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1 Introduction

The information loss paradox for black holes can be satisfactorily addressed in String

Theory relying on the Fuzzball proposal [1–7]. In this framework, black hole micro-states

are represented by smooth horizon-less geometries with the same asymptotic behaviour at

large distance — and thus the same ‘charges’ — as the putative black hole. Enormous

success has been achieved in counting the micro-states for extremal 3- and 4-charged black
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hole states in five and four dimensions respectively [8–12]. Identifying the corresponding

geometries in the supergravity regime has proved to be much harder [13–33]. The micro-

state geometries found so far cannot fully account for the entropy of ‘large’ 3-charge black

holes in five dimensions, let alone the case of 4-charged black holes in four dimensions.

More progress can be achieved by considering 2-charge systems in string theory. Four

and five-dimensional ‘small’ black-holes with two charges can be constructed in string the-

ory in terms of closed oriented fundamental strings carrying Kaluza-Klein momentum [34]

(see [35–40] for studies of the dynamical properties of these systems). These black holes are

not solution of Einstein gravity but of its higher derivative extension, so their horizons are

of stringy size. The stringy micro-states can be counted exactly and put in correspondence

with regular geometries associated to the U-duality equivalent 2-charge system realised

in terms of a bound-state of D1- and D5-branes. In this framework one can find smooth

horizonless geometries of Einstein gravity in six dimensions characterised by a string profile

function that incarnate the fuzzball paradigm in a fully successful way [5–7]. This system

will be the main subject of our investigations here.

In this paper we explore the fuzzball geometries by scattering massless closed string

states from the D1/D5 brane system. We will follow closely the approach pioneered by Am-

ati, Ciafaloni and Veneziano for high-energy string scattering in the Regge regime [41–44]

that has later on been adapted to the study of closed-string scattering off D-branes [45–52].

We present three different descriptions of the scattering process. First we consider the

geodetic motion of a massless particle in the fuzzball gravitational background. Second,

we consider the ‘classical’ wave scattering in the fuzzball geometry. Finally, we study the

scattering of massless closed string states off the 2-charge D-brane bound-state.

In the regime where the impact parameter b is large compared to the typical scale Lp of

the geometry (‘Schwarzschild radius’), the quasi-elastic scattering process is characterised

by a small deflection angle θ and it is dominated by soft processes in which a very large

number of nearly on-shell gravitons are exchanged between the high-energy string state

and the brane. The scattering is described by ‘ladder’ diagrams whose elementary block

is the tree-level (disk) string-brane scattering amplitude i.e. the closed string two-point

amplitude on the disk [45–52]. The deflection angle can be extracted from the phase shift

δ(E, b) describing the transition from the incoming to the outgoing asymptotic states1

e2i δ(E,b) = 1 +
i Â(E, b)

2E
(1.1)

with Â(E, b) the Fourier transform of the string theory scattering amplitude. Alternatively,

the phase shift δ(E, b) can be computed by comparing the solution of the field equation in

the gravitational background at plus and minus infinite time.

For closed-string scattering off a stack of Dp-branes, the relevant amplitude is a disk

with two closed-string vertices in the bulk and no open-string insertions on the bound-

1A general scattering process with incoming state |i〉 and outgoing state 〈f | is described by the amplitude

Tfi =
Afi

∏
n
l=1

√
2El

with El denoting the energies of both incoming and outgoing states and iTfi = 〈f |(S−1)|i〉
the T -matrix element. In the case of elastic scattering of a single particle from a target one has a single

incoming and outgoing state with the same energy E, so Tfi =
Afi

2E
.
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ary [45–52]. For scattering off D-brane bound-states, twisted open string insertions on the

boundary are required to bind D1- and D5-branes [21, 22, 31]. To be specific we will con-

sider high-energy graviton scattering in the presence of two open-string fermionic moduli

living at the D1-D5 intersection. The string result will be shown to be in perfect agree-

ment with both geodetic deflection and classical wave scattering in the fuzzball geometry.

We interpret this as a first step towards giving support to the fuzzball proposal at the

dynamical level.

The plan of the paper is as follows. In section 2 we review the fuzzball geometry for a

circular string profile. In section 3, after reviewing the geodetic motion of massless probes

of Dp-branes, we study the motion in the fuzzball background. Contrary to the case of

a single stack of branes, the geometry even in the simple case of a circular fuzzball has

reduced rotational symmetry, and generically one cannot integrate the geodetic equation

elementarily. Yet for motion in the 2-plane of the circle or in the orthogonal 2-plane

the geodetic equations can be solved and the deflection angle computed. Remarkably,

for special choices of the kinematics these geodesics exhibit a peculiar behaviour: they

get asymptotically trapped into ‘circular’ orbits. These correspond to ‘critical’ impact

parameters, at which the massless probe is captured by the fuzzball. The fuzzball effectively

behaves as a black hole for the selected channel. This behaviour is consistent with the idea

that a black hole can be depicted as an ensemble of a large number of fuzzballs with all

possible orientations, so that the probe will always find a large number of trapping fuzzball

bits.2 In section 4 we will study the ‘classical’ scattering of scalar waves governed by the

Klein-Gordon equation in the fuzzball geometry, determine the phase-shift and compute

the deflection angle as the derivative of the former with respect to the impact parameter.

We show that a wave carrying only one of the two independent angular momenta turns out

to ‘localise’ in one of the two 2-planes. Once again we compute the deflection angle and

identify the critical impact parameter in this approach. Finally in section 5 we compute the

corresponding string amplitude on a disk with mixed boundary condition and find perfect

agreement with the other two independent approaches.

Section 6 contains our conclusions and an outlook.

2 The fuzzball geometry

In order to construct the D1/D5 fuzzball, we start with the D1/D5 configuration

0 1 2 3 4 5 6 7 8 9

D1 − · · · · − · · · ·
D5 − · · · · − − − − −

(2.1)

where a line, respectively a dot, denote a Neumann (N), respectively a Dirichlet (D),

direction. We will use the coordinates (t, z) for the two NN directions (X0, X5), ~x =

(X1, . . . X4) for the ND directions ~y = (X6, . . . X9) for the remaining DD directions. We

compactify z and ~y.

2We thank Guillaume Bossard for suggesting us this picture.
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The general supersymmetric solution sharing with the D1/D5 system above the asymp-

totic geometry is characterised by a metric of the form

ds2fuzz = −(H1H5)
−1/2[(dt+ ~A·d~x)2 − (dz + ~B·d~x)2] + (H1H5)

1/2d~x·d~x+

(
H1

H5

)1/2

dy·dy
(2.2)

The 1-forms A1 = ~A·d~x and B1 = ~B·d~x are related by Hodge duality

dA1 = ∗4dB1 (2.3)

and Hi are harmonic functions of the ~x variables. In particular, regular solutions can be

constructed in this way by taking

H5(~x) = 1 +
L2
5

λ

∫ λ

0
dv

1

|~x− ~F (v)|2
(2.4)

H1(~x) = 1 +
L2
5

λ

∫ λ

0
dv

| ~̇F (v)|2

|~x− ~F (v)|2
(2.5)

where ~F (v) is the so-called profile function with values in R
4. The 1-form A1 has

components

~A =
L2
5

λ

∫ λ

0
dv

~̇F (v)

|~x− ~F (v)|2
(2.6)

We will focus on the circular profile in the (1,2) plane:

~F (v) = a

(
cos

2πv

λ
, sin

2πv

λ
, 0, 0

)
(2.7)

with λ = 2πaL5/L1. In order to compute the integrals, it is convenient to change coordi-

nates and set

x1 + ix2 =
√
ρ2 + a2 sinϑeiϕ , x3 + ix4 = ρ cosϑeiψ (2.8)

In this coordinates the metric of a circular D1/D5 fuzzball reads

ds2fuzz = H−1
[
−(dt+ ωϕdϕ)

2 + (dz + ωψdψ)
2
]

(2.9)

+H

[
(ρ2+a2 cos2 ϑ)

(
dρ2

ρ2+a2
+dϑ2

)
+ρ2 cos2 ϑ dψ2+(ρ2+a2) sin2 ϑdϕ2

]

where H =
√
H1H5, with

Hi = 1 +
L2
i

ρ2 + a2 cos2 ϑ
,

ωϕ =
aL1L5 sin

2 ϑ

ρ2 + a2 cos2 ϑ
, ωψ =

aL1L5 cos
2 ϑ

ρ2 + a2 cos2 ϑ
(2.10)

It has been shown that, despite the apparent singularities of Hi along the string profile,

the metrics defined in this way are regular everywhere.
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3 Geodetic motion

In this section we study the geodetic motion of massless neutral particles in the fuzzball

geometry. We start by reviewing the geodetic motion in the background of Dp-branes,

paying particular attention to the D5-brane case for its relevance to the more interesting

fuzzball case, analysed afterwards. We will also identify the critical impact parameters at

which even massless probes get trapped in the gravitational background of the fuzzball.

3.1 Geodesics in the Dp-brane case

We consider first the scattering from a stack of Dp-branes. The metric in the scattering

plane transverse to the Dp-branes can be parametrised by the distance r from the stack

and an angle θ. The metric in this plane takes the form

ds2 = −H− 1
2 (r)dt2 +H

1
2 (r)(dr2 + r2dθ2) (3.1)

The system, governed by L = 1
2
ds2

dτ2
, admits two conserved quantities, energy and angular

momentum, associated to invariance under the shifts of the coordinates t and θ:

− E =
∂L
∂ṫ

= −H− 1
2 ṫ , J =

∂L
∂θ̇

= H
1
2 r2θ̇ (3.2)

where dots indicate derivatives w.r.t. the affine parameter τ . In terms of these quantities,

the geodesic equation for a massless particle, ds2 = 0, becomes

ṙ2 +
J2

Hr2
− E2H = 0 (3.3)

Writing ṙ = θ̇ dr
dθ = J

βr2
dr
dθ one finds

dθ = − dr√
f(r)

(3.4)

where

f(r) =
H(r)r4

b2
− r2 (3.5)

and b = J/E is the impact parameter. We assume that the incoming particle arrives from

the direction θ = 0, thus the sign of the square root is minus because when r decreases θ

increases. Eq. (3.4) can be integrated from r = ∞ up to r∗, the largest zero of f(r). If r∗ is

a simple zero of f(r) the integral is finite, the particle reaches r∗, where the radial velocity

vanishes ṙ(r∗) = 0, and bounces back to infinity following eq. (3.4) with the opposite sign.

