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1 Introduction

Arkani-Hamed, Bai, He, and Yan (AHBHY) presented new formulas for the biadjoint scalar

tree amplitudes in ref. [1]. Their formulas are based on constructions in ‘kinematic space,’

Kn, which is the vector space of all Mandelstam variables sij = 2ki · kj subject to the

momentum conservation relations. For example, at four points, the kinematic space K4 is

the plane defined by

s12 + s13 + s23 = 0
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in R3. AHBHY construct embeddings of the associahedron into kinematic space.1 These

are polytopes in Kn of dimension n−3. For instance, at four points, the ordering α = 1234

is associated to the line segment A(1234) between the two points

(s12, s13, s23) = (c,−c, 0) and (s12, s13, s23) = (0,−c, c),

for some constant c. This line segment is an embedding of the associahedron on three letters

into kinematic space, regarded as a hyperplane in R3. See figure 1 for an illustration of

this. There are two other embeddings (also shown in figure 1). A(3124) is the line segment

between

(s12, s13, s23) = (c, 0,−c) and (s12, s13, s23) = (0, c,−c),

and A(2314) is the segment between

(s12, s13, s23) = (−c, 0, c) and (s12, s13, s23) = (−c, c, 0).

Notice that the three line segments are not intersecting. In general, AHBHY’s construction

embeds (n− 1)!/2 non-intersecting associahedra in Kn. These associahedra can be realised

as the intersection of hyperplanes with (n− 1)!/2 cones that we call C(α). For instance, at

four points, there are three non-intersecting cones which we show in figure 3. An important

observation for the present paper is that the ‘dual cones’ C(α)∗ in dual kinematic space do

intersect. The purpose of this paper is to explain how the intersections of the dual cones

are related to the biadjoint scalar tree amplitudes. For example, the cones C(1234) and

C(2314) do not intersect in K4. But their dual cones, C(1234)∗ and C(2314)∗, intersect in

the span of a vector W23. See figure 2. The vector W23 is ‘dual’ to the Mandelstam variable

−s23 in the sense that W23 · Z = −s23 for Z a vector in K4. But −s23 is the propagator

for the partial amplitude

m(1234|2314) =
1

−s23
.

So this partial amplitude can also be written as

m(1234|2314) =
1

W23 · Z
.

This suggests that the amplitude m(1234|2314) is related to the intersection of the two dual

cones C(1234)∗ and C(2341)∗. In this paper, we show how this observation can be made

precise and generalised to all the partial tree amplitudes. Our main result is a generalisation

of a formula given by AHBHY, which we now explain. Let α and β be orderings of

{1, . . . , n}. Then, following AHBHY, consider an associahedron A(α) in kinematic space

contained in some n − 3 dimensional plane H(α) ⊂ Kn. The ‘dual polytope’ A(α)∗ is a

polytope which lives in the dual vector space H(α)∗. Duality on polytopes maps dimension-

k faces in A(α) to codimension-k faces in A(α)∗. AHBHY prove the following formula,

m(α|α) = Vol(A(α)∗), (1.1)

1This is carried out in section 3.2 of ref. [1].
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Figure 1. The three associahedra A(α) defined by AHBHY’s construction at four points. The

associahedra lie in a plane, kinematic space, inside R3.

where Vol denotes the ‘volume’ of the polytope.2 The ‘volume’ Vol is not a number, but

rather a function on H(α). Or, if you prefer, the volume of the dual polytope depends on

a choice of position (i.e. a choice of Mandelstam variables) Z ∈ H(α). The ‘volume’ Vol is

similar to an ordinary volume in the sense that it satisfies

Vol(A ∪B) = Vol(A) + Vol(B)−Vol(A ∩B),

for any two polytopes A and B. We call anything which satisfies this relation a ‘valuation’

on polytopes. Our main result can be stated as (see corollary 4.2)

m(α|β) = Val(∂A(α)∗ ∩ ∂A(β)∗). (1.2)

In this formula, ∂A(α)∗ is the boundary of A(α)∗ and ‘Val’ is a natural valuation on

polytopes which we will introduce later. The novel aspect of this formula is that we must

first define embeddings of the dual associahedra A(α)∗ into K∗n (just as AHBHY define

embeddings of A(α) into Kn). We define a ‘canonical embedding’ in section 3. Given this

canonical embedding, it turns out that

Val(∂A(α)∗) = Vol(A(α)∗).

where, on the left-hand-side, we regard ∂A(α)∗ as embedded in K∗n and, on the right-hand-

side, A(α)∗ is embedded only in H(α)∗ (or some projective compactification of it, as done

in AHBHY). For this reason, equation (1.2) is a mild generalisation of AHBHY’s result,

equation (1.1). Before saying more about our results, we will recall some of the reasons to

be interested in the biadjoint scalar amplitudes and their various presentations.

The biadjoint scalar tree amplitudes m(α|β) can be computed in a Feynman diagram

expansion by summing over all tri-valent graphs which are planar with respect to both α

2This formula is proposed in section 5.1 and explicitly proved in section 5.2 of ref. [1], though it also

follows from a general theorem concerning ‘positive geometries.’
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Figure 2. The cones C(1234) and C(2314) do not intersect in kinematic space, K4. However, the

dual cones C(1234)∗ and C(2314)∗ do intersect, and their intersection can be regarded as encoding

the amplitudes m(1234|2314).

and β. However, there are many other formulas for these amplitudes. A particularly novel

formula for m(α|β) was given by Cachazo-He-Yuan, who expressed the amplitude as a

residue pairing [2, 3]. In [4], Mizera pointed out that the CHY residue pairing is essentially

the same thing as the intersection pairing of two cocycles in a certain cohomology theory.3

An attractive formula for these intersection pairings was computed by Matsumoto in [5].

The work by AHBHY is more combinatorial. In [1], the amplitudes m(α|β) are presented

in terms of associahedra in kinematic space.4 One way to infer the amplitude from the

associahedra is by studying ‘canonical forms’ that have logarithmic singularities on the

boundaries of the associahedra.5 The biadjoint scalar tree amplitudes have aroused all

of this interest because of their importance in understanding the relationship between

tree-level gravity and Yang-Mills amplitudes. The partial amplitudes m(α|β) play an

essential role in the ‘double copy’ relation (equation (6.2)) between gravity tree amplitudes

and Yang-Mills partial tree amplitudes [8]. Indeed, Yang-Mills and gravity amplitudes

can essentially be expanded as a sum over m(α|β) with certain numerators. Another

source of interest is the ubiquitous presence of the biadjoint tree amplitudes in string

theory. For instance, closed string tree amplitudes can be expanded in a basis of ‘I-

3The appropriate cohomology theory is cohomology with values in a local system. The underlying space

is the open string moduli space M0,n(R) and the local system is defined by the monodromies of the Koba-

Nielsen factor. The cocycles in the pairing are represented in (twisted) de Rham theory by the Parke-Taylor

factors associated to the two orderings of {1, . . . , n}. These are top-forms on the open string moduli space

M0,n(R).
4This realisation of the associahedron bears some resemblance to methods developed in the combinatorial

literature, see [6] for a review. The exact prescription given by AHBHY does, however, appear to be new.
5This fits into a general paradigm. The associahedra are defined by finitely many linear inequalities and

equalities. For this reason, they are ‘linear semi-algebraic sets’ or ‘positive geometries.’ A volume form

with logarithmic singularities on the boundary of a positive geometry is called a ‘canonical form’ and a

great deal can be said in general about these forms. See ref. [7] for a recent elaboration of these ideas.
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integrals’ I(α|β) whose leading term in the infinite tension limit (α′ → 0) is m(α|β).6 [9]

Likewise, open string tree amplitudes can be expanded in a basis of ‘Z-integrals’ Zα(β)

whose leading term in the infinite tension limit is m(α|β).7 [10] The open and closed

string tree amplitudes are related by the Kawai-Lewellen-Tai relations [11]. Following

Mizera [12], we denote the inverse KLT kernel by mα′(α|β) since, in the infinite tension

limit, the leading term in mα′(α|β) is given (up to a possible factor) by m(α|β). This

means that we might regard the inverse KLT kernel mα′(α|β) as a the amplitude m(α|β)

with α′ corrections. Perhaps surprisingly, mα′(α|β) has a tidy description in terms of the

open string moduli space M0,n(R) and the monodromy factors picked up by the Koba-

Nielsen factor when points collide. The compactified moduli space M0,n(R) is tesselated

by (n − 1)!/2 copies of the associahedron on n − 1 letters. (See [13], theorem 3.1.3, for

instance.) Mizera proved that the functions mα′(α|β) can be obtained as the intersections

of these associahedra regarded as twisted cycles in M0,n(R) [14]. Some of the resulting

formulas for mα′(α|β) were encountered earlier in the mathematical literature on twisted

de Rham theory (see [15], in particular). Mizera’s result gives a new interpretation of the

KLT relation as a purely cohomological statement, namely it is the analogue in twisted de

Rham theory (or cohomology with values in a local system) of Riemann’s period relations.

This interpretation is presented and discussed in [14].

Our main result is a new formula for the amplitudes m(α|β). All n-point partial ampli-

tudes are described by a single object, called a ‘fan,’ in dual kinematic space K∗n. Individual

partial amplitudes m(α|β) are given by the ‘volumes’ of the intersections of dual associahe-

dra in this fan. This result is stated precisely in section 4 as theorem 4.1 and corollary 4.2.

Once the necessary definitions are given, the proof of this result is essentially tautological.

After all, associahedra and dual associahedra are just a fancy way of encoding the Feynman

diagram sum of trivalent graphs. Given this, why do we need another formula for m(α|β)?

Especially since so many formulas already exist? We think our formula has two intrinsic

merits. First, it is a compact and symmetric way to present the relevant combinatorics.

