithm of [36, 38],

but we found that this algorithm was very numerically unstable in our case.

In figure 4 we show our numerical results for λ2(A,2)j and λ2(A,+)j
with j = 1, 3, 5 and

j = 0, 2, 4, respectively. Just as with the ∆(A,0)j,n plots, these plots accurately match the

generalized free field theory values listed in table 3. For large cT , we find the following

best fits

λ2(A,+)0
≈ 7.11 +

49

cT
, λ2(A,+)2

≈ 13.37 +
51

cT
, λ2(A,+)4

≈ 19.65 +
52

cT
,

λ2(A,2)1 ≈ 9.75− 97

cT
, λ2(A,2)3 ≈ 16.21− 102

cT
, λ2(A,2)5 ≈ 22.57− 104

cT
.

(5.4)

As we see from figure 4, these linear fits seem to be accurate for all values of cT .

In figure 5 we show our numerical results for λ2(A,0)j,n with j = 0, 2, 4 and n = 0. Just

as with the ∆(A,0)j,n plots, these plots accurately match the generalized free field theory

values listed in table 3. For large cT , we find the following best fits

λ2(A,0)0,0 ≈ 0.91 +
35

cT
, λ2(A,0)2,0 ≈ 2.96− 15

cT
, λ2(A,0)4,0 ≈ 4.65− 23

cT
. (5.5)

As we see from figure 5, these linear fits are only accurate for very large cT .

6 Discussion

There are two primary results in this work. Analytically, we have computed all half and

quarter-BPS operator OPE coefficients that appear in the stress tensor four point function
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Figure 5. The λ2(A,0) OPE coefficients for the three lowest spins in terms of the stress-tensor

coefficient cT , where the plot ranges from the generalized free field theory limit cT → ∞ to the

numerical point 16
cT
≈ .71 where λ2(B,2) = 0. The red dots denotes denote the known values at the

generalized free field theory points given in table 3, while the red dotted lines show the linear fit

for large cT given in (5.5). These bounds were computed with Λ = 43.

for all known N = 8 SCFTs. Numerically, we have used the fact that these OPE coefficients

for theories with M-theory duals saturate the numerical bootstrap bounds at large cT to

extract all the low lying CFT data that appears in the stress tensor four point function.

For smaller cT , the numerics are not yet precise enough to determine which holographic

theory saturates the bound, but we conjecture that at least one of the holographic theories

does. These results are the first examples of scaling dimensions of unprotected operators

and OPE coefficients in a large N theory with an M-theory dual that have been computed

for all values of N .

One notable feature of our numerical results is that we do not observe unprotected

triple (or higher) trace operators in the spectrum, even though they should appear in

OStress×OStress for finite cT , i.e. finite N . We do not expect our numerics to be sensitive to

these operators, because their OPE coefficients are highly suppressed, e.g. the triple trace

operator with dimension ≈ 3 at large N has an OPE coefficient squared that is suppressed

as N−9/2. These operators are thus analogous to high spin operators, which also do not

effect the numerical bootstrap because their OPE coefficients are highly suppressed [75–77].

However, with more precise numerics, we expect these operators to become visible, and it

would be interesting to explore this point more in the future. It would also be interesting

to observe whether the analogous triple trace operators also do not appear in the numerical

bootstrap of other theories with large N duals, such as the N = 4 superconfromal bootstrap

in d = 4 [78, 79].

Another notable feature of our numerical results is that the values of the squared OPE

coefficients of the double trace semi-short multiplets plotted in figure 4 are approximately
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linear functions in 1/cT for the entire range of cT . It would be interesting to find an

explanation for this almost linearity. From the bulk point of view, it implies that the only

significant corrections to the cT =∞ values come from a tree level computation in the bulk.

There are several new directions that could strengthen our conjecture that only certain

N = 8 theories with holographic duals saturate the numerical lower bounds. From the

numerical perspective, it would be useful to impose additional assumptions that would

automatically exclude the theories that do not saturate the lower bounds. For instance, in

order to exclude the BLGk theories with k > 4, one can apply the bootstrap to a mixed

correlator between OStress and the half BPS multiplet in so(8) irrep [0030]. As one can

check from the superconformal index, this latter operator does not exist for BLGk with

k > 4, while it does for generic ABJ(M) theories. Another feature of this mixed correlator

is that the free multiplet appears in it, so by setting its OPE coefficient to zero one could

also exclude the free theory.

From the analytic perspective, it would be useful to include the non-perturbative cor-

rections in 1/N to the results presented in this paper. These non-perturbative corrections

have already been calculated for the S3 free energy in many cases [60, 68, 70, 80–89], but

to extract the OPE coefficients from these results we would need an expression for these

corrections as a smooth function of m. With these non-perturbative corrections included,

we would have exact values of these OPE coefficients also for N = 6 ABJ(M) theories

with gauge group U(N)k ×U(M)−k, so that we could see how these quantities interpolate

between the N,M →∞ and fixed k M-theory limit, the N,M, k →∞ and fixed N/k Type

IIA string theory limit, and the N, k →∞ and fixed M higher spin theory [90, 91] limit.