We will refer to r∗ as the turning point. If r∗ is a higher-order zero of f(r) the integral

diverge and the particle gets trapped, looping around a limiting cycle. We will discuss this

possibility later on.

Around the turning point the trajectory is symmetric and the total deflection angle is

given by

∆θ = 2θ(r∗)− π (3.6)

– 5 –
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where

θ∗ = θ(r∗) = −
∫ r∗

+∞
drf(r)−

1
2 = r∗

∫ 1

0

dξ

ξ2
f

(
r∗
ξ

)− 1
2

(3.7)

where in the second line we used the variable ξ = r∗/r. We are interested in the large b

limit. In this limit, assuming that H(r) ≈ 1 +O(1/rn), one finds

f(r) =
r4

b2
− r2 +

fn
b2 rn−4

+ . . . (3.8)

so that the turning radius is given by

r∗ = b

(
1− fn

2 bn
+ . . .

)
(3.9)

and the turning angle reads

θ∗ =

∫ 1

0

dξ√
1− ξ2

[
1 +

1

2

fn
bn

1− ξn

1− ξ2
+ . . .

]
=

π

2
+

√
π Γ

(
n+1
2

)

2Γ
(
n
2

) fn
bn

+ . . . (3.10)

leading to

∆θ =

√
π Γ

(
n+1
2

)

Γ
(
n
2

) fn
bn

(3.11)

In the specific case of a Dp-brane n = 7− p and

H(r) = 1 +

(
Lp

r

)7−p

(3.12)

with L7−p
p = gsNp(2πα

′)(7−p)/2/Ω8−p. The deflection angle becomes [48, 50]

∆θDp =
√
π
Γ(8−p

2 )

Γ(7−p
2 )

(
Lp

b

)7−p

+ . . . (3.13)

where dots denote subleading terms in Lp/b.

3.2 Geodesics in the D5-brane case

In preparation for the D1/D5 fuzzball, we will now consider in some more detail the case

of scattering from a stack of D5-branes. An exact formula for the scattering angle ∆θ can

be obtained. In this case

H(r) = 1 +
L2
5

r2
(3.14)

and the turning point equation f(r) = 0 is solved by

r∗ =
√
b2 − L2

5 (3.15)

The turning point r∗ exists for b ≥ bcrit = L5. The deflection angle is given by (3.7)–(3.6)

leading to the exact formula

∆θD5 = −π +
2 b

r∗

∫ 1

0

dξ√
1− ξ2

= π

[
b√

b2 − L2
5

− 1

]
(3.16)

We notice that for b near bcrit = L5, ∆θ → ∞, i.e. the particle trajectory describes an

in-falling spiral around the brane stack.

– 6 –
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3.3 Geodesics in the D1/D5 fuzzball

The metric (2.9) of a circular fuzzball has no explicit dependence on t, z, ϕ and ψ. The

system, governed by L = 1
2
ds2

dτ2
, admits then four commuting isometries and as many

invariants for the geodetic motion, viz.

−E =
∂L
∂ṫ

= − 1

H

(
ṫ+ ωϕϕ̇

)

P =
∂L
∂ż

=
1

H

(
ż + ωψψ̇

)

Jϕ =
∂L
∂ϕ̇

= −ωϕ

H
(ṫ+ ωϕϕ̇) +H(ρ2 + a2) sin2 ϑϕ̇

Jψ =
∂L
∂ψ̇

=
ωψ

H
(ż + ωψψ̇) +Hρ2 cos2 ϑψ̇ (3.17)

that allow to determine the corresponding ‘velocities’

ϕ̇ =
Jϕ + ωϕE

H(ρ2 + a2) sin2 ϑ
ψ̇ =

Jψ − ωψP

Hρ2 cos2 ϑ

ṫ = EH − ωϕ ϕ̇ ż = P H − ωψψ̇ (3.18)

The lightlike geodesic equation ds2 = 0 becomes:

H(P 2 − E2) +H(ρ2+a2 cos2 ϑ)

(
ρ̇2

ρ2+a2
+ϑ̇2

)
+
(Jψ − ωψP )2

Hρ2 cos2 ϑ
+

(Jϕ + ωϕE)2

H(ρ2 + a2) sin2 ϑ
= 0

(3.19)

Despite the reduced isometry, U(1)ψ × U(1)ϕ ⊂ SO(4), the system is separable3 [53–56].

In order to expose this property, one introduces the conjugate momenta

Pρ =
∂L
∂ρ̇

=
H(ρ2+a2 cos2 ϑ)ρ̇

ρ2+a2

Pϑ =
∂L
∂ϑ̇

= H(ρ2+a2 cos2 ϑ)ϑ̇ (3.20)

Expressing ρ̇ and ϑ̇ in terms of Pρ and Pϑ, the geodesic equation (3.19) can be written in

the form

H2(ρ2+a2 cos2 ϑ)(P 2 − E2) + (ρ2+a2)P 2
ρ + P 2

ϑ (3.21)

+
(ρ2+a2 cos2 ϑ)(Jψ − ωψP )2

ρ2 cos2 ϑ
+
(ρ2+a2 − a2 sin2 ϑ)(Jϕ + ωϕE)2

(ρ2 + a2) sin2 ϑ
= 0

that can be separated into two equations

λ = P 2
ϑ +

J2
ψ

cos2 ϑ
+

J2
ϕ

sin2 ϑ
− a2 cos2 ϑ(E2 − P 2) (3.22)

−λ = (ρ2+a2)P 2
ρ +

(PL1L5−aJψ)
2

ρ2
− (EL1L5−aJϕ)

2

ρ2 + a2
− (ρ2+L2

1+L2
5)(E

2−P 2)

3We thank Yuri Chervonyi and Oleg Lunin for drawing these results to our attention.
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where λ is a separation constant, that can be conveniently expressed as λ = K2 − a2(E2 −
P 2). The geodesics in the (ϑ, ρ) plane is described by the equation

dϑ

dρ
=

ϑ̇

ρ̇
=

Pϑ(ϑ; I)

(ρ2 + a2)Pρ(ρ; I)
(3.23)

with I = {K,E, P, Jψ, Jϕ} collectively denoting the constants of motion and

Pϑ(ϑ; I)
2 = K2 − a2 sin2 ϑ(E2 − P 2)−

J2
ψ

cos2 ϑ
−

J2
ϕ

sin2 ϑ
(3.24)

Pρ(ρ; I)
2 =

(
1+

L2
1+L2

5

ρ2+a2

)
(E2−P 2)−(PL1L5−aJψ)

2

ρ2(ρ2+a2)
+
(EL1L5−aJϕ)

2

(ρ2+a2)2
− K2

ρ2+a2

The general solution of (3.23) requires the inversion of (incomplete) elliptic integrals that

is beyond the scope of the present investigation.

Since the system cannot be integrated elementarily, for simplicity and illustrative pur-

poses, we focus on the case of geodesics at constant ϑ = ϑ0, i.e. ϑ̇ = 0 = Pϑ. Equation (3.24)

yields

K2 = a2 sin2 ϑ0(E
2 − P 2) +

J2
ψ

cos2 ϑ0
+

J2
ϕ

sin2 ϑ0
(3.25)

This fixes K in terms of the other conserved quantities and the incident angle ϑ0.

For simplicity, in the following, we will restrict our attention on these two choices:

ϑ0 = 0 Jϕ = ωϕ = 0 K2 = J2
ψ

ϑ0 =
π

2
Jψ = ωψ = 0 K2 = J2

ϕ + a2(E2 − P 2) (3.26)

3.3.1 Geodesics in the plane ϑ = 0

In this plane the light-like geodesic equation ds2 = 0 becomes:

ρ̇2 = E2 − P 2 − (Jψ − ωψP )2

H2ρ2
(3.27)

To find ψ as a function of ρ we write

ρ̇ = ψ̇
dρ

dψ
=

Jψ − ωψP

Hρ2
dρ

dψ
(3.28)

leading to

dρ

dψ
= −f(ρ)

1
2 = −



(
ρ2 + a2 + L2

1

) (
ρ2 + a2 + L2

5

)

b2
(
ρ2 + a2 − a v L1 L5

bψ

)2 ρ4 − ρ2




1
2

(3.29)

with

v =
P

E
, bψ =

Jψ
E

, b =
bψ√
1− v2

(3.30)

At large ρ one finds

f(ρ) =
ρ4

b2
− ρ2 +

f2 ρ
2

b2
+ . . . (3.31)

– 8 –
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with

f2 =

(
L2
1 + L2

5 + 2
a vL1L5

bψ

)
(3.32)

Following the same steps as before one finds a turning point located at

ρ∗ = b

(
1− f2

2 b2

)
(3.33)

and the deflection angle

∆ψfuzz =
π(1− v2)

2b2ψ

(
L2
1 + L2

5 + 2
a vL1L5

bψ

)
+ . . . (3.34)

3.3.2 Geodesics in the plane ϑ = π/2

In this plane the lightlike geodesic equation ds2 = 0 becomes:

H(P 2 − E2) +
H ρ2 ρ̇2

ρ2 + a2
+

(Jϕ + ωϕE)2

H(ρ2 + a2)
= 0 (3.35)

To find ϕ as a function of ρ we write

ρ̇ = ϕ̇
dρ

dϕ
=

Jϕ + ωϕE

H(ρ2 + a2)

dρ

dϕ
(3.36)

leading to

dρ

dϕ
= −f(ρ)

1
2 = −




(
1 +

L2
1

ρ2

)(
1 +

L2
5

ρ2

)(
1 + a2

ρ2

)3

b2
(
1 + aL1L5

bϕ ρ2

)2 ρ4 − ρ2
(
1 +

a2

ρ2

)2




1
2

(3.37)

with

v =
P

E
, bϕ =

Jϕ
E

, b =
bϕ√
1− v2

(3.38)

At large ρ we find

f(ρ) =
ρ4

b2
− ρ2 +

f2 ρ
2

b2
− 2 a2 + . . . (3.39)

with

f2 =

(
L2
1 + L2

5 − 2
aL1L5

bϕ
+ 3 a2

)
(3.40)

Now the turning point is located at

ρ∗ = b

(
1 +

2a2 − f2
2 b2

+ . . .

