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1 Introduction

Non-normal operators are ubiquitous in physical models. Examples include hydrodynam-

ics, open quantum systems, PT-symmetric Hamiltonians, Dirac operators in the presence of

a chemical potential or finite angle θ. Non-normality is responsible for the transient dynam-

ics, sensitivity of the spectrum to perturbations, pseudoresonant behavior and rapid growth

of the perturbations of the system [1]. These effects are relevant in plasma physics [2], fluid

mechanics [3], ecology [4, 5], laser physics [6], atmospheric science [7], and magnetohydro-

dynamics [8], just to mention a few. Non-normality is common in dynamical systems as

its simplest source is the asymmetry of coupling between components.
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Historically, most of the studied properties of non-normal random operators dealt

with the eigenvalues. The eigenvalues of such operators are usually complex, requiring new

calculational techniques, at the level of both macroscopic and microscopic correlations.

Surprisingly, this quest for complex eigenvalues has eclipsed the study of eigenvectors,

which are perhaps most distinctive features of non-normal operators. In particular, non-

normal operators have two sets of eigenvectors, left and right, which are non-orthogonal

among themselves, but can be chosen to be bi-orthogonal, provided that the non-normal

operator can be diagonalized at all.

One of the first attempts to develop a systematic understanding of the non-ortho-

gonality of eigenvectors in non-Hermitian random matrices was made by Chalker and

Mehlig [9, 10]. Despite their study concentrated on the complex Ginibre ensemble, per-

haps the simplest non-normal random operator, the results turned out quite non-trivial

and revealed the possibilities of well-hidden universal properties of eigenvectors of non-

normal operators. Another connection of the properties of non-normal operators and their

eigenvectors to free probability was established soon after [11], but the systematic study

of this topic has not followed. Only very recently, the topic of eigenvectors of non-normal

operators was picked back up. First, the transient growth driven by eigenvector non-

orthogonality was proposed as a mechanism of amplification of neural signals in balanced

neural networks [12–14] and giant amplification of noise crucial in the formation of Turing

patterns [15–17]. Second, the non-orthogonality of eigenfunctions was related to the statis-

tics of resonance width shifts in open quantum systems [18], which was soon confirmed

experimentally [19]. Third, the essential role of eigenvectors in stochastic motion of eigen-

values was revealed [20–22]. Last but not least, the topic has triggered the attention of the

mathematical community [23, 24].

In this work we focus on statistical ensembles of complex non-Hermitian matrix models,

the probability density of which is invariant under the action of the unitary group P (X) =

P (UXU †). We also assume that in the N → ∞ limit, at which we are working, the

eigenvalues of X concentrate on a compact domain of a complex plane. Our results are

valid for |z − w| of order 1. We will study one-point and two-point Green functions built

out of left and right eigenvectors. Here we recall, that if a non-normal matrix X can

be diagonalized by a similarity transformation X = SΛS−1, it possesses two eigenvectors

for each eigenvalue λi: right |Ri〉 (a column in the matrix notation) and left 〈Li| (row),

satisfying the eigenequations

X |Ri〉 = λi |Ri〉 , 〈Li|X = 〈Li|λi. (1.1)

These eigenvectors are not orthogonal 〈Li|Lj〉 6= δij 6= 〈Ri|Rj〉, but normalized by the

biorthogonality condition 〈Li|Rj〉 = δij . They also satisfy the completeness relation∑N
k=1 |Rk〉 〈Lk| = 1. These two properties leave a freedom of rescaling each eigenvec-

tor by a non-zero complex number, |Ri〉 → ci |Ri〉 with 〈Li| → 〈Li| c−1
i . They also allow

for multiplication by a unitary matrix |Ri〉 → U |Ri〉 and 〈Li| → 〈Li|U †. Upon the sec-

ond transformation the new vectors are not the eigenvectors of the original matrix but of

one given by the adjoint action of the unitary group X → UXU †, which suggests that a

natural probability measure should assign these two matrices the same probability density
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function (pdf). The simplest object, which is invariant under these transformations, is the

matrix of overlaps Oij = 〈Li|Lj〉 〈Rj |Ri〉 [9, 10].

To see how the eigenvector correlation functions appear naturally, let us consider an

average
〈

1
NTrf(X)g(X†)

〉
, where f, g are two functions analytic in the spectrum of X and

〈f(X)〉 =
∫
f(X)P (X)dX denotes the average with respect to the pdf P (X). Taking f = g,

we get the (normalized) Frobenius norm of a function of matrix. The 1/N normalization

was taken to get a finite quantity in the N → ∞ limit. Using the spectral decomposition

X =
∑N

k=1 |Rk〉λk 〈Lk| and inserting the identity, 1 =
∫
dµ(z)δ(2)(z−λk) twice, we obtain

the expression 〈
1

N
Trf(X)g(X†)

〉
=

∫
dµ(z)dµ(w)f(z)g(w̄)D(z, w), (1.2)

with

D(z, w) =

〈
1

N

N∑
k,l=1

Oklδ
(2)(z − λk)δ(2)(w − λl)

〉
. (1.3)

The two dimensional Dirac delta is understood as two deltas for real and imaginary parts

δ(2)(z) = δ(Rez)δ(Imz), and the measure dµ(z) = dxdy for z = x+ iy. D(z, w) introduced

in [9, 10] is the density of eigenvalues weighted by the invariant overlap of the corresponding

eigenvectors. It is split into a regular and singular part D(z, w) = Õ1(z)δ(2)(z − w) +

O2(z, w), where

Õ1(z) =

〈
1

N

N∑
k=1

Oiiδ
(2)(z − λi)

〉
, O2(z, w) =

〈
1

N

N∑
k,l=1
k 6=l

Oklδ
(2)(z − λk)δ(2)(w − λl)

〉
.

(1.4)

A one-point function, defined this way, in the bulk and far from the rims of the complex

spectra grows linearly with the size of a matrix. To have a finite limit in large N , one

considers the scaled function O1(z) = 1
N Õ1(z). Throughout the paper we shall use only

the ‘untilded’ function.

The one-point function O1 plays an important role in scattering in open chaotic cavi-

ties [18, 25] and random lasing [26, 27], where the so-called Petermann factor [28] modifies

the quantum-limited linewidth of a laser. It is also crucial in the description of the dif-

fusion processes on matrices [21, 22] and gives the expectation of the squared eigenvalue

condition number [29], an important quantity governing the stability of eigenvalues [1, 30].

The exact calculations are possible for Gaussian matrices [9, 10, 23], in the matrix model

for open chaotic scattering [26, 27, 31] and for products of small Gaussian matrices [32].

For the Ginibre matrix the full distribution of the diagonal overlap is available and turns

out to be heavy-tailed, as discovered by Bourgade and Dubach [24] with the use of prob-

abilistic techniques, and investigated later using integrable structure and sypersymmetry

by Fyodorov [33].

Despite that the overlap between eigenvectors are crucial in the description of the

dynamic of the linear system [34] and in the decay laws in open quantum systems [35], the

two-point function is much less known. The exact results are obtained only for the Ginibre
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matrix [9, 10, 24] and for open chaotic scattering with a single channel coupling [31]. Even

the asymptotic results are known only for Gaussian matrices [9, 10] and the quantum

scattering ensemble [36]. The aim of this paper is to extend the known asymptotic results

and develop a diagrammatic technique for calculation of the two-point function in the large

N limit.

The paper is organized as follows. In section 2 we briefly recall the cornerstones

of diagrammatic calculus [11] for one-point Green’s functions in the large non-Hermitian

ensembles, to show an analogy between the formalism developed in this paper and the

diagrammatic approach to one-point functions. This encapsulates both the mean spectral

density and the one-point eigenvector correlation function O1. Appendix A shows concrete

calculations within this formalism for the elliptic ensemble.

Section 3 contains the main body of the paper — a formalism for the calculation of O2

in the large N limit. We extend the diagrammatic technique introduced by Chalker and

Mehlig for Gaussian matrices to any probability distribution with unitary symmetry. Reg-

ularizing and linearizing the product of resolvents, we embed them into the quaternionic

space. The analysis of planar Feynman diagrams leads us to the matrix Bethe-Salpeter

equation (3.15), which relates the product of resolvents with the one-point Green’s function

and planar cumulants. The latter are encoded in their generating function — quaternionic

R-transform, see (3.16). As a result, the two-point eigenvector correlation function is

completely determined by the one-point functions encoding the spectral density and O1.

This result resembles the Ambjørn-Jurkiewicz-Makeenko universality for Hermitian ensem-

bles [37].

We also study the traced product of resolvents h(z, w̄) =
〈

1
NTr(z1−X)−1(w̄1−X†)−1

〉
,

which allows for the calculation of the average (1.2) as a Dunford-Taylor integral [38, 39]〈
1

N
Trf(X)g(X†)

〉
=

1

(2πi)2

∫
γ
dz

∫
γ̄
dw̄f(z)g(w̄)h(z, w̄), (1.5)

where contours γ̄,γ encircle all eigenvalues of X clockwise and counterclockwise, respec-

tively. We derive the equation for h, expressing it in terms of quaternionic R-transform

and traced resolvents, see (3.18) and (3.19).

An important and still quite large subclass of non-Hermitian ensembles for which the

main equations (3.15)(3.16) admit further simplifications consists of matrices, the pdf of

which is invariant under the transformation by two independent unitary matrices U, V ∈
U(N), i.e. P (X) = P (UXV †), thus called the biunitarily invariant ensemble [40]. In this

case we obtain a compact formula for the two-point eigenvector correlation function

O2(z1, z2) =
1

π
∂z̄1∂z2

z̄1(z1 − z2)O1(r1) + z2(z̄1 − z̄2)O1(r2)

|z1 − z2|2 [F (r1)− F (r2)]
. (1.6)

Here F is the radial cumulative distribution function (cdf), defined as F (r) = 2π
∫ r

0 ρ(s)sds,

with ρ(s) the spectral density circularly symmetric on the complex plane. The one-point

eigenvector function is related to F via [29]

O1(r) =
F (r)(1− F (r))

πr2
, (1.7)
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and r = |z|. The traced product of resolvents is shown to take a universal form

h(z, w̄) =
1

zw̄ − r2
out

, (1.8)

where rout is the spectral radius. This result has been already obtained for the Ginibre

ensemble [10] and, recently, for matrices with independent identically distributed (iid)

entries [41].