Second, it leads us to study a certain object (the fan) which encodes all of the partial

amplitudes at once. In fact, as we point out at the end of section 6, our main result, re-

stated in the language of toric geometry, is that all the n-point partial amplitudes m(α|β)

are described by a single toric variety. Particular partial amplitudes m(α|β) correspond

to toric subvarieties (or, really, cycles in the homology). This appears to us as a novel

description of the amplitudes. We can only hope that these new geometric presentations

of the amplitudes will suggest new approaches to the Yang-Mills and gravity amplitudes

and to the double copy relations between them. We offer speculations to this end during

the discussion in section 6. We also relegate several technical (but quite interesting) loose

ends to this discussion. Before proving our results in section 4, our key ‘canonical embed-

ding’ construction is described in 3. We explain all the essential definitions in section 2,

where we also review the relevant results that we need from AHBHY (ref. [1]). Our second

result is an observation concerning the inverse KLT kernel. The diagonal components of

6See equation (3.24) of [9] for the integral and equations (4.2), (4.3) and (4.4) for the expansion of the

closed string amplitude.
7See equation (2.2) of [10] for the integral and (2.17) for the expansion of the open string amplitude.
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Figure 3. The three cones C(α) in the kinematic space K4 for four points.

the inverse KLT kernel — that is, mα′(α|α) — are also related to the fan in dual kinematic

space which encodes the partial amplitudes m(α|β). To obtain the components mα′(α|α)

we have to introduce a lattice on kinematic space. This lattice amounts to imposing that

the Mandelstam variables sij are integer multiples of 1/α′. (It seems natural to introduce

a lattice here since, as we have just remarked, toric geometry is implicit throughout this

paper and the construction of toric varieties is predicated on lattices.) Having introduced

the lattice, we observe in section 5.3 that the components mα′(α|α) can be given as a cer-

tain sum over lattice points. This curious, and potentially superficial observation, sparks

a number of further speculations during the discussion in section 6. The main text of the

paper is largely self contained. However, for the reader’s convenience, several definitions

and theorems mentioned briefly in the text are reviewed at greater length in appendix A,

where we also give references to the many expositions that already exist.

2 Review and definitions

In this section we describe AHBHY’s construction of associahedra in ‘kinematic space.’

At n points, their construction gives (n − 1)!/2 distinct associahedra. This is reminiscent

of the open string moduli space, M0,n(R), which (after blow-ups) is tiled by (n − 1)!/2

associahedra. Unlike the tiles of M0,n(R), the associahedra that AHBHY construct in Kn
do not intersect. However, we will see in section 3 that it is natural to regard the dual

associahedra as intersecting in dual kinematic space, K∗n.

2.1 Cones in kinematic space

To begin, let us define ‘kinematic space’ at n points, Kn, to be the space of all Mandelstam

variables subject to momentum conservation.8 We can present Kn explicitly as follows.

Let {sij}, where 1 ≤ i, j ≤ n, be the n(n − 1)/2 Mandelstam variables. We impose the n

8See also section 2 of [1].
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momentum conservation relations
n∑
j=1

sij = 0.

We can use these relations to remove one index, say n, from our formulas. That is, we

consider only those sij with 1 ≤ i, j ≤ n− 1. There are (n− 1)(n− 2)/2 such variables and

we regard them as coordinates on a vector space

Vn = R
n(n−3)

2
+1.

The remaining momentum conservation relation on these variables is

n−1∑
i,j=1

sij = 0,

which presents the kinematic space Kn as a hyperplane in Vn. For example, at four points,

the vector space V4 is R3 with coordinates (s12, s23, s13) and the kinematic space K4 is the

hyperplane

s12 + s23 + s13 = 0.

Now let α be an ordering of {1, . . . , n} such that α(n) = n. Associated to each such

ordering, AHBHY associate a cone in Kn.9 The cone associated to α is cut out by the

inequalities

XS = −1

2

∑
i,j∈S

sij ≥ 0 (2.1)

for all subsets S ⊂ {1, . . . , n− 1} which are ‘consecutive’ with respect to α.10 There are(
n

2

)
− (n− 1) =

n(n− 3)

2
+ 1

such subsets S, corresponding to the diagonals of the n-gon. However, X123...n−1 is identi-

cally zero on the hyperplane Kn. So only

n(n− 3)

2

inequalities are implied by equation (2.1). We write

C(α) = {(sij) ∈ Kn | satisfying the inequalities, equation (2.1)}

for this cone. The cone C(α) is ‘polyhedral’ in the sense that it has finitely many flat

sides.11 Moreover, the inequalities that define C(α) are linearly independent, which means

that C(α) contains an interior region of full dimension, dimKn = n(n − 3)/2. There are

9This is done in section 3.2 of [1].
10By ‘consecutive’ I mean that S can be written as {α(a), α(a+1), . . . , α(a+k)} for some positive integers

a and k. For instance {1, 2, 3} is consecutive with respect to α = (1324), but {1, 2} is not.
11This is in contrast to a cone generated by a sphere, or any arbitrary convex set. See appendix A.1 for

a review of definitions and results concerning polyhedral cones.
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(n− 1)! permutations α such that α(n) = n. However, the inequalities, equation (2.1), do

not define (n− 1)! distinct cones C(α). Given a permutation α such that α(n) = n, define

the reversed permutation ᾱ as

(ᾱ(1), ᾱ(2), . . . , ᾱ(n− 1), ᾱ(n)) = (α(n− 1), α(n− 2), . . . , α(1), α(n)).

The inequalities, equation (2.1), are identical for α and its reverse ᾱ. That is, C(α) = C(ᾱ).

For this reason, we obtain only (n − 1)!/2 distinct cones. In the four point example, we

obtain 3!/2 = 3 cones. These are

C(1234) = C(3214) = {(sij) | − s12,−s23 ≥ 0},
C(3124) = C(2134) = {(sij) | − s12,−s13 ≥ 0},
C(2314) = C(1324) = {(sij) | − s13,−s23 ≥ 0}.

We show these cones in figure 3. To do this, we employ a non-orthogonal basis

e12 =

[
0

1

]
, and e23 =

[√
3/2

−1/2

]
(2.2)

for the plane, so that the point (−s12,−s23) in K4 is represented in the plane by −s12e12−
s23e23. We choose this basis to make the symmetries of the construction more apparent

in our drawings. Before we introduce associahedra in the following subsection, let us

briefly comment on the physical significance of what we have done so far. Recall that the

Mandelstam variables are sij = 2ki · kj , where ki and kj are massless momentum vectors.

The sign of sij then encodes whether ki and kj are time directed in the same way (i.e. both

forward or both past directed) or in opposite ways. To see this, write ki = ωi(εi, ni) for a

sign εi = ±1, a positive energy ωi, and a unit vector ni. In Lorentzian signature we have

ki · kj = ωiωj(εiεj − cos θ),

where θ is the angle between ni and nj . So sij ≥ 0 iff εiεj = 1 and sij ≤ 0 iff εiεj = −1. For

example, at four points, both s12 and s23 are negative inside the cone C(1234). Momentum

conservation implies that s13 is positive inside the cone. This means that k1 and k3 are both

future-pointing (or both past-pointing) while k2 is past-pointing (resp. future-pointing).

So we see that some of the inequalities in equation (2.1) have a physical interpretation in

terms of positive and negative energies.

2.2 Associahedra in kinematic space

AHBHY construct (n − 1)!/2 associahedra in kinematic space Kn by intersecting each of

the cones C(α) with an appropriate hyperplane.12 For each ordering α, with α(n) = n,

define the hyperplane

H(α) =
{
sα(i),α(j) = constant | for all non-adjacent pairs i, j less than n

}
.

12See again section 3.2 of [1].
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Figure 4. The three realisations A(α) of the associahedron in the kinematic space K4 for four

points.

There are (n − 2)(n − 3)/2 pairs of non-adjacent (i, j) for i and j less than n. So the

dimension of H(α) is
n(n− 3)

2
− (n− 2)(n− 3)

2
= n− 3.

The intersection

A(α) = C(α) ∩H(α) ⊂ Kn

defines a polytope. For generic choices of the constants that define H(α), A(α) is a reali-

sation of the associahedron. The polytope A(α) lies in the n− 3 dimensional plane H(α).

Nevertheless, the facets of A(α) (these are the top dimension faces of A(α)) generate the

cone C(α), which bounds an interior region of dimension n(n−3)/2. Since all faces of A(α)

can be obtained as the intersections of facets, it follows that all faces of A(α) are contained

in the boundary of the cone C(α). For example, at four points, consider the cone

C(1234) = {(sij) | − s12,−s23 ≥ 0}.

We choose the hyperplane

H(1234) = {(sij) | s13 =
√

3/2}.

Then, using the basis introduced in equation (2.2), the associahedron is given by the convex

hull

A(1234) = Conv

([
1

0

]
,

[
1/2√
3/2

])
.

This is shown in figure 4, together with the associahedra A(3124) and A(2314).

2.3 Dual cones and associahedra

Let K∗n be the dual (as a vector space) of Kn. There is a standard notion of a ‘dual cone.’

Define

C(α)∗ = {W ∈ K∗n |W · Z ≥ 0 for all Z ∈ C(α)} . (2.3)

– 9 –
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Figure 5. The three dual cones C(α) in K∗4.

The inequalities that define C(α), equation (2.1), can be re-expressed as

WS · Z ≥ 0,

where the covectors WS ∈ K∗n are defined by

WS · Z = XS . (2.4)

Given this, the cone C(α)∗ is given by the ‘conic hull’ or ‘positive span’13

C(α)∗ = Cone {WS | for S consecutive with respect to α} .

In the four point example we have, for instance,

C(1234)∗ = Cone(W12,W23).

In fact, the three dual cones C(1234)∗, C(3124)∗, and C(2314)∗ fill the dual space K∗4, as

shown in figure 5.14 What about dual associahedra? Unlike the cones, there is no natural

notion of a dual associahedron in K∗n. Instead, we must restrict to the (n− 3)-hyperplane

H(α) that contains A(α). Then the ‘dual polytope’ is given by

A(α)∗ = {Y ∈ H(α)∗ |Y · Z ≥ −1 for all Z ∈ A(α)} ⊂ H(α)∗.