)
(3.41)

The turning angle becomes

ϕ(ρ∗) =

∫ 1

0
dξ

(
ρ2∗
b2

− ξ2 +
f2 ξ

2

b2
− 2a2 ξ4

ρ2∗

)− 1
2

=

∫ 1

0

dξ√
1− ξ2

[
1 +

f2 − 2a2(1 + ξ2)

2 b2
+ . . .

]

=
π

2
+

π

4b2
(f2 − 3 a2) + . . . (3.42)

leading to

∆ϕfuzz =
π(1− v2)

2b2ϕ

(
L2
1 + L2

5 − 2
aL1L5

bϕ

)
+ . . . (3.43)

– 9 –
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3.3.3 Critical impact parameter

So far we have considered scattering at such a large impact parameter b that the particle

has enough kinetic energy to escape from the gravitational potential without hitting the

target. In this limit, a turning point is found at ρ∗ ≈ b > 0. Indeed at ρ = ρ∗, ρ̇ = 0 = Pρ

and a finite deflection is observed. In general, a turning point exists if the largest real

zero of the numerator of P 2
ρ is a simple root. On the other hand, a multiple such zero,

where f(ρ∗) = 0 = f ′(ρ∗), signals a limiting cycle along which even a massless particle gets

asymptotically trapped.

In the following we will show that for small enough bϕ/ψ a critical value of the internal

momentum P exists such that the null geodesic is trapped. This may sound somewhat

surprising since the fuzzball geometry is regular, unlike Dp-branes or black holes, and

we do not expect that massless particles or light get captured in a regular gravitational

background. Indeed, as we will see, for generic values of the constants of motion a turning

point always exists for any choice of the impact parameter different from the critical value.

We will restrict our attention on the two special cases ϑ = 0, π/2 and in order to

further simplify our analysis we set L1 = L5 = L and take

P =
aJψ
L2

(3.44)

in the following. For this choice P 2
ρ becomes a quadratic polynomial in ρ2 up to a nowhere

vanishing function and the critical impact parameter bcrit can be explicitly determined.

Case ϑ = 0. A turning point ρ∗ in the geodesics at ϑ = 0 exists if and only if the largest

positive zero of the function f(ρ)

f(ρ) =

(
ρ2 + a2 + L2

)2

b2
(
ρ2 + a2 − a v L2

b
√
1−v2

)2 ρ
4 − ρ2 (3.45)

is simple. We notice that for generic values of v, the function f(ρ) behaves as

f(ρ) ≈
{

ρ4

b2
> 0 for ρ → ∞

−ρ2 < 0 for ρ → 0
(3.46)

Consequently, f(ρ) should have a zero ρ∗ on the positive real axis and therefore a turning

point exists for generic values of v. On the other hand for our choice PL2 = aJψ i.e.

v =

(
1 +

L4

a2b2

)− 1
2

(3.47)

the function f(ρ) is positive both for ρ large or small so the existence of a zero cannot be

taken for granted. The turning point equation reduces to

ρ2∗ − b ρ∗ + a2 + L2 = 0 (3.48)

which has no solutions if b < bcrit with

bcrit = 2
√

L2 + a2 (3.49)
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At b = bcrit the massless probe reaches asymptotically a ‘circular’ orbit

dψ = − 2ρcrit dρ

ρ2 − ρ2crit
(3.50)

at a radius ρcrit = bcrit/2, and winds around it an infinite number of times, thus getting

trapped for ever.

Below bcrit the probe can reach ρ = 0, pass through and escape to infinity, possibly

after looping few times.

Case ϑ = π/2. A turning point ρ∗ in the geodesics at ϑ = π
2 exists if and only if, the

largest positive zero of the function f(ρ)

f(ρ) =

(
ρ2 + a2

)2

ρ2



(
ρ2 + L2

)2 (
ρ2 + a2

)

b2
(
ρ2 + aL2

b
√
1−v2

)2 − 1


 (3.51)

is simple. For our choice v = 0, the turning point equation becomes

ρ4∗ + (2L2+a2−b2ϕ)ρ
2
∗ + L2(L2 + 2a2 − 2abϕ) = 0 (3.52)

whose zeroes are given by

ρ2± =
b2ϕ−2L2−a2

2
±

√
∆

2
with ∆ = (bϕ−a)2(bϕ+a+2L)(bϕ−a+2L) (3.53)

The turning point exists when ∆ ≥ 0 and ρ2+ ≥ 0 thus the critical impact parameter can

be obtained when ∆ = 0 and ρ2+ ≥ 0 or ∆ ≥ 0 and ρ2+ = 0. The solutions are4

b−crit = −2L− a b+crit =

{
L2

2a + a for L ≤ 2a

2L− a for L ≥ 2a
(3.54)

As in the ϑ = 0 case, when b = b±crit the massless probe gets trapped in an asymptotic

‘circular’ orbit. In between these values of b the particle can reach ρ = 0, that corresponds

to the circular profile, and escape to infinity, possibly after looping few times.

4 Classical scalar wave scattering

In this section we consider the scattering of a classical wave in the fuzzball background.

Again we start by considering the Dp-brane case with particular attention on the D5-

brane case. We compute the scattering matrix, the phase shift and the deflection angles

for the harmonic modes building the incoming plane wave. To each harmonic mode we can

associated a classical geodesics. In particular, we will show that a wave carrying only one

of the two independent angular momenta turns out to ‘localise’ in one of the two 2-planes

with a deflection angle that matches its particle analog.

4bϕ < 0 means Jϕ < 0, i.e. the probe is counter-rotating with respect to the fuzzball.
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4.1 The scattering amplitude

The geodetic motion of a massless spin-less particle on a gravitational background can be

alternatively described by a massless scalar waves Φ(x, t) satisfying the Klein-Gordon (KG)

equation

�Φ(x, t) =
1√
g
∂µ [

√
g gµν ∂νΦ(x, t)] = 0 (4.1)

Elastic scattering at energy E from a point-like stationary target located at the origin is

described by a scalar wave of the form5

Φ(x, t) = e−iE tΦ(x) (4.2)

and the KG equation becomes

[
∇2

flat + E2 − Ûeff

]
Φ(x) = 0 (4.3)

with ∇2
flat the Laplacian computed with the flat space metric

ds2
Rd = dr2 + r2(dθ2 + sin2 θ dΩd−2) (4.4)

and Ûeff = ∇2 − ∇2
flat a differential operator encoding the details of the gravitational

potential. For Dp-branes, Ûeff depends only on r and derivative thereof. For this reason,

we will denote it by Ûeff(r). Using rotational symmetry, it is convenient to expand the

scalar wave in spherical harmonics

Φ(x) =
∞∑

ℓ=0

Rℓ(r)C
α
ℓ (cos θ) (4.5)

with

α =
d− 2

2
(4.6)

and Cα
ℓ (x) the Gegenbauer polynomials (see appendix A for details) satisfying

∇2
S2α+1 C

α
ℓ (cos θ) = −ℓ(ℓ+ 2α)Cα

ℓ (cos θ) (4.7)

The ℓ-component Rℓ(r) satisfies the radial wave equation

[
1

r2α+1
∂r(r

2α+1 ∂r)−
ℓ(ℓ+ 2α)

r2
+ E2 − Ûeff(r)

]
Rℓ(r) = 0 (4.8)

We decompose the solution into a sum of a free incoming Φin(x) and a scattered wave

Φout(x)

Φ(x) = Φin(x) + Φout(x) =
∞∑

ℓ=0

[Rin,ℓ(r) +Rout,ℓ(r)] C
α
ℓ (cos θ) (4.9)

5In a classical relativistic process such as the one under consideration, one should put ω = E/~. We

choose units such that ~ = c = 1.
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with the incoming radial harmonics being solutions of the D’Alambertian equation in flat

space
[

1

r2α+1
∂r(r

2α+1 ∂r)−
ℓ(ℓ+ 2α)

r2
+ E2

]
Rin,ℓ(r) = 0 (4.10)

The Klein-Gordon equation (4.3) can be conveniently written in the equivalent integral form

Rℓ(r) = Rin,ℓ(r) +

∫ ∞

0
G1

ℓ (r, r
′) Ûeff(r

′)Rℓ(r
′) r′ 2α+1dr′ (4.11)

with Ga
ℓ (r, r

′), a = 1, 2, denoting the flat-space (advanced/retarded) radial Green functions

that satisfy
[

1

r2α+1
∂r(r

2α+1 ∂r)−
ℓ(ℓ+ 2α)

r2
+ E2

]
Ga

ℓ (r, r
′) =

δ(r − r′)

r2α+1
(4.12)

