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1 Introduction

More than four decades have passed since A. Chodos and C. Thorn suggested the model of

a bosonic string with massive endpoints [1]. In spite of the fact that it is a natural model

for a QCD meson, with the string describing the chromoelectric flux tube and the massive

endpoints the quarks, the string with massive endpoints has not been studied exhaustively

and up to date a full quantization of it has not been established.

In the original paper [1], a rotating string solution of the classical equations of motion

was written down. This solution implies a modification of the classical Regge trajectory,

the relation between the angular momentum and the energy of the system. We refer to it

as the massive modified Regge trajectory of the string. Various other aspects of the model

have been studied in the old era, for instance in [2–6].

A renaissance of the model has followed the application of the gauge/string correspon-

dence to QCD and hadron physics. In [7] it was shown that a classical rotating string in

a holographic ten dimensional curved confining background with its endpoints on flavor

branes can be mapped into a rotating sting in four flat dimensions with massive endpoints.

Based on this idea and several other ingredients from gauge/string duality the holography

inspired stringy hadron (HISH) model was proposed in [8]. This model aims at describing

all hadrons: glueballs, mesons, baryons, and exotic hadrons are all strings, where closed

strings correspond to glueballs and open strings with various configurations of particles on

their ends to the other hadrons. Since a rotating string in a holographic background is

dual to a meson with non-trivial angular momentum, this implies in particular that the

holographic meson trajectories can be approximated by the modified trajectories of the

model of the string with massive endpoints.

There are several definitions of the mass of a quark. In particular there are the QCD

(current) quark mass and the constituent quark mass. The mass of the particle at the end

of the string, referred to as the string endpoint mass msep, is neither of the above [7]. This

is supported by fits of the theoretical Regge trajectory, with the correction for endpoint

masses, to experimental data [9], where the best fits for the msep show that msep is generally

between the QCD and the constituent quark masses. It was further argued in [10], following

the holographic picture, that baryons can also be described as a single string but now with

non-symmetric endpoints where on one side there is a quark and on the other a baryonic

vertex connected with two short strings to a diquark. The fact that it is a straight string

and not a Y-shaped configuration is backed by a theoretical analysis of the stability of

the Y-shape string configuration [11, 12] and moreover by the fact that the Regge slope
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(α′) for baryons [10] is within 5% the same as for mesons. Thus the string with two

massive endpoints can be used as a model for both mesons and baryons, and also for exotic

hadrons [13].

The system of a string with particles on its endpoints can take a variety of different

forms, as the endpoint particles, in addition to being massive can also carry electric charge,

flavor charge and spin. In this paper we only consider chargeless, spinless endpoints. For

this case, with no additional properties to the particles, one can consider the symmetric case

where the two masses at the endpoints are the same or the more general asymmetric case

where there are two different masses. Strings with electrically charged endpoint particles

were analyzed in [14] and we currently investigate the role of the spin, which was considered

also in [15, 16]. In [17] it was shown that the the asymptotic behavior of the four point

amplitude that corresponds to this model is a universal leading order correction of the

Veneziano amplitude. Various other aspects of the model were investigated in [18–25].

For an ordinary bosonic string with no massive endpoints, the passage from the classical

Regge trajectory to the leading quantum Regge trajectory is accomplished by adding an

intercept,

J = α′M2 → J = α′M2 + a (1.1)

In the critical dimension D = 26 the intercept can be computed by doing the sum over the

eigenfrequencies of the D − 2 transverse excitations of the string, with the result

a = −D − 2

2

∞∑
n=1

n =
D − 2

24
= 1 (1.2)

where the infinite sum is given by the Riemann Zeta function, ζ(−1) = − 1
12 .

The main goal of this paper was to determine the corresponding passage from classical

to quantum Regge trajectory for the string with massive endpoints. Denoting the quantum

corrections to the classical energy and angular momentum by Ecl → Ecl + δE and Jcl →
Jcl + δJ , we show in this paper that the following relation holds

a ≡ 〈δ (J − Jcl(E))〉 =

〈
δJ − 1

k
δE

〉
= −1

k
〈Hws〉 (1.3)

where Jcl(E) is the classical relation between J and E and k is the angular velocity of the

rotating string (as described in section 2). This defines for us the intercept in the massive

case, as the quantum correction to the relation between J and E. One can easily verify

that for the case of a string without massive endpoints this result coincides with (1.1).

Thus the determination of the quantum Regge trajectory translates to computing the

intercept for the string with massive endpoints model. As for the last part of the equation,

we show explicitly here that the intercept is proportional to the expectation value of the

Hamiltonian for the quantum fluctuations around the classical rotating solution, as derived

more generally in [26, 27].

In D spacetime dimensions the intercept for the rotating string acquires contributions

from fluctuations in the D − 3 directions transverse to the plane of rotation and from one

planar mode, which is transverse to the string but in the plane of rotation. One must also
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consider radial fluctuations of the massive endpoints, which serve to modify the boundary

condition for the planar mode. In this paper, we analyze separately the transverse and

planar fluctuations and determine their contributions to the intercept.

For a bosonic string in a general number of D dimensions, as for instance in the four

dimensional HISH model, that is not the end of the story. In non-critical dimensions one

is required to incorporate also the Liouville [28] or the Polchinski-Strominger (PS) term of

effective string theory [29] in order to render the quantization procedure consistent. This

was generally not done in previous papers that considered the quantization of a string with

massive endpoints.

The incorporation of the PS term to the string with no massive endpoints was done

in [30]. The result of that paper was that the intercept of the bosonic string is a = 1, not

only in the critical dimension but in fact for any spacetime dimension D. This is because

the contribution of the Liouville mode cancels out the dependence on D, as

a(m = 0) =
D − 2

24
+

26−D
24

= 1 (1.4)

This result was obtained by introducing a particular boundary counterterm to cancel the

divergence of the PS term and renormalizing the whole system. For the rotating string

with finite endpoint masses the PS term does not diverge, and in fact the endpoint masses

can be thought of as a regulator to this divergence.

One of the outcomes of the present paper is that instead of the procedure used in [30]

one can add massive endpoints, perform the calculation of the intercept and then take the

limit of zero endpoint mass. Traditionally, one uses the Riemann Zeta function to perform

the renormalization of the intercept. In this paper we further develop a procedure that was

proposed in [31] by generalizing it from the static to the rotating string. This procedure

is based on converting the infinite sum over the eigenfrequencies into a contour integral

and subtracting from the corresponding Casimir force of a string of a given length L the

Casimir force when L→∞. In the present paper we apply this method to both the planar

and transverse modes of the rotating string, and we use a similar subtraction also for the

PS mode.1 We show that the renormalized contribution of the PS term to the intercept

takes the form

aPS =
26−D

12π
arcsin β (1.5)

where β is the velocity of the endpoint particles for the case of identical endpoint masses.

Alternatively we show that one can also renormalize the various contributions to the

intercept by renormalizing the string tension and the endpoint masses. Namely, the di-

vergences are such that can be eliminated by adding counterterms to the action redefining

T = Tbare+δT and m = mbare+δm, with the appropriate choice of the themselves divergent

coefficients δT and δm.

Altogether, the intercept is given by

a = (D − 3)at + ap + aPS (1.6)

1In spite of the fact that it does not diverge one has to perform the subtraction used also for the other

modes to get the correct finite result.
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where at is the contribution of each transverse mode and ap that of the planar mode. All

of the different contributions are ultimately given as functions of the endpoint velocity β,

with the limit β → 1 replicating the result of the massless case. The intercept can also be

expanded in powers of m/TL, with the final result

a = 1− 26−D
12π

(
2m

TL

)1/2

+
199− 14D

240π

(
2m

TL

)3/2

(1.7)

accounting for all contributions to the intercept in any spacetime dimension D.

The action of a string in critical dimensions is that of a set of free fields. The action

of the endpoint particles is in fact also that of free particles. But once we couple the

string and the particles the system is no longer free even in the critical dimensions. Using

the orthogonal gauge (3.3), one can bring the Nambu-Goto action to a quadratic form.

However, this will not happen for the action terms of the endpoint particles. To quantize

the system, we take the semiclassical approach in which we expand our action to quadratic

order in fluctuations around the classical solution (a rotating string), and then canonically

quantize the fluctuations. We have found that the truncation to second order in the

fluctuations is valid in the regime where the string is long in comparison with all length

scales in the problem. Namely, we require that mL � 1, TL2 � 1, and also TL
m � 1,

where T is the string tension, m the endpoint masses, and L the length of the string.

The intercept plays an important role in the phenomenology of stringy hadrons. In [9]

and [10] we have determined the best fit values of the intercepts associated with with

the massive modified Regge trajectories of various hadrons. It is clear from the results

that the intercept is a function of the endpoint particles’ masses, as also the spin of the

hadron. One of the goals of this paper is to decipher the dependence of the intercept on the

endpoint masses. Furthermore, upon analyzing the experimental data of the trajectories

of all mesons and baryons, it turns out that the intercept (defined in the plane of M2 and

the orbital angular momentum) is always negative a < 0. This property is crucial for the

description of hadrons in terms of strings. Essentially, the issue is how can one justify

using a bosonic string model which usually is known to have a tachyonic ground state.

A negative intercept also implies a repulsive Casimir force between the endpoint particles

which prevents the string from collapsing to zero size when it does not rotate, hence the

tachyonic nature is avoided. Therefore, a natural question for the present work is in under

what conditions does the string with massive endpoints admit a negative intercept and

whether using this model one can account for the observed negative values of the various

intercepts.