Applications of the developed formalism are presented in section 4, where we consider

an elliptic ensemble, some instances from the biunitarily invariant class: truncated unitary,

induced Ginibre, the product of two Ginibres and their ratio. As the last example we con-

sider a pseudohermitian matrix — a product of two shifted GUE matrices. In section 5,

we discuss the consequences of our large N results on the microscopic regime. We conjec-

ture, on the basis of the few examples solved in the literature and using our own results,

that the two-point eigenvector correlation functions may exhibit universal bulk scaling, as

what happens for the microscopic spectral two-pointers in Hermitian matrix models. More

precisely, we conjecture that in generic complex non-Hermitian matrices for all points in

the bulk at which the spectral density does not develop singularities there exists a limit

lim
N→∞

N−2O2

(
z +

x√
N
, z +

y√
N

)
= O1(z)Φ(|x− y|), (1.9)

where

Φ(|ω|) = − 1

π2|ω|4
(

1− (1 + |ω|2)e−|ω|
2
)
. (1.10)

Section 6 concludes the paper and points at some possible further developments.

2 Non-Hermitian random matrices

In non-Hermitian random matrix theory one is primarily interested in the distribution of the

eigenvalues ρ(z) =
〈

1
N

∑N
i=1 δ

(2)(z − λi)
〉

. The 2-dimensional Dirac delta can be recovered

using the relation ∂z̄
1
z = πδ(2)(z). Unfortunately, the average over the ensemble of the

trace of the resolvent g(z) =
〈

1
NTr(z1−X)−1

〉
does not yield the correct result inside the

spectrum, as one would naively expect. The reason for this failure is that differentiation

and taking the ensemble average are not interchangeable. This phenomenon was termed

the spontaneous breaking of holomorphic symmetry [42].

A way to circumvent this obstacle is to consider a regularization of the Dirac delta. In

RMT one mostly considers the 2D Poisson kernel

πδ(2)(z) = lim
ε→0

ε2

(|z|2 + ε2)2
= lim

ε→0
∂z̄

z̄

|z|2 + ε2
. (2.1)

The expression on the right hand side provides a prescription for how the resolvent in the

spectrum of X should be regularized. Having this hint in mind, one defines

g(z, z̄, w, w̄) =

〈
1

N
Tr(z̄1−X†)[(z1−X)(z̄1−X†) + |w|21]−1

〉
. (2.2)
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The spectral density can be now calculated via

ρ(z, z̄) =
1

π
lim
|w|→0

∂z̄g(z, z̄, w, w̄), (2.3)

which can be also understood as a Poisson law in 2D electrostatics, since

ρ(z, z̄) = lim
|w|→0

1

π
∂z∂z̄Φ(z, z̄, w, w̄), (2.4)

where

Φ(z, z̄, w, w̄) =

〈
1

N
ln det[(z1−X)(z̄1−X†) + |w|21]

〉
(2.5)

is the (regularized) electrostatic potential of charges interacting via repulsive central force

F (r) ∼ 1
r .

2.1 Linearization

Due to the quadratic expression in X in the denominator, the average in (2.2) is intractable

when non-normal matrices are considered. To circumvent this problem one introduces the

2N × 2N matrix [42–45]

G =

〈(
z1−X iw̄1

iw1 z̄1−X†

)−1〉
(2.6)

and the block trace operation, mapping 2N × 2N matrices onto 2× 2 ones

bTr

(
A B

C D

)
=

(
TrA TrB

TrC TrD

)
. (2.7)

Then, one defines the 2× 2 Green’s function

G(z, z̄, w, w̄) =

(
G11 G11̄

G1̄1 G1̄1̄

)
=

1

N
bTrG(z, z̄, w, w̄). (2.8)

Its upper-left entry is exactly the desired function g (cf. (2.2)). Once Green’s function is

known, one gets four elements of G. The entry G1̄1̄ is just the complex conjugate of G11,

thus does not provide any additional information. The off-diagonal entries G11̄ = −Ḡ1̄1 in

the large N limit give the one-point eigenvector correlation function [11]

O1(z) = lim
|w|→0

− 1

π
G11̄G1̄1. (2.9)

2.2 Quaternionic structure

Green’s function can be conveniently written as

G =

〈
1

N
bTr(Q−X )−1

〉
=

(
∂Q11Φ ∂Q1̄1

Φ

∂Q11̄
Φ ∂Q1̄1̄

Φ

)
, (2.10)
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with

X =

(
X 0

0 X†

)
, Q = Q⊗ 1, Q =

(
z iw̄

iw z̄

)
. (2.11)

This form of Green’s function resembles its traditional form as a traced resolvent, but now

its argument is a 2× 2 matrix and the matrix X is duplicated to incorporate also X†. The

matrix Q is a representation of a quaternion q = x + iy + ju + kv with the identification

z = x+ iy and w = v + iu [46]. The entries of G satisfy the same algebraic constraints as

Q, therefore G is itself a quaternion and we refer to it as the quaternionic Green’s function,

similarly G is called the quaternionic resolvent.

2.3 Averages in large N

We are interested in calculations of the averages of some functions of X, e.g.
〈
f(X,X†)

〉
,

with respect to distributions invariant under the adjoint action of the unitary group P (X) =

P (UXU †). We parameterize them by

P (X) ∼ exp
(
−NTrV (X,X†)

)
. (2.12)

V (X,X†), often referred to as potential, has to be Hermitian and growing sufficiently fast at

infinity. To simplify calculations, we split the potential into the Gaussian and the residual

part. The Gaussian part can be conveniently parameterized with σ > 0 and τ ∈ [−1, 1] [47]

VG(X,X†) =
1

σ2(1− τ2)

(
XX† − τ

2

(
X2 + (X†)2

))
. (2.13)

Averages with respect to the Gaussian potential by the virtue of Wick’s theorem reduce to

products of pairwise expectations, called propagators

〈XabXcd〉G =
σ2τ

N
δadδbc,

〈
XabX

†
cd

〉
G

=
σ2

N
δadδbc. (2.14)

The exponent of the residual part of the potential is expanded into series, which produces

additional terms, called vertices, to be averaged with respect to the Gaussian distribution.

To cope with the multitude of terms, we represent them as diagrams (see table 1 for an

overview). This introduces a natural hierarchy of diagrams according to their scaling with

the size of the matrix. The dominant contribution, which is of the order of 1, comes from

planar diagrams (see figure 1). The subleading corrections can be classified by the genus

of the surface at which they can be drawn without the intersection [48].

2.4 Moment expansion of the quaternionic resolvent

To calculate the average of the quaternionic resolvent, we write it as

G=
〈(

1−Q−1X
)−1
〉
Q−1

and expand it into the geometric series

G = Q−1 +
〈
Q−1XQ−1

〉
+
〈
Q−1XQ−1XQ−1

〉
+ . . . , (2.15)
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a) b)

Figure 1. Examples of planar (a) and non-planar (b) diagrams in the diagrammatic expansion

of the Gaussian model coming from the term
〈
Q−1(XQ−1)4

〉
. For a general matrix model with

an arbitrary potential the order of the diagram is given by NL+V−P , where V is the number of

vertices, L is the number of loops and P is the number of propagators comprising the diagram. This

shows that the dominant contribution comes from the planar diagrams. The contribution from the

non-planar diagram on (b) is of order N−2, thus vanishes in the large N limit.

propagator 〈Xαβ,ijXµν,jk〉G
i j

βα

lk

µ ν Green’s

function
Gαβ = 1

N bTrG G
α β

horizontal

line
(Q−1)αβδij

i j

α β
vertex Ng3X

α
ijX

β
jkX

γ
ki

g3

i j
α

j

k β
i

kγ

resolvent G =
〈

(Q−X )−1
αβ,ij

〉
G

i j

α β
cumulant

〈
Xα
ijX

β
jkX

γ
ki

〉
c

c3

α β γ
i j j k k i

Table 1. Diagrammatic representation of the basic expressions in the moment expansion of the

resolvent. The propagator represents the averages with respect to the Gaussian potential (2.14). An

exemplary vertex is drawn for the theory which contains the cubic interaction Ng3TrXαXβXγ in

the potential. A cumulant (dressed vertex) represents a sum over all connected diagrams connected

to the baseline. Its structure in matrix indices (Latin letters) is the same as that of the vertex,

because the propagators are the Kronecker deltas in this indices. The dashed line without arrows

represent summation over Latin indices only.

and perform averages in the large N limit, as described in the previous section. The

expansion is valid, provided that ||Q−1X|| < 1, thus for z inside the spectrum of X, we

need to keep w finite. If the spectrum is bounded, one can always find sufficiently large

w, so that this series is absolutely convergent. For the calculations with z outside the

spectrum one can safely set w = 0.

It is convenient to introduce a notation, which incorporates the block structure of the

duplicated matrices. We therefore endow each matrix with two sets of indices, writing

for example Gαβ,ij . The first two Greek indices, which we also refer to as quaternionic

indices, enumerate blocks and take values 1 and 1̄. The Latin ones, running from 1 to N

enumerate matrices within each block. The space described by the Latin indices we call

simply the matrix space. The block trace operation can be represented as a partial trace

over the matrix space G(Q)αβ = 1
N

∑N
i=1 Gαβ,ii (see also table 1). Due to the fact, that

the propagators are expressed in terms of Kronecker deltas, all averaged expressions have

trivial matrix structure, e.g. G = G⊗ 1, but we need this notation for the next section.

Among all diagrams contributing to G (see figure 2 for an example) we distinguish

a class of one-line irreducible diagrams (1LI), i.e. the ones that cannot be split into two
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G = + +

g4

+

g4 g4

+ . . .