Lastly, it would also be interesting to calculate more BPS OPE coefficients in ABJ(M)

theory in a large N expansion using the Fermi gas approach [70]. For half and quarter-

BPS operators that appear in n-point functions of the stress tensor, this could be done

by taking more derivatives of the free energy as a function of the mass parameter m. For

instance, three new OPE coefficients, λ
(B,2)
(B,2),(B,2), λ

(B,+)
(B,+),(B,+), and λ

(B,2)
(B,+),(B,+),

17 appear

in the 6-point function, and crossing of the projection of this 6-point function to the 1d

theory supplies two new constraints.18 Thus, by taking 6 derivatives of the mass deformed

S3 partition function we can compute the integrated 6-point function in the 1d theory,

and thereby determine all these OPE coefficients. For BPS operators that do not appear

in any n-point functions of the stress tensor, such as operators in the [00a0] irrep for odd

a, we could still express their OPE coefficients as matrix integrals using the 1d methods

of [49, 58, 92]. These matrix integrals could then be computed as expectation values of

n-body operators in the Fermi gas, along the lines of [93].
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A Explicit formulas for In,k

These can be calculated exactly using the method from [94] by choosing an appropriate

contour in the complex plane, applying Cauchy’s theorem, and summing over residues.

The integrals of interest to us are determined to be

I2,k =



(−1)
k−1

2

π
+

k−1∑
s=1

(−1)s+1k − 2s

2k2
tan

[πs
k

]2
if k is odd ,

−(−1)
k
2

π2k
+

k−1∑
s=1
s 6=k/2

(−1)s+1 (k − 2s)2

4k3
tan

[πs
k

]2
if k is even ,

I4,k =



(−1)
k+1

2 (3k2 − 8)

6π
+

k−1∑
s=1

(−1)s
k − 2s

2k2
tan

[πs
k

]4
if k is odd ,

(−1)
k
2 (k2 − 8)

6π2k
+

k−1∑
s=1
s 6=k/2

(−1)s
(k − 2s)2

4k3
tan

[πs
k

]4
if k is even ,

I6,k =



(−1)
k−1

2 (184− 120k2 + 25k4)

120π
+

k−1∑
s=1

(−1)s+1k − 2s

2k2
tan

[πs
k

]6
if k is odd ,

−(−1)
k
2 (552− 120k2 + 7k4)

360π2k
+

k−1∑
s=1
s 6=k/2

(−1)s+1 (k − 2s)2

4k3
tan

[πs
k

]6
if k is even .

(A.1)

The quantities I2,k and I4,k had already been determined in [52].

B Large N formulae for λ2
(B,2)

(
λ
ABJMN,1

(B,2)

)2
=

(
32

3

)(
(112 + 45π2)Ai[(N − 3/8)(π2/2)1/3]

+ 8(9 + 8π)(2π)2/3Ai′[(N − 3/8)(π2/2)1/3]
)−2

×
[
(−94976 + 8(3373 + 1080N + 4800N2 + 2560N3)π2 + 3465π4)

×Ai
[
(N − 3/8)(π2/2)1/3

]2
+ 16(2π)2/3(−5712− 1664N + (981 + 872N)π2)

×Ai
[
(N − 3/8)(π2/2)1/3

]
Ai′
[
(N − 3/8)(π2/2)1/3

]
− 192(9 + 8N)2(2π2)1/3Ai′

[
(N − 3/8)(π2/2)1/3

]2 ]
,
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(
λ
ABJMN,2

(B,2)

)2
=

(
32

3

)(
7Ai[(N − 1/4)π2/3] + 4(1 + 2N)π2/3Ai′[(N − 1/4)π2/3]

)−2
×
[
(−371 + (58 + 120N2 + 160N3)π2)Ai

[
(N − 1/4)π2/3

]2
+ 8π2/3(−43− 26N + (4 + 8N)π2)

×Ai
[
(N − 1/4)π2/3

]
Ai′
[
(N − 1/4)π2/3

]
−24(1 + 2N)2π4/3Ai′

[
(N − 1/4)π2/3

]2]
,(

λABJN
(B,2)

)2
=

(
32

3

)(
7Ai[Nπ2/3] + 2(3 + 4N)π2/3Ai′[Nπ2/3]

)−2
×
[
(−371 + (68 + 90N + 240N2 + 160N3)π2)Ai

[
Nπ2/3

]2
+ 4π2/3(−99− 52N + 4(3 + 4N)π2)Ai

[
Nπ2/3

]
Ai′
[
Nπ2/3

]
− 6(3 + 4N)2π4/3Ai′

[
Nπ2/3

]2 ]
. (B.1)
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