The duality operation swaps dimension-k faces in A(α) for codimenion-(k + 1) faces in

A(α)∗. Thus, vertices in A(α) become facets in A(α)∗, and so on. To give a concrete

example, let’s return to the four point case and consider the line H(1234). Using −s12 as

a coordinate on this line, the associahedron is the interval

A(1234) =
[
0,
√

3/2
]
⊂ H(1234).

13See equation (A.1) in appendix A.1 for conic hulls.
14This is a consequence of the fact that the three cones C(1234), C(3124), and C(2314) in K4 are the

tangent cones of an isosceles triangle (translated so that their apexes are all at the origin). In general, the

sum of dual tangent cones of a convex polytope fills the dual vector space. See theorem A.3.
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Figure 6. The dual polytope construction for a 1-simplex associahedron encountered in the four

point example. Notice that duality for a polytope P in Kn is not defined with respect to Kn,

but rather with respect to the smallest linear subspace containing P . This means that the dual

associahedron A(1234)∗ is not naturally regarded as living in K∗n until an embedding is chosen. We

make a choice of embedding in section 3.

The dual polytope is then

A(1234)∗ =
[
−2/
√

3,∞
)
⊂ H(1234)∗.

If we compactify at infinity, we can regard H(1234) as RP1. Then the duality operation

has sent a 1-simplex A(1234) to a dual 1-simplex A(1234)∗. We illustrate this process in

figure 6 so as to emphasise that the dual associahedron defined this way is not yet embedded

into dual kinematic space. Such an embedding is an additional construction which inovlves

making choices. This is analogous to the choices that are involved in AHBHY’s embeddings

of the associahedron into kinematic space. We choose a particular embedding in the next

section.

3 Embedding dual associahedra

AHBHY construct (n−1)!/2 embeddings of the associahedron, which has dimension n−3,

into a higher dimensional vector space, Kn. We will now construct (n− 1)!/2 embeddings

of the dual associahedra A(α)∗ (or, in fact, their faces) into dual kinematic space K∗n. The

idea is to embed the (faces of the) dual associahedron A(α)∗ into the (boundary of the)

dual cone C(α)∗. This can be done in a canonical way such that the embedded associahedra

A(α)∗ ⊂ K∗n have combinatorially meaningful intersections. In defining our embedding we

will make use of the vectors

WS ∈ K∗n, S ⊂ {1, . . . , n− 1},

that we defined in equation (2.4). These vectors can be used as generators for the cones

C(α). Now recall that there is a 1-1 correspondence between codimension k faces of

– 11 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
3

A(α) ⊂ H(α) and dimension k − 1 faces of A(α)∗ ⊂ H(α)∗. In particular, the facets

(or codimension-1 faces) of A(α) ⊂ H(α) correspond to the vertices of A(α)∗ ⊂ H(α)∗. A

facet of A(α) ⊂ H(α) is defined by a single inequality,

WS · Z ≥ 0,

for some subset S. Let YS ∈ H(α)∗ be the vertex of A(α)∗ ⊂ H(α)∗ corresponding to the

facet WS · Z = 0 of A(α). Then any dimension-k face of A(α)∗ ⊂ H(α)∗ is given by the

convex hull

Conv(YS1 , . . . , YSk) ⊂ H(α)∗,

for some subsets Si labelling the vertices of A(α)∗. We map this face to the convex hull

Conv(WS1 , . . . ,WSk) ⊂ C(α)∗

in K∗n. In particular, we map the vertex YS to the vector WS . In this way, we can embed

all the faces of A(α)∗ into K∗n. In other words, we have an embedding of the boundary

∂A(α)∗ into K∗n. We call this the ‘canonical embedding’ of the faces and will typically

abuse notation by denoting the embedded faces as ∂A(α)∗. In general, the canonically

embedded faces ∂A(α)∗ do not bound a dimension n − 3 polytope.15 This does happen

for four points, but not at higher points. One can obtain an embedding of all A(α)∗ into

K∗n by choosing a triangulation of A(α)∗ into (n − 3)-simplices. However, we will not do

this. The reason is that all the combinatorial data that we need for amplitudes is already

contained in the faces of the dual associahedra. Finally, let us denote the union of all the

canonically embedded faces by

FNn =
⋃
α

∂A(α)∗ ⊂ K∗n

(where we write ‘FN’ for ‘face net’). We now give two examples. Consider first the four

point example. The three dual vectors are

W12,W13,W23,

and the dual cones are given by

C(1234)∗ = Cone(W12,W23),

C(2314)∗ = Cone(W13,W23),

C(3124)∗ = Cone(W12,W13).

15It is possible to realize the whole dual associahedron A(α)∗ in dual kinematic space as follows. If

A(α) is the intersection of the cone C(α) and the hyperplane H(α), then A(α)∗ can be regarded as the

projection of C(α)∗ through the dual hyperplane H(α)∗. (This is because, in projective geometry, restriction

to hyperplanes is dual to projection through hyperplanes.) Any representative of this A(α)∗ in the pre-

image of the projection is then an embedding of A(α)∗ into K∗n. We do not use this here because we have

not found a prescription which guarantees that these A(α)∗ intersect in the desired way. We thank Nima

Arkani-Hamed for this comment.
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Figure 7. The three dual associahedra A(α)∗ canonically embedded in K∗4 form a triangle.

Then the canonically embedded dual associahedra are

A(1234)∗ = Conv(W12,W23), (3.1)

A(2314)∗ = Conv(W13,W23), (3.2)

A(3124)∗ = Conv(W12,W13). (3.3)

That is, the dual associahedra tile an isosceles triangle in K∗4. See figure 7. So FN4 gives

the vertices of a triangle. The situation at five points is less straightforward. In this case,

there are (5− 1)!/2 = 12 associahedra, each being a pentagon. The dual of a pentagon is a

pentagon. So FN5 will be formed by embedding the boundaries of 12 pentagons into K∗5.

The vertices of the pentagons will each be mapped under the canonical embedding to one

of the following ten vectors,

{W12,W13,W14,W23,W24,W34,W234,W134,W124,W123}.

Though we cannot easily sketch the result of this embedding, we can draw the ‘net’ associ-

ated to it, which is shown in figure 8. Vertices in the net with the same label are identified

in K∗5 under the embedding. Figure 8 can be arrived at from the analogous diagram showing

M0,5(R) tiled by pentagons. This procedure is described in figure 9. Examining figure 8,

we see that each vertex is contained in the boundary of 6 distinct faces. Moreover, there

are 12 faces altogether and 10 vertices. This suggests that the embedded associahedra in

K∗5 tile a ‘halved’ or ‘degenerate’ dodecahedron, since a dodecahedron has 20 vertices, each

of which meets 3 of its 12 faces. In general, FNn contains

n−2∑
k=2

(
n− 1

k

)
= 2n−1 − n− 1

vertices in K∗n. It is not clear whether FNn (or perhaps some double cover of it) can be

mapped to the face lattice of a convex polytope. See section 6 for a discussion of this and

related problems.

4 The partial amplitudes m(α|β)

In the previous section we constructed an embedding of the (faces of the) dual associahedra

A(α)∗ into dual kinematic space, K∗n. Given this embedding, our main claim is that the

– 13 –
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Figure 8. The net which corresponds to the embedded associahedra in K∗5. Vertices with the same

label are identified in the embedding.

Figure 9. A portion of M0,5(R). By associating to every side of each pentagon a vertex of the

dual pentagon, we arrive at a net of dual pentagons with shared vertices. Rearranging this net

leads us to figure 8.
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biadjoint scalar tree amplitudes are given by

m(α|β) = Val(∂A(α)∗ ∩ ∂A(β)∗),

where Val is a certain ‘valuation’ or ‘volume’ that we define below in equations (4.6)

and (4.4). We prove this formula as theorem 4.1 at the end of this section. Before we

define Val, we need to review a few preliminaries.16

4.1 Preliminaries

Let P be a polyhedron in K∗n. For instance, P could be a cone like C(α)∗. Then consider

the integral

IP (Z,α′) =

∫
P

e−α
′W ·ZdWP , (4.1)

where dWP is the Euclidean volume form of the appropriate dimension to be integrated

over P . We have introduced a parameter, α′, which, at this stage, is not directly related

to string theory in any way. Notice that W is dimensionful and so α′ is dimensionful, too.

The integral IP is related to the volume of P . If P is a bounded polytope, then the (α′)0

term in the Laurent expansion of IP (Z,α′),

IP (Z,α′) = . . .+ I
(−1)
P (Z)(α′)−1 + I

(0)
P (Z) + I

(1)
P (Z)α′ + . . . ,

will coincide with the volume of P . For now, let us fix α′ = 1. Suppose P is a cone. Then,

referring to equation (4.1), we see that the integral IP (V, α′) is well defined if V ·W > 0

for all W ∈ P . This means that IP (Z, 1) is well defined if Z is in the dual cone P ∗ ⊂ Kn.17

If Z lies on the boundary of P ∗, then W · Z = 0 for W in some face of P . So IP (Z, 1)

diverges to +∞ as Z tends to the boundary of P ∗ and the integral is not defined for Z

outside P ∗. Now consider any polyhedral cone

C = Cone(W1, . . . ,Wk),

where k ≤ dimK∗n. A standard calculation shows that for Z in the interior of C∗, the

integral IC is18

IC(Z, 1) =
〈W1, . . . ,Wk〉∏k
i=1(Wi · Z)

, (4.2)

where 〈W1, . . . ,Wk〉 is the Euclidean volume of the unit (open-closed) box

Box(W1, . . . ,Wk) =

{
k∑
i=1

ciWi | 0 ≤ ci < 1

}
.