Figure 2. Some exemplary planar diagrams in a model with a quartic term g4X
4 contributing to

the Green’s function. All diagrams (except for the first) are 1PI.

G = + Σ + Σ Σ + . . .

Σ =

c1

+ G

c2

+ G G

c3

+ . . .

a)

b)

Figure 3. a) First Schwinger-Dyson equation. Diagrams contributing to the Green’s function

can be divided into one-particle irreducible (1PI) and the ones composed of 1PI connected by a

horizontal line (corresponding to Q−1). b) Second Schwinger-Dyson equation. Any 1PI planar

diagram can be represented as a certain connected subdiagram attached to the baseline (horizontal

line from the graphical representation of the expansion (2.15)) via k propagators (this is the k-th

cumulant). The diagrams between the legs of the cumulant can be of any type, which are in turn

encoded in the Green’s function. Since all cumulants are encoded in their generating function —

the quaternionic R-transform (2.19), this relation leads to the equation Σ(Q) = R(G(Q)).

parts, connected only through Q−1. Let us denote as Σ a sum of all 1LI diagrams. This is

a building block of the quaternionic resolvent, since any diagram can be decomposed into

1LI subdiagrams connected through Q−1. Having the absolute convergence of the series,

we rearrange terms, obtaining the Schwinger-Dyson equation (here we restrict it only to

the quaternionic part)

G(Q) = Q−1 +Q−1Σ(Q)Q−1 +Q−1Σ(Q)Q−1Σ(Q)Q−1 + . . . , (2.16)

presented also diagrammatically in figure 3a). This is a geometric series, which can be

summed and written in a closed form

G(Q) = (Q− Σ(Q))−1 . (2.17)

2.5 Quaternionic R-transform

To find G, one needs to relate Σ to G. To this end, let us consider diagrams contributing

to averages of traced strings of X’s and X†’s such that all X’s and X†’s are connected

with each other. Their sum we call a cumulant (in field theory language it is known

as a dressed vertex) and endow the respective average with a subscript c. We adopt a

convenient notation for cumulants in which † is associated with the 1̄ index and, trivially,

– 9 –
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lack of conjugation with 1. We also encode the length of the string. An example reads

c(k)
α1α2...αk

=

〈
1

N
TrXα1Xα2 . . . Xαk

〉
c

. (2.18)

We also introduce the R-transform, which is a 2× 2 matrix, defined through its expansion

for small arguments

Rαβ = c(1)
α δαβ + c

(2)
αβQαβ +

∑
µ∈{1,1̄}

c
(3)
αµβQαµQµβ +

∑
µ,ν∈{1,1̄}

c
(4)
αµνβQαµQµνQνβ + . . . (2.19)

This definition written in terms of indices may not seem to be intuitive, but in the matrix

notation takes a clearer form

R(Q)⊗ 1 = 〈X 〉c + 〈XQX〉c + 〈XQXQX〉c + . . . , (2.20)

which is the counterpart of (2.15). The matrix R is also a quaternion, so it is dubbed

the quaternionic R-transform. Q is always associated with two consecutive indices in the

cumulant and can be thought of as a transfer matrix. It is crucial for encoding all cumulants

in the R-transform that matrices X and Q do not commute.

Consider now any 1LI diagram. Due to its irreducibility it can be depicted as a

certain cumulant connecting the first and last X and possibly some others in between. The

subdiagrams disconnected from the cumulant can be in any form, which is already encoded

in the quaternionic Green’s function. This allows us to write the second Schwinger-Dyson

equation relating Σ and G via the quaternionic R-transform (see also figure 3b))

Σ(Q) = R(G(Q)). (2.21)

The knowledge of all cumulants allows us to solve the matrix model, since equations (2.17)

and (2.21) can be brought to a single 2× 2 matrix equation

R(G(Q)) +G(Q)−1 = Q. (2.22)

Once the averaging with respect to the ensemble was taken at the level of diagrams, we

can safely remove the regularization and solve the above algebraic equation, setting first

w = 0. We refer to [49, 50] for more detailed calculations in the diagrammatic formalism.

The construction presented in this section has been recently rigorously formalized in

the framework of free probability [51].

3 2-point eigenvector correlation function

3.1 Preliminaries

In order to investigate the 2-point eigenvector correlation function associated with

the off-diagonal overlap, we follow the paradigm outlined in the previous section for

calculations of Green’s function. A naive approach, i.e. calculation of h(z1, z̄2) =〈
1
NTr(z11−X)−1(z̄21−X†)−1

〉
, yields the result which is correct only outside of the
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spectrum of X, which we refer to as the holomorphic solution. Inside the spectrum, we

regularize each resolvent, using the rule

(z1−X)−1 → (z̄1−X†)M(z, w)−1, (3.1)

where M(z, w) = (z1−X)(z̄1−X†) + |w|21. We shall therefore study

h(z1, w1, z2, w2) =

〈
1

N
Tr(z̄11−X†)M(z1, w1)−1M(z2, w2)−1(z21−X)

〉
. (3.2)

The weighted density is therefore given by

D(z1, z2) = lim
|w1|,|w2|→0

1

π2
∂z̄1∂z2h(z1, w1, z2, w2). (3.3)

In this paper we will calculate h by diagrammatic 1/N expansion in the planar limit.

The singular part of D(z1, z2) containing the Dirac delta is not accessible in perturbative

calculations, so we get

O2(z1, z2) = lim
|w1|,|w2|→0

1

π2
∂z̄1∂z2h(z1, w1, z2, w2). (3.4)

There exists a class of matrices which despite not being Hermitian have a real spectrum.

A simple example is the product of two Hermitian matrices A,B, one of which (let us say A)

is positive definite. The resulting matrix is not Hermitian, but isospectral to A1/2BA1/2,

which must have real eigenvalues. The eigenvectors of AB are not orthogonal, which makes

O2 non-trivial. The realness of the spectrum facilitates calculations, as the knowledge of

the traced resolvent is sufficient. By the virtue of the Sochocki-Plemelj formula valid for

real x we can write

2πiδ(x) = lim
ε→0

(
1

x− iε −
1

x+ iε

)
, (3.5)

and the two-point function can be calculated from the holomorphic function via

O2(x, y) =
−1

4π2
(h(+,+)− h(+,−)− h(−,+) + h(−,−)) , (3.6)

where

h(±,±) = lim
ε1,ε2→0

h(x± iε1, y ± iε2) (3.7)

and signs are uncorrelated.

3.2 Linearization

The expression for the regularized product of resolvents (3.2) contains two quadratic non-

linearities. We overcome this difficulty, by using 2N × 2N matrices Q = Q⊗ 1, P = P ⊗ 1

and X , where

Q =

(
z1 iw̄1

iw1 z̄1

)
, P =

(
z2 iw̄2

iw2 z̄2

)
, X =

(
X 0

0 X†

)
. (3.8)

– 11 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

As a natural generalization of the quaternionic resolvent to two-point functions, we define

the average of the Kronecker product of two quaternionic resolvents

H =
〈
(Q−X )−1 ⊗ (PT −X T )−1

〉
. (3.9)

Such an object is quite unusual in Random Matrix Theory. A similar construction was

used by Brezin and Zee for the calculation of the connected 2-point density in Hermitian

models [52], but there one deals only with matrix indices. To the best of our knowledge

the quaternionic approach to two-point functions for non-Hermitian matrices is considered

for the first time, thus we will discuss it in more detail.

H is a 4N2 × 4N2 matrix with a very specific block structure. To keep track of it, we

endow H with 8 indices. The upper ones refer to the first matrix in the Kronecker product,

while the lower ones to the second. As in the case of the quaternionic Green’s function,

Greek indices, taking values in {1, 1̄}, enumerate blocks, while Latin indices ranging in

{1, . . . , N} denote elements within each block. In the index notation, its components read

(note the transpose of the second matrix)

Hαβ,ijµν,kl =
〈

(Q−X )−1
αβ,ij (P − X )−1

νµ,lk

〉
. (3.10)

With the same assumptions as for one-point functions, the resolvents are then expanded

into the power series

H =
〈(
Q−1 +Q−1XQ−1 + . . .

)
⊗
(
P−1 + P−1XP−1 + . . .

)T〉
, (3.11)

and taking the expectation produces diagrams. The flow of Latin (matrix) indices in the

diagrams follows the lines in the double line notation. The propagators are symmetric,

thus the direction does not matter. The flow of quaternionic (Greek) indices is governed

by their order in the expansion of the resolvent. Since the quaternion matrices Q and P

are not symmetric, the direction of the line representing Q−1 matters and is depicted by an

arrow. We draw diagrams in such a way that the terms in the expansion of the resolvents

are in two rows, hereafter called baselines, with the first resolvent above. The quaternionic

indices flow from left to right in the upper baseline and in the opposite direction below.

There are two ways of contracting matrix indices,1 thus we define two functions

Kαβ
µν =

1

N

N∑
i,j=1

Hαβ,ijµν,ij , Lαβµν =
1

N2

N∑
i,j=1

Hαβ,iiµν,jj , (3.12)

which correspond to contractions presented in figure 4a). It will become clear later that K

encodes correlations of eigenvectors and L of eigenvalues. These two possible contractions

define two different classes of planar diagrams. The admissible diagrams have to be drawn

in the region of the plane bounded by baselines and dashed lines depicting contractions.

The diagrams contributing to K are of the ladder type (see figure 5), while the class of

planar diagrams contributing to L, termed wheel diagrams, is broader, as it admits for

1In fact, there are 4!
22·2!

= 3 ways, but
∑
ij H

αβ,ij
µν,ji leads to the same diagrams as Kβα

µν .