This paper does not offer the answer to this question of the phenomenological intercept,

as we only compute the corrections due to the mass to the result a = 1 corresponding to the

string without massive endpoints. On the other hand, one could argue that the intercept

we calculate, the asymptotic intercept at high energies is a completely different quantity

to the phenomenological intercept of low spins.

In the process of to computing the intercept we also determine the quantum spectrum

of the string with massive endpoints. We showed that in for this model the well known
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linear quantum trajectory for a radially excited state J +N = α′E2 + a is generalized to

J +
1

β
(Nt +Np) = Jcl(E) + a (1.8)

where Jcl(E) is the classical relation between the energy and angular momentum, the

massive modified Regge trajectory, and Nt and Np are the excitation numbers for the

transverse and planar modes respectively. The eigenvalues of Nt and Np are not exactly

integers as in the massless case and they have to be computed by solving the equations

for the allowed eigenfrequencies of the different modes. Like the intercept, they are also a

function of β, and return to their massless values as β → 1.

The paper is organized as follows. In section 2 the classical string with massive end-

points is described. We write the action and the corresponding equations of motion. We

describe the rotating string solution. The classical energy and angular momentum are

written down, with the relation between them constituting the classical massive modified

Regge trajectory. In section 3 we show how we add the fluctuations around the classical

solution and discuss the choice of gauge to be made before quantizing them.

Section 4 in the longest part of this paper. In it we analyze the transverse fluctuations,

and show in detail the calculation of their contribution to the intercept. We start by

writing down the action and Hamiltonian. We write down the mode expansion for the

fluctuation which is followed by the canonical quantization of the modes. The solutions of

the equations of motion for the fluctuations are determined. Then we write the expressions

for the quantum corrections to the energy and angular momentum, and from them the

corresponding correction of the classical Regge trajectory. We show that the intercept is

proportional to the sum of the eigenfrequencies of the modes, or the expectation value of

the worldsheet Hamiltonian of the fluctuations. Finally, we discuss the renormalization of

this infinite sum and find the finite answer for the intercept. We show how we renormalize

first for the massless case, then the static (non-rotating) massive string, and finally the

rotating string with massive endpoints.

The subject of section 5 is the planar mode. This section mirrors the section preceding

it as we write down the action and Hamiltonian for the fluctuations, the mode expansion,

the equation of motion and boundary conditions (corrected by the radial mode living on

the boundary), and finally determine the contribution to the intercept. Section 6 discusses

the quantization of the string in non-critical dimensions. We write down the Polchinski-

Strominger term in the action and the associated intercept. We renormalize the term and

determine the finite contribution to the total intercept.

Following the determination of the intercept, we discuss the quantum massive modified

Regge trajectory in section 7. That is, we discuss the spectrum of states and the radial

trajectories. In section 8 we summarize and generalize the results of the previous sections

from the symmetric to the asymmetric case where the masses on the two ends of the string

are not equal. In section 9 we examine the range of validity of the quadratic approximation,

and argue that it is a long string approximation. Section 10 is a summary of the results of

the paper, including a list of open questions.
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2 The classical string with massive endpoints

2.1 Action and equations of motion

We describe the string with massive endpoints by combining the Nambu-Goto string action,

Sst = −T
∫
dτdσ

√
−h = −T

∫
dτdσ

√
Ẋ2X ′2 − (Ẋ ·X ′)2 (2.1)

with the point particle action

Spp = −m
∫
dτ
√
−Ẋ2 (2.2)

In the string action hαβ = ηµν∂αX
µ∂βX

ν is the induced metric on the worldsheet and

h = dethαβ is its determinant, The indices α and β being either τ or σ. To keep track

of units, we take the worldsheet coordinates τ and σ to have dimension of length, with

−∞ < τ <∞ and −` ≤ σ ≤ `. Two copies of the point particle action are inserted at the

boundaries, the two string endpoints σ = ±`, so

S = Sst + Spp|σ=−` + Spp|σ=` (2.3)

For this section and most of the following, we will assume a symmetric string with two

equal endpoint masses, generalizing only in section 8, after we have computed all of our

results for the symmetric case.

Varying Xµ we find the bulk equations of motion

∂α(
√
−hhαβ∂βXµ) = 0 (2.4)

and also the endpoint particles equations of motion/boundary conditions of the string

T
√
−h∂σXµ ±m∂τ

(
Ẋµ√
−Ẋ2

)
= 0 (2.5)

where the plus sign should be taken at σ = ` and minus at σ = −`.

2.2 The classical rotating solution

We now define the classical rotating solution for the string. We pick a solution rotating

in the 12 plane, and find its classical energy and angular momentum. It should be noted

here that when the spacetime dimension is D > 4 what we describe is not the most general

rotating solution. Rather, for D > 4 the general rotating solution is described by two

angular momenta in two different planes (this follows from the fact that the rotation group

SO(D − 1) for D > 4 contains SO(4) ∼ SU(2) × SU(2)). In this paper we pick the case

of rotation in a single plane, given our eventual interest in D = 4. The general case was

analyzed in [30] for the string without masses.

To describe the string rotating in the 12 plane, we use the configuration given by

X0 = τ, X1 = R(σ) cos(kτ), X2 = R(σ) sin(kτ) (2.6)

– 6 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
8

which is a solution to the bulk equations of motion for any choice of R(σ). For this solution

the induced metric is

hαβ =

(
−1 + k2R2 0

0 R′2

)
(2.7)

To be a solution, we must also pick the parameters that will satisfy the boundary conditions

at σ = ±`:

T

√
(1− k2R2)R′2

R′
∓m k2R√

1− k2R2
= 0 (2.8)

The world sheet parameters ` and k can be related to more physically meaningful (that

is parametrization independent) target space parameters. First, the length of the string in

target space is defined by

L =

∫ `

−`
dσ

∣∣∣∣d ~Xdσ
∣∣∣∣ =

∫ `

−`
dσ
√
R′2 = R(`)−R(−`) = 2R(`) (2.9)

We assumed R(σ) is monotonous, and that we picked an antisymmetric solution, as we

would for an open string with two identical masses on its endpoints. The endpoint velocity

β is defined using

γ−1 =
√

1− β2 ≡
√
−Ẋ2 =

√
1− k2R2 (2.10)

evaluated at σ = ±`. We can see that in terms of these target space parameters, the

boundary condition can be written as

T

γ
=

2γmβ2

L
⇒ TL

2m
= γ2β2 (2.11)

regardless of the choice of R(σ). This has the very simple interpretation as the requirement

that the centrifugal force acting on the massive endpoint particle be balanced by the string

tension, with appropriate relativistic factors of γ on both sides of the equation.

There are two choices of R(σ) we can take to simplify the expressions. These are

R(σ) = 1
k sin(kσ) and R(σ) = σ. The two choices will both be utilized later on. The

boundary conditions, string length and endpoint velocity in each case are

R(σ) = σ :
T

mk
=

k`

1− k2`2
L = 2` β = k` (2.12)

R(σ) =
1

k
sin(kσ) :

T

mk
=

sin(k`)

cos2(k`)
L =

2

k
sin(k`) β = sin(k`) (2.13)

In the latter case we define the useful parameter δ ≡ k` = arcsin β, which ranges from

0 to π
2 .

2.3 Energy and angular momentum

The action for the string with massive endpoints naturally has the full Poincaré symmetry

Xµ → ΛµνXν + aµ. In the coordinate system where

(x0, x1, x2, . . .) = (t, ρ cos θ, ρ sin θ, . . .) , (2.14)

– 7 –
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we define the energy E and angular momentum J as the Noether charges associated with

the translation symmetries in t and rotations in the 12-plane (which are translations in θ)

respectively. The contribution of the string to each is

Est = −T
∫ `

−`
dσ
√
−hhτα∂αt Jst = −T

∫ `

−`
dσ
√
−hρ2hτα∂αθ (2.15)

The contributions of the point particles,

Epp = m
ṫ√
−Ẋ2

Jpp = m
ρ2θ̇√
−Ẋ2

(2.16)

For the rotating string solution, the classical energy and angular momentum are ex-

pressible as functions of T , m, L and β:

E =
2m√
1− β2

+ TL
arcsin β

β
(2.17)

J =
mLβ√
1− β2

+
1

4
TL2 arcsin β − β

√
1− β2

β2
(2.18)

Using the boundary condition (2.11) one can eliminate the string length from the equations

and write both E and J as a function of T , m, and the single continuous parameter

0 ≤ β < 1. The resulting parametric relation between J and E defines the classical Regge

trajectory of the string with massive endpoints, or what we call the massive modified

Regge trajectory. The limit β → 1 is the massless limit where one obtains the linear Regge

trajectory E2 = 2πTJ . For β close to one we can write expansions in 1
γ =

√
1− β2 for E

and J and find the approximate relation

J =
1

2πT
E2

(
1− 8

√
π

3

(m
E

)3/2
+

2π3/2

5

(m
E

)5/2
+ . . .

)
(2.19)

Our goal in this paper is to find the quantum correction to this classical trajectory. To do

that, we will introduce fluctuations around the rotating solution.