16See also appendix A for a more detailed review and references.
17The dual cone was defined in equation (2.3) in section 2.3. See also equation (A.3) in appendix A.1.
18See also theorem A.7 in appendix A.2 where IC is computed for k > dimV . The basic idea is to use

the result that
∞∫
0

dx e−ax =
1

a

several times.
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We are not interested in evaluating the integral I for the cones C(α)∗ ⊂ K∗n introduced

in section 2.3. For the purposes of writing amplitudes, the factors of Wi · Z appearing

in equation (4.2) are propagators. The cone C(α)∗ has n(n − 3)/2 vertices, and so IC(α)∗

would contain too many propagators to be an n-point amplitude. An n-point amplitude

should have n − 3 propagators, since this is the number of internal lines in any n-point

trivalent graph. All the combinatorial structure we need to write amplitudes is in the

boundary ∂C(α)∗. This boundary is generated by the facets of the dual associahedron A(α)∗

canonically embedded in K∗n. Under the canonical embedding, A(α)∗ is not necessarily itself

a convex polytope in K∗n (except for the n = 4 case). However, the faces of A(α)∗ ⊂ K∗n
are all convex polytopes by construction. It turns out that the amplitude m(α|α) is given

by a sum of terms in I∂C(α)∗ .

4.2 The formula

The integral IP computes biadjoint scalar amplitudes when P is the cone generated by

∂A(α)∗. To see this, consider the boundary ∂A(α)∗ of the dual associahedron, canonically

embedded in K∗n. This is the union of the embedded facets of A(α)∗, which we call {Fi}. So

∂A(α)∗ =
⋃
i

Fi. (4.3)

Since n − 3 is smaller than dimK∗n = n(n − 3)/2, we can use equation (4.2) to evaluate I

on ∂A(α)∗. If A and B are cones that intersect in a strictly lower dimensional cone, then

the standard properties of integrals tell us that

IA∪B = IA + IB.

It follows from this, and equation (4.3), that

ICone(∂A(α)∗)(Z, 1) =
∑

facets F

1∏n−3
i=1 (WF (i) · Z)

, (4.4)

where the facet F is given by the convex hull of WF (1), . . . ,WF (n−3) and the volume of

the unit box spanned by these vectors is one.19 The right-hand-side of equation (4.4) is a

biadjoint scalar tree amplitude. Indeed,

m(α|α) = ICone(∂A(α)∗)(Z, 1). (4.5)

This is a special case of the theorem, theorem 4.1, that we prove below. We emphasise

here that equation (4.5) is merely an alternative form of the result presented for m(α|α) by

AHBHY. Their result is presented in sections 5.1 and 5.2 of [1], and the equivalence with

equation (4.5) follows almost immediately from equation (5.7) in section 5.2 of their paper.

Theorem 4.1. For dual associahedra A(α)∗ and A(β)∗ embedded in K∗n as described in

section 3, the biadjoint scalar amplitudes are given by

m(α|β) = ICone(∂A(α)∗∩∂A(β)∗)(Z, 1).
19In abstract terms, we could normalise the volume so that the W vectors span unit-volume cells.

Concretely, however, taking coordinates Z = (sij) and defining WS as in equation (2.4), the vectors

WF (1), . . . ,WF (n−3) span a parallelogram formed by translations of a unit box.
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Proof. Given the set up as we have described it, this result is almost tautological. Ver-

tices of A(α) correspond to α-planar trivalent graphs. So facets of A(α)∗ correspond to

α-planar trivalent graphs. Suppose that a particular α-planar graph g has propogators

1/Sg(1), . . . ., 1/Sg(n−3) where −Sg(i) = WF (i) · V for some vectors WF (i) ∈ K∗n. Then the

corresponding facet F of A(α)∗ is canonically embedded in K∗n as

Conv(WF (1), . . . ,WF (n−3)).

If g is also a β-planar graph, then Conv(WF (1), . . . ,WF (n−3)) will also be a facet of A(β)∗,

canonically embedded in K∗n. In this way, the α, β-planar graphs are in 1-1 correspon-

dence with shared facets of the dual associahedra A(α)∗,A(β)∗ ⊂ K∗n under the canonical

embedding. The result then follows from∑
shared F

1∏n−3
i=1 (WF (i) · V )

=
∑

α,β−planar g

1∏n−3
i=1 (−Sg(i))

.

This last expression is m(α|β).

The statement of theorem 4.1 emphasises the cones generated by the boundaries

∂A(α)∗. However, the integral IConeP can also be regarded, if you prefer, as a volume

or valuation of the polytope P itself. To emphasise the role of the dual associahedra, we

might define

Val(P )(Z) = ICone(P )(Z, 1). (4.6)

Notice that Val is a valuation (i.e. ‘like’ a volume). This follows from the valuation property

for IP (IP∪Q = IP + IQ − IP∩Q) and some other observations such as Cone(P ∪ Q) =

Cone(P ) ∪ Cone(Q). This said, we can write the following.

Corollary 4.2. The biadjoint scalar tree amplitudes are given by

m(α|β) = Val(∂A(α)∗ ∩ ∂A(β)∗),

where Val is the valuation defined in equation (4.6).

4.3 Examples

We now illustrate theorem 4.1 at four and five points. No essentially new phenomena

appear at higher points, so these examples suffice to illustrate the result.

Example 4.3. The kinematic associahedra at four points were presented explicitly in sec-

tion 3, equations (3.1) to (3.3). For example, the dual associahedron A(1234)∗ is given by

A(1234)∗ = Conv(W12,W23),

and it has two zero-dimensional facets, namely W12 and W23. Then we compute

ICone(W12)∪Cone(W23) =
1

W12 · V
+

1

W23 · V
.

It follows that the amplitude is

m(1234|1234) =
1

−s12
+

1

−s23
.
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Figure 10. The shared facet of A(12345)∗ and A(14235)∗. Vertices in the net with the same label

are identified under the canonical embedding into K∗5.

Example 4.4. Recall from equation (3.3) that

A(3124)∗ = Conv(W13,W12).

Then we evaluate the intersection

A(1234)∗ ∩ A(3124)∗ = W12.

This implies the amplitude

m(1234|3124) = Val(Cone(W12)) =
1

W12 · V
=

1

−s12
.

Example 4.5. At five points, the kinematic space K5 is defined by the hyperplane

s12 + s13 + s14 + s23 + s24 + s34 = 0

in V = R6. Consider the ordering α = 12345. The cone C(α) is defined by the inequalities

X13 = −s12 ≥ 0

X14 = −s123 ≥ 0

X24 = −s23 ≥ 0

X25 = −s234 ≥ 0

X35 = −s34 ≥ 0.
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The dual cone C(α)∗ is the conic hull

C(α)∗ = Cone(W12,W123,W23,W234,W34).

(For the definition of the dual vectors WS, see equation (2.4) in section 2.3.) Similarly,

the dual cone C(β)∗ for β = 14235 is the conic hull

C(β)∗ = Cone(W14,W124,W24,W234,W23).

The associated dual associahedra, A(α)∗ and A(β)∗, canonically embedded in K∗5, share one

face:

A(α)∗ ∩ A(β)∗ = Conv(W23,W234).

This can be read off from figure 8, or computed explicitly by listing the faces of the two dual

associahedra. See figure 10 for a drawing that highlights the intersection. We compute

ICone(W23W234)(Z, 1) =
1

Z ·W23Z ·W234
.

So the amplitude is

m(α|β) = Val (Conv(W23,W234)) =
1

s23s234
.

Example 4.6. To give another example, the dual cone for γ = 12435 is the conic hull

C(γ)∗ = Cone(W12,W124,W24,W234,W34).

The dual associahedron A(γ)∗, canonically embedded in K∗5, shares two faces with A(α)∗.

This can be read off from figure 8 or computed by hand. The shared faces are

Int = A(α)∗ ∩ A(γ)∗ = Conv(W234,W34) ∪ Conv(W34,W12).

The valuation I of this intersection is

ICone(Int)(Z, 1) =
1

W34 · ZW234 · Z
+

1

W34 · ZW12 · Z
.

The amplitude is

m(α|γ) = Val(Int) =
1

s23s234
+

1

s12s34
.

Example 4.7. As a final example, the cone C(δ)∗ for δ = 13524 is given by

C(δ)∗ = Cone(W13,W24,W124,W14,W134).

One can readily verify that C(δ)∗ ∩ C(α)∗ = ∅.20 This means that the dual associahedra

A(α)∗ and A(δ)∗ share no common faces in the canonical embedding into K∗5. (This can

also be read off from figure 8.) This means that the amplitude vanishes:

m(α|δ) = Val(A(α)∗ ∩ A(δ)∗) = 0.
20This is an exercise in linear reduction. One should write the generators of C(δ)∗ as linear combinations

of the generators of C(α)∗ and observe that each generator of C(δ)∗ lies outside of C(α)∗.
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Figure 11. The lattice of points with integer Mandelstam variables, L, and its dual lattice, L∗.

5 A connection with the KLT kernel

In this section we state a connection between the dual associahedra in K∗n and the inverse

KLT kernel. We denote the inverse KLT kernel by mα′(α|β), following Mizera [12]. In

section 5.3 we present a new formula for the diagonal elements mα′(α|α). This formula

involves a discrete sum over a lattice which we introduce in section 5.1. In kinematic space,

Kn, the lattice is a standard lattice of points for which the Mandelstam variables sij take

integer values (or, if you prefer, are integer multiples of 1/α′). Before we prove the formula

in section 5.3, we review some technical preliminaries in sections 5.1 and 5.2. But to put

this discussion in context, let us begin by recalling that Kawai-Lewellen-Tye derived a

relation of the form

Aclosed =
∑
α,β

Aopen(α)KLT(α|β)Aopen(β)

between closed string tree amplitudes and open string amplitudes. This relation was derived

in [11] using an analytic continuation argument to deform the integration contours of the

amplitudes in such a way that Aclosed factorises as shown. The kernel, KLT(α|β), can be

inferred given knowledge of the string amplitudes. However, in [12], Mizera conjectured an

algorithmic description of the inverse kernel, mα′(α|β), that makes no reference to the string

amplitudes (and their associated hypergeometric functions). In subsequent work, Mizera

showed that his formulas for mα′(α|β) can be regarded as (twisted) intersection pairings

of the associahedra that tile M0,n(R) [14]. For this reason, it is interesting that mα′(α|α)

appears naturally in our present context, where we are concerned with intersecting dual

associahedra. For further speculations about whether the two presentations are related,

see section 6.