– 12 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

H

α, i

µ, k

β, j

ν, l

Hαβ,ij
µν,kl =

L
α β

µ ν

= N2Lαβµν

K

α β

µ ν

= NKαβ
µν

a) b)

g4

c)

Figure 4. a) Possible contractions of matrix indices (dashed lines) of the Kronecker product of

two quaternionic resolvents. The way one contracts indices determines the class dominant planar

diagrams, which are drawn between dashed lines and the horizontal baselines. The upper choice

corresponds to a class of double-trace two-point functions, see (5.2), while the lower possibility leads

a single-trace two point function encoding correlations of eigenvectors. Diagrams contributing to L

are of wheel type [52, 53] and K is given as a sum of ladder diagrams. b) An example of a diagram

which contributes to L but is subleading in the calculation of K. c) An example of a diagram

appearing during the calculation of L, which despite its planarity is subleading.

K = + + g4 + g4 + . . .

Figure 5. Some exemplary diagrams in a theory with quartic potential contributing to K.

circumventing one of the baselines if the points on the baseline are connected through

propagators and vertices, see figure 4b). Not all planar diagrams contribute equally to L.

Diagrams in which a propagator connects two sides of a vertex and encircles a baseline is

subleading, see figure 4c). In this section we concentrate on the ladder diagrams.

3.3 Ladder diagrams

In this section we are interested in the calculation of K. The contraction of matrix indices

in H, which leads to K, is in fact a summation of all N4 elements within each 4× 4 block.

To make the notation of Greek indices even more explicit, we write the entries of K

K =


K11

11 K11
11̄
K11̄

11 K11̄
11̄

K11
1̄1 K11

1̄1̄
K11̄

1̄1
K11̄

1̄1̄

K 1̄1
11 K 1̄1

11̄
K 1̄1̄

11 K 1̄1̄
11̄

K 1̄1
1̄1 K 1̄1

1̄1̄
K 1̄1̄

1̄1
K 1̄1̄

1̄1̄

 . (3.13)

An important consequence of this construction is that the K11
1̄1̄

element is exactly the

desired function h (3.2) for the calculation of the eigenvector correlation function.

Let us define Kαβ,ijµν,kl the sum of all ladder diagrams contributing to K (before we

contract indices). A vertex can connect two points on a baseline (a side rail of the ladder),

dressing the part of the rail. There are also vertices connecting two baselines, which give

rise to the rungs of the ladder. If we denote Γαβ,ijµν,kl a sum of all connected subdiagrams
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K =

G

G
+

G

G
Γ

G

G
+

G

G
Γ

G

G
Γ

G

G
+ . . .

Figure 6. The general structure of planar ladder diagrams contributing to K.

K =

G

G
+

G

G
Γ K

Figure 7. Matrix Bethe-Salpeter equation (3.14).

which connect two rails, one can express K in terms of Γ as a geometric series, presented

in figure 6, which can be written in a closed form (a sum over repeating indices is implicit)

Kαβ,abµν,cd = GαβGµνδ
abδcd +GαγGµρδ

aiδcjΓ
γε,ik
ρσ,jlK

εβ,kb
σν,ld . (3.14)

This relation, shown diagramatically in figure 7 and known as the matrix Bethe-Salpeter

equation, is the counterpart of the Schwinger-Dyson equation for the two-point function,

with Γ the counterpart of the self-energy.

A direct analysis of planar diagrams yields Γαβ,ijµν,kl = 1
NB

αβ
µν δikδ

j
l , where B is of order 1,

see figure 8. Using the matrix structure of Γ, we trace out the matrix indices and find the

equation for K, which in the matrix notation reads

K(Q,P ) = G(Q)⊗GT (P ) +
[
G(Q)⊗GT (P )

]
B(Q,P )K(Q,P ). (3.15)

We now turn our attention to the rungs. Any diagram contributing to Γ can be

decomposed as a certain cumulant of length n ≥ 2, the first k legs of which are attached

to the upper rail, while the last legs are connected to the lower rail. The part of the rail

between the legs of the cumulant gets dressed to the quaternionic Green’s function G(Q)

above and G(P ) below. The space between k-th and (k+ 1)-th legs is left unfilled, because

the quaternonic indices at the end of rails are not contracted. This decomposition of Γ is

depicted in figure 9. As Γ is completely determined by the planar cumulants, Bαβ
µν can be

calculated from the quaternionic R transform (2.19). The rule is simple and goes as follows.

Consider the expansion of Rαµ in Q (2.19) and differentiate it with respect to Qβν .

As a result for some 0 < k < n − 1 the k-th quaternion Qµkµk+1
will be replaced by

δµkβδνµk+1
. Then all Qµlµl+1

’s from the l.h.s. of the removed Q (i.e. for l < k) are replaced

by Gµlµl+1(Q) and all Qµlµl+1
on the right (l > k) by GTµlµl+1

(P ). Then the sum over all

possible positions (i.e. k’s), where Q has been removed, is performed.
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g4

Figure 8. An example of a diagram contributing to Γ. It contributes to the second-to-last diagram

in figure 9. Since the matrix indices follow the solid lines and propagators are given by Kronecker

deltas, Γαβ,ijµν,kl = 1
NB

αβ
µν δ

i
kδ
j
l , allowing for the calculation of K.

Γ = C(2) +

G

C(3) +

G
C(3) +

G G

C(4) +

G

C(4)

G
+

G G
C(4) + . . .

Figure 9. Γ given by the planar cumulants.

B can be therefore expressed in terms of cumulants as a power series

Bαβ
µν (Q,P )

=

∞∑
k,l=1

∑
σ1,...,σk
ρ1,...,ρl

δασ1δβσkδµρlδνρ1c
(k+l)
σ1...σkρ1...ρl

Gσ1σ2(Q) . . .Gσk−1σk(Q)Gρ1ρ2(P ) . . .Gρl−1ρl(P ),

(3.16)

where all σi and ρj take values in {1, 1̄} and for k = 1 or l = 1 Gσkσk+1
reduces to Kronecker

delta. An application of this procedure to the quantum scattering ensemble is presented

in appendix B.

We remark that the additivity of the quaternionic R-transform under the addition of

unitarily invariant non-Hermitian matrices implies additivity of B.

3.4 Traced product of resolvents

In the holomorphic domain outside the spectrum the situation simplifies considerably,

because one can set |w| → 0 at the very beginning of calculations. Green’s function is

then diagonal, G(z, z̄) = diag(g(z), ḡ(z̄)), where g(z) =
〈

1
NTr(z1−X)−1

〉
and ḡ(z̄) =〈

1
NTr(z̄1−X†)−1

〉
. Due to such a structure, B is also diagonal with components

Bαβ
µν = δαβδµν

∞∑
k,l=1

c
(k+l)
α . . . α︸ ︷︷ ︸

k

µ . . . µ︸ ︷︷ ︸
l

(gα(z1))k−1 (gµ(z2))l−1 , (3.17)

where we assume the standard convention g1(z) = g(z) and g1̄(z) = ḡ(z̄). A matrix

equation (3.15) splits into decoupled scalar equations with the explicit solution for the

component of our interest

K11
1̄1̄ =

g(z1)ḡ(z̄2)

1− g(z1)ḡ(z̄2)B11
1̄1̄

. (3.18)
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The desired component of B obtained from (3.17) reads

B11
1̄1̄ =

∞∑
k,l=1

c
(k+l)

1 . . . 1︸ ︷︷ ︸
k

1̄ . . . 1̄︸ ︷︷ ︸
l

(g(z1))k−1 (ḡ(z̄2))l−1 . (3.19)

Despite the fact that the mapping between cumulants and the R-transform is not one

to one [49], some cumulants can be uniquely determined from the knowledge of R(Q). The

cumulants c
(n)

1 . . . 1︸ ︷︷ ︸
k

1̄ . . . 1̄︸ ︷︷ ︸
n−k

are the coefficients at Qk−1
11 Q11̄Q

n−k−1
1̄1̄

in the expansion of R11̄(Q).

One can easily see that there are no other cumulants contributing to this term.

All cumulants contributing to R11̄ have at least one X† following X in the string,

therefore R11̄ is divisible by Q11̄. Let us define R̃11̄ = R11̄/Q11̄, which is regular at 0. The

considered cumulants are the only ones in which X is followed by X† exactly once. To

exclude all other possibilities in the expansion of R̃11̄, we set Q11̄ = 0 = Q1̄1 in R̃11̄(Q).

To reproduce (3.19) from R̃11̄ one also needs to replace Q11 by g(z1) and Q1̄1̄ by ḡ(z̄2).

Finally,

B11
1̄1̄ = R̃11̄ (diag(g(z1), ḡ(z̄2))) . (3.20)

3.5 Biunitarily invariant ensembles

In this subsection we consider a class of ensembles, the pdf of which is invariant under

multiplication by two unitary matrices, i.e. P (X) = P (UXV †). In the large N limit the

spectral density, which is rotationally invariant, is supported on either a disc or an annulus,

a phenomenon termed ‘the single ring theorem’ [54, 55]. The enhanced symmetry allows one

to relate the distribution of eigenvalues and singular values both in the N →∞ limit [56]

and for finite N [40]. More precisely, the radial cumulative distribution function F (r) =

2π
∫ r

0 ρ(s)sds is given by the solution of the simple functional equation SXX†(F (r)−1) = 1
r2 ,

where SXX† is the Voiculescu S-transform of the density of squared singular values [56].