The general solution of the homogeneous equation and the Green function can be written

in terms of Hanckel functions of the first and second kind

H1
n(z) = Jn(z) + iYn(z) , H2

ℓ = (H1
ℓ )

∗ (4.13)

where Jn (Yn) denote Bessel (Neumann) functions. More precisely, the general solution of

the homogeneous equation can be written as

Rin,ℓ(r) =
2∑

a=1

cℓa
Ha

ℓ+α(E r)

rα
(4.14)

with cℓa some coefficients. The Green function in flat space reads [57]

Ga
ℓ (r, r

′) = −i
π

2

Jℓ+α(E rmin)

rαmin

Ha
ℓ+α(E rmax)

rαmax

(4.15)

with rmin and rmax the smallest and largest respectively of r and r′. At infinity

H1
ℓ+α(E r)

rα
≈

Er→∞

√
2

πE

eiEr− iπ
2
(ℓ+α)

rα+
1
2

+ . . . (4.16)

so the asymptotic solution (4.14) can be viewed in general as a superposition of an incom-

ing and an outgoing wave. The scattering process is described by an S-matrix computing

the phase shift of the outgoing wave. We choose the incoming wave to be a plane wave

Φin(x) = eiEr cos θ =

∞∑

ℓ=0

Rin,ℓ(r)C
α
ℓ (cos θ) (4.17)

with

Rin,ℓ(r) =
2α Γ(α) iℓ(ℓ+ α)

Eα

Jℓ+α(E r)

rα
(4.18)

The outgoing scattered wave can be written as

Φout(x) =
2α−1 Γ(α)

(Er)α

∞∑

ℓ=0

iℓ(ℓ+ α) (e2 iδℓ,E − 1)H1
ℓ+α(E r)Cα

ℓ (cos θ) (4.19)
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At infinity

Φout(r) ≈ f(θ, E)
eiEr− iπα

2

rα+
1
2

(4.20)

with

f(θ, E) =
2α Γ(α)

Eα+ 1
2

√
2π

∞∑

ℓ

(ℓ+ α) e2 iδℓ,E Cα
ℓ (cos θ) (4.21)

the scattering amplitude.6 In the high energy limit, the sum over ℓ can be viewed as an

integral over b = ℓ/E after identifying db = ∆ℓ/E. Moreover in this limit, the sum is domi-

nated by large ℓ modes and one can replace the spherical harmonics by its asymptotic form

Cα
ℓ (cos θ) ≈

21−α ℓα−1

(sin θ)α Γ(α)
cos

[
θ (ℓ+ α)− π α

2

]
(4.22)

One is left with

f(θ, E) ≈
√
2E√
πθα

∫ ∞

0
db bα e2 iδ(b,E) cos

(
θ bE−π α

2

)
(4.23)

or equivalently7

f(θ, E) ≈ Eα+ 1
2

∫
d2α+1b

(2π)α+
1
2

eiqb+2iδ(b) (4.24)

with q = 2E sin θ
2 ≈ Eθ. The integral is dominated by a saddle point at

θ = − 2

E

∂δ(E, b)

∂b
(4.25)

This equation relates the deflection angle θ to the scattering amplitude S = e2 iδ(E,b).

On the other hand, plugging (4.15) into (4.11) one finds

Rout,ℓ(r) = − iπ

2

H1(Er)

rα

∫ ∞

0
Jℓ+α(E r′) Ûeff(r

′)Rℓ(r
′) (r′)α+1dr′ (4.26)

Comparing with (4.19) one finds

e2 iδℓ,E − 1 = − iπEα

2α Γ(α)iℓ(ℓ+ α)

∫ ∞

0
Jℓ+α(E r′) Ûeff(r

′)Rℓ(r
′) (r′)α+1dr′ (4.27)

6Here we used the identity
∑

∞

ℓ=0(ℓ+α) Cα
ℓ (cos θ) = 0. We normalise f in such a way that dσ/dΩ = |f |2.

In d = 2α + 2 spatial dimensions σ ∼ L2α+1 and f ∼ Lα+ 1
2 . This is related to the (string) scattering

amplitude A(s, t) by f = Eα−
1
2A.

7One can rewrite the integral over b as a 2α+ 1-dimensional integral using

∫
d2α+1

beiqb+2iδ(b) =Ω2α−1

∫
dbb2αdθ′ sin2α−1 θ′eiqbcosθ

′+2iδ(b)

=
√
π
Ω2α−12

α−
1
2Γ(α)

qα−
1
2

∫
dbbα+ 1

2 e2iδ(b)Jα(qb)≈ 2

(
2π

q

)α∫
dbbαe2iδ(b) cos

(
θbE− πα

2

)

with Ωn = 2π
n+1

2 /Γ
(
n+1
2

)
the volume of the unit n-sphere Sn.
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For instance, let us consider an effective potential

Ûeff(r
′) = − cn

rn
(4.28)

with cn small. In the limit where cn is small, the leading contribution to the phase shift

comes from replacing the radial function Rℓ inside the integral in (4.27) with its asymptotic

value Rin,ℓ so that

e2iδ(b,E)−1≈ 2iδ(b,E)≈ iπcn

∫ ∞

0
J2
bE+α(Er′)(r′)1−ndr′

≈ i

√
πcn
2

En−2Γ
(
n−1
2

)
Γ(bE+1)

Γ
(
n
2

)
Γ(bE+n)

≈ i

√
πcn

2Ebn−1

Γ
(
n−1
2

)

Γ
(
n
2

) (4.29)

where in the last line we made use of Stirling formula for Euler’s Γ-functions at large bE.

For the deflection angle one finds

∆θ = − 2

E

∂δ(E, b)

∂b
≈

√
π cn

E2 bn
Γ
(
n+1
2

)

Γ
(
n
2

) (4.30)

4.2 Dp-brane case

Let us consider a Dp-brane gravitational background

ds2 = −H(r)−
1
2 dt2 +H(r)

1
2 (dr2 + r2 dΩ8−p) , H(r) = 1 +

(
Lp

r

)7−p

(4.31)

The wave equation becomes

[
1

r3
∂r(r

3 ∂r) +
1

r2
∇2

S8−p + E2H +
∂rH

6−p
4

H
6−p
4

∂r

]
Φ(x) = 0 (4.32)

The last term is subleading in the limit of large r and can be discarded, so one is left with

[
1

r3
∂r(r

3 ∂r) +
1

r2
∇2

S8−p + E2 + E2

(
Lp

r

)7−p
]
Φ(x) = 0 (4.33)

The effective potential is then

Ûeff(r
′) = −E2

(
Lp

r

)7−p

(4.34)

with n = 2α = 7− p. Plugging this into (4.30) one finds

∆θDp =
√
π
Γ(8−p

2 )

Γ(7−p
2 )

(
Lp

b

)7−p

+ . . . (4.35)

in agreement with (3.13).
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4.3 D5-brane case

In the case of a stack of D5-branes, the effective potential is

Ûeff(r
′) = −E2 L2

r2
(4.36)

and equation (4.33) has exactly the same form as the free equation with ℓ replaced by ℓL
defined by

− ℓL(ℓL + 2) = −ℓ(ℓ+ 2) + L2E2 (4.37)

Indeed the radial integral equation in this case can be solved exactly by taking

Rin,ℓ(r) = Aℓ
Jℓ(Er)

rα

Rℓ(r) =
Aℓ

2rα

(
H1

νℓ
(Er) + e2iδℓ H2

νℓ
(Er)

)
(4.38)

with Aℓ arbitrary constants specifying the incoming wave and

δ(ℓ, E) =
π

2
(ℓ+ 1−

√
(ℓ+ 1)2 − E2L2)

νℓ =
√

(ℓ+ 1)2 − E2L2 (4.39)

The phase shift can then be written as

e2iδ(ℓ,E) = eiπ (ℓ−ℓL) ≈ eiπ(ℓ−
√
ℓ2−L2 E2) (4.40)

Identifying ℓ = bE and using (4.25) one finds the deflection angle

θ = − 2

E

∂δ(E, b)

∂b
= π

[
b√

b2 − L2
− 1

]
(4.41)

in perfect agreement with the result (3.16).

4.4 D1D5 fuzzball case

The Klein-Gordon equation in the fuzzball geometry reads

�Φ(x, z, t) =

[
∂ρ

(
ρ(ρ2 + a2)∂ρ

)

Hρ(ρ2 + a2 cosϑ2)
+

∂ϑ (sin(2ϑ)∂ϑ)

H(ρ2 + a2 cosϑ2) sin(2ϑ)
(4.42)

+ H(∂2
z − ∂2

t ) +
(∂ϕ + ∂tωϕ)

2

H(ρ2 + a2) sin2ϑ
+

(∂ψ − ∂zωψ)
2

Hρ2 cos2ϑ

]
Φ(x, z, t) = 0

Henceforth we will focus on wave packets that are peaked at large impact parameter,

i.e. large distance from the string profile, where the scattering potential is small. In this

limit, the distortion of the wave packet in the vicinity of the profile has a negligible effect

on the deflection angle. Since the fuzzball geometry is regular everywhere, we expect that

the solution to the Klein-Gordon equation can be safely extended to the near-profile region
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as well.8 We refer the reader to [55] for discussion of absorption processes in the fuzzball

geometry.