5.1 The lattice

Recall from section 2 that Vn = Rn(n−3)/2+1 is the vector space with coordinates sij for

all pairs i, j strictly less than n. Let L̃ be the standard lattice Zn(n−3)/2+1 ⊂ Vn of points

for which the sij are all integers. Given this, we have a lattice L = L̃ ∩ Kn in kinematic
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space.21 It turns out that one can choose generators for the cones C(α) from among vectors

in the lattice L.22 For this reason, the cones C(α) are called ‘rational’ cones, with respect

to the lattice L. Dual to L, we have the lattice L∗ in K∗n. The cones C(α)∗ are generated

by vectors in L∗. Indeed, the vectors WS that we have been using as generators for C(α)∗

are L∗-vectors. This is because

Z ·WS ∈ Z for all Z ∈ L, (5.1)

which is the condition for WS to be a vector in L∗. To illustrate all of this, consider again

the example of four points. A basis for the lattice L in K3 ⊂ R3 is

L = Z


 1

0

−1

 ,
 0

1

−1


 .

Alternatively, we can employ the coordinates on K3 that we introduced in equation (2.2)

(section 2.1). In these coordinates,

L = Z

([
1/2√
3/2

]
,

[
1

0

])
.

This is just the triangular lattice, see figure 11. On the other hand, the dual lattice is

L∗ = Z (W12,W23) ,

which is the triangular lattice rotated by π/6. Notice that W13 = −W12−W13, and so W13

is also a vector in L∗.

5.2 Preliminaries

Before we can present our formula for mα′(α|α) in theorem 5.2, we need to introduce a

sum over lattice points which is the direct analogy of the integral IC that we introduced in

equation (4.1) (section 4.1). Let P be a polyhedron in K∗n. We are interested in the sum

SP (V, α′) =
∑

W∈P∩L∗
e−α

′W ·V .

Just as the integral IP is the related to the volume of P , the sum SP is related to the

number of L∗-points contained in P . If P is a bounded polytope, the number of L∗-points

would be given by

#(P ∩ L∗) = lim
α′→0

SP (V, α′).

21It is clear that Kn is a rational subspace with respect to L. That is, we can choose a basis that spans

Kn from among vectors lying in L. Indeed, for some ordering of the sij we could adopt a basis of the form

{(1,−1, 0, 0, . . .), (0, 1,−1, 0, . . .), (0, 0, 1,−1, . . .), . . .},

which are all vectors in L and span the hyperplane Kn.
22The proof is as follows. The vectors WS defined in equation (2.4) are L∗-vectors, as shown in equa-

tion (5.1) of the main text. This means that the hyperplanes WS · Z = 0 in Kn are L-rational. The rays

of the cone C(α) are given by intersecting these hyperplanes. It follows that the rays are L-rational and,

therefore, they are generated by some vector in L.
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For now, let α′ be positive and real. When P is a cone, the sum SP is well defined if V is

in the interior of the dual cone P ∗.23 Now fix some cone

C = Cone(W1, . . . ,Wk),

where k ≤ dimK∗n. The sum is particularly easy to evaluate if the vectors Wi are all

generators of the lattice L∗. One finds

SC(V, α′) =

k∏
i=1

1

1− e−α′Wi·V
, (5.2)

for V ∈ C∗.24 In section 4 we studied the integral I∂C over the boundary, ∂C, of a cone C.

We conclude this subsection by evaluating the discrete sum S∂C . We find a large number

of new terms, when compared with I∂C , because of the valuation property of the sum

SP . In effect, the sum SP ‘sees’ not just the faces Cone(F ) of the cone C, but also their

intersections Cone(Fi) ∩ Cone(Fj). This turns out to be crucial for the realtionship with

the inverse KLT kernel, which we explain in section 5.3.

Lemma 5.1. Let C be a cone in the vector space K∗ whose boundary is generated by some

set of polytopes {F} of the same dimension that intersect in polytopes of strictly lower

dimension. Then

S∂C(Z,α′) = −
∑
k=1

(−1)k
∑

F1,...,Fk

SCone(F1∩...∩Fk)(Z,α
′),

where the summations are over all k-tuples, {F1, . . . , Fk}, such that the intersection F1 ∩
. . . ∩ Fk is not empty.

Proof. The sum SP is a ‘valuation’ in the sense that it behaves like a volume:

SP∪Q = SP + SQ − SP∩Q, (5.3)

for two polyhedra P and Q. The lemma is a consequence of this property, writing

∂C =
⋃
i

Cone(Fi).

To arrive at the formula explicitly is an exercise in induction, making use of the observation

that

Cone(Fi) ∩ Cone(Fj) = Cone(Fi ∩ Fj)

and using standard set theory identities such as (A ∪B) ∩X = (A ∩X) ∪ (B ∩X).
23Recall that, for such a V , W ·V ≥ 0 for all W ∈ P . The convergence of the sum SP (V, α′) then follows

from the usual convergence statement:
∞∑
n=0

xn

converges to 1/(1− x) if |x| < 1.
24See appendix A.4, for the analogous formulas when Wi are not lattice generators and for when k >

dimK∗n. The general idea is to repeatedly apply

∞∑
n=0

e−nα
′Wi·Z =

1

1− e−α′Wi·Z
.
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5.3 The formula

We will now observe that the sum S∂C(α), defined above, is related to the diagonal compo-

nents mα′(α|α) of the inverse KLT kernel.25

Theorem 5.2. For a dual associahedron A(α)∗ canonically embedded in K∗n (as described

in section 2),

SCone(∂A(α)∗)(Z, 2πiα
′) = 1−mα′(α|α).

The left hand side can be found by, for instance, evaluating SCone∂A(α)∗(Z,α
′) and then

analytically continuing the result by replacing α′ with 2πiα′.

Proof. This follows directly from lemma 5.1. Indeed, combining the lemma with equa-

tion (5.2),

1− SCone(∂A(α)∗)(Z,α
′) = 1 +

∑
k=1

∑
F1,...,Fk

n−2−k∏
i=1

1

e−α
′WF (i)·Z − 1

.

Since the sum only includes k-tuples (F1, . . . , Fk) such that F1∩. . .∩Fk 6= ∅, any F1∩. . .∩Fk
appearing in the sum has n− 2− k vertices WIa . Then WIa · V = −SIa , where SIa are the

n− 2− k propagators associated to the codimension-k face F1 ∩ . . .∩Fk. (Dually, they are

associated to a codimension-(n− 2− k) face in A(α).) Then

1− SCone(∂A(α)∗)(Z, 2πiα
′) = 1 +

∑
k=1

∑
F1,...,Fk

n−2−k∏
a=1

1

e2πiα′SIa ·Z − 1
.

This is the expression for mα′(α|α) discussed by Mizera in [14] (equation (4.19) of Mizera’s

paper). The formula first appears in [15].

To illustrate theorem 5.2, consider the four point example. For instance,

∂A(1234)∗ = {W12} ∪ {W23}.

It follows that

1− SCone(W12) − SCone(W23) = 1 +
1

e−α′s12 − 1
+

1

e−α′s23 − 1
.

After an analytic continuation, α′ 7→ 2πiα′, this expression becomes

mα′(1234|1234) = − 1

2i tan(πα′s12)
− 1

2i tan(πα′s23)
,

which is the formula also given by Mizera. We recover the amplitude m(1234|1234) from

the pole in α′,

m(1234) =

∮
dα′mα′(1234) =

1

−s12
+

1

−s23
,

which follows since 1/ tan(x) ' 1/x+O(x0).

25Note added in proof: at the time of writing, we did not recognise that 1−SC(α)∩C(β) can be regarded as

giving an off-diagonal element, mα′(α|β). The result of this sum differs from the standard function given

for mα′(α|β) by an overall phase which can be absorbed by a redefinition of the open string amplitudes

appearing on either side of the KLT relation. We thank Sebastian Mizera for discussions on this point.
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6 Further comments

The main result in this paper is the formula for m(α|β) presented in section 4, theorem 4.1.

The formula is based on an embedding of dual associahedra A(α)∗ into dual kinematic space

K∗n. The amplitude m(α|β) can then be expressed in terms of the shared faces of A(α)∗ and

A(β)∗. Arguably, what we have done is “trivial” in the sense that the dual associahedra do

no more than express Feynman diagrammatics in a geometric setting. The intersecting faces

of the dual associahedra are just a fancy way to describe a sum over trivalent graphs which

are (α, β)-planar. There is, however, something interesting about the new presentation.

The embedded associahedra A(α)∗ tile a larger object in dual kinematic space. This is the

object pictured in figure 5 for four points, where it is a triangle, and in figure 8 for five

points, where it resembles a degenerate or ‘halved’ dodecahedron. What is this object in

general? And, given the role that m(α|β) plays in the double copy relation, how can this

object be related to Yang-Mills and gravity amplitudes? We offer some speculations below,

and describe many unresolved loose ends.

The open string moduli space. In section 3 we introduced (n− 1)!/2 embeddings of

the boundary of the dual associahedron into K∗n. We defined the union of these embeddings,

FNn =
⋃
α

∂A(α)∗ ⊂ K∗n. (6.1)

FNn does not bound a convex polytope in K∗n, except when n = 4 (in which case it bounds

an equilateral triangle). The first loose end is to study FNn in its own right and explain how

it is related to M0,n(R). The open string moduli space, M0,n(R), after compactification,

is tiled by (n− 1)!/2 copies of the associahedron. (See, for instance, theorem 3.1.3 of [13].)

There is a duality map from each associahedron A(α) in M0,n(R) to the corresponding

dual associahedron A(α)∗. In this sense, FNn is something like a ‘dual’ of the open string

moduli space. With some effort, this could probably be made into a precise statement about

dual polytopes.26 A duality statement might help us to present a relationship between the

intersecting dual associahedra in this paper and the (twisted) intersections of associahedra

that have been explored recently by Mizera in [14].