Recently, this result was extended to the one-point eigenvector correlation function, which

is determined solely by F [29, 49]

O1(r) =
F (r)(1− F (r))

πr2
. (3.21)

Such simple results in the large N limit are possible because of the exceptionally

simple structure of cumulants. The only non-zero planar cumulants are the alternating

ones [49], αn = c
(2n)

11̄...11̄
= c

(2n)

1̄1...1̄1
. They can be encoded in a function of a single scalar

variable A(x) =
∑∞

k=1 αnx
n−1, called the determining sequence [57]. Due to this, only four

components of B (out of 16) do not vanish. These are B11
1̄1̄

= B1̄1̄
11 , B11̄

1̄1
, B1̄1

11̄
.
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A direct application of formula (3.16) leads to

B11
1̄1̄ =

∞∑
k,l=1

αk+l−1 [G11̄(Q)G1̄1(Q)]k−1 [G11̄(P )G1̄1(P )]l−1 (3.22)

B11̄
1̄1 = G11̄(Q)G11̄(P )

∞∑
k,l=1

αk+l [G11̄(Q)G1̄1(Q)]k−1 [G11̄(P )G1̄1(P )]l−1 (3.23)

B1̄1
11̄ = G1̄1(Q)G1̄1(P )

∞∑
k,l=1

αk+l [G11̄(Q)G1̄1(Q)]k−1 [G11̄(P )G1̄1(P )]l−1 (3.24)

The components of B can be expressed through auxiliary functions

B11
1̄1̄ = B1̄1̄

11 = S (G11̄(Q)G1̄1(Q), G11̄(P )G1̄1(P )) , (3.25)

B11̄
1̄1 = G11̄(Q)G11̄(P )T (G11̄(Q)G1̄1(Q), G11̄(P )G1̄1(P )) , (3.26)

B1̄1
11̄ = G1̄1(Q)G1̄1(P )T (G11̄(Q)G1̄1(Q), G11̄(P )G1̄1(P )) , (3.27)

where

S(x, y) =

∞∑
k,l=1

αk+l−1x
k−1yl−1 =

xA(x)− yA(y)

x− y , (3.28)

T (x, y) =

∞∑
k,l=1

αk+lx
k−1yk−1 =

A(x)−A(y)

x− y , (3.29)

with A being the determining sequence.

We remark that the average over the ensemble has been already taken at the level of

Feynman diagrams and at this moment, we can safely remove the regularization. There

are further simplifications for the biunitarily invariant matrices [49]

G11̄G1̄1A(G11̄G1̄1) = F (r)− 1, G11̄G1̄1 = −πO1(r). (3.30)

Having calculated B and knowing Green’s function, we determine K11
1̄1̄

from (3.15)

and, after algebraic manipulations, we get a compact formula for the 2-point eigenvector

correlation function from (3.4)

O2(z1, z2) =
1

π
∂z̄1∂z2

z̄1(z1 − z2)O1(r1) + z2(z̄1 − z̄2)O1(r2)

|z1 − z2|2 [F (r1)− F (r2)]
. (3.31)

The quaternionic R-transform of biunitarily invariant ensembles takes a remarkably

simple form [49], in particular R11̄(Q) = Q11̄A(Q11̄Q1̄1). Moreover, due to the rotational

symmetry of the spectrum, g(z) = 1/z. According to (3.18), the traced product of resol-

vents is given by

h(z1, z̄2) =
1

z1z̄2 −A(0)
. (3.32)

Interestingly, A(0) = r2
out, where rout is the external radius of the spectrum. This result

shows a high level of universality, since for any two functions f, g analytic in the spectrum

the expectation in the N →∞ limit〈
1

N
Trf(X)g(X†)

〉
=

1

(2πi)2

∫
γ
dz1

∫
γ̄
dz̄2

f(z1)g(z̄2)

z1z̄2 − r2
out

(3.33)
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is given by the same formula, irrespectively of the specific biunitarily invariant ensemble.

The only parameter — spectral radius rout — can be set to 1 by rescaling the matrix.

This result, appearing naturally in the language of cumulants, from the point of the spec-

tral decomposition, X =
∑

k |Rk〉λk 〈Lk|, is far from being obvious and may explain the

simplicity of formula (3.31).

4 Examples

4.1 Elliptic ensemble

As the first example of application of this formalism, we take the elliptic ensemble. Due to

the fact that only the second cumulants do not vanish, the sum in (3.16) reduces to a single

term and B is diagonal, Bell = diag(σ2τ, σ2, σ2, σ2τ). However, the equations (3.15) do

not decouple, because Green’s functions are not diagonal in the non-holomorphic regime.

Denoting for j = 1, 2

Gj =

 z̄j−zjτ
σ2(1−τ2)

i
σ2

√
1− |zj−z̄jτ |2

σ2(1−τ2)

i
σ2

√
1− |zj−z̄jτ |2

σ2(1−τ2)
zj−z̄jτ
σ2(1−τ2)

 (4.1)

Green’s function of the elliptic ensemble in the non-holomorphic regime (see appendix A),

we find K, solving (3.15)

K =
(
1− (G1 ⊗GT2 )BEll

)−1 (
G1 ⊗GT2

)
. (4.2)

Then we focus on the component K11
1̄1̄

and differentiate it twice, according to (3.4), obtain-

ing

O2(z1, z2) =
1

π2
∂z̄1∂z2K

11
1̄1̄ = −σ

2(1− τ2)2 − (z1 − z̄2τ)(z̄2 − z1τ)

π2σ2(1− τ2)|z1 − z2|4
. (4.3)

This result was derived for the first time by Chalker and Mehlig [10].2 For the Ginibre

Ensemble (σ = 1, τ = 0) it reduces to

O2(z1, z2) =
−1

π2

1− z1z̄2

|z1 − z2|4
. (4.4)

For completeness, we remark that the holomorphic part of the two point function,

calculated from (3.18), reads

h(z1, z̄2) =
4

−4 +
(
z1 +

√
z2

1 − 4σ2τ
)(

z̄2 +
√
z̄2

2 − 4σ2τ
) . (4.5)

4.2 Biunitarily invariant ensembles

We consider some examples where the two-point function can be easily calculated. This

list is by no means exhaustive. In fact, biunitary invariance is preserved under addition

and multiplication, thus one can easily generate new ensembles. We do not present results

for products of the ensembles considered below, solely due to the fact that the expressions

for O2(z1, z2) become lengthy.

• Ginibre. As a cross-check of correctness of our formula, let us first consider the

Ginibre ensemble. Its spectral density is uniform on the unit disk, therefore F (r) =

2[10, eq. (94)] contains a small misprint in the constant factor, which does not affect validity of any other

results therein.
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2π
∫ r

0 s
θ(1−s)
π ds is equal to 1 for r > 1 and F (r) = r2 for r ≤ 1. Substitution to (3.31)

reproduces the result derived earlier (4.4).

• Induced Ginibre [58]. Let us consider a rectangular N ×M matrix X (without loss

of generality, M > N) with iid Gaussian entries. There exists an M ×M unitary

matrix U so that Y = XU can be represented in the block form Y = (X ′, 0). The

right N × (M − N) block consists of zeros, while X ′ is called the induced Ginibre

matrix. In the limit N,M →∞ with α = M−N
N fixed, its radial cdf reads

F (r) =


0 for r <

√
α

r2 − α for
√
α < r <

√
α+ 1

1 for r >
√

1 + α

(4.6)

Substitution into (3.31) yields, after some algebra

OInd(z1, z2) =
1

π2

(1 + α− z1z̄2)(α− z1z̄2)

z1z̄2|z1 − z2|4
. (4.7)

The Ginibre Ensemble corresponds to α = 0.

• Truncated Unitary [59]. Let us consider a (N +L)× (N +L) random unitary matrix

with a pdf given by the Haar measure on U(N + L) and remove its last L rows and

columns. The radial cdf of the remaining square matrix in the limit N,L→∞, with

κ = L
N fixed, reads F (r) = κ r2

1−r2 for r < (1 + κ)−1/2 and 1 otherwise [60]. Therefore

the two-point eigenvector function reads

OTU (z1, z2) =
1

π2

−1 + z1z̄2(1 + κ)

|z1 − z2|4
. (4.8)

• Spherical Ensemble. Consider the product Y = X1X
−1
2 , where X1 and X2 are Ginibre

matrices. Its radial cdf reads F (r) = r2

1+r2 and its spectrum is unbounded [61]. This

ensemble is beyond the assumptions made for the derivation of (3.31). Nevertheless,

motivated by the successful application of these methods for the one-point correlation

function in this ensemble [29], we assume the correctness of our formulas and calculate

the two-point function

OSph(z1, z2) =
1

π2

−1

|z1 − z2|4
. (4.9)

• Product of two Ginibre. We consider a matrix Y = X1X2, where X1 and X2 are

Ginibre matrices. The radial cdf of Y is F (r) = min(r, 1), thus

Oprod(z1, z2) = − 1

π2

2(|z1|+ |z2|)(z1z̄2 + |z1z2|)− |z1 + z2|2 − 4|z1z2|
4|z1z2||z1 − z2|4

. (4.10)
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4.3 Pseudohermitian matrix

Let us consider the product X = AB of two Hermitian matrices A,B. The product is not

Hermitian, X† = BA 6= X, but if one of the matrices, let us say A, is positive definite,

X is isospectral to the Hermitian matrix A1/2BA1/2, thus X, despite its non-Hermiticity,

has a real spectrum. The diagonalising matrix is, however, not unitary, resulting in non-

orthogonality of eigenvectors. Such matrices can be toy-models for more complicated phys-

ical system described by Hamiltonians which are not Hermitian but possesses parity-time

(PT) symmetry [62]. The most interesting models have a parameter which controls how

far the system is from breaking of the symmetry. At a critical value, called the exceptional

point, two real eigenvalues coalesce and move away in the imaginary direction, sponta-

neously breaking the PT-symmetry.

As an example we consider the matrix X = (2+G1)(2+G2), whereGi’s are independent

matrices drawn from the Gaussian Unitary Ensemble, the spectral density of which in the

large N limit is the Wigner semicircle, ρGUE(x) = 1
2π

√
4− x2, supported on the interval

[−2, 2]. This model has an exceptional point at x = 0.