3 Fluctuations and gauge choice

We start by defining

Xµ = Xµ
cl + δXµ =

(
t , ρ , θ , zi

)
=
(
τ + λδt,R(σ) + λδρ, kτ + λδθ, λδzi

)
. (3.1)

That is, we introduce fluctuations around the rotating solution defined in the previous

section. For convenience, we work with polar coordinates in the plane of rotation. The

fluctuations are all multiplied by a formal expansion parameter λ. This parameter can

be ultimately absorbed into the definition of the fluctuations, and should not appear in

expressions for physical quantities. Later, in section 9, we will see that the small parameter

in the expansion is actually 1
mL , meaning that the next to leading order corrections are

suppressed by this factor.
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The Nambu-Goto action is diffeomorphism invariant, that is it is symmetric under

τ → τ̃(τ, σ) σ → σ̃(τ, σ) X̃µ(τ̃ , σ̃) = Xµ(τ, σ) (3.2)

and we can use this gauge freedom to impose two conditions on Xµ in the bulk. There are

two useful and common gauge choices one might use in this case. First is the orthogonal

gauge, defined by

1

2
(hττ + hσσ) =

1

2
(Ẋ2 +X ′2) = 0

hτσ = hστ = Ẋ ·X ′ = 0 (3.3)

The induced metric can then be written in the form hαβ = eφηαβ . This gauge has the advan-

tage of linearizing the equations of motion of the string, leaving the NG action quadratic.

However, it is not particularly helpful in the case of the rotating string with massive end-

points. This is because the boundary condition due to the mass term remains non-linear,

and the gauge constraint itself has a non-trivial form when the string is rotating.

Instead, when quantizing the fluctuations we will pick the static gauge, where we use

diff invariance to set the fluctuations in the time direction to zero by fixing

τ = X0 ⇒ δt = 0 (3.4)

Similarly by setting σ we use it to specify a choice of R(σ) for the rotating solution.

We will solve explicitly the system for two different choices of R(σ) and show that they

are equivalent. We will also see later on that δρ, the perturbation added to R(σ) is not

dynamic in the bulk because of the remaining reparametrization invariance in σ, but it

does introduce some boundary terms which affect the dynamics of the other fluctuation

in the plane of rotation, δθ. This is expected since on the boundary the choice X0 = τ

uses up the reparametrization freedom on the worldline (τ → τ̃(τ)), and we have to take

account also of δρ.

Later, we will also look at the contribution to the intercept from the Polchinski-

Strominger term of non-critical effective string theory. To write the PS term we will

use the orthogonal gauge, where we have a simple form for the PS action. On the other

hand, in leading order the PS intercept depends only on the classical solution, so we can

can satisfy the gauge choice by picking the rotating solution with R(σ) = 1
k sin(kσ), which

obeys the orthogonal gauge constraints at the classical level (see eq. (2.7)). The result

for the PS intercept and the intercept from the different fluctuations should be separately

gauge independent, so no problems will arise if we use for each part of the calculation the

most appropriate gauge choice for that part.

To summarize, for the quantization of the fluctuations we use the gauge freedom to

set δt = 0 and then set R(σ) = σ or R(σ) = 1
k sin(kσ). In both cases we can solve the

system, and the two choices will be shown to be equivalent. For the PS term, where the

other fluctuations do not enter the picture, it suffices to set R(σ) = 1
k sin(kσ) to compute

the PS intercept.

– 9 –
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4 Transverse fluctuations

In this section we will compute the contribution to the intercept from the transverse modes

δzi. These are all the mode orthogonal to the plane of rotation. For a general number of

dimensions there are D − 3 of these modes.

We will review in detail all the necessary steps. First is the expansion of the original

Nambu-Goto plus point particle action around the classical solution, then the solution of

the resulting equations of motion. This will give us the spectrum of the transverse modes.

Then, we show that the intercept is given by the sum of eigenfrequencies, and show how

to compute and renormalize the infinite sum to obtain a finite result.

4.1 Action and Hamiltonian

We expand our action around the rotating solution of section 2 with the gauge choice

explained in section 3, taking terms up to quadratic order in the fluctuations, that is to

order λ2.

The resulting action for each of the transverse perturbations (since all transverse modes

are identical we omit the index i from δzi from now on) is

Sst,δz = −Tλ2

∫
dτdσ

[
1

2

(√
R′2g

)−1
δz′2 − 1

2

(√
R′2g

)
δż2

]
(4.1)

Spp,δz = mλ2

∫
dτ

1

2
γδż2 (4.2)

We have defined g(σ) = (1−k2R2)−1/2 (position dependent time dilation along the rotating

string) and γ = g(`) is its value on the boundary. We have a copy of Spp on each of the

boundaries, σ = ±`.
To get properly normalized kinetic terms, we define

ft ≡ (
√
R′2g)1/2δz (4.3)

One can write the general expression for the action for ft, but it is simpler to proceed after

specifying the function R(σ). For R(σ) = 1
k sin(kσ), then ft = δz and the action reduces

to the simple form

Sst,δz = −Tλ2

∫
dτdσ

(
1

2
f ′2t −

1

2
ḟ2
t

)
(4.4)

Spp,δz = mλ2

∫
dτ

1

2
γḟ2

t (4.5)

For R(σ) = σ, which is just a different parametrization of the same classical solution, we

get a different picture for the transverse modes, which now have added position dependent

mass terms:

Sst,t = −Tλ2

∫
dτdσ

(
−1

2
ḟ2
t +

1

2
g−2f ′2t +

1

8
k2(1 + g2)f2

t

)
Spp,t = −λ2

∫
dτ

(
−1

4
Tk2`f2

t −
1

2
mḟ2

t

)
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The advantage of the latter picture is the straightforward relation between the worldsheet

parameters k, ` to the target space length (L = 2`) and velocity (β = k`), as seen in

section 2. Since we can find exact solutions for ft using both choices for R(σ), we can show

explicitly that the two formulations give identical results.

4.1.1 The worldsheet Hamiltonian

Also of interest is the Hamiltonian derived from the above action. We have defined the

modes in such a way that the conjugate momentum to the coordinate ft is just its time

derivative, up to some constants. For R(σ) = 1
k sin(kσ),

πt =
∂L
∂ḟt

= λ2(T + γmδ(σ ± `))ḟt (4.6)

The worldsheet Hamiltonian is then

H =
1

2
Tλ2

(∫ `

−`
dσ(ḟ2

t + f ′2t ) +
γm

T
ḟ2
t |±`

)
(4.7)

Similarly, for R(σ) = σ we have

πt =
∂L
∂ḟt

= λ2(T +mδ(σ ± `))ḟt (4.8)

H =
1

2
Tλ2

[∫ `

−`
dσ

(
ḟ2
t +

1

2
g−2f ′2t +

1

4
k2(1 + g2)f2

t

)
+

(
m

T
ḟ2
t −

1

2
k2`f2

t

)
|±`
]

(4.9)

4.2 Mode expansion and canonical quantization

Before writing and solving the equations of motion we outline the procedure used to solve

the system. We write a mode expansion for the solution as follows.

ft = f0 + i
√
N
∑
n 6=0

αn
ωn
e−iωnτfn(σ) (4.10)

To keep ft real, we require α−n = α∗n, and additionally we can use ω−n = −ωn and

f−n(σ) = fn(σ). The zero mode f0 is not relevant to our calculation so we omit it from

now on.

For the functions fn, we will need to solve a Sturm-Liouville problem. Most generally,

we will have a differential equation of the form

d

dx

(
p(x)

dfn
dx

)
− q(x)fn(x) = −λnw(x)fn(x) (4.11)

for a ≤ x ≤ b and with boundary conditions relating f and f ′ at the two boundary

points x = a, b. One property which we will need to use is the orthogonality relation for

eigenmodes with m 6= n.

(λm − λn)

∫ b

a
dxwfmfn =

(
fmp

dfn
dx
− fnp

dfm
dx

)
|ba (4.12)
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This can be derived directly from eq. (4.11). For Neumann or periodic boundary conditions

the r.h.s. is zero. For other types of boundary conditions, we need to include the boundary

terms of the r.h.s. in the orthogonality relation.

Now we turn to solving the boundary conditions. The most general procedure is as

follows. Since the equation of motion for a given eigenmode fn(σ) is a linear second order

differential equation, its general solution is of the form

fn(σ) = c1f
(1)
n (σ) + c2f

(2)
n (σ) (4.13)

for two linearly independent functions f
(1)
n and f

(2)
n . The boundary condition is of the

form Oa,bf |x=a,b = 0, for some linear differential operator. Using this notation, the two

boundary conditions can be combined into the equation

M

(
c1

c2

)
≡

(
Oaf (1)

n |a Oaf (2)
n |a

Obf
(1)
n |b Obf

(2)
n |b

)(
c1

c2

)
= 0 (4.14)

The eigenfrequencies are obtained by requiring that

detM = 0 (4.15)

so that there are non-trivial solutions for (c1, c2). We will use this requirement to write

the equation determining the allowed eigenfrequencies in all the following cases.

4.2.1 Quantizing the modes

To quantize the modes, we want to impose the commutation relation

[ft(σ), πt(σ
′)] = iδ(σ − σ′) (4.16)

for canonical quantization of the fluctuations. One can show that this holds if we re-

quire that

[αm, αn] = ωm`δn+m (4.17)

We include a factor of ` in the commutator since ωn has in our units dimensions of mass.