The scalar wave Φ(x, z, t) can be conveniently expanded in 3-sphere harmonics (see

appendix for details)

Φ(x, z, t) = e−iEt+iP z
∞∑

ℓ=0

ℓ
2∑

m′=− ℓ
2

ℓ
2∑

m=− ℓ
2

D
ℓ
2
m′m(Ω)Rℓ

m′m(ρ) (4.43)

with Ω = (ϕ, ψ, ϑ) the coordinates on the sphere, D
ℓ/2
m′m(Ω) the eigenvectors of the flat

Laplacian on the 3-sphere

∇2
S3D

ℓ
2
m′m(Ω) =

[
∂ϑ (sin(2ϑ)∂ϑ)

sin(2ϑ)
− (m−m′)2

sin2 ϑ
− (m′ +m)2

cos2 ϑ

]
D

ℓ
2
m′m(Ω)

= −ℓ(ℓ+ 2)D
ℓ
2
m′m(Ω) (4.44)

D
ℓ
2
m′m(Ω) are the matrix elements of finite SO(3) ∼ SU(2) rotations in the j = ℓ/2 repre-

sentation and can be written as

D
ℓ
2
m′m(Ω) = ei(m−m′)ϕ+i(m+m′)ψd

ℓ
2
m′m(2ϑ) (4.45)

in terms of the Wigner d-matrix (see appendix for details) after the identification

Jψ = m+m′ , Jϕ = m−m′ (4.46)

The Klein-Gordon equation then becomes
[
∂ρ

(
ρ(ρ2 + a2)∂ρ

)

ρ(ρ2 + a2 cosϑ2)
+

∂ϑ (sin(2ϑ)∂ϑ)

(ρ2 + a2 cosϑ2) sin(2ϑ)
+H2(E2 − P 2) (4.47)

−(m−m′+Eωϕ)
2

(ρ2 + a2) sin2ϑ
− (m+m′−Pωψ)

2

ρ2 cos2ϑ

]
D

ℓ
2
m′m(Ω)Rℓ

m′m(ρ) = 0

We notice that thanks to the U(1)ψ × U(1)ϕ isometry of the fuzzball metric, the

Laplacian operator in (4.47) does not mix components with different m (or m′), so the

equations for the modes labeled by (m,m′) can be solved separately. This is clearly not

the case for the ℓ-modes that mix with one another in the scattering process. As a result,

in order to determine the phase shift, one should in principle diagonalize the wave operator

and identify the exact eigen-modes. This is the wavy analogue of the problem that one

faces solving the geodetic equations in the fuzzball geometry. As before, notwithstanding

the separability of the problem, for simplicity, we will focus on the cases

• m = m′ ≫ 1, i.e. Jψ = 2m, Jϕ = 0. The ℓ-sum is dominated by the mode ℓ = 2m.

The Wigner d-matrices reduce to

dmm,m(2ϑ) = (cosϑ)2m (4.48)

and are peaked at ϑ = 0.

8We thank the referee for pointing out this issue to us.
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• m = −m′ ≫ 1, i.e. Jϕ = 2m, Jψ = 0. The ℓ-sum is dominated by the mode ℓ = 2m.

The Wigner d-matrices reduce to

dm−m,m(2ϑ) = (sinϑ)2m (4.49)

and are peaked at ϑ = π
2 .

In the following we consider the wave scattering in these two 2-planes.

4.4.1 Wave scattering for Jϕ = 0

For m = m′ ≫ 1 spherical modes the solution of the field equation is peaked around ϑ = 0,

whereby cosϑ ≈ 1. The wave equation becomes

0 =

[
1

ρ3
∂ρ

(
ρ3∂ρ

)
+

1

ρ2
∇2

S3 + E2
P − Ûeff(ρ)

]
R2m

m,m(ρ) (4.50)

with E2
P = E2 − P 2 and

Ûeff(ρ)=−a2

ρ3
∂ρ(ρ∂ρ)−E2

P

[
H2

(
1+

a2

ρ2

)
−1

]
+
4m2

ρ2

[(
1− PaL1L5

2m(ρ2+a2)

)2(
1+

a2

ρ2

)
−1

]

≈−a2

ρ3
∂ρ(ρ∂ρ)−

E2
P (L

2
1+L2

5+a2)

ρ2
− 4mPaL1L5−4m2a2

ρ4
+. . . (4.51)

where in the last line we display the first few terms in the expansion of the potential at

large ρ. Writing

Ûeff(ρ) = −
∑

n,p

cn,p
ρn

∂p
ρ (4.52)

one finds for the phase shift

2 δ = π
∑

n,p

En+p−2
P cn,p In,p (4.53)

with

In,p =

∫ ∞

0
Jℓ(y)∂

p
y

[
Jℓ(y)

y

]
y2−ndy (4.54)

The results of the integrals for the relevant (n, p) are displayed in the following table

(n, p) (2, 2) (3, 1) (2, 0) (4, 0)

Inp − 1
4ℓ

(1−α)
4ℓ3

1
2ℓ

1
4ℓ3

(4.55)

Combining (4.52) and (4.53), and taking ℓ = 2m = bψE, α = 1 one finds

2δ ≈ πE2
P

2E

(
L2
1+L2

5

bψ
+

PaL1L5

b2ψ E
+ . . .

)
(4.56)

leading to ∆ψ ≈ − 2
E

∂δ
∂bψ

, i.e.

∆ψfuzz ≈
π(1− v2)

2b2ψ

(
L2
1 + L2

5 +
2aL1L5 v

bψ
+ . . .

)
(4.57)

in perfect agreement with what found using classical geodetic motion in the circular fuzzball

geometry in the plane ϑ = 0.
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4.4.2 Wave scattering for Jψ = 0

The study for m = −m′ modes proceeds mutatis mutandis along our analysis above. In

this case the spherical harmonic functions are peaked at ϑ = π
2 . The effective potential

then becomes

Ûeff(ρ) = −a2

ρ3
∂ρ(ρ∂ρ)− E2

P (H
2−1)−4m2

ρ2

[(
1+

EaL1L5

2mρ2

)2 ρ2

ρ2 + a2
−1

]

≈ −a2

ρ3
∂ρ(ρ∂ρ)−

E2
P (L

2
1 + L2

5)

ρ2
−4mEaL1L5 − 4m2a2

ρ4
+ . . . (4.58)

Using again (4.53) now with ℓ = 2m = bϕE one finds

2δ ≈ πE2
P

2E

(
L2
1+L2

5

bϕ
− aL1L5

b2ϕ

)
+ . . . (4.59)

leading to ∆ϕ ≈ − 2
E

∂δ
∂bϕ

, i.e.

∆ϕfuzz ≈
π(1− v2)

2b2ϕ

(
L2
1 + L2

5 −
2aL1L5

bϕ

)
+ . . . (4.60)

in perfect agreement with the deflection angle found using classical geodetic motion in the

circular fuzzball geometry in the plane ϑ = π/2.

5 String amplitudes

The scattering of massless closed-string probes in a D-brane background is described by

a two-point amplitude on a string world-sheet with boundaries mapped onto the D-brane

stack. In the high energy Regge limit, the amplitude is dominated by diagrams involving

the exchange of nearly on-shell gravitons between the high-energy string state and the

brane, whose elementary block is the tree-level (disk) string-brane scattering amplitude i.e.

the closed string two-point amplitude on the disk. In the leading eikonal approximation,

the dominant diagrams resum to the exponential of the tree-level diagram

S = e2iδ(s,b) = e
iÂdisk(s,b)

2E + . . . (5.1)

with Âdisk(s, b) the Fourier transform of the string amplitude Adisk(s, t),
9

2δ(s, b) =
Âdisk(s, b)

2E
=

1√
s

∫
dd−1q

(2π)d−1
Adisk(s,−q2) eiq·b (5.2)

with the q-integral running over the space inside Rd transverse to vector p1 − p2. The

functional relation between the deflection angle ∆θ and the impact parameter b was given

in (4.25), so one finds

∆θ ≈ − 2

E

∂δ

∂b
≈ −1

s

∂Âdisk(s, b)

∂b
(5.3)

9This is related to the wave scattering amplitude (4.24) by f = Eα−
1
2A.
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In the remaining of this section we review the computation of the deflection angle in high

energy scattering of a scalar particle from a Dp-brane using both geodetic motion in the

Dp-background and the string scattering amplitude. In the next section the results will be

extended to the case of the D1-D5 fuzzball geometry.

5.1 Dp-branes

At the disk level, the scattering amplitude of a massless scalar particle in the NSNS sector

is described by the two point amplitude

〈W (p1, p̃1) W (p2, p̃2)〉disk = Adisk(s, t) Tr(E1RDp E2RDp) + . . . (5.4)

with W (pi, p̃i) the NS-NS closed string vertices with momenta

pi = (E,~ki,~0) p̃i = RDp pi = (E,−~ki,~0) ~k21 = ~k22 = E2 , (5.5)

Ei the incoming and outgoing polarisation tensors and

RDp = diag(+1,−19−p,+1p) (5.6)

the boundary reflection matrix. Notice that ~ki are aligned along the Dirichlet directions

of the Dp-brane target. We have isolated in (5.4) the kinematical structure dominating

elastic scattering in the high energy Regge limit and denoted by dots the rest. The string

amplitude A(s, t) is a function of the Mandelstam variables

s = −2 p1 p̃1 = −2 p2 p̃2 = 4E2

t = −2 p1 p2 = −2 p̃1 p̃2 = −4E2 sin2
θ

2
(5.7)

with θ the scattering angle. Setting α′ = 2, one finds10

Adisk(s, t) = s
Γ
(
− s

2

)
Γ
(
− t

2

)

Γ
(
− s

2 − t
2

) ≈
s≫1

Γ

(
− t

2

)
e

iπ t
2 s1+

t
2 (5.8)

where in the right hand side we kept only the leading term in the high energy limit s ≫ 1.