The components of the quaternionic R-transform of X read [63]

R11 =
4(1−G11̄G1̄1)(1−G1̄1̄)2

(1 +G11̄G1̄1(G1̄1̄ − 2)−G1̄1̄ +G11(G1̄1̄ +G11̄G1̄1 − 1))2 , (4.11)

R11̄ = − G11̄ [−3−G11̄G1̄1(G1̄1̄ − 1) +G1̄1̄ +G11(1−G11̄G1̄1 +G1̄1̄)]2

(G11̄G1̄1 − 1) [1 +G11̄G1̄1(G1̄1̄ − 2)−G1̄1̄ +G11(G1̄1̄ − 1 +G11̄G1̄1)]2
. (4.12)

The other two components are given by the exchange of indices 1 ↔ 1̄. Inserting them

into (2.22) and focusing only on the holomorpic solution (|w| = 0), we arrive at the equation

for Green’s function
4

(1− g(z))2
+

1

g(z)
= z. (4.13)

We choose a branch which gives the asymptotic behavior g(z) ∼ 1/z for large z. The

spectrum is supported on a single interval [0, z+], with z+ = 1
2(11 + 5

√
5). The Green’s

function infinitely close to the spectrum reads

lim
ε→0

g(x± iε) =
1 + 2x

3x
− 1

6x

( a

r1/3
(1± i

√
3)− r1/3(1∓ i

√
3)
)
, (4.14)

where a = 1+10x+x2 and r = 1+15x+39x2−z3−6
√

3x
√
x+ 11x2 − x3. The imaginary

part of Green’s function yields the spectral density, calculated in [64]. The traced product

of resolvents according to (3.18) satisfies the equation

1

h(z1, z̄2)
=

1

g(z1)ḡ(z̄2)
−

(
1− g(z1))2(1− ḡ(z̄2)

)2
[−3 + g(z̄2) + g(z1) + g(z1)g(z̄2)]2

, (4.15)

where g(z1) and g(z̄2) are the solutions of (4.13) with 1/z asymptotic behavior.

The two-point function is calculated from (3.6) and its cross-sections are juxtaposed

with the numerical simulations in figure 10, showing an excellent agreement.
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Figure 10. Cross sections of the two point eigenvector correlation function O2(x, y) for a) x = 1.475

(squares and dashed line), x = 3.975 (circles and solid line) and b) x = 0.075. The numerical data

(points) are obtained by diagonalization of 5 · 104 matrices of size N = 100. Black lines are the

solutions of (4.15) inserted into (3.7). Interestingly, if one of the arguments is close to the exceptional

point x = 0, the large part of the function can be approximated by a power-law.

5 Towards microscopic universality of eigenvectors

Random matrices show the phenomenon of universality at certain regions of the spectra.

In the case of Hermitian ensembles, such universalities appear in the bulk (the so-called

sine kernel) and at the edges of the spectra (Airy, Bessel, Pearcey, etc.). For a given generic

Hermitian ensemble represented by N × N matrices H, one of the tools for investigating

the existence of universalities are the multi-trace correlation functions

G(z1, z2, . . . , zj) =

∞∑
k1,...,kj=1

N j−2

〈
trHk1 . . . trHkj

〉
c

zk1+1
1 . . . z

kj+1
k

. (5.1)

The subscript c denotes the connected part.

Such objects were studied extensively using various techniques including loop equa-

tions [37], Coulomb gas analogy [65] and Feynman diagrams [52, 53]. They were put into a

formal mathematical formulation of the higher order freeness [66–68]. When the eigenval-

ues occupy a single interval, they obey the Ambjørn-Jurkiewicz-Makeenko universality [37].

The divergences of the double-trace correlation function signal the breakdown of the 1/N

expansion and the need to resum the whole series and rescale its arguments. Different

universal limits are manifested as different types of singularities.

A natural generalization of the two-point double-trace function to the non-Hermitian

setting is the connected average of two copies of the electrostatic potential (2.5)

F (Q,P ) =

〈
1

N
ln det(Q−X )

1

N
ln det(P − X )

〉
c

, (5.2)

introduced in [42], where Gaussian models were also considered. As the quaternionic

Green’s function, encoding all expectations of the traces can be obtained from the potential

(see (2.10)), the function above generates all covariances of traces〈
1

N
TrXα1Xα2 . . . Xαk

1

N
TrXβ1Xβ2 . . . Xβl

〉
c

, (5.3)

– 21 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

F =
G

G

Γ

+ 1
2

G

G

G

G

Γ Γ + 1
3

G

G

GG
GG

Γ Γ

Γ
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Figure 11. Hierarchy of wheel diagrams contributing to the two-point double-trace correlation

function (5.2), which in turn corresponds to the contraction of indices in figure 4 leading to L. The

combinatorial factor 1/m corresponds to rotational symmetry and prevents overcounting the dia-

grams.

being a natural extension of the second order freeness for large non-Hermitian matrices.

Here αi, βj ∈ {1, †}.
As we mentioned earlier, the indices in the product of a resolvent can be contracted

in two ways, see figure 4. One of them gives access to the eigenvector correlation function,

while the second one yields F . More precisely, F (Q,P ) = TrL.

Since we consider connected expectation, we may write ln det(Q − X ) = ln det(1 −
XQ−1) and use the identity ln det = Tr ln. Then, logarithms are expanded in power series,

ln(1 + z) =
∑∞

k=1
zk

k , which allows for convenient calculation of Feynman diagrams. Due

to the presence of traces, the baselines from (XQ−1)k are now drawn as two concentric

rings.3 The dominant diagrams are the planar ones in which vertices and propagators are

drawn between the two rings, but propagators connecting vertices do not encircle the inner

ring (as in figure 4), see also [52, 53]. The diagrams have an additional symmetry, namely

rotating each ring leads to a new admissible diagram contributing equally. The resulting

symmetry factors exactly cancel coefficients in the expansion of logarithms.

Each diagram can be decomposed into m segments in which X ’s from two rings are

connected through propagators and vertices. Segments are connected to each other through

rings. As a result, each diagram looks like a wheel with m spokes. It turns out that the sum

of all diagrams contributing to the spoke is exactly the rung, Γ, from the ladder diagrams

in section 3.3. The X ’s on ring, which are not part of a spoke can be connected with

each other through propagators and vertices in any way, thus contributing to the Green’s

function. The general structure of such diagrams is presented in figure 11.

The wheel diagrams with m spokes have an additional symmetry, namely they can be

rotated by an angle 2π/m. In order not to overcount the diagrams in the sum, we must

include 1/m factor. Finally, we get

N2F (Q,P ) = Tr

∞∑
m=1

1

m

[
(G(Q)⊗GT (P ))B(Q,P )

]m
= − log det

[
1− (G(Q)⊗GT (P ))B(Q,P )

]
.

(5.4)

This means that the result, derived in [42] and used for deducing the existence

of the edge universality for the spectral density [69], holds for the entire class of non-

Hermitian models.

3The rings could be equivalently drawn next to each other. This choice is just for convenience.
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The two-point single-trace correlation functions encoding correlations between eigen-

vectors also have their counterpart in the Hermitian case, but because of realness of

the spectrum and orthogonality of eigenvectors it trivially reduces to the one-point

Green’s function 〈
1

N
Tr(z11−H)−1(z21−H)−1

〉
=

g(z1)− g(z2)

z2 − z1
, (5.5)

thus not attracting attention. Eigenvectors of non-normal matrices are no longer trivial,

making such correlation functions meaningful quantities.

In the spirit of the above analysis, one is tempted to ask if we can probe hypothetical

eigenvector universality using similar tools. We would like to stress that, even in the case of

the simplest Ginibre ensemble, the direct analysis of the eigenvector correlation functions

is very hard. Whereas the finite N expression for the one point function is known [10, 23],

the only known non-perturbative results for the calculation of the two-point eigenvector

correlation function are given implicitly [9, 10] as

O2(z1, z2) = − N

π2Γ(N)
e−N(|z1|2+|z2|2) det [hij ]

N−2
i,j=0 , (5.6)

where the matrix h is pentadiagonal with entries given by

hij =
N j+3

π(j + 1)!

∫
d2λλ̄iλj

[
|z1 − λ|2|z2 − λ|2 +

1

N
(z1 − λ)(z̄2 − λ̄)

]
e−N |λ|

2
. (5.7)

There is, however, a different possibility of inferring the existence of universality. Spec-

tra of non-normal matrices are intimately linked with the properties of their eigenvectors.

The completeness relation
∑N

k=1 |Rk〉 〈Lk| = 1 used in the weighted density (1.3) leads

to the sum rule
∫
C dµ(w)D(z, w) = ρ(z), which imposes constraints on the eigenvector

correlation functions

NO1(z) +

∫
C

dµ(w)O2(z, w) = ρ(z). (5.8)

While the right hand side is of order 1, the one-point correlator gives a contribution of

order N , thus there has to be a counterterm from the integral. As the region of integration

is in fact compact in the large N limit, the divergence can stem only from the region

when w is close to z. The exact calculations in this regime are not accessible within the

diagrammatic approach, but below we give a qualitative argument that the microscopic

scaling is responsible for the cancellation of divergences.

In RMT the microsopic universality can be probed on the scale of the typical distance

between eigenvalues. Demanding that in the disk of radius δz centered at z we expect one

eigenvalue, leads us to the scaling

w = z +
u√
Nρ(z)

, (5.9)

where u ∼ 1. We notice that in all examples presented in section 4 the two-point function

can be expressed as

O2(z, w) = − 1

π2

P (z, w)

|z − w|4 (5.10)
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with the same behavior in the denominator. The microscoping scaling (5.9) inserted in

the denominator produces a term (Nρ(z))2, while the Jacobian of the change of variables

reduces the power to one, giving the desired behavior in N . Moreover, by the explicit

evaluation of derivatives in (3.31) and the application of de l’Hospital’s rule twice we get for

biunitarily invariant ensembles P (z, z) = O(z)
ρ(z) , which cancels densities, eventually leaving

only the one-point function, which produces the desired counterterm. We hypothesize that

this phenomenon is universal across all non-Hermitian ensembles in the bulk.

Motivated by the ubiquitousness of the |z − w|−4 divergence in the bulk we state

the conjecture that in generic non-Hermitian matrices with complex entries for all points

in the bulk at which the spectral density does not develop singularities, there exists a

microscopic limit

lim
N→∞

N−2O2(z +
x√
N
, z +

y√
N

) = O1(z)Φ(|x− y|), (5.11)

where

Φ(|ω|) = − 1

π2|ω|4
(

1− (1 + |ω|2)e−|ω|
2
)
. (5.12)

The function Φ was calculated in [9, 10] by evaluating O2(0, z) from the exact re-

sult (5.6) and taking the scaling limit z = ω√
N

. It is presented in figure 12a) and compared

with the evaluation of the exact formula.