Inserting the mode expansions for ft and ḟt,

[ft(σ), ḟt(σ
′)] = iN `

∑
n

fn(σ)fn(σ′) (4.18)

Then, for the conjugate momentum (we pick the case R(σ) = 1
k sin(kσ) to illustrate this):

[ft(σ), πt(σ
′)] = iNTλ2

∑
n

(
1 +

γm

T
δ(σ′ ± `)

)
fn(σ)fn(σ′) (4.19)

If we multiply the r.h.s. by some eigenfunction fk(σ
′) and integrate over σ′, we find that∫

dσ′fm(σ′)[ft(σ), πt(σ
′)] =

iNT`λ2
∑
n

fn(σ)

∫ `

−`
dσ′
(

1 +
γm

T
δ(σ′ ± `)

)
fm(σ′)fn(σ′) = 2iNT`2λ2fm(σ) (4.20)
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where in the last step we use the orthogonality relation of the eigenmodes (as derived from

eq. (4.12)) to carry out the integral. The above is sufficient to prove that the commutator

is a delta function up to constants, namely that

[ft(σ), πt(σ
′)] = 2iNT`2λ2δ(σ − σ′) (4.21)

So, with the normalization constant N = 1
2T`2λ2 , we have the properly normalized com-

mutator between ft and its conjugate momentum. This will be true in the other cases we

examine as long as we normalize the modes the same way.

4.3 Equations of motion and their solutions

We can derive the equations of motion and boundary condition for the fluctuations in two

ways. One is to take the equations of motion derived from the original Nambu-Goto plus

point particle action and expand them to linear order in the fluctuations. The second way,

which yields the same results, is to derive them by varying the quadratic action for the

fluctuations.

4.3.1 First formulation

For R(σ) = 1
k sin(kσ), the bulk equation of motion of a mode with frequency ωn is simple,

f ′′n + ω2
nfn = 0 (4.22)

The boundary condition at σ = ±` is

Tf ′n ∓ γmω2
nfn = 0 (4.23)

The general solution to the bulk equation of motion is

fn(σ) = C1 sin(ωnσ) + C2 cos(ωnσ) (4.24)

The equation for the eigenfrequencies is derived using eq. (4.14)

2δ cot(δ)x cos(2x) + (δ2 − cot2(δ)x2) sin(2x) = 0 (4.25)

where we have defined the dimensionless parameters

x ≡ ωn` δ ≡ k` = arccos(γ−1) (4.26)

We can also write the equation as

(x sinx cot δ + δ cosx) (x cosx cos δ − δ sinx) = 0 (4.27)

For the symmetric string, with identical masses at the two endpoints, the eigenmodes are

either odd - the term in the left brackets is zero and the solution is just sin(ωnσ) - or vice

versa for an even solution, cos(ωnσ).
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4.3.2 Second formulation

With the choice R(σ) = σ, the bulk equation of motion can be written as

(1− x2)f ′′n(x)− 2xf ′(x) +

(
ω2
n

k2
− 1

4
− 1

4(1− x2)

)
fn(x) = 0 (4.28)

where x = kσ, and derivatives are done with respect to x. The boundary conditions at

x = ±k` are
Tk

γ2
f ′n ∓ (mω2

n +
1

2
Tk2`)fn = 0 (4.29)

The equation of motion is an instance of the general Legendre equation, whose solutions

are given in terms of the Legendre P and Q functions. The general solution for the n-th

mode is then

fn(σ) = c1P
1/2
νn (kσ) + c2Q

1/2
νn (kσ) νn ≡

ωn
k
− 1

2
(4.30)

The Legendre functions of this order are given explicitly by

P 1/2
ν (x) =

√
2

π
(1− x2)−1/4 cos

((
ν +

1

2

)
arccosx

)
(4.31)

Q1/2
ν (x) = −

√
π

2
(1− x2)−1/4 sin

((
ν +

1

2

)
arccosx

)
(4.32)

and these functions indeed satisfy the equation of motion. The eigenfrequency equation

derived from this solution using eq. (4.14) can be ultimately reduced to the simple form

2xβ2
√

1− β2 cos

(
2x arcsin β

β

)
+ (β4 − (1− β2)x2) sin

(
2x arcsin β

β

)
= 0 (4.33)

Where

x = ωn` β = k` (4.34)

And, like in the previous case the equation can be factorized to two separate equations for

odd and even modes:[√
1− β2x sin

(
x arcsinβ

β

)
− β2 cos

(
x arcsinβ

β

)]
×[√

1− β2x cos

(
x arcsin β

β

)
+ β2 sin

(
x arcsinβ

β

)]
= 0 (4.35)

Up to the factor of arcsinβ
β multiplying x = ωn`, this is the exact same equation as the one

we got in the previous subsection (remember that β = sin δ). In fact, we have the same

exact set of eigenfrequencies ωn in both cases. The factor of arcsinβ
β = δ

β enters because of

the different ways the parameter ` and consequently the variable x are defined in each case.

We plot the first few values of ωn as a function of β in figure 1. We also plot the first

few eigenmodes fn for a specific value of β. The modes are seen to be either even or odd.
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Figure 1. The first few eigenfrequencies (ωn`) for the transverse mode as a function of β (left),

and the first few eigenfunctions plotted for β = 0.9 (right). The modes are plotted in the gauge

with R(σ) = σ.

4.4 Energy, angular momentum, and the corrected Regge trajectory

Expanding the general expressions for E and J (eqs. (2.17) and (2.18)) to quadratic order

in λ, and isolating the contribution from the transverse modes, we get that for R(σ) =
1
k sin(kσ),

Est,ft = Tλ2

∫ `

−`
dσ

1

2

1

cos2(kσ)
(f ′2t + ḟ2

t ) (4.36)

Epp,ft =
1

2
mλ2γ3ḟ2

t (4.37)

Jst,ft = Tλ2

∫ `

−`
dσ

1

2

tan2(kσ)

k
(f ′2t + ḟ2

t ) (4.38)

Jpp,ft =
1

2
mλ2γ3 sin2(k`)

k
ḟ2
t (4.39)

For R(σ) = σ, the expressions are

Est,ft = Tλ2

∫ `

−`
dσ

[
1

2
g2ḟ2

t +
1

2
f ′2t −

1

2
g2k2σftf

′
t +

1

8
k4σ2g4f2

t

]
(4.40)

Epp,ft =
1

2
mλ2γ2ḟ2

t (4.41)

Jst,ft = Tkλ2

∫ `

−`
dσσ2

[
1

2
g2ḟ2

t +
1

2
f ′2t −

1

2
g2k2σftf

′
t +

1

8
k4σ2g4f2

t

]
(4.42)

Jpp,ft =
1

2
mλ2γ2k`2ḟ2

t (4.43)

What we are interested in calculating is the correction to the Regge trajectory of the

string. Rather than the energy and angular momentum themselves, we look at the correc-

tion to the classical relation between them. The classical energy and angular momentum

can be written (see section 2) as functions of the string tension, endpoint masses, and one

continuous parameter, which now we take to be γ = (1− β2)−1/2:

E = E(m,T, γ) J = J(m,T, γ) (4.44)
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This parametric relation defines the classical trajectory for given m and T ,

J = Jcl(E) (4.45)

Even though we cannot write the closed form of Jcl(E) in the general case, we can use to

the parametric relation to compute the first correction to the Regge trajectory, which we

define as

δ (J − Jcl(E)) = δJ − ∂J

∂E
δE (4.46)

Now, using the classical expressions for J and E and the classical boundary condition we

can write
∂J

∂E
=
∂Jcl/∂γ

∂Ecl/∂γ
=
m

T
γ2β =

1

k
(4.47)

Then, we can define the intercept to be the expectation value of the above combination,

a =

〈
δJ − 1

k
δE

〉
(4.48)

This is a generalization to the rotating case of the static case of [27], where one looks at

δJ − LδE. Here
1

k
=

1

2

L

β
(4.49)

takes the role of a corrected length of the string. Now we can write the expressions for the

intercept in terms of the fluctuations. We will see explicitly that they take the form of the

worldsheet Hamiltonian.

4.4.1 First formulation

When R(σ) = 1
k sin(kσ), using the expressions for the contribution of ft to the energy and

angular momentum of eqs. (4.36)–(4.39), we can see that the correction to the trajectory

coming from the transverse modes takes the form

δJ − 1

k
δE = −1

2

Tλ2

k

(∫ `

−`
dσ(ḟ2

t + f ′2t ) +
γm

T
ḟ2
t |±`

)
(4.50)

which is exactly the form of the worldsheet Hamiltonian. Therefore the intercept is seen

to be

a = −1

k
〈H〉 (4.51)

Now we insert the mode expansion for the fluctuations

ft =
1√

2T`2λ2
i
∑
n 6=0

αn
ωn
e−iωnτfn(σ) (4.52)

into the Hamiltonian. The eigenmodes obey the orthogonality relation

1

`

∫ `

−`
dσfm(σ)fn(σ) +

γm

T`

[
f+
mf

+
n + f−mf

−
n

]
= (δm+n + δm−n) (4.53)
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Where we use the notation f±n ≡ fn(±`). This is the equation derived from the general

equation (4.12) for the present equation of motion and boundary condition. We have two

deltas on the r.h.s. because f−n ≡ fn.