The fan of cones C(α). A second loose end concerns the cones C(α) in kinematic space

Kn introduced by AHBHY. There are (n− 1)!/2 cones cut out by

2n−1 − n− 1

hyperplanes. At four points, the three cones, C(α), are the ‘tangent cones’ of a triangle.27

Indeed, consider the triangle

T4 = Conv (e12, e13, e23)

26A possible route would be to exploit the relationship of M0,n(R) to the permutoassociahedron (intro-

duced by Kapranov in [16]) which can be realised as a convex polytope, as shown in [17]. As a convex

polytope, we can take the polytope dual of the permutoassociahedron, from which we might be able to

recover FNn.
27In general, the tangent space at the vertex of a polytope is a cone. See section A.1 and especially

equation (A.2) for the definitions.
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Figure 12. At four points, the cones C(α) defined by AHBHY arise as the tangent cones to a

triangle.

in K4. The vectors e12 and e23 are as in equation (2.2), while e13 is defined as −e12 − e23.

The three vertices of T4 have tangent cones such as, at the vertex e12,

Cone(e13 − e12, e23 − e12).

But this cone is just the cone C(2314) as defined by AHBHY. Indeed, we see that C(1234)

is the tangent cone of T4 at e23 and C(3124) is the tangent cone of T4 at e13. We illustrate

this in figure 12. It is no longer true at higher points that the cones C(α) arise as the

tangent cones to a polytope. This can be seen at five points using the following fact. If a

set of cones Ci are the tangent cones of a convex polytope, then the union of their duals,

∪C∗i , is the entire vector space. At five points, one can see that the union ∪C(α)∗ is not

the whole vector space. (The union doesn’t contain, for instance, −W123. This is because

−W123 = W14 + W24 + W34, and there is no cone for which W14, W24, and W34 are all

generators.) However, it may be possible to give a polytopal interpretation to the fan

obtained by including also the cones −C(α). At four points, this fan has six cones and

they are the duals of the tangent cones to the hexagon in K∗4. The hexagon is a regular

permutohedron. At higher points, the fan
⋃
α C(α) ∪ −C(α) has (n − 1)! cones and it is

natural to speculate that it might be dual to the tangent fan of a permutohedron in K∗n
which has (n− 1)! vertices. Though we have not yet verified this.28

The double copy. The amplitudes m(α|β) form the inverse kernel for the field theory

double copy relation

Mn =
∑
α,β

A(α)m−1(α|β)A(β) (6.2)

between gravity amplitudes Mn and Yang-Mills partial amplitudes A(α). Whilst there

are many presentations of the amplitudes m(α|β), the emphasis given by AHBHY, and

28A result of reference [19] says that a polytope is a regular permutohedron if its face lattice is the Weyl

fan. For work on expanding cones as a sum of Weyl fans (or their duals, called ‘plates’), see N. Early’s

recent paper, which might help in these computations [20].
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pursued in this paper, is combinatorial. This prompts a question: can the Yang-Mills

partial amplitudes A(α) be related to a combinatorial object? And can the field theory

KLT relation, equation (6.2), be given a combinatorial interpretation? Speculations of this

kind have been widespread ever since Bern-Cachazo-Johansson suggested that Yang-Mills

partial amplitudes can be written in the form

AYM =
∑
α,β

n(α)c(β)m(α|β),

where c(β) are colour factors and n(α) are numerators that obey Jacobi-type relations [8].

The field theory KLT relation, equation (6.2), then reads

Mn =
∑
α,β

n(α)n(β)m(α|β).

A combinatorial presentation of these identities would perhaps be interesting, especially

if it relied on FNn (discussed following equation (6.1)) which is, in some sense, dual to

M0,n(R).

Kawai-Lewellen-Tye. In section 5, we observed that the inverse KLT kernel is related

to point counting in the cones generated by the dual associahedra A(α)∗. Is this a fluke?

Or is it related to something more interesting? It is noteworthy that the introduction of the

lattice L breaks the projectivity of the original construction by introducing a fixed scale.

The importance of the lattice L also suggests that we take advantage of the links with toric

geometry. As emphasised below, in ‘the toric dictionary,’ our formulas for m(α|β) have a

natural interpretation in terms of integrals over cycles. What is the toric interpretation of

our formula for mα′(α|β)? One might hope that intersection theory on the appropriate toric

variety could be used to encode the full inverse KLT kernel. It would then be necessary to

understand how our intersecting dual associahedra (or toric cycles) are related to Mizera’s

presentation of mα′(α|β) as the intersection of associahedra in M0,n(R).

The toric dictionary. We conclude by describing the natural correspondence between

cones and toric varieties. Under this correspondence, theorem 4.1 takes on a new sig-

nificance: the amplitudes m(α|β) can be understood as coming from an integral over

subvarieties in some toric variety. These integrals can be explicitly evaluated using the

Duistermaat-Heckman (‘localisation’) formula. In this paragraph, we will briefly describe

the toric dictionary as it bears on our results in section 4. Some more details are included

in appendix A.3, but the relevant facts are as follows. Given a cone C∗ ⊂ K∗n and a lattice

L∗ ⊂ K∗n, a standard construction produces an associated variety XC∗ with a toric action.

The torus TC∗ that acts on XC∗ may be identified with the unit cell of the lattice L in Kn.

Given these identifications, the moment map for the TC∗ action is a map

µ : XC∗ → Lie(TC∗)
∗ = K∗n

and the image of this map turns out to be C∗. This means that we can write

IC∗(Z, 1) =

∫
C∗

e−Z·WdW |C∗ =

∫
XC∗

e−Z·µ(x)dx,
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where dx is the pushforward of dW . The torus action TC∗ has a fixed point xo ∈ XC∗ . If

the cone C∗ is based at the origin, µ(xo) = 0. The Duistermaat-Heckmann formula then

evaluates the integral as ∫
XC∗

e−Z·µ(x)dx =
1

detxo(−Z)
,

where Z is regarded as a generator for a 1-parameter subgroup of TC∗ and acts on XC∗ at

xo. It turns out that this is just a toric version of the formula∫
C∗

e−Z·WdW |C∗ =
1∏

i(Z ·Wi)
,

where C∗ = Cone(W1,W2, . . .). Things get more interesting when more than one cone is

involved. A union of cones is called a fan (provided that the intersections of the cones

are cones). Consider a fan formed from multiple cones C∗, D∗, . . . in K∗n. A standard

construction associates a toric variety to this fan. This is constructed by glueing together

the toric varieties XC∗ , XD∗ , . . . associated to each cone. If the cones C∗ and D∗ intersect

in a cone C∗∩D∗, then C∗∩D∗ defines a subvariety XC∗∩D∗ in both XC∗ and XD∗ . We can

then glue XC∗ and XD∗ together by identifying this subvariety. Returning to the context

of section 4, let Y be the toric variety associated to the fan Cone(FLn). (See section 3

for FLn.) Then all cones C∗ ⊂ FNn give rise to subvarieties XC∗ in Y . If C∗ is the

intersection of two other cones, then XC∗ is also an intersection of toric subvarieties. Since

all the n-point amplitudes m(α|β) can be written in terms of the integrals IC∗ for various

C∗ ⊂ FNn, we can rewrite theorem 4.1 as

m(α|β) =

∫
Xαβ

e−Z·µ(x)dx, (6.3)

where Xαβ is some cycle (or toric subvariety) in Y .29 This rewriting of theorem 4.1 is

strictly tautological, but it may suggest new ways forward. In particular, notice that the

exponent in the integrand, −Z · µ(x), is a (perfect) Morse function on the toric variety

Y . (See [21], for instance.) In fact, we get a whole family of Morse functions by varying

Z. Given these observations, we might consider arriving at the amplitudes m(α|β) using

a supersymmetric-quantum-mechanics model with Y as its target space (in the manner

of [22] or [23]). It is not clear whether such a model would be useful for understanding the

double copy relation. Moreover, it remains to work out whether or not intersections in the

toric variety Y are related to the components mα′(α|β) of the inverse KLT kernel.
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A Review of polyhedral cones and convex polytopes

This appendix reviews some facts about polyhedral cones in vector spaces and in discrete

lattices. This topic is closely related to toric geometry and a fast-paced review of polyhedral

cones appears in appendix A of Oda’s textbook on toric geometry [24]. Ref. [25] begins with

a substantial review of polyhedra in lattices. I have also relied heavily on [26]. Section A.5

on Euler-Maclaurin formulas presents a recent result that first appears in [27] following

earlier work in [28] and [29]. Useful lecture notes on these subjects appear on A. Barvinok’s

university webpage, some of which have been published in book form, [30].

A.1 Cones

Let V be a vector space of dimension dim V . A polyhedron is a subset P ⊂ V defined

by finitely many linear inequalities and linear equalities. In other words, a polyhedron

is the intersection of some planes and half-spaces. In particular, a polytope is a bounded

polyhedron. A polytope P is a convex polytope if for all Z,Z ′ ∈ P , the midpoint (Z+Z ′)/2

is in P , too. One way to produce convex polytopes, is from their vertices. Take some vectors

Z1, . . . , Zk ∈ V as the vertices of a convex polytope P . Then one way to express P is as

the convex hull of these points

P = Conv(Z1, . . . , Zk) =

{
k∑
i=1

ciZi |
k∑
i=1

ci = 1 and 0 ≤ ci ≤ 1 ∀ i

}
.

For any polyhedron P , we can define the affine space containing P , Aff(P ), as the smallest

hyperplane in V containing all of P . By the interior of P , Int(P ), we mean the interior of

P regarded as a subset of Aff(P ). The boundary of P is then ∂P = P\Int(P ). The study of

polyhedra can often be reduced to a study of ‘polyhedral cones’ using theorem A.1, which

we will come to shortly. In general, a cone is a subset S ⊂ V which is (i) convex, and (ii)

for Z ∈ P , λZ is also in P for all positive real numbers λ. A cone is a polyhedral cone if it

has flat sides. (i.e. if the cone is also a polyhedron in the sense described above.) One way

to produce polyhedral cones is by taking the conic hull of some vectors,

Cone(Z1, . . . , Zk) =

{
k∑
i=1

ciZi | 0 ≤ ci ∀ i

}
. (A.1)

A cone is a pointed cone if its apex is a point. This means that a pointed cone contains no

fully extended line (i.e. it contains only half-lines). A polyhedron P can be decomposed into

cones. Let Vert(P ) be the vertices of P . For any vertex Z ∈ Vert(P ) define the tangent cone

TanP (Z) = {Z +X |Z + λX ∈ P for some λ > 0}

and the cone of directions

DirP (Z) = {X |Z + λX ∈ P for some λ > 0}. (A.2)

Clearly these two cones are related by a translation:

TanP (Z) = Z + DirP (Z).