Interestingly, performing an analogous reasoning for the Ginibre ensemble (in which

P (z, w) = 1− zw̄) when z is at the edge of the spectrum leads us to a different conclusion.

When two arguments get close, the two-point function diverges, but it does so as |z−w|−3,

because P also vanishes, reducing the exponent. This suggests that at the edge the two-

point function scales as N3/2 instead of N2 in the bulk. This stays in agreement with the

sum rule (5.8), since O1 at the edge scales as N1/2 [23]. The limiting scaling function is not

available to us, hence we evaluate numerically (5.6) and show the results in figure 12b).

The divergence of the two-point function at the origin for the product of two Ginibre

matrices (4.10) also suggests the existence of a different scaling there.

6 Summary

Using the methods of the quaternion formalism [70] for non-Hermitian random matrices,

we have proposed the explicit calculational scheme for the two-point eigenvector correlation

function (1.4). First, we have checked that our formalism reproduces all known examples in

the literature, i.e. the complex Ginibre ensemble, an elliptic ensemble and the open chaotic

scattering ensemble. Second, we considered two subclasses of non-normal random matrices:

the pseudo-hermitian and the biunitarily invariant ensembles, which in the large N limit

are described by the R-diagonal operators from free probability [71, 72]. In both cases

we got new results for the two-point eigenvector correlation functions. In the case of the

bi-unitarily invariant ensembles, the two-point function O2(z, w) has a particularly simple

form. It is expressed solely as a function of the radial cumulative distribution function

F (r) and the one-point eigenvector correlation function O1(r).

– 24 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

-6 -4 -2 0 2 4 6

0.00

0.01

0.02

0.03

0.04

0.05

x

-
N

-
2
O
2
(0
,x

N
-
1/
2
)

Bulk scaling

1 - ⅇ-x
2
x2 + 1

π2 x4
N = 4

N = 6

N = 8

N = 10

a)

-4 -2 0 2 4

0.000

0.001

0.002

0.003

0.004

x

-
N

-
3/
2
O
2
(1
+
0.
5N

-
1/
2
x,
1-
0.
5N

-
1/
2
x)

Edge scaling

N=5

N=10

N=15

N=20

N=25

N=30

N=35

N=40

N=45

N=50

N=55

N=60

b)

Figure 12. The two-point eigenvector correlation function O2(z1, z2) for the Ginibre ensemble in

the microscopic a) bulk regime, z1 = 0, z2 = x√
N

and b) edge regime z1 = 1 + x
2
√
N

, z2 = 1− x
2
√
N

.

The red dashed line is Chalker and Mehlig’s exact result (5.12). In the bulk microscopic regime O2

scales as N2 and at the edge as N3/2. The rapid convergence to the limiting bulk scaling suggest

that the corrections are exponentially small, while the hypothetical edge scaling seems to have

1/N corrections.

Recently, it was proven [29] that for biunitarily invariant ensmbles, O1(r) can be ex-

pressed in terms of F (r) exclusively, which can be viewed as an extension of the single

ring (Haagerup-Larsen) theorem [54, 56]. Combining this result with our formalism, we

arrive at the conclusion, that the two-point eigenvector correlation function for general

biunitarily invariant ensembles in the large N limit depends functionally solely on the

spectral density. Such a situation resembles the Ambjørn-Jurkiewicz-Makeenko (known

also as the Brezin-Zee) universality in the case of Hermitian random matrix models, where

the two-point spectral Green’s function depends solely on the one-point Green’s function,

irrespectively on the specific ensemble. Mathematical formulation of such a construction

is known as the second order freeness [66]. We are therefore tempted to speculate that,

by combining second order freeness and freeness with amalgamation [73], the notion of the

non-orthogonality of eigenvectors can be extended into a broader context of operators in

von Neumann algebras. Indeed, an equation similar to (3.15) has recently appeared in the

description of fluctuations of Gaussian block matrices [74]. Moreover, the diagrammatic

calculations of the traced product of resolvents resemble the partition structure diagrams

introduced in [75].

The similarity of our result to AJM (BZ) universality has further consequences. In the

case of the ABJ (BZ) universality, the singular points of the correlation functions identify

the regions of the spectra where microscopic universality takes place. This includes both

the cases of the bulk and edge universality. We are therefore inclined to apply a similar ar-

gument to our result, searching for the microscopic eigenvector universalities. An additional

argument for the microscopic universality comes from a constraint on eigenvector correla-

tion function (5.8), as originallly noted by Walters and Starr. The sum rules originating

from this constraint strongly suggest the universal form of the microscopic two-point eigen-

vector correlations in analogy to a similar phenomenon for the sum rules of Dirac Euclidean

operators found by Leutwyler and Smilga [76]. The latter lead the Stony Brook group to

the discovery of the universal Bessel kernels for chiral random matrix models [77, 78].
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Our analysis, as well as explicit examples for the biunitarily invariant ensembles cal-

culated in section 4.2, point at the generic shape of such universality, coming from the

ubiquitous factor |z − w|4 in the denominator. Explicitly, O2(z, w) = − 1
π2

P (z,w)
|z−w|4 , where

limz→w P (z, w) = O1(z)/ρ(z) yields the Petermann factor. Such unique behavior is re-

sponsible for the crucial cancellation of the divergent terms in the leading order in N in

the sum rules. The identification of this mechanism leads us to predict the existence of the

universal microscopic scaling of the eigenvector correlation function Φ(|ω|). Such a limit

was obtained in the special case of the Ginibre ensemble [9, 10]. We conjecture that this

universality extends to at least biunitarily invariant random ensembles.

Interestingly, the sum rule (5.8) leads also to interesting predictions at the edge. It

is well known that correlations of eigenvalues of non-Hermitian matrices exhibit universal

behavior at the edge, given by the error function. Our large N results for the eigenvector

correlations show that the leading singularity weakens at the edge, |z − w|4 → |z − w|3,

leading to N3/2 scaling of the two-point correlation function. The numerical evaluation of

the implicit exact result (5.6) confirms this hypothesis, but the analytic form of the scaling

function is not yet available, even in the case of the simplest, complex Ginibre ensemble.

Our results are only one step towards understanding the statistical properties of non-

normal random operators and give rise to new questions. The matrix of overlaps Oij is

the simplest invariant object. It is natural to ask what kind of non-trivial higher order

invariants can be built out of eigenvectors. This problem is even more cumbersome in

the light of recent results [24, 33], because the distribution of the diagonal overlap Oii
is heavy tailed and some objects, for instance

〈
O2
ii

〉
, do not exist. For the real Ginibre

ensemble the situation is even more hopeless, since at the real axis the one-point function

O1 does not exist! While one expects the existence of certain correlation functions involving

local averages of distinct eigenvectors, it is unclear whether their mathematical structure

simplifies as it does for spectral statistics, which form determinantal point processes. Even

though an event with two or more eigenvalues lying close to each other is unlikely to happen

due to the eigenvalue repulsion, correlations between their eigenvectors do not decay, as

can be seen from the microscopic scaling of O2. It is therefore very appealing to study

microscopic eigenvector correlations involving more than two eigenvalues.

Although the real eigenvalues and corresponding eigenvectors of the real Ginibre en-

semble are beyond the scope of perturbative techniques, we expect that the results for the

two-point function remain unchanged for the eigenvectors associated with complex eigen-

values of the real Ginibre. Despite that the eigenvector overlaps are heavy-tailed, the traces

of powers of X and its conjugate transpose are localized around their mean value [23]. Such

a big cancellation is possible due to the sum rule originating from the completeness relation.

Based on this fact, we expect that the formula for the traced product of resolvents (3.18)

holds also for matrices with real entries.

The issue of a hypothetical microscopic eigenvector universality for generic non-

Hermitian ensembles is also of primary importance, since unraveling the unknown mi-

croscopic eigenvector correlations may give hope in the case of notorious sign problems by

giving an insight into the properties of the Dirac operator in Euclidean QCD at non-zero

chemical potential.

– 26 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

Note added. After completing this manuscript, we became aware of a recent work by

Bourgade and Dubach [24], which tackles the issue of eigenvector correlations in the com-

plex Ginibre ensemble in the bulk using different probabilistic techniques. They found the

full probability of the diagonal overlap as an inverse gamma distribution and also studied

the first two moments of the off-diagonal overlap. Moreover they proved that the result for

the macroscopic two-point function (4.4) extends to mesoscopic scales.
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A One-point functions in elliptic ensemble

It is very instructive to show how the formalism described in section 2 works in practice.

Let us consider a non-Hermitian matrix model given by the Gaussian potential (2.13). Due

to the fact that there are no vertices in this model, the only cumulants are c
(2)
αβ , given by

the propagators. This completely determines the quaternionic R-transform

R(Q) = σ2

(
τQ11 Q11̄

Q1̄1 τQ1̄1̄

)
. (A.1)

Once we perform the average over the ensemble (i.e. we know the form of R), we can safely

remove the regularization by setting |w| = 0 at the level of the algebraic equation (2.22),

which in this case reads

σ2

(
τG11 G11̄

G1̄1 τG1̄1̄

)
+

1

G11G1̄1̄ −G11̄G1̄1

(
G1̄1̄ −G11̄

−G1̄1 G11

)
=

(
z 0

0 z̄

)
. (A.2)

Focusing on the 11̄ component, one gets

G11̄

(
σ2 − 1

G11G1̄1̄ −G11̄G1̄1

)
= 0. (A.3)

There are two solutions, a trivial one G11̄ = 0 and a non-trivial one, σ2 =

(G11G1̄1̄ −G11̄G1̄1)−1. Let us focus on the trivial first. Inserting G11̄ = 0 into the equation

given by the 11 component, we get σ2τG11 + 1/G11 = z, with two solutions

G11(z) =
z ±
√
z2 − 4σ2τ

2σ2τ
= g(z). (A.4)
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This is the holomorphic part, valid outside the spectrum and we have to choose the branch

of the solution with a minus sign for correct asymptotic behavior at infinity g(z) ∼ 1/z. In

the holomorphic domain, the off-diagonal elements of Green’s function vanish, because the

one-point eigenvector correlation function is trivially zero as there are no eigenvalues there.