Plugging the expansion into the expression for the intercept:∫ `

−`
dσ(ḟ2

t + f ′2t ) +
γm

T
ḟ2
t |±`

=
1

2T`2λ2

∑
n,m 6=0

αmαne
−i(ωn+ωm)τ

(
γm

T
(f+
mf

+
n + f−mf

−
n ) +

∫ `

−`
dσ

(
fmfn −

f ′m
ωm

f ′n
ωn

))
=

1

2T`2λ2

∑
n,m 6=0

αmαne
−i(ωn+ωm)τ

×
(
γm

T
(f+
mf

+
n + f−mf

−
n )− f+

m

ωm

f ′+n
ωn

+
f−m
ωm

f ′−n
ωn

+

∫ `

−`
dσ

(
fmfn +

fm
ωm

f ′′n
ωn

))
(4.54)

From the second to third line we have integrated the last term by parts. Next we use the

equation of motion and boundary condition to rewrite the terms including derivatives of

the eigenfunctions in terms of the eigenfunctions themselves. This results in (for the terms

in the brackets)

γm

T

(
f+
mf

+
n + f−mf

−
n −

ωn
ωm

f+
mf

+
n −

ωn
ωm

f−mf
−
n

)
+

∫ `

−`
dσ

(
fmfn −

ωn
ωm

fmfn

)
=(

1− ωn
ωm

)
`(δn+m + δn−m) = 2`δn+m

(4.55)

And therefore ∫ `

−`
dσ(ḟ2

t + f ′2t ) +
γm

T
ḟ2
t |±` =

1

T`λ2

∑
n 6=0

α−nαn (4.56)

and

H = −1

2

Tλ2

2

1

T`λ2

∑
n 6=0

α−nαn =
1

2`

∑
n 6=0

α−nαn (4.57)

The intercept, as the expectation value of H is obtained as the normal ordering constant

in the Hamiltonian, which is

at = −1

k
〈H〉 = −1

2

∑
n>0

ωn`

δ
(4.58)

At the massless limit δ = π
2 and ωn` = π

2n, so the contribution of a single transverse mode

to the intercept is

at(m = 0) = −1

2

∑
n>0

n =
1

24
(4.59)

where the finite result can be obtained using Riemann Zeta function regularization of the

sum. For corrections at finite mass we will need to use some other method of computing

the sum.
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4.4.2 Second formulation

When R(σ) = σ, then again we can use the expressions for E and J to recover the world-

sheet Hamiltonian

δJ − 1

k
δE = −Tλ

2

2k

∫ `

−`
dσ

(
ḟ2
t + g−2f ′2t +

1

4
(1 + g2)k2f2

t

)
−
(
mλ2

2k
ḟ2
t −

1

4
Tλ2k`f2

t

)
|±`

(4.60)

We have the same mode expansion, this time with the orthogonality relation

1

`

∫ `

−`
dσfmfn +

m

T`
(f+
mf

+
n + f−mf

−
n ) = δm+n + δm−n (4.61)

The calculation of the Hamiltonian is similar. We insert the mode expansion, first into

the bulk part of the Hamiltonian∫ `

−`
dσ

(
ḟ2
t + g−2f ′2t +

1

4
(1 + g2)k2f2

t

)
=

1

2T`2λ2

∑
n,m 6=0

αmαne
−i(ωn+ωm)τ

∫ `

−`
dσ

(
fmfn − g−2 f

′
m

ωm

f ′n
ωn
− 1

4
(1 + g2)k2fmfn

)
(4.62)

We integrate the second term by parts, and use the equation of motion and the boundary

conditions to get that the integral is(
1− ωm

ωn

)∫
dσfmfn −

m

T

ωm
ωn

(
1 +

1

2

Tk2`

mω2
n

)
(f+
mf

+
n + f−mf

−
n ) (4.63)

Then, plugging in the expansion into the boundary terms in H gives

−
(
mλ2

2k
+

1

4
Tλ2k`

1

ωmωn

)
(f+
mf

+
n + f−mf

−
n ) (4.64)

Summing both contributions, we get

− Tλ
2

2k

(
1− ωn

ωm

)(∫ `

−`
dσfmfn +

m

T
(f+
mf

+
n + f−mf

−
n )

)
= −T`λ

2

2k

(
1− ωn

ωm

)
(δn−m+δn+m)

(4.65)

So that, ultimately

δJ − 1

k
δE = − 1

2k`

∑
n 6=0

α−nαn (4.66)

with the expectation value

at = −1

2

∑
n>0

ωn`

β
(4.67)

At the β → 1 limit, ωn` = n, and again

at(m = 0) = −1

2

∑
n>0

n =
1

24
(4.68)
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The eigenfrequencies in the present case with R(σ) = σ differed from the previous case

of R(σ) = 1
k sin(kσ) by a factor of arcsinβ

β = δ
β . This same factor multiplies the expression

for the intercept here compared with the intercept in the previous case. One can see then

that the two expressions are equivalent. In both cases we can write

a = −1

2

∞∑
n=1

ωn
k

(4.69)

The overall factor of 1
β in the expression for the intercept causes the intercept to diverge

for β → 0, but this is not much of a problem since we consider the expansion to be valid

only for long strings, which necessarily means relativistic endpoint velocities. This will be

shown more explicitly in section 9.

4.5 Renormalization of the sum over the eigenfrequencies

Our goal now is to calculate the renormalized sum of the eigenfrequencies and to get the

contribution of the transverse modes to the intercept for any finite value of the mass. We

use the approach of [31, 32] to replace the infinite sum with a calculable contour integral,

and renormalize the result by subtracting the result for an infinitely long string.

The conversion of the sum into a contour integral is done using the following formula,

which can be easily derived using the Cauchy integral formula:

1

2πi

∮
dzz

d

dz
log f(z) =

1

2πi

∮
dzz

f ′(z)

f(z)
=
∑
j

njzj −
∑
k

ñkz̃k (4.70)

That is, for an analytic function f(z) with zeroes of order nj at z = zj and poles of order ñk
at z = z̃k, the contour integral defined above is equal to a weighted sum over its poles and

zeroes inside the contour. It follows that if we define a function f(ω) which has no poles

and only simple zeroes at ω = ωn, then the above formula can be utilized to compute the

infinite sum over ωn. The zeroes we want to sum over will be on the real positive semi-axis.

Therefore, we will take the contour including the segment (iΛ,−iΛ) and the semicircle of

radius Λ, where the radius Λ will be taken to infinity for the contour to encircle the entire

half-plane Re(ω) > 0 (see figure 2). We will then need to offer a prescription for subtracting

the divergences that appear as we take Λ→∞.

The zero point energy of the string is the result of a Casimir effect, and the sum over

the eigenfrequencies is the Casimir energy of the string. We define it by

EC =
1

2

∞∑
n=1

ωn (4.71)

This definition is independent of the gauge, and we have seen that for both choices of R(σ)

we find the same set of ωn. The intercept is related to the Casimir energy by

EC = −2βa

L
(4.72)

– 19 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
8

Figure 2. The eigenfrequencies ωn are the zeroes of an analytic function f(ω) and are all on the

real axis. To perform the sum
∑∞

n=1 ωn we use formula (4.70) with an appropriate choice of f(ω),

and integrate on the contour drawn. We insert a cutoff Λ which will be later be sent to infinity in

order to calculate the infinite sum over all ωn.

We will use the notation

E
(reg)
C =

1

2

N(Λ)∑
n=1

ωn (4.73)

to denote the regularized Casimir energy with the cutoff at finite Λ. The renormalization

we will perform on the Casimir energy can be written in the form (in the notation of [31])

E
(ren)
C = lim

Λ→∞

(
E

(reg)
C (m,T, L)− E(reg)

C (m,T, L→∞)
)

(4.74)

This notation is not precise, however, as the limit L→∞ has to be taken in a particular way

which we will show below. On the other hand, it demonstrates the physical interpretation of

the procedure which we will follow here, of renormalizing by the subtracting the divergent

contribution from the infinitely long string.

In the following we will use the formulation with R(σ) = σ, only because it is slightly

simpler to work with given the straightforward relation between the worldsheet and target

space parameters, specifically the length of the string which is then L = 2`.

4.5.1 String with massless endpoints

We start with the massless limit (which is equivalent to the β → 1 limit of the string with

masses). The equation for the eigenfrequencies can be then written simply as

f(ω) = sin(πω`) = 0 (4.75)

The eigenvalues are of course ωn` = n. We want to show how the contour integral method

can replicate the answer of the Zeta function regularization of the sum
∑∞

n=1 n = ζ(−1) =
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− 1
12 . According to our contour integral formula the Casimir energy of the string is

EC(m = 0) =
1

2

∞∑
n=1

ωn =
1

4πi

∮
ω
f ′(ω)

f(ω)
dω =

1

4i

∮
ω` cot(πω`)dω (4.76)

We start by taking the contour integral for finite Λ. The integral is comprised of two pieces,

one along the imaginary axis, another along the semicircle of radius Λ:

1

4i

∮
ω` cot(πω`)dω = −1

4

∫ Λ

−Λ
y` coth(πy`)dy +

1

4
Λ2`

∫ π
2

−π
2

e2iθ cot(πΛ`eiθ)dθ (4.77)

Up to terms that vanish as Λ→∞, the result is

E
(reg)
C =

(
−Λ2`

4
− 1

24`

)
+

1

2
Λ2` =

Λ2`

4
− 1

24`
=

Λ2L

8
− 1

12L
(4.78)

The first two terms in the first equation are those from the imaginary axis integral, and

the third term is the result of the second integral. The divergent term is quadratic is

proportional to L, and consequently it can be absorbed into a redefinition of the string

tension. We will look at a different prescription next. When renormalizing the Casimir

effect, one method is to look at the Casimir force rather than the energy,

F
(reg)
C = − d

dL
E

(reg)
C = −Λ2

8
+

1

12L2
(4.79)

and the renormalization is done by subtracting the constant force that is left when taking

the length L to infinity. Hence the finite result is

F
(ren)
C = lim

Λ→∞

(
F

(reg)
C (L)− F (reg)