We are interested in the limit of large impact parameter b ≫
√
ln s of the function Â(s, b)

defined as the Fourier transform of (5.8). In this limit the integral is dominated by a saddle

point at q ≈ 0 leading to11

Âdisk(s, b) =

∫
d8−pq

(2π)8−p
Adisk(s,−q2) eiq·b ≈ s

∫
d8−pq

(2π)8−p

eiq·b

q2
≈ s

|b|6−p
(5.10)

10Here we use the Stirling formula Γ(x) ∼ ex(log x−1).
11In this limit the integral is almost real since its imaginary part is exponentially suppressed when

b ≫
√
ln s. When b is of order

√
ln s, the imaginary part of the integral is dominated by a saddle point at

q∗ = ib
ln s

resulting into

Im Â(s, b) ∼ is

∫
ddq e−

q2

2
ln s+iq·b ∼ s (ln s)−

d
2 e−

b2

2 ln s (5.9)
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with the integral running over the space traverse to the stack of Dp-branes and to the

longitudinal momentum p1−p2. Plugging this into (5.3) one finds that the deflection angle

falls as bp−7 at large b as predicted by the geodetic motion analysis.

Specifying to a system of D1 and D5 branes on R
1,4 × T 5, the integral in (5.10) runs

over a 3-dimensional space, so one finds

∆ΘD1 +∆ΘD5 ∼
(
L2
1 + L2

5

)

b2
(5.11)

reproducing the leading deflections of the geodesics in the fuzzball background for Θ = ψ,ϕ.

5.2 D1D5 fuzzball

Let us consider the scattering of a NS-NS massless scalar from a D1D5 fuzzball. The

binding of the two stacks of brane is produced by a condensate of massless open strings at

zero momentum. At lowest order in perturbation theory the process is captured by a disk

with mixed boundary conditions. The relevant amplitude reads

〈Vµ(0)Vµ̄(0) W (p1, p̃1)W (p2, p̃2)〉 = AD1D5
disk (s, t) Tr(E1RD1D5 E2RD1D5) + . . . (5.12)

and requires the insertion of two twisted open strings connecting D1- and D5-brane bound-

aries at zero momenta, described by the massless fermion vertex operators

Vµ(0) = c µA e−ϕ/2 SA σ(z1) , Vµ̄(0) =

∫
dz2 µ̄B e−ϕ/2 SB σ(z2) (5.13)

where σ denote the Z2 twist-field along the ND 4-plane, SA/B the SO(1, 5) spin fields,

ϕ the super-ghost boson and c the bosonic ghost, and two NS-NS massless closed strings

described by the vertex operators

W (p1, p̃1)=

∫
dz3dz4 (RD1D5 ·E1)PQ e−ϕψQeip1X(z3)(∂X

P−ip̃1ψψ
P )eip̃1X(z4)

W (p2, p̃2)= (RD1D5 ·E2)MN c(∂XM−ip2ψψ
M )eip2X(z5)c(∂X

N−ip̃2ψψ
N )eip̃2X(z6) (5.14)

where X and ψ denote the bosonic coordinates and their fermionic super-partners on the

world-sheet. The index A labels the spinor representation of the SO(1, 5) Lorentz group of

the space where D1 and D5 branes are ‘parallel’ (NN or DD). We take the same kinematics

as before and focus on open-string condensates in the 10 of SO(1, 5)

OPQR = 〈µ̄ΓPQRµ〉 (5.15)

There is no massless open string state in this representation, so such a condensate can only

emit closed strings. We focus on the following coupling

〈µ̄ΓMNPµ〉 p1M p2N p̃2P Tr(E1RD1D5 E2RD1D5) = sa · qTr(E1RD1D5 E2RD1D5) (5.16)

with a and q defined by

aP =
1

2 s
(µΓMNPµ) (p1M − p2M )(p2N + p̃2N ) , q = p1 + p2 (5.17)
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We notice that both a and q are transverse to the longitudinal momentum p1 − p2. The

1/s normalisation in the definition of a is included in order to ensures that a be finite in

the large s limit. To evaluate the string amplitude we choose specific components for the

spinors and polarisation tensors, let us say

A = B =

(
1

2
,
1

2
,
1

2

)
, (M,N) = (5, 3) , (P,Q) = (5̄, 3̄) (5.18)

where the (complex) directions 1, 2, 3 (1̄, 2̄, 3̄) are along SO(1, 5) ⊃ SO(1, 1) × SO(4)

(NN,DD), while 4, 5 (4̄, 5̄) are along SO(4) (ND). For this choice, one can easily see that

the terms ∂X’s do not contribute, thus the correlator to evaluate is

〈
(
c e−ϕ/2 e

i
2
ϕ1+

i
2
ϕ2+

i
2
ϕ3 σ

)
(z1)

(
e−ϕ/2 e

i
2
ϕ1+

i
2
ϕ2+

i
2
ϕ3 σ

)
(z2)(e

−ϕψ5)(z3)(p̃
1
1ψ̄

1ψ3)(z4)×
(
c p32ψ̄

3ψ̄5
)
(z5)

(
c p̃22ψ̄

2ψ̄3
)
(z6)〉 〈eip1X(z3)eip̃1X(z4)eip2X(z5)eip̃2X(z6)〉 (5.19)

The components p̃11, p
3
2 and p̃22 have been chosen to avoid cuts intersecting the x-integration

contour in the computations below. The amplitude takes the simple form

AD1D5
disk (s, t) = sa · q

∫
z

1
2
15z

2
56 dz2 dz3 dz4

(z25z13z23)
1
2 z26z35z45z46

(
z34z56
z36z45

) s
2
(
z35z46
z36z45

) t
2

(5.20)

Setting

z1 = 0 , z2 = x , z3 = z , z4 = z̄ , z5 = i , z6 = −i (5.21)

one finds

AD1D5
disk (s, t) = sa · q

∫
dx d2z(z − z̄)−

s
2 |z − i|−t |z + i|s+t

(x+ i)(z̄ − i)(z̄ + i)(z − i)
√
(x− i) z (x− z)

(5.22)

The integral over x can be computed closing the contour along the lower half plane and

picking the residue at x = −i,

AD1D5
disk (s, t) = sa · q

∫
d2z(z − z̄)−

s
2 |z − i|−t−2 |z + i|s+t−2 z−

1
2 (z + i)

1
2

In terms of the variable

w =
z − i

z + i
(5.23)

the final integral takes the form

AD1D5
disk (s, t)= sa·q

∫

D
d2w

(
1−|w|2

)− s
2 |w|−t−2 (1+w)−

1
2

=2πsa·q
∫ 1

0
dr

(
1−r2

)− s
2 r−t−1=πsa·q Γ

(
1− s

2

)
Γ
(
− t

2

)

Γ
(
1− s

2− t
2

) (5.24)

with D a unit disk centered at the origin. We notice that in the large s limit, this amplitude

is exactly the same as the one describing the scattering from a Dp-brane except for the
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extra a · q. Following the same steps as for the case of a Dp-brane stack one finds for the

Fourier transform

AD1D5
disk (s, b) ≈ s

∫
d3q

(2π)3
a · q eiq·b

q2
≈ s

a · b
|b|3 (5.25)

leading to a deflection angle

∆ΘD1D5 =
a · b
|b|4 (5.26)

in perfect agreement, including the coefficient, with the geodetic results for Θ = ϕ, ψ after

the identifications

a =

{
aL1L5v eψ for ϑ = 0

aL1L5 eϕ for ϑ = π
2

(5.27)

6 Conclusions

We have taken a first step towards the study of the dynamical properties of fuzz-balls. We

have considered the simplest case of a D1D5 fuzzball with a circular profile function.

We have studied geodetic motion, massless wave equation and string scattering in this

background and checked consistency of the three approaches in the high energy (Regge)

regime at large impact parameter. We consider this further success of the fuzzball pro-

posal, including the peculiar behaviour at the critical impact parameter for capture of

(massless) probes.

It would be very interesting — but quite challenging — to extend the present analysis

to non circular fuzzballs of two-charge systems if not even of 3-charge systems in five

dimensions and of 4-charge systems in four dimensions. One can also consider scattering of

massive, charged or (higher) spin probes in order to gain further insights in the dynamical

properties of the fuzzball under consideration.

Last but not least, it would be desirable to understand the connection between ‘critical’

impact parameter, (apparent) loss of unitarity and opening of inelastic channels, that would

be associated to the typical ‘size’ or better ‘cross-section’ of the fuzzball, that should

(approximately) match the horizon area of the putative black-hole.
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A Spherical harmonics

In this appendix we give some details on the special functions entering in the spherical

harmonic expansions of the field in the different coordinate systems used in the main text.

A.1 Sd−1-harmonics

The metric of the sphere Sd−1 can be written as

ds2Sd−1 = dθ2 + sin2 θ dΩd−2 (A.1)

With this choice the Laplace operator reads

∇2
Sd−1 =

1

sin2α θ
∂θ

(
sin2α θ ∂θ

)
+∇2

Sd−2 (A.2)

A function f(θ) can be in general expanded in θ-harmonics

f(θ) =
∞∑

ℓ=0

fℓC
d−2
2

ℓ (cos θ) (A.3)

with Cα
ℓ (x) the Gegenbauer polynomials defined via

1

(1− 2 r x+ r2)α
=

∞∑

ℓ=0

Cα
ℓ (x) r

ℓ (A.4)

The Gegenbauer polynomials are eigenvectors of the Laplacian on S2α+1

∇2
S2α+1 C

α
ℓ (cos θ) = −ℓ(ℓ+ 2α)Cα

ℓ (cos θ) (A.5)

and can be written in terms of hypergeometric functions with a = −n

Cα
n (x) =

Γ(2α+ 1)

Γ(n+ 1)Γ(2α− n+ 1)
2F1

(
−n, n+ 2α, α+

1

2
;
1− x

2

)
(A.6)

In this basis the plane wave can be expanded as

eiE r cos θ =
2α Γ(α)

(Er)α

∞∑

ℓ

iℓ(ℓ+ α) Jℓ+α(E r)Cα
ℓ (cos θ) (A.7)

A.2 S3-harmonics

Being the group manifold of SU(2), the 3-sphere S3 is very special. Its metric can be

written in the form

ds2S3 = dϑ2+cos2 ϑ dψ2+sin2 ϑdϕ2 (A.8)

In these variables the Laplacian operator reads

∇2
S3 =

∂ϑ (sin(2ϑ)∂ϑ)

sin(2ϑ)
+

∂2
ϕ

sin2 ϑ
+

∂2
ψ

cos2 ϑ
(A.9)

– 24 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
7

Denoting by Ω = (ϑ, ϕ, ψ) denoting the angular coordinates, a function f(Ω) on the 3-

sphere can be expanded in the basis of harmonics

f(Ω) =
∞∑

ℓ=0

ℓ
2∑

m′=− ℓ
2

ℓ
2∑

m=− ℓ
2

D
ℓ
2
m′m(Ω)f ℓ

m′m (A.10)

with D
ℓ
2
m′m(Ω) the eigenvectors of the 3-sphere Laplacian

∇2
S3D

ℓ
2
m′m(Ω) = −ℓ(ℓ+ 2)D

ℓ
2
m′m(Ω) (A.11)

The three sphere harmonics D
ℓ
2
m′m are given by

D
ℓ
2
m′m(Ω) = ei(m−m′)ϕ+i(m+m′)ψd

ℓ
2
m′m(2ϑ) (A.12)

with

djm′m(2ϑ) =

√
(j+m)!(j−m)!