Considering the non-trivial solution of (A.3) and inserting it into the equations for 11

and 1̄1̄ components, we obtain a system of two linear equations

σ2τG11 + σ2G1̄1̄ = z,

σ2τG1̄1̄ + σ2G11 = z̄,

with the solution

G11(z) =
z̄ − zτ

σ2(1− τ2)
. (A.5)

The spectral density is calculated according to (2.3):

ρ(z, z̄) =
1

π
∂z̄G11 =

1

πσ2(1− τ2)
. (A.6)

One can also calculate G11̄ and get the following formula for the one-point eigenvector

correlation function from (2.9)

O1(z) =
1

πσ2

(
1− |z − z̄τ |2

σ2(1− τ2)2

)
. (A.7)

The boundary of the spectrum can be calculated in two ways: by requiring that the holo-

morphic and non-holomorphic solutions match at the boundary or by imposing vanishing

of the one-point eigenvector correlation function. Both methods give

x2

(1 + τ)2
+

y2

(1− τ)2
= σ2, (A.8)

which is the equation for the ellipse with semi-axes σ(1 + τ) and σ(1− τ), hence the name

of the ensemble.

B Quantum scattering ensemble

Let us see how the procedure for determining the rung of the ladder works in practice. We

consider the quantum scattering ensemble [79] given by

X = H + iγΓ, (B.1)

where H is a N × N complex matrix with Gaussian entries of zero mean and variance〈
|Hkl|2

〉
= N−1δkl and Γ =

∑M
a=1 V

a(V a)†. The components of N -dimensional vectors

V a are complex Gaussians with variance
〈
V a
k V̄

b
l

〉
= N−1δklδab. The two-point eigenvector

correlation function in the limit M,N → ∞ with M/N = m fixed (planar limit) was

studied by Mehlig and Santer [36]. We show how this result can be rederived within this

formalism in a simpler way.
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Γ is the complex Wishart matrix [80] multiplied by m. The planar cumulants of the

Wishart matrix are stored in the Voiculecu’s R-transform from free probability, which

reads RΓ(z) = m
1−z . The considered matrix X is non-Hermitian, therefore we need its

quaternionic R-transform. Using the embedding of the complex R-transform into the

quaternionic structure [70], we get RΓ(Q) = m(12 − Q)−1. The Gaussian matrix is a

particular instance of the elliptic ensemble corresponding to τ = 1, therefore RH(Q) =

Q. Further, Γ is rescaled by a complex number iγ. The quaternionic R-transform of

such a rescaled matrix is obtained from the relation [70] RiγΓ(Q) = gRΓ(Qg), where g =

diag(iγ,−iγ). As the R-transform is additive under addition of two matrices, we have

RX(Q) = Q+mg(1−Qg)−1, which we then expand into a power series

RX(Q) = Q+mg

∞∑
k=0

(Qg)k. (B.2)

Then we perform the procedure with acting derivatives on the quaternionic R-transform

and substituting the argument, as described in section 3.3. After summing up the resulting

series, we get

Bαβ
µν (Q,P ) = δαβδνµ +m

(
g−1 −G(Q)

)−1

αβ

(
g−1 −GT (P )

)−1

µν
. (B.3)

This can we written in matrix form as

B(Q,P ) = 1 +m
[
g−1 −G(Q)

]−1 ⊗
[
g−1 −GT (P )

]−1
. (B.4)

Inserting this into (3.15), we reproduce the results of [36]. Green’s function is calculated

from (2.22).
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[41] L. Erdos, T. Krüger and D. Renfrew, Power law decay for systems of randomly coupled

differential equations, arXiv:1708.01546.

[42] R.A. Janik, M.A. Nowak, G. Papp and I. Zahed, NonHermitian random matrix models. 1.,

Nucl. Phys. B 501 (1997) 603 [cond-mat/9612240] [INSPIRE].

[43] R.A. Janik, M.A. Nowak, G. Papp, J. Wambach and I. Zahed, NonHermitian random matrix

models: A free random variable approach, Phys. Rev. E 55 (1997) 4100 [hep-ph/9609491]

[INSPIRE].

[44] J. Feinberg and A. Zee, NonHermitian random matrix theory: Method of Hermitean

reduction, Nucl. Phys. B 504 (1997) 579 [cond-mat/9703087] [INSPIRE].

– 31 –

https://doi.org/https://doi.org/10.1016/S0378-4371(99)00602-0
https://doi.org/https://doi.org/10.1016/S0378-4371(99)00602-0
https://doi.org/10.1103/PhysRevA.61.023810
https://doi.org/10.1109/JQE.1979.1070064
https://doi.org/10.1088/1751-8121/aa5451
https://doi.org/10.1088/1751-8121/aa5451
https://arxiv.org/abs/1608.04923
https://inspirehep.net/search?p=find+J+%22J.Phys.,A50,105204%22
https://doi.org/10.1103/PhysRevE.66.045202
https://doi.org/10.1103/PhysRevE.95.022134
https://arxiv.org/abs/1610.09184
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,E95,022134%22
https://arxiv.org/abs/1710.04699
https://arxiv.org/abs/1707.08337
https://doi.org/10.1103/PhysRevE.56.R4911
https://doi.org/10.1103/PhysRevE.63.020105
https://doi.org/10.1016/0370-2693(90)90790-D
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B251,517%22
https://doi.org/10.1142/s2010326316500155
https://arxiv.org/abs/1601.02586
https://arxiv.org/abs/1708.01546
https://doi.org/10.1016/S0550-3213(97)00418-5
https://arxiv.org/abs/cond-mat/9612240
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B501,603%22
https://doi.org/10.1103/PhysRevE.55.4100
https://arxiv.org/abs/hep-ph/9609491
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,E55,4100%22
https://doi.org/10.1016/S0550-3213(97)00502-6
https://arxiv.org/abs/cond-mat/9703087
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B504,579%22


J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

[45] J.T. Chalker and Z.J. Wang, Diffusion in a Random Velocity Field: Spectral Properties of a

Non-Hermitian Fokker-Planck Operator, Phys. Rev. Lett. 79 (1997) 1797 [INSPIRE].

[46] A. Cayley, A memoir on the theory of matrices, Phil. Trans. Roy. Soc. Lond. 148 (1858) 17.

[47] Y.V. Fyodorov, B.A. Khoruzhenko and H.-J. Sommers, Almost Hermitian random matrices:

Eigenvalue density in the complex plane, Phys. Lett. A 226 (1997) 46 [cond-mat/9606173]

[INSPIRE].

[48] B. Eynard et al., Counting surfaces, Springer Basel, (2016).

[49] M.A. Nowak and W. Tarnowski, Complete diagrammatics of the single-ring theorem, Phys.

Rev. E 96 (2017) 042149.

[50] M.A. Nowak and W. Tarnowski, Spectra of large time-lagged correlation matrices from

random matrix theory, J. Stat. Mech. Theor. Exp. 2017 (2017) 063405.
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ginibre ensemble of random matrices and quantum operations, J. Phys. A 45 (2012) 075203.

[59] K. Zyczkowski and H.-J. Sommers, Truncations of random unitary matrices, J. Phys. A 33

(2000) 2045.

[60] Z. Burda, M.A. Nowak and A. Swiech, Spectral relations between products and powers of

isotropic random matrices, Phys. Rev. E 86 (2012) 061137.

[61] U. Haagerup and H. Schultz, Brown measures of unbounded operators affiliated with a finite

von neumann algebra, Math. Scand. 100 (2007) 209.

[62] C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rept. Prog. Phys. 70 (2007) 947

[hep-th/0703096] [INSPIRE].

[63] M.A. Nowak and W. Tarnowski, in preparation.

[64] P. Warcho l, Dynamics in random matrix theory — toy model with spectral phase transition,

(2010).

[65] F.D. Cunden and P. Vivo, Universal covariance formula for linear statistics on random

matrices, Phys. Rev. Lett. 113 (2014) 070202.

– 32 –

https://doi.org/10.1103/PhysRevLett.79.1797
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,79,1797%22
https://doi.org/10.1016/S0375-9601(96)00904-8
https://arxiv.org/abs/cond-mat/9606173
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,A226,46%22
https://doi.org/10.1103/PhysRevE.96.042149
https://doi.org/10.1103/PhysRevE.96.042149
https://doi.org/10.1088/1742-5468/aa6504
https://doi.org/10.1016/j.laa.2017.09.024
https://doi.org/10.1016/0550-3213(95)00446-Y
https://arxiv.org/abs/cond-mat/9507032
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B453,531%22
https://doi.org/10.1016/S0550-3213(97)00419-7
https://arxiv.org/abs/cond-mat/9704191
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B501,643%22
https://doi.org/10.4007/annals.2011.174.2.10
https://doi.org/10.4007/annals.2011.174.2.10
https://doi.org/https://doi.org/10.1006/jfan.2000.3610
https://doi.org/10.1088/1751-8113/45/7/075203
https://doi.org/10.1088/0305-4470/33/10/307
https://doi.org/10.1088/0305-4470/33/10/307
https://doi.org/10.1103/PhysRevE.86.061137
https://doi.org/10.7146/math.scand.a-15023
https://doi.org/10.1088/0034-4885/70/6/R03
https://arxiv.org/abs/hep-th/0703096
https://inspirehep.net/search?p=find+J+%22Rept.Prog.Phys.,70,947%22
https://doi.org/10.1103/PhysRevLett.113.070202


J
H
E
P
0
6
(
2
0
1
8
)
1
5
2

[66] J.A. Mingo and R. Speicher, Second order freeness and fluctuations of random matrices: I.

gaussian and wishart matrices and cyclic fock spaces, J. Funct. Anal. 235 (2006) 226 .
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