C (L→∞)
)

=
1

12L2
(4.80)

The renormalized energy is given as the integral of the force, and hence defined up to an

integration constant. If we take that the Casimir energy goes to zero at infinite length,

then we recover the known result

E
(ren)
C = − 1

12L
⇒ a =

1

24
(4.81)

An alternative way to obtain the same finite result is the following. First write the contour

integral as

E
(reg)
C =

1

4πi

∮
ω
d

dω
log f(ω) = − 1

4π

∫ Λ

−Λ
y
d

dy
log f(iy)dy + ΛIsc (4.82)

where Isc is the value of the integral along the semicircle, up to an overall factor of Λ which

we have taken out, in this case

Isc(x) =
1

4
x

∫ π
2

−π
2

e2iθ cot(πxeiθ)dθ (4.83)
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The integral along the imaginary axis we can integrate by parts and get

E
(reg)
C =

1

4π

∫ Λ

−Λ
log f(iy)dy − Λ

4π
(log f(iΛ) + log f(−iΛ)) + ΛIsc (4.84)

This last formula is independent of the choice of f(ω), and we will make use of it again

later on. Now take the function for the massless case (we use the fact that Λ is large when

writing the boundary term),

E
(reg)
C =

1

4π

∫ Λ

−Λ
log(i sinh(π`y))dy − Λ

4π
(2πΛ`− log 4) + ΛIsc(Λ`) (4.85)

We can subtract the contribution from an infinitely long string when the integral is written

in this form simply by formally subtracting the asymptotic form of the expression for large

`, which is

1

4π

∫ Λ

0
log

(
i

2
exp(π`y)

)
dy+

1

4π

∫ 0

−Λ
log

(
− i

2
exp(−π`y)

)
dy− Λ

4π
(2πΛ`− log 4)+ΛIsc(Λ`)

(4.86)

We make use of the fact that along the semicircle the large ` limit is the same as the large

Λ limit.2 This form is constructed to capture all the divergent terms in E
(reg)
C — and only

the divergent terms. In this case, it is not too difficult to calculate the integrals and see

that the result (for large Λ) is simply 1
4Λ2`, which is the divergent part of the full integral

(eq. (4.78)). Therefore subtracting (4.86) from (4.85) leads to a finite answer when we take

Λ→∞,

E
(ren)
C =

1

2π

∫ ∞
0

log
(

1− e−2π`y
)
dy = − 1

12L
(4.87)

which is the result we were after.

To recapitulate, we first compute explicitly the integral and show that the divergent

pieces can be eliminated by subtracting the contribution from an infinitely long string to the

resulting Casimir force. Then, we show how one can subtract the divergent terms directly,

by writing a second integral which contains only the divergent parts and subtracting it

from the original contour integral. After that step, we can write the finite answer as a

simple calculable integral as in eq. (4.87). We will use this same approach in the following.

4.5.2 Non-rotating string with massive endpoints

We start by reviewing the calculation for a non-rotating string. In that case the eigenfre-

quencies are given by the solutions to the equation [31]

f(ω) = 2
mω

T
cos(ωL) +

(
1− m2ω2

T 2

)
sin(ωL) = 0 (4.88)

We want to compute the sum of the eigenfrequencies and renormalize it in the same way as

before. We make use of the form of eq. (4.84) to write the necessary integral, and calculate

2The only exception to this would have been if Isc(Λ`) contained a term that goes like 1
Λ`

, but we have

computed the integral for large Λ` for eq. (4.78) and seen that there are no such terms.
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the divergent terms from the asymptotic form as we take the length L to be large. It is

(generalizing eq. (4.86))

1

4π

∫ Λ

0
log

(
i

2
exp(Ly)

(
1 +

my

T

)2
)
dy +

1

4π

∫ 0

−Λ
log

(
− i

2
exp(−Ly)

(
1− my

T

)2
)
dy−

− Λ

2π

(
ΛL− log

(
2T 2

(T +mΛ)2

))
+ ΛIsc

(
ΛL,

TL

m

)
(4.89)

where the semicircle integral is

Isc(x, q) =
x

2π

∫ π
2

−π
2

e2iθ

(
q2 + 2q − e2iθx2

)
cos
(
eiθx

)
− 2eiθ(q + 1)x sin

(
eiθx

)
(q2 − e2iθx2) sin (eiθx) + 2eiθqx cos (eiθx)

dθ (4.90)

for x = ΛL as before and defining q = TL/m. The integrals on the imaginary axis can

be solved analytically, while the semicircle integral we compute numerically to capture its

large x behavior up to and including terms of order 1/x, and in this case they are all terms

which are observed to not depend on q. The result is that the two contributions from the

two regions are, up to terms that vanish for Λ→∞,[
−Λ2L

4π
− Λ

π
+

T

πm
log

(
mΛ

T

)]
+

[
Λ2L

2π
+

Λ

π

]
=

Λ2L

4π
+

T

πm
log

(
mΛ

T

)
(4.91)

where the terms in the right brackets are ΛIsc and the terms in the left brackets come from

the integral on the imaginary axis and its boundary terms. These are all terms that we can

subtract by looking at the force as before and doing the subtraction then for infinite string

length. Alternatively, the quadratic divergence can be absorbed into a redefinition of the

string tension, while the logarithmic divergence can be dealt with by redefining the mass.

So, if we subtract the divergent parts in their integral form of eq. (4.89) from the full

contour integral, we are left with only

E
(ren)
C =

1

2π

∫ ∞
0

log

(
1− e−2Ly (T −my)2

(T +my)2

)
dy =

1

2πL

∫ ∞
0

log

(
1− e−2x (q − x)2

(q + x)2

)
dx

(4.92)

where q = TL
m . This is the result of [31]. The integral can be easily computed numerically

and plotted a function of q. In this case, we recover the by now familiar result of a = 1
24

in two opposing limits. When q →∞ (infinitely long string or zero mass) and when q = 0

(infinite mass), then

E
(ren)
C (q = 0) = E

(ren)
C (q →∞) =

1

2πL

∫ ∞
0

dx log(1− e−2x) = − π

24L
(4.93)

In the static case with no masses we can define the intercept as the coefficient of 1/L in

the Casimir energy, or more precisely as

a = − 1

π
LδE (4.94)

This is consistent with the long string (TL� 2m) limit where we can use E = TL to write

δ(α′E2) = 2α′EδE =
1

πT
TLδE = −a (4.95)
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so that a is indeed the intercept in that case. At the q →∞ limit the intercept is at = 1
24

as before. For finite q we keep using eq. (4.94) to define the intercept and get that at = 1
24

also in the infinite mass limit of q → 0, which is equivalent to the string with Dirichlet

boundary conditions. We draw the result for all q in figure 3.

4.5.3 Rotating string

We now turn to the case of the transverse mode in a rotating string. For the rotating

string, we now we most naturally write our equations in terms of the endpoint velocity

β rather than the length L. The velocity and length are of course related through the

classical boundary condition.

With the parametrization R(σ) = σ, the eigenfrequencies are given by zeros of the

function (per eq. (4.33))

f(z) = 2zβ2
√

1− β2 cos

(
2z arcsin β

β

)
+ (β4 − (1− β2)z2) sin

(
2z arcsinβ

β

)
(4.96)

where z = ω` is complex. A transverse mode’s contribution to the intercept is proportional

to the sum of zeroes of f(z). The Casimir energy can be written as the same contour

integral discussed above,

EC =
1

2

∑
n>0

ωn =
1

`

1

4πi

∮
dzz

d

dz
log f(z) (4.97)

As before, we separate the contour integral into two parts and integrate by parts the

integral along the imaginary axis. We use the asymptotic forms of f(iy) as in eq. (4.89) to

find the divergent parts. To do that we need to compute the integral

1

4π`

∫ Λ

0
log

(
i

2
exp

(
2y arcsinβ

β

)(
β2 + y

√
1− β2

)2
)
dy+

+
1

4π`

∫ 0

−Λ
log

(
− i

2
exp

(
−2y arcsinβ

β

)(
β2 − y

√
1− β2

)2
)
dy−

− Λ

4π

(
4Λ` arcsin β

β
− log 4 + 4 log

(
β2 +

√
1− β2Λ`

))
+ ΛIsc(Λ`, β) (4.98)

Here the semicircle integral is

Isc(x, β) =
x

2πβ

∫ π
2

−π
2

dθcos
(
eiθx̂

)(√
1−β2β3+arcsin β

(
β4+

(
β2−1

)
e2iθx2

))
+sin

(
eiθx̂

)(
β2−2

√
1−β2β arcsin β−1

)
βeiθx

2 cos (eiθx̂)
√

1 − β2β2eiθx+ sin (eiθx̂) (β4 + (β2 − 1) e2iθx2)


(4.99)

where x̂ = x arcsin β/β. As with the static case, we look at the behavior of the integral for

large Λ. The divergent parts from the two parts of the contour integral are[
−Λ2L arcsin β

πβ
− 2Λ

π
+

T

2γm
log

2γmΛ

T

]
+

[
2Λ2L arcsin β

πβ
+

2Λ

π

]
=

=
Λ2L arcsin β

πβ
+

T

2γm
log

2γmΛ

T
(4.100)
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The terms in the right brackets are ΛIsc, which were found using a numerical computation,

while in the left there are the rest of terms of eq. (4.98). The form is like before, but now

the terms are β dependent.