(j+m′)!(j−m′)!
(cosϑ)m+m′

(sinϑ)m−m′

Pm−m′,m+m′

ℓ−m (cos 2ϑ) (A.13)

the Wigner d-matrices and P a,b
n (x) the Jacobi polynomials given by

P a,b
n (x) =

Γ(a+ 2)

Γ(n+ 1)Γ(a+ 2− n)
2F1

(
−n, n+ a+ b+ 1, a+ 1;

1− x

2

)
(A.14)

The Wigner d-matrices are normalised according to

∫
dΩD

ℓ1
2
∗

m′
1m1

(Ω)D
ℓ2
2

m′
2m2

(Ω) =
4π2

2ℓ+ 1
δℓ1ℓ2 δm′

1m
′
2
δm1m2 (A.15)

The d-Wigner matrices are related to the Gegenbauer polynomials C1
ℓ via the “remarkable”

addition formula

C1
ℓ (Ω12) =

ℓ
2∑

m′=− ℓ
2

ℓ
2∑

m=− ℓ
2

D
ℓ
2
m′m(Ω1)D

ℓ
2
m′m(Ω2) (A.16)

with

Ω12 = cosϑ1 cosϑ2 cos(ψ1 − ψ2) + sinϑ1 sinϑ2 cos(ϕ1 − ϕ2) (A.17)

the scalar product of two unit vectors in R4 pointing along Ω1 and Ω2 on the three sphere.

We notice that since D
ℓ
2
m′m(Ω) represent a finite SO(3) ∼ SU(2) rotation matrix in the

j = ℓ/2 representation, the above remarkable addition formula implies that the Gegenbauer

polynomials C1
ℓ (x) are nothing but the characters of SU(2) viz.

C1
ℓ (cosϑ) = χ

SU(2)

j= ℓ
2

(2ϑ) =

j∑

m=−j

e2imϑ (A.18)
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Indeed, setting x = cos(α/2), they both satisfy the same recursion relation

2xC1
n(x) = C1

n+1(x) + C1
n−1(x) ↔ 2 cos

α

2
χj(α) = χj+ 1

2
(α) + χj− 1

2
(α) (A.19)

Using (A.16) together with (A.7) one can write the harmonic expansion of a plane wave in

4-dimensional space as

eiE rΩ12 =
1

Er

∞∑

ℓ=0

ℓ
2∑

m′=− ℓ
2

ℓ
2∑

m=− ℓ
2

iℓ(ℓ+ 1) Jℓ+1(E r)D
ℓ
2
m′m(Ω1)D

ℓ
2
m′m(Ω2) (A.20)

B Schwarzschild metric

For completeness and comparison, in this appendix, we would like to review light-like

geodesic, scattering with large impact parameter, free falling and critical impact parameter

for capture in the Schwarzschild metric.

ds2 = −A(r) dt2 +A−1(r) dr2 + r2(dθ2 + sin2 θ dϕ2) (B.1)

A(r) = 1− 2M

r
(B.2)

We have two invariants: the energy and the angular momentum

− E = −A(r)ṫ Jϕ = r2 sin2 θ ϕ̇ (B.3)

The angular equation allows us to fix θ.

θ̈ +
2

r
θ̇ ṙ − cos θ

sin3 θ

J2
ϕ

r2
= 0 (B.4)

If we set θ̇ = 0, in order to maintain such condition for all τ , thus θ̈ = 0, we have two

possibilities: θ = π/2 or Jϕ = 0. In the second case θ can be freely chosen thus we can set

it to θ = π/2.

The radial equation can be replaced by the norm of the four-velocity

− E2

A
+

ṙ2

A
+

J2
ϕ

r2
= 0 (B.5)

In order to study the trajectory we replace ṙ introducing ϕ instead the geodesic parameter τ :

ṙ = ϕ̇
dr

dϕ
=

Jϕ
r2

dr

dϕ
(B.6)

The equation for the trajectory becomes

dϕ

dr
= −

[
Ar4

b2
− r2

]−1/2

b =
Jϕ
E

(B.7)

where we have introduced the impact parameter b.
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Now we study in more detail the relation between the turning point r∗ and the impact

parameter b for a massless particle. The turning point is defined by the equation

r2∗
b2

− 1 +
2M

r∗
= 0 ⇒ r3∗ − b2 r∗ + 2Mb2 = 0 (B.8)

The polynomial is positive when r = 0 and r → ∞, thus if there are positive solutions they

must appear in pair. The equation has not positive solutions below a critical value of b

which is determine when the pair of solutions degenerate into one, this happens when the

discriminant vanishes

∆ = 4M2 b4(b2 − 27M2) = 0 ⇒ bcrit = 3
√
3M (B.9)

At b = bcrit the particle stabilizes its motion into a circular orbit at r = 3M . Below bcrit
there are no positive intersections thus there is no turning point and the particle falls into

the black hole.

To compute the leading contribution to the deflection angle we can use the for-

mula (3.13), in which n = 1 and fn = −2M , obtaining Einstein’s formula

∆θ =
2M

b
+ . . . (B.10)

Let us consider now a radial fall, so we set Jϕ = 0 and θ̇ = 0. The geodesic equation

becomes ṙ = −E. Until r vanishes we can use it as parameter to describe the geodesic. The

time felt by an observer at large distance can be computed integrating the equation in ṫ:

dt

dτ
= −E

dt

dr
=

E

1− 2M
r

(B.11)

Integrating the equation we obtain

tF − tI = −
[
rF − rI + 2M log

rF − 2M

rI − 2M

]
(B.12)

As known for rF that approaches the horizon 2M , the time becomes infinite.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox,

Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].

[2] O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with

angular momentum, hep-th/0212210 [INSPIRE].

[3] S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole,

Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0550-3213(01)00620-4
https://arxiv.org/abs/hep-th/0109154
https://inspirehep.net/search?p=find+EPRINT+hep-th/0109154
https://arxiv.org/abs/hep-th/0212210
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212210
https://doi.org/10.1016/j.nuclphysb.2003.12.022
https://arxiv.org/abs/hep-th/0311092
https://inspirehep.net/search?p=find+EPRINT+hep-th/0311092


J
H
E
P
0
6
(
2
0
1
8
)
1
5
7

[4] O. Lunin, Adding momentum to D1-D5 system, JHEP 04 (2004) 054 [hep-th/0404006]

[INSPIRE].

[5] S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review,

Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

[6] K. Skenderis and M. Taylor, The fuzzball proposal for black holes,

Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].

[7] S.D. Mathur, Fuzzballs and the information paradox: A Summary and conjectures,

arXiv:0810.4525 [INSPIRE].

[8] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

[9] J.C. Breckenridge, D.A. Lowe, R.C. Myers, A.W. Peet, A. Strominger and C. Vafa,

Macroscopic and microscopic entropy of near extremal spinning black holes,

Phys. Lett. B 381 (1996) 423 [hep-th/9603078] [INSPIRE].

[10] J.M. Maldacena, Black holes in string theory, Ph.D. Thesis, Princeton University (1996)

[hep-th/9607235] [INSPIRE].

[11] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory,

JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].

[12] J.M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle,

JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

[13] S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates,

Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].

[14] S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals,

Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [INSPIRE].

[15] I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes,

Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

[16] P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and

black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].

[17] A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four

dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [INSPIRE].

[18] I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates,

JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].

[19] I. Bena and N.P. Warner, Black holes, black rings and their microstates,

Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].

[20] I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black ring microstates,

JHEP 07 (2008) 019 [arXiv:0706.3786] [INSPIRE].

[21] S. Giusto, J.F. Morales and R. Russo, D1D5 microstate geometries from string amplitudes,

JHEP 03 (2010) 130 [arXiv:0912.2270] [INSPIRE].

[22] S. Giusto, R. Russo and D. Turton, New D1-D5-P geometries from string amplitudes,

JHEP 11 (2011) 062 [arXiv:1108.6331] [INSPIRE].

[23] O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries,

Nucl. Phys. B 868 (2013) 383 [arXiv:1208.1770] [INSPIRE].