A useful observation is that P can be decomposed into the sum of its tangent cones.
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Figure 13. An example of the polyhedral decomposition into cones, theorem A.1.

Theorem A.1. For any polyhedron P ,

P '
∑

Z∈Vert(P )

TanP (Z),

where ' denotes equality modulo the addition or subtraction of polyhedra containing fully

extended lines.30

Example A.2. Consider the polyhedron P in V = R2 with vertices Z1 = (0, 0) and

Z2 = (1, 0) and tangent cones

TanP (Z1) = Cone

([
0

1

]
,

[
1

0

])

and

TanP (Z2) = Z2 + Cone

([
0

1

]
,

[
−1

0

])
.

Then the sum of these two cones is

TanP (Z1) + TanP (Z2) = P +H,

where H is the upper-half-plane H = {(x, y) ∈ V | y ≥ 0}. Since H contains a fully extended

line, we conclude that

TanP (Z1) + TanP (Z2) ' P,

as in the theorem. See figure 13.

For any set S we may define its dual

S∗ = {W ∈ V ∗ |W · Z ≥ −1 ∀Z ∈ S}.

If C is a cone, this definition implies that

C∗ = {W ∈ V ∗ |W · Z ≥ 0 ∀Z ∈ C}. (A.3)

We now mention an interesting result, related to the decomposition in theorem A.1.

30This is theorem 3.5 in [25].
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Figure 14. Another example of theorem A.3.

Theorem A.3. Let P be a polytope in V with vertices VertP . Then⋃
Z∈VertP

DirP (Z)∗ ' V ∗,

where ' denotes equality as sets modulo excision by polyhedra contained in proper subspaces

of V ∗.

Example A.2 is a non-example of this theorem, since the infinite strip is not a polytope

(it is not bounded). Indeed, the union of the dual cones DirP (Z1)∗ and DirP (Z2)∗ in

example A.2 only cover a half-space in V ∗ = R2. For a bonafide example of theorem A.3

consider the equalitateral triangle.

Example A.4. The equilateral triangle is the convex hull of three points

e1 = (0, 1), e2 = (
√

3/2,−1/2) e3 = (−
√

3/2,−1/2).

Let T = Conv(e1, e2, e3) be the triangle. Then the direction cones are, for instance,

DirT (e1) = Cone(e2 − e1, e3 − e1).

Notice that e3 is orthogonal to e2 − e1 and e2 is orthogonal to e3 − e1. Based on this, one

can show that the dual cone is

DirT (e1)∗ = Cone(e2, e3).

Likewise,

DirT (e2)∗ = Cone(e3, e1) and DirT (e3)∗ = Cone(e1, e2).

It is clear that these three cones fill the vector space.

This example appears in the text in connection with the dual associahedra for the

four point amplitude. See section 2.3. For another example of the theorem, consider the

hexagon shown in figure 14. The cones defined by the vertices of the hexagon overlap with

each other. However, the dual cones tile the dual space in agreement with the theorem.
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A.2 Continuous valuation

We now define a valuation (or ‘volume’) on polyhedra, and on cones in particular, that

plays a significant role in section 4 of the main text. Let P ⊂ V be a polyhedron containing

no fully extended line. For W ∈ V ∗ we consider the integral

IP (W,α′) =

∫
P

e−α
′W ·ZdZP .

When this integral does not converge, we set IP (W,α′) = 0. If the interior of P has

dimension d (possibly smaller than dim V ) the measure dZP appearing in the integral

is the d-dimensional Euclidean volume on the interior of P . Notice the following shift

property,

IZo+P (W ) = e−α
′W ·ZoIP (W ).

We now compute an example.

Example A.5. Consider the cone C = Cone((1, 0), (0, 1)), which is the first quadrant of

the plane. If W = (w1, w2) are coordinates on V ∗,

IC(W,α′) =

∞∫
0

da

∞∫
0

db e−α
′aw1−α′bw2 = (−1)2 1

(α′)2w1w2
.

The result of the calculation in example A.5 is a function which is divergent as w1 → 0

or w2 → 0. Indeed, w1 = 0 and w2 = 0 are the boundaries of the dual cone C∗. In general,

if C is a cone, then the integral

IC(W,α′)

is well defined for all W ∈ C∗ and diverges to positive infinity as W approaches the

boundary of C∗. (See [24] proposition A.10.) The calculation in example A.5 generalises

to an arbitary polyhedral cone.

Theorem A.6. If C = Cone(Z1, . . . , Zk) be a polyhedral cone with k ≤ dimV we compute

that

IC(W ) = (−1)k
Vol(Box(Z1, . . . , Zk))∏k

i=1W · Zi
,

where Box(Z1, . . . , Zk) is the unit (open-closed) box {
∑k

i=1 ciZi | 0 ≤ ci < 1 ∀ i}.

This theorem follows by computing I for the standard cone (R+)k in Rk and then

using the map from (R+)k to C. What happens when k is larger than dimV ? In this case,

we can evaluate IC for C = Cone(Z1, . . . , Zk) by giving a triangulation of the polytope

P = Conv(Z1, . . . , Zk). Suppose that Ia are a collection of subsets Ia ⊂ {1, . . . , k} with

length dimV . Associated to each such subset is a cone

Ca = Cone{Zi | i ∈ Ia}.
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Figure 15. Decomposing a polyhedral cone using a triangulation.

If the subsets Ia define a triangulation of P , then

C =
∑
a

Ca.

We sketch an example in figure 15. By the usual linearity of integration, we arrive at the

following result.

Theorem A.7. Let C = Cone(Z1, . . . , Zk) ⊂ V for k > dimV and suppose that some

subsets Ia ⊂ {1, . . . , k} define a triangulation of P = Conv(Z1, . . . , Zk) in (d−1)-simplices.

Then

IC(W ) =
∑
a

ICa(W ) =
∑
a

(−1)dimV Vol(Boxa)∏
i∈IaW · Zi

,

where Boxa is the unit box generated by the Zi with i ∈ Ia.

We can use the decomposition theorem, Theorem A.1, to compute IP for any polyhe-

dron P as

IP (W,α′) =
∑

Z∈Vert(P )

ITanP (Z)(W,α
′) =

∑
Z∈Vert(P )

e−α
′W ·ZIDirP (Z)(W,α

′). (A.4)

The volume of P is ostensibly given by the limit α′ → 0. We can extract the volume of P

from IP (W,α′) by considering its Laurent expansion in α′ and taking the (α′)0 term. This

is tractable because theorems A.6 and A.7 show us that

IDirP (Z)(W,α
′)

is always homogeneous in α′. If the interior of P has dimension d, then IDirP (Z)(W,α
′) is

homogeneous with weight −d.

Theorem A.8. Let P be a polyhedron as above. The (α′)0 term in the Laurent expansion

of IP (W,α′) is

I
(0)
P (W ) =

∑
Z∈Vert(P )

1

d!
(W · Z)dIDirP (Z)(W ).

When P is a polytope, this expression is the volume of P . However, it is also well

defined when P is not bounded. We give two examples.
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Example A.9. Let P be the strip defined in example A.2. If W = (w1, w2) are the dual

coordinates, we find

I
(0)
P (W ) =

1

2

w1

w2
.

So, even though P has infinite Euclidean volume, I
(0)
P (W ) is still an interesting function.

Indeed, the function takes values in [0, 0.5] with extreme values on the boundary of P .

Example A.10. Let T be the triangle introduced in example A.4. The integrals

IDirP (Z)(W ) evaluate to give, for example,

IDirT (e1)(W ) =
3
√

3

2

4

3

1

w2
1 − 3w2

2

.

Summing the contributions in theorem A.8 gives

I
(0)
T (W ) =

3
√

3

2
.

In this case we see that I
(0)
T (w) is the Euclidean area of the triangle, which is what we

expect.

A.3 Lattices and toric varieties

Now let L be a lattice in V . A vector Z is L-rational if an integer multiple of it, nZ, is

a lattice point. More generally, a subspace W ⊂ V is L-rational if it is the affine space

generated by points in L. (Equivalently, W is rational if W ∩L is a lattice.) A polyhedral C

is rational if it can be generated by a collection of lattice points. In sections A.4 and A.5 we

discuss some concrete constructions based on rational cones in a lattice — these are used

in section 5.3 of the main text to discuss a possible relation between the cones in kinematic

space and the inverse KLT kernel. In this section, we will briefly recall the construction

of toric varieties from cones and polyhedra. Our reason for doing this is to point out that

formulas for the integral IP (W ) like theorem A.6 and equation (A.4) are, in fact, disguised

forms of the Duistermaat-Heckman formula. Readers not interested in this connection may

skip to section A.4.

Consider the rational cone, C = Cone(Z1, . . . , Zk), where the Zi are all lattice points.

Let Aff(C) be the affine space containing C, as above. Clearly

Aff(C) = SpanR(Z1, . . . , Zk).

We can consider the lattice

M = Z[Z1, . . . , Zk] ⊂ Aff(C),

which is a sublattice of L. This lattice defines a torus

T = Aff(C)/M
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which we can identify with the open-closed unit box

Box(Z1, . . . , Zk) =

{
k∑
i=1

ciZi | 0 ≤ ci < 1

}
.

And the image of L in T , which is G = L∩Aff(C)/M , is a finite subgroup of T . Associated

to the lattice M we can consider the algebra of characters. For any Z ∈M ,

χZ(W ) = e2πiW ·Z

and we define the algebra C[M ] to be generated by these characters with the multiplication

χZ ·χZ′ = χZ+Z′ . Let L∩Aff(C) have generators Z[Ẑ1, . . . , Ẑk]. Then the algebra associated

to L ∩Aff(C) is generated by the characters T±1
i = χ±Ẑi . So,

C[L ∩Aff(C)] = C[T±1
1 , . . . , T±1

k ].