We cannot repeat the procedure of differentiating with respect to L and subtracting

the force, since β is implicitly L-dependent through the boundary condition. On the other

hand, we note that if we look at L̃ = Larcsinβ
β as the effective length of the string, and

m̃ = γm the mass of the particle, then we have that the energy of the string is T L̃ + 2m̃

(compared with TL + 2m for a non-rotating static string). And moreover, in terms of L̃

and m̃, the last equation is precisely of the form of the equation from the static case (4.91),

as it is now

Λ2L̃

π
+

T

2m̃
log

2m̃Λ

T
(4.101)

Therefore, the rotating string looks like a static string with effective length and endpoint

masses due to the rotation, and we will use this to perform the subtraction in the same

way we did before. We define the Casimir force by differentiating the energy with respect

to L̃ (and treating m̃ as a constant), and subtract the result from L→∞.

In other words, the form of the divergences is significant because it is the same form

as the classical energy. Because of that, the divergences can be again eliminated by renor-

malizing the string tension and the endpoint masses and absorbing the divergences into

the coefficients. The Λ2 divergence can be eliminated by adding a counterterm to the ac-

tion redefining T = Tbare + δT , while the logarithmic divergence, which is proportional to

1/(γm), can be renormalized by an appropriate mass counterterm, m = mbare + δm.

If we subtract from the full contour integral over f(z) the divergent parts in their

integral form, represented as the integral over the asymptotic form of f for large `, then

we eliminate the divergences, and can safely take Λ to infinity and write:

Eren
C =

1

π

∫ ∞
0

log

2yβ2
√

1− β2 cosh
(

2y arcsinβ
β

)
+ (β4 + (1− β2)y2) sinh

(
2y arcsinβ

β

)
1
2

(
(1− β2)y2 + 2β2

√
1− β2 + β4

)
exp

(
2y arcsinβ

β

)
 dy

(4.102)

Again the boundary terms and the semicircle integral of eq. (4.98) have dropped. After

simplifying the integrand and multiplying by constants to get to the intercept, the contri-

bution of a single transverse mode to the intercept for the rotating string is given by the

expression

at = − 1

2πβ

∫ ∞
0

log

[
1− exp

(
−4 arcsinβ

β
y

)(
y − γβ2

y + γβ2

)2
]
dy (4.103)

For β = 1, we recover the result from the massless case:

at(β → 1) = − 1

2π

∫ ∞
0

log
(
1− e−2πy

)
=

1

24
(4.104)
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Figure 3. Left: the intercept of the rotating string as a function of TL
2m = γ2β2 (eq. (4.103)). The

intercept is normalized by the value at m→ 0, which is 1
24 . Right: the intercept for the static case

as defined in eq. (4.94), similarly normalized.

When β is close to 1 we can write the result as an expansion in 1
γ , or alternatively in

2m
TL = 1

γ2−1
, and find that

at =
1

24
− 11

360π

1

γ3
+ . . . =

1

24
− 11

360π

(
2m

TL

)3/2

+ . . . (4.105)

where the next terms are of order γ−5 or (2m/TL)5/2.

For any value of β we can evaluate the integral numerically. The result is plotted

in figure 3 as a function of TL
2m . We only plot the range TL

2m > 1, since the expansion is

expected to break down when the string is short.

4.5.4 Zeta function regularization

To finish this section, we show that the leading term correction to the intercept could have

been calculated in a different approach using the Zeta function. The key is finding an

approximate solution to the eigenfrequency equation. To do that, we rewrite eq. (4.25) by

switching variables from 2ω` = 2x = πy and defining Q = 2δ tan δ, as

tan(πy) =
2πQy

π2y2 −Q2
(4.106)

Now note that

Q = 2δ tan δ = 2γβ arcsin β (4.107)

so at high energies, when γ � 1, then also Q � 1. When Q is infinite we have yn = n as

for the massless string, and when Q is large we find an approximate solution of the form

yn = n+ δn = n+
2

π
arctan

Q+ 2

nπ
− 1 (4.108)

The easiest way to see that this is indeed a good solution is to plot it versus the exact

numerical one, and we do so in figure 4. To see also analytically that this is a good

approximation of the solution, we will plug it into the equation for y

tan(πδn) =
2πQ(n+ δn)

π2(n+ δn)2 −Q2
(4.109)
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Figure 4. The exact solution of eq. (4.106) for yn(Q) (blue) versus the approximate solution of

eq. (4.108) (red), plotted for n = 1 and 100. For Q� 1 the approximation is valid for any n. As n

increases the approximation is improving for smaller Q as well.

and show that it holds when Q � 1. Since n can take any integer value, there are three

limits that one should check separately: πn� Q� 1, Q� πn, and Q ∼ πn.

To quantify how well the equation holds we can look at the expression η = (l.h.s. −
r.h.s. )/(l.h.s. + r.h.s. ), where l.h.s. and r.h.s. are the left and right hand sides of the

last equation. When Q � πn, then the deviation is η ∼ n2/Q3 � 1, while for πn � Q

it is of order 1/Q � 1. In the intermediate region πn ≈ Q then η is not a reliable metric

since one of the sides will go to infinity at some point. In that case we will just look at the

point Q = π(n− 1/2). There we know the exact solution of eq. (4.106) is δn = −1/2, while

our approximate solution gives δn = −1/2 + 4+π
2πQ , so the deviation is again small when Q

is large.

Now, given the approximate solution for ωn, we can use it to obtain the leading order

mass correction to the rotating string intercept through simple Zeta function regularization.

Plugging in the approximate ωn into our expression for the intercept, we have

at = − 1

2δ

∞∑
n=1

ωn` = − π

4δ

∞∑
n=1

yn ≈ −
π

4δ

∞∑
n=1

(
n− 1 +

2

π
arctan

Q+ 2

nπ

)
(4.110)

Writing all the variables in terms of β,

at = − π

4 arcsinβ

∞∑
n=1

(
n− 1 +

2

π
arctan

2γβ arcsin β + 2

nπ

)
(4.111)

Now we take the β → 1 limit, by replacing β =
√

1− ε2 and γ = 1
ε and expanding in ε. Note

that in this step we actually take nε� 1 for any n, which is clearly not the case for finite

ε. However, upon regularization the contribution to the finite part of the sum from large

n is not significant (we have already seen that in a way when performing the subtraction

of the integral in the previous section). If we allow ourselves to use this expansion in ε as

stated then

at ≈
∞∑
n=1

(
−1

2
n+

n− n3

3π
ε3 + . . .

)
(4.112)
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which we can now regularize using the Zeta function:

at = −1

2
ζ(−1) +

1

3π
(ζ(−1)− ζ(−3))ε3 =

1

24
− 11

360π
ε3 (4.113)

and find the same result that we found from the contour integral, with the coefficient of

the ε3 correction now seen to be given by the Zeta function.

We can also repeat the same exercise for the static case, noting that the eigenfrequency

equation has the same form with Q→ q = TL/m (see eq. (4.88)). The intercept is

a ≡= − 1

π
LδE = −1

2

∞∑
n=1

ωnL ≈ −
1

2

∞∑
m=1

(
n− 1 +

2

π
arctan

q + 2

nπ

)
(4.114)

here we just take the q →∞ limit directly and find

astat = −1

2

∞∑
n=1

n

(
1− 2

q
+

4

q2

)
=

1

24
− 1

12q
+

1

6q2
(4.115)

which is the same result we found by expanding the contour integral to the same order.

The Zeta function regularization gives us then the answer for the leading order cor-

rections for small endpoint masses in both the rotating and non-rotating cases. With the

contour integral approach we have seen explicitly the form of the divergences and how they

can be absorbed into the physical parameters.

4.6 Comparison of static and rotating string intercept

It is instructive to compare the result we have obtained here for the transverse intercept

of the rotating string,

arot = − 1

2πβ

∫ ∞
0

log

[
1− exp

(
−4 arcsinβ

β
y

)(
y − γβ2

y + γβ2

)2
]
dy (4.116)

to the static string result (previously obtained in [31]),

astat = − 1

2π2

∫ ∞
0

log

[
1− e−2x

(
q − x
q + x

)2
]
dx (4.117)

where q = TL/m.

The equation of motion and boundary condition for the transverse fluctuations are

actually the same whether one expands around a static string or a long rotating string,3

with the difference being that the parameter q is generalized to

q → q̃ =
T L̃

m̃
=

arcsin β

γβ

TL

m
(4.118)

3One has to work in a similar gauge in both cases to end up with the same equations of motion. In this

case we use the gauge with R(σ) = 1
k

sin(kσ) for the rotating string, where the gauge that used for the

static string is the orthogonal gauge.
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Another difference, which is important, is in the definition of the intercept. We have

astat(T, L,m) ≡ −L
π
δE = −1

2

∑
ωn(q) (4.119)

arot(T, L,m) ≡ δJ − 1

k
δE = − π

4δ

∑
ωn(q̃) (4.120)

where ωn(x) is the same function in both cases.

We can see that the relation implied by this equation holds between the two integrals

above just by changing integration variables in eq. (4.116). Defining

x =
2 arcsinβ

β
y (4.121)

leads to

arot(T, L,m) = − 1

4π arcsinβ

∫ ∞
0

log

[
1− exp (−2x)

(
x− 2γβ arcsin β

x+ 2γβ arcsin β

)2
]
dx (4.122)

Using the boundary conditions of the rotating string we can show that

2γβ arcsin β =
TL arcsin β

γmβ
=
T L̃

m̃
(4.123)

with m̃ and L̃ as defined in the previous section, so in total we can write the relation

arot(T, L,m) =
π

2 arcsinβ
astat(T, L̃, m̃) (4.124)

The extra factor of arcsin β is quite crucial when checking the high energy/small endpoint

mass limit of TL/m� 1.