– 28 –

https://doi.org/10.1088/1126-6708/2004/04/054
https://arxiv.org/abs/hep-th/0404006
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404006
https://doi.org/10.1002/prop.200410203
https://arxiv.org/abs/hep-th/0502050
https://inspirehep.net/search?p=find+EPRINT+hep-th/0502050
https://doi.org/10.1016/j.physrep.2008.08.001
https://arxiv.org/abs/0804.0552
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0552
https://arxiv.org/abs/0810.4525
https://inspirehep.net/search?p=find+EPRINT+arXiv:0810.4525
https://doi.org/10.1016/0370-2693(96)00345-0
https://arxiv.org/abs/hep-th/9601029
https://inspirehep.net/search?p=find+EPRINT+hep-th/9601029
https://doi.org/10.1016/0370-2693(96)00553-9
https://arxiv.org/abs/hep-th/9603078
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603078
https://arxiv.org/abs/hep-th/9607235
https://inspirehep.net/search?p=find+EPRINT+hep-th/9607235
https://doi.org/10.1088/1126-6708/1997/12/002
https://arxiv.org/abs/hep-th/9711053
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711053
https://doi.org/10.1088/1126-6708/1998/12/005
https://arxiv.org/abs/hep-th/9804085
https://inspirehep.net/search?p=find+EPRINT+hep-th/9804085
https://doi.org/10.1016/j.nuclphysb.2004.09.001
https://arxiv.org/abs/hep-th/0405017
https://inspirehep.net/search?p=find+EPRINT+hep-th/0405017
https://doi.org/10.1016/j.nuclphysb.2005.01.009
https://arxiv.org/abs/hep-th/0406103
https://inspirehep.net/search?p=find+EPRINT+hep-th/0406103
https://doi.org/10.1103/PhysRevD.74.066001
https://arxiv.org/abs/hep-th/0505166
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505166
https://doi.org/10.1088/1126-6708/2006/06/007
https://arxiv.org/abs/hep-th/0505167
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505167
https://doi.org/10.1088/1126-6708/2006/04/010
https://arxiv.org/abs/hep-th/0509214
https://inspirehep.net/search?p=find+EPRINT+hep-th/0509214
https://doi.org/10.1088/1126-6708/2006/11/042
https://arxiv.org/abs/hep-th/0608217
https://inspirehep.net/search?p=find+EPRINT+hep-th/0608217
https://doi.org/10.1007/978-3-540-79523-0_1
https://arxiv.org/abs/hep-th/0701216
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701216
https://doi.org/10.1088/1126-6708/2008/07/019
https://arxiv.org/abs/0706.3786
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3786
https://doi.org/10.1007/JHEP03(2010)130
https://arxiv.org/abs/0912.2270
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.2270
https://doi.org/10.1007/JHEP11(2011)062
https://arxiv.org/abs/1108.6331
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.6331
https://doi.org/10.1016/j.nuclphysb.2012.11.017
https://arxiv.org/abs/1208.1770
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1770


J
H
E
P
0
6
(
2
0
1
8
)
1
5
7

[24] S. Giusto and R. Russo, Superdescendants of the D1D5 CFT and their dual 3-charge

geometries, JHEP 03 (2014) 007 [arXiv:1311.5536] [INSPIRE].

[25] G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs,

Class. Quant. Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].

[26] I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A

constructive proof of the existence of superstrata, JHEP 05 (2015) 110 [arXiv:1503.01463]

[INSPIRE].

[27] O. Lunin, Bubbling geometries for AdS2 × S2, JHEP 10 (2015) 167 [arXiv:1507.06670]

[INSPIRE].

[28] I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata,

JHEP 05 (2016) 064 [arXiv:1601.05805] [INSPIRE].

[29] I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime,

Phys. Rev. Lett. 117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].

[30] L. Pieri, Fuzzballs in general relativity: a missed opportunity, arXiv:1611.05276 [INSPIRE].

[31] M. Bianchi, J.F. Morales and L. Pieri, Stringy origin of 4d black hole microstates,

JHEP 06 (2016) 003 [arXiv:1603.05169] [INSPIRE].

[32] L. Pieri, Black hole microstates from branes at angle, JHEP 07 (2017) 077

[arXiv:1610.06156] [INSPIRE].

[33] M. Bianchi, J.F. Morales, L. Pieri and N. Zinnato, More on microstate geometries of 4d black

holes, JHEP 05 (2017) 147 [arXiv:1701.05520] [INSPIRE].

[34] J.R. David and A. Sen, CHL Dyons and Statistical Entropy Function from D1-D5 System,

JHEP 11 (2006) 072 [hep-th/0605210] [INSPIRE].

[35] H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric 4-D rotating black holes

from 5−D black rings, JHEP 08 (2005) 042 [hep-th/0504125] [INSPIRE].

[36] F. Moura and R. Schiappa, Higher-derivative corrected black holes: Perturbative stability and

absorption cross-section in heterotic string theory, Class. Quant. Grav. 24 (2007) 361

[hep-th/0605001] [INSPIRE].

[37] B. Sahoo and A. Sen, α′-corrections to extremal dyonic black holes in heterotic string theory,

JHEP 01 (2007) 010 [hep-th/0608182] [INSPIRE].

[38] P. Dominis Prester and T. Terzic, α′-exact entropies for BPS and non-BPS extremal dyonic

black holes in heterotic string theory from ten-dimensional supersymmetry,

JHEP 12 (2008) 088 [arXiv:0809.4954] [INSPIRE].

[39] M. Bianchi, L. Lopez and R. Richter, On stable higher spin states in Heterotic String

Theories, JHEP 03 (2011) 051 [arXiv:1010.1177] [INSPIRE].

[40] M. Bianchi and L. Lopez, Pair Production of small Black Holes in Heterotic String Theories,

JHEP 07 (2010) 065 [arXiv:1002.3058] [INSPIRE].

[41] D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian Energies,

Phys. Lett. B 197 (1987) 81 [INSPIRE].

[42] D. Amati, M. Ciafaloni and G. Veneziano, Classical and Quantum Gravity Effects from

Planckian Energy Superstring Collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].

– 29 –

https://doi.org/10.1007/JHEP03(2014)007
https://arxiv.org/abs/1311.5536
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.5536
https://doi.org/10.1088/0264-9381/31/2/025016
https://arxiv.org/abs/1305.0957
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0957
https://doi.org/10.1007/JHEP05(2015)110
https://arxiv.org/abs/1503.01463
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01463
https://doi.org/10.1007/JHEP10(2015)167
https://arxiv.org/abs/1507.06670
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.06670
https://doi.org/10.1007/JHEP05(2016)064
https://arxiv.org/abs/1601.05805
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05805
https://doi.org/10.1103/PhysRevLett.117.201601
https://arxiv.org/abs/1607.03908
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03908
https://arxiv.org/abs/1611.05276
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.05276
https://doi.org/10.1007/JHEP06(2016)003
https://arxiv.org/abs/1603.05169
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.05169
https://doi.org/10.1007/JHEP07(2017)077
https://arxiv.org/abs/1610.06156
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.06156
https://doi.org/10.1007/JHEP05(2017)147
https://arxiv.org/abs/1701.05520
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05520
https://doi.org/10.1088/1126-6708/2006/11/072
https://arxiv.org/abs/hep-th/0605210
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605210
https://doi.org/10.1088/1126-6708/2005/08/042
https://arxiv.org/abs/hep-th/0504125
https://inspirehep.net/search?p=find+EPRINT+hep-th/0504125
https://doi.org/10.1088/0264-9381/24/2/006
https://arxiv.org/abs/hep-th/0605001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605001
https://doi.org/10.1088/1126-6708/2007/01/010
https://arxiv.org/abs/hep-th/0608182
https://inspirehep.net/search?p=find+EPRINT+hep-th/0608182
https://doi.org/10.1088/1126-6708/2008/12/088
https://arxiv.org/abs/0809.4954
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4954
https://doi.org/10.1007/JHEP03(2011)051
https://arxiv.org/abs/1010.1177
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1177
https://doi.org/10.1007/JHEP07(2010)065
https://arxiv.org/abs/1002.3058
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.3058
https://doi.org/10.1016/0370-2693(87)90346-7
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B197,81%22
https://doi.org/10.1142/S0217751X88000710
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A3,1615%22


J
H
E
P
0
6
(
2
0
1
8
)
1
5
7

[43] D. Amati, M. Ciafaloni and G. Veneziano, Can Space-Time Be Probed Below the String

Size?, Phys. Lett. B 216 (1989) 41 [INSPIRE].

[44] D. Amati, M. Ciafaloni and G. Veneziano, Higher Order Gravitational Deflection and Soft

Bremsstrahlung in Planckian Energy Superstring Collisions, Nucl. Phys. B 347 (1990) 550

[INSPIRE].

[45] A. Hashimoto and I.R. Klebanov, Decay of excited D-branes, Phys. Lett. B 381 (1996) 437

[hep-th/9604065] [INSPIRE].

[46] A. Hashimoto and I.R. Klebanov, Scattering of strings from D-branes,

Nucl. Phys. Proc. Suppl. 55 (1997) 118 [hep-th/9611214] [INSPIRE].

[47] M.R. Garousi and R.C. Myers, Superstring scattering from D-branes,

Nucl. Phys. B 475 (1996) 193 [hep-th/9603194] [INSPIRE].

[48] G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, High-energy string-brane

scattering: Leading eikonal and beyond, JHEP 11 (2010) 100 [arXiv:1008.4773] [INSPIRE].

[49] M. Bianchi and P. Teresi, Scattering higher spins off D-branes, JHEP 01 (2012) 161

[arXiv:1108.1071] [INSPIRE].

[50] G. D’Appollonio, P. Vecchia, R. Russo and G. Veneziano, Microscopic unitary description of

tidal excitations in high-energy string-brane collisions, JHEP 11 (2013) 126

[arXiv:1310.1254] [INSPIRE].

[51] G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, The leading eikonal operator in

string-brane scattering at high energy, Springer Proc. Phys. 153 (2014) 145

[arXiv:1310.4478] [INSPIRE].

[52] G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, A microscopic description of

absorption in high-energy string-brane collisions, JHEP 03 (2016) 030 [arXiv:1510.03837]

[INSPIRE].
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