The characters of M , χZ with Z ∈M , are positive integer powers of the T±1
i . So we have

an inclusion

C[M ] ↪→ C[T±1
1 , . . . , T±1

k ].

The variety SpecC[M ] is the toric variety associated to the cone C∗. (For an introduction

to these ideas, see Fulton [31], chapter one.)

Example A.11. If C∗ = Cone(e1, e2) in V ∗ = R3 with lattice L = Z[e1, e2, e3], the dual

cone is C = Cone(e1, e2, e3,−e3). The algebra of characters of M = Z≥0[e1, e2,±e3] is

C[M ] = C(T1, T2, T3, T
−1
3 ).

The associated toric variety is

X = SpecC[M ] = C× C× C∗.

The torus T = V/M acts on X in the obvious way. There are no fixed points. Each

subcone F ⊂ C is associated with a torus embedded in X. And, in particular, the points

{0} is associated with the torus C∗ × C∗ × C∗ ⊂ X.

Example A.12. If instead we consider C∗ = Cone(e1, e2, e3) in V ∗ = R3, the associated

toric variety is

X = SpecC[M ] = C× C× C.

This has a single fixed point, namely xo = (0, 0, 0) ∈ X. In general, if the generators of

C∗ span V ∗, then X is a non-singular variety of the form C×n and there is a single fixed

point, the origin.

The reason we have recalled the construction of toric varieties is that, in this context,

the formula we obtained for IC(W ), theorem A.6, is an example of the Duistermaat-

Heckman formula. We will give a terse explanation of this. The key observation is made

in [26]. For more on Duistermaat-Heckman, the standard reference is [32]. Let C be a cone
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with dimV generators in V and let X be the associated toric variety. We can regard the

torus T which acts on X as an open box Box ⊂ V . So the Lie algebra of T is V and the

moment map is a map

µ : X → Lie(T )∗ = V ∗.

Then, for Z ∈ V , Duistermaat-Heckman evaluates the integral∫
X

eZ·µ(x)dx = eZ·µ(xo) 1

detxo Z
, (A.5)

where detxo Z is the determinant of the action of Z ∈ V on X at the fixed point xo. By

using the moment map, the integral on the left-hand-side can be identified with∫
X

eZ·µ(x)dx =

∫
C∗

eZ·WdW |C∗ . (A.6)

On the other hand, the moment map sends xo to the vertex of the cone, Wo. We then

identify the right-hand-side as

eZ·µ(xo) 1

detxo Z
= eZ·Wo

1∏
(−W · Zi)

.

In general, a toric variety can be associated to any ‘fan’ of cones. (A fan is a union of cones

whose faces meet each other to form sub-cones, and so on.) This is a standard construction

and involves glueing together the toric varieties associated to each cone. See [31], chapter

1. In particular, we can consider the fan of cones FP associated to a polytope P . The fan

FP is the union of all dual cones DirP (Z)∗ for vertices Z ∈ VertP . Let X be the associated

toric variety. Then the Duistermaat-Heckman formula reads∫
X

eW ·µ(x)dx =
∑

fixed points

eW ·µ(x) 1

detxW
. (A.7)

Remarkably, this is just the formula, equation (A.4), that we obtained earlier for IP (W,α′)

with α′ set to 1. Brion makes this observation in [26], though he may not have been the

first. The correspondence between the two formulas is roughly as follows. For each of the

dual cones DirP (Z)∗, there is a single fixed point xZ ∈ X of the torus action on X (just

as, for a single cone, there was a single fixed point). The moment map µ maps xZ to the

vertex Z ∈ V . This identifies the right-hand-side of equation (A.7) with equation (A.4).

We will not elaborate these ideas in any detail here, — but notice that equation (A.6), for

instance, gives another interpretation to the results in section 4 described in the main text.

A.4 Discrete valuation

Given a rational cone C in V with a lattice L, we will define a function SC(W ) on V ∗. By

analogy with the definition of IC(W ) in section A.2, consider the sum

SC(W,α′) =
∑

Z∈C∩L
e−α

′W ·Z .
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This is well defined when W is in the dual cone C∗. Otherwise, when W is not in the dual

cone, the summation is not well defined and we set SC(W ) to zero. Notice, as for IC(W ),

the translation property

SZo+C(W,α′) = e−α
′W ·ZoSC(W,α′).

We can evaluate SC explicitly in the following simple example.

Example A.13. Let C = Cone((1, 0), (0, 1)) be the first quadrant of the plane, as in

example A.5. Take L to be the standard lattice L = Z2. Then writing W = (w1, w2) for

dual coordinates,

SC(W ) =
∞∑
a=0

∞∑
b=0

e−aw1−bw2 =
1

(1− e−w1)(1− e−w2)
,

provided that ew1 , ew2 < 1.

Notice that, in example A.13, ew1 and ew2 are less than 1 for w1, w2 > 0. That is,

the sum SC(W ) is defined precisely for W in the dual cone C∗ which is the first quadrant

of the plane. At the boundary, w1 = 0 or w2 = 0, the sum diverges. The calculation in

example A.13 is easy to generalise. The following is the lattice analog of Theorem A.6.

Theorem A.14. Let C = Cone(Z1, . . . , Zk) for k ≤ dimV . Then

SC(W,α′) =

( ∑
Box∩L

e−α
′W ·Z

)
k∏
i=1

1

1− e−α′W ·Zi
,

where Box is the unit open-closed box generated by the Zi.

Just as IP can be used to compute polytope volumes, SP can be used to count lattice

points on the interior of a polytope. Consider the Laurent expansion of SP (W,α′) around

α′ = 0. Then the zero-order term S
(0)
P (W ) in the Laurent series is ostensibly the number

of interior lattice points,

S
(0)
P (W ) = #(P ∩ L).

This is strictly true when P is a polytope. When P is not bounded, the right-hand-side is

no longer defined, but the left hand side may still be defined.

Example A.15. Let’s count the number of lattice points in the triangle T , introduced in

example A.4. The decomposition into cones gives a sum of terms of the form

Se1+DirT (e1)(W,α
′) =

e−α
′w1

(1− e−α′(w2−w1))(1− e−α′(w3−w1))
,

where wi = W · ei. Since e1 + e2 + e3 = 0, we likewise have w1 + w2 + w3 = 0. Summing

these gives

S
(0)
T (W ) = 1.

Indeed, T contains one point of the lattice L = Z[e1, e2, e3] in its interior.
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Example A.16. Let’s return to the infinite strip P as defined in example A.2. We have

SP (W,α′) = SDirP (Z1) + e−α
′W ·Z2SDirP (Z2)

=
1

(1− e−α′W1)(1− e−α′W2)
+

e−α
′W2

(1− eα′W1)(1− e−α′W2)
.

Using the Laurent series
1

1− eτ
= −1

τ
+

1

2
+ . . . ,

we find that the zero-order term in the Laurent series is

S
(0)
P (w) = 0.

A.5 Generalised Euler-Maclaurin formulas

How are the valuations SP and IP related to each other? In one dimension, this question is

answered by the Euler-Maclaurin formula. Recall the result that, up to a remainder term,

b∑
n=a

f(n) =

b∫
a

dxf(x)−
∑
n=1

bn
n!
f (n−1)(a) +

∑
n=1

(−1)n
bn
n!
f (n−1)(b).

In our case, we replace f(x) with the exponential exp(−α′wz). We can present the sums

explicitly by making use of the generating function

∑
m=0

bn
n!
tn =

t

1− e−t
.

Then

b∑
n=a

e−α
′wz −

b∫
a

dxe−α
′wz = −

(
1

eα′w − 1
− 1

α′w

)
eα
′wa −

(
1

e−α′w − 1
− 1

−α′w

)
eα
′wb.

(A.8)

This curious looking formula has a generalisation to polytopes in higher dimensions. The

generalisation is given by Brion, Vergne, and Berline, and their result shows that the valu-

ation SC , for C a cone, can be expressed in terms of integrals IF , where the F are subcones

of C. We present their result as the following theorem. For brevity, we temporarily omit

α′ from our formulas, which is equivalent to setting α′ = 1.

Theorem A.17. There exists some measure µ on rational polyhedra such that

SP (W ) =
∑
Q

µP/Q(W )I(P ∩Q)(W ), (A.9)

where the sum is over all rational subspaces Q which are tangent to one of the faces (of

any dimension) of P .
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Notice that a quotient vector space P/Q inherits a lattice L̂ from the lattice L ⊂ V .

This is given by the projection of L.31 It is in this sense that P/Q is a rational polyhedron.

Berline-Vergne define µC(W ) on cones C inductively, beginning with

µ{0}(W ) ≡ 1.

Putting C = Cone(Z1) we impose equation (A.9) to find

SC(W ) = IC(W ) + µC(W ).

We thus infer that

µC(W ) =
1

1− e−W ·Z1
+

1

W · Z1
.

Indeed, this is precisely what we already discovered from the Euler-Maclaurin formula —

see equation (A.8). Putting C = Cone(Z1, Z2) in (A.9) we find

µC(W ) = SC(W ) + µCone(Ẑ1)(W )
1

W · Z1
+ µCone(Ẑ2)(W )

1

W · Z2
− 1

W · Z1W · Z2
,

where

Ẑ1 = Z1 −
Z1 · Z2

Z2 · Z2
Z2 and Ẑ2 = Z2 −

Z1 · Z2

Z1 · Z1
Z1.

Clearly, this construction could be continued and be used to define µC(W ) for all cones C.

Relevance for amplitudes. In the context of our results in sections 4 and 5, these gen-

eralised Euler-Maclaurin formulas imply that the diagonal entries mα′(α|α) of the inverse

KLT kernel have an exact expansion in terms of the amplitudes m(α|β) at finite values of

α′. The coefficients in this expansion, given by µ, are complicated expressions, but they can

be determined algorithmically and satisfy nice properties (µ is a valuation on polytopes).

It is not clear whether this expansion is of any interest physically.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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