For the static string we find this correction by expanding the integrand in (4.117) in

powers of 1/q and solving the resulting integral for each coefficient in the expansion. The

result is

astat =
1

24
− 1

12q
+

1

6q2
(4.125)

The first correction is simply linear in m/TL and each

For the rotating string this is not the case. The natural expansion parameter at high

energies is ε = 1
γ =

√
1− β2, which actually goes like

√
m/TL. Moreover, we find that the

leading order term is actually ε3. We can see how the ε and ε2 terms vanish by evaluating

(using T L̃/m̃ = 2γβ arcsinβ as above)

arot(T, L,m) =
π

2 arccos ε
astat

(
q =

ε

2
√

1− ε2 arccos ε

)
(4.126)

to order ε2. First, the prefactor is

π

2 arccos ε
≈ 1− 2

π
ε+

4

π2
ε2 (4.127)
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while astat is evaluated using eq. (4.125),

astat(T, L̃, m̃) ≈ 1

24

(
1− ε√

1− ε2 arccos ε
+

(
ε√

1− ε2 arccos ε

)2
)

(4.128)

When rewritten as a series in ε this becomes

astat(T, L̃, m̃) ≈ 1 +
2

π
ε (4.129)

(with no ε2 term) and by multiplying the two series

arot(T, L,m) =
1

24
+O(ε3) (4.130)

and the first non-vanishing correction is indeed of the order (m/TL)3/2. Note that this

mirrors what happens already at the classical level, where the Regge trajectory in the

presence of masses is corrected by a term of the order (m/E)3/2. In fact we can rewrite

eq. (2.19) as
α′E2

J
≈ 1 +

8
√
π

3

(m
E

)3/2
≈ 1 +

8

3π
ε3 (4.131)

with ε = 1/γ as above.

To summarize, one could have used the result from the static string to compute the

contribution to the intercept of the rotating string. While the leading order correction is

linear in m/TL for the static string, in the rotating case the parameter m/TL is transmuted

into γm/T` ∼
√
m/TL. When including the factor of arcsin β in the intercept, which

ultimately accounts for the contraction of the string when moving between the rotating

and the lab frame, we find that the first non-vanishing term in the correction to the intercept

is of the order (m/TL)3/2.

In the next section we will analyze the planar mode which has no analogue in the static

string, but we will find that it also has the same behavior, giving 1
24 with a correction of

the order (m/TL)3/2.

5 Planar mode

In this section, we will follow the same methods from the previous section to calculate the

contribution of the planar mode to the intercept. What we call the planar mode is the

single mode of fluctuations in the direction orthogonal to the string and in the plane of

rotation.

In addition to the planar mode, one should take into account the longitudinal mode. In

the bulk action the longitudinal mode can be gauged away, but not so on the boundary. As

we shall see, the longitudinal mode changes the boundary condition for the planar mode.

Apart from the changed equation of motion and boundary condition, the structure of

the calculation of the contribution of the planar mode to the intercept is the same as that

in section 4. We write the mode expansion, obtain the spectrum of eigenfrequencies, and

show that the intercept is equal to the sum over all eigenfrequencies times some constants.

The sum is then computed and renormalized using the same contour integral approach.
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5.1 Action and Hamiltonian

We begin by expanding the Nambu-Goto plus point particle action to quadratic order in

the relevant fluctuations. These are δθ and the longitudinal δρ. In the case of δρ, one

finds that its action in the bulk is a total derivative, so it only contributes to the boundary

action, as expected.

As before we write the action for the two different choices of parametrization of the

classical rotating solution. However, we shall see that in the case of the planar mode, the

choice R(σ) = 1
k sin(kσ) is not as helpful as it was for the transverse modes, and we will

focus on R(σ) = σ in later subsections.

5.1.1 First formulation

For R(σ) = 1
k sin(kσ), we define

fp =
1

k
tan(kσ)δθ fr = δρ (5.1)

In terms of which, the action is

Sst,p = Tλ2

∫
dτdσ

(
1

2
ḟ2
p −

1

2
f ′2p −

k2

cos2(kσ)
f2
p

)
(5.2)

Spp,p = γmλ2

∫
dτ

(
1

2
ḟ2
p +

1

2
γ2k2f2

p +
1

2
ḟ2
r +

1

2
k2(2γ2 − 1)f2

r − 2γkfrḟp

)
(5.3)

where γ = 1/ cos(k`). The boundary action includes terms obtained from integrating

by parts terms from the string action. Those terms are rewritten by using the classical

boundary condition T = mk tan(k`)
cos(k`) to simplify the action.

The Hamiltonian derived from the above action is

H = Tλ2

∫ `

−`
dσ

(
1

2
ḟ2
p +

1

2
f ′2p +

2

cos2(kσ)
f2
p

)
+

+ γmλ2

(
1

2
ḟ2
p +

1

2
ḟ2
r −

1

2
γ2k2f2

p −
1

2
k2(2γ2 − 1)f2

r

)
|±` (5.4)

5.1.2 Second formulation

For R(σ) = σ, we define the modes as

fp = (1− k2σ2)−3/4σδθ , fr = (1− k2σ2)−1/4δρ (5.5)

In terms of fp the bulk action for the planar fluctuations is nearly identical to the transverse

fluctuation action

Sst,p = Tλ2

∫
dτdσ

(
1

2
ḟ2
p −

1

2
g−2f ′2p −

1

8
k2(1 + 9g2)f2

p

)
(5.6)

The only difference being the factor of nine in the last term. The boundary action for the

planar mode

Spp,p = λ2

∫
dτ

(
1

2
mḟ2

p +
1

4

T

k`
(3− γ−2)f2

p

)
(5.7)
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is supplemented by the action for radial mode and the interaction between the two

Spp,r = mλ2

∫
dτ

(
1

2
ḟ2
r +

1

2
k2(2γ2 − 1)f2

r − 2γkfpḟr

)
(5.8)

The Hamiltonian in this case is

H = Tλ2

∫ `

−`
dσ

(
1

2
ḟ2
p +

1

2
g−2f ′2p +

1

8
k2(1 + 9g2)f2

p

)
+

+mλ2

(
1

2
ḟ2
p +

1

2
ḟ2
r −

1

4
k2(3γ2 − 1)f2

p −
1

2
k2(2γ2 − 1)f2

r

)
|±` (5.9)

5.2 Eigenfrequencies and eigenfunctions

The mode expansion of the planar mode is of the same form as before

fp = i
√
N
∑
n 6=0

αn
ωn
e−iωnτfn(σ) (5.10)

The equation of motion for the n-th mode in the case R(σ) = 1
k sin(kσ) is

f ′′n(σ) +

(
ω2
n −

2k2

cos2(kσ)

)
fn(σ) = 0 (5.11)

The general solution is given in terms of the Gauss hypergeometric function 2F1. Alterna-

tively, as was done in [33], one can define x = sin(kσ) and g(x) = (1−x2)−1/4f(x) and reach

the Legendre equation as the equation of motion for g(x). This reparametrization actually

takes us to the second case, of R(σ) = σ, where we get the same Legendre equation.

We will continue using the choice R(σ) = σ from here on. The equation of motion for

the planar mode is then

(1− x2)f ′′n(x)− 2xf ′(x) +

(
ω2
n

k2
− 1

4
− 9

4(1− x2)

)
fn(x) = 0 (5.12)

for x = kσ. The n-th planar eigenmode is given by the Legendre P and Q functions

fn(σ) = c1P
3/2
νn (kσ) + c2Q

3/2
νn (kσ) νn ≡

ωn
k
− 1

2
(5.13)

We can write the Legendre functions of order 3/2 explicitly using the known recursion

relation, √
1− x2Pm+1

l (x) = (l −m)xPml (x)− (l +m)Pml−1(x) (5.14)

which applies to Q as well as P and where the functions of order m = 1/2 are exactly those

of eq. (4.32) (the transverse eigenmodes). The explicit forms of the solutions of the planar

mode equation of motion are then

P 3/2
νn (x) = −

√
2

π
(1− x2)−3/4

[ωn
k

cos
((ωn

k
−1
)

arccosx
)

+ x
(

1− ωn
k

)
cos
(ωn
k

arccosx
)]

(5.15)

Q3/2
νn (x) =

√
π

2
(1− x2)−3/4

[ωn
k

sin
((ωn

k
− 1
)

arccosx
)

+ x
(

1− ωn
k

)
sin
(ωn
k

arccosx
)]

(5.16)

and one can verify by substitution that these indeed solve the equation of motion.
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5.2.1 Boundary conditions

From varying the action of eq. (5.8) we derive the equation of motion for the radial mode

fr(τ), which is defined on the boundary alone,

f̈r + (1− 2γ2)k2fr = 2γkḟp . (5.17)

This equation tells us that we can write an expansion for fr using the same eigenfrequencies

and oscillators as appear in fp, so the radial mode has no independent dynamics. We can

write the following expansion for each of the radial modes f±r at σ = ±`

f±r = i
√
N
∑
n 6=0

αn
ωn
e−iωnτf±(n)

r (5.18)

where αn and ωn are the same as in eq. (5.10) and f
±(n)
r are just constants. Then, we

simply solve the equation of motion of the radial mode by taking

f±(n)
r =

2iγkωn
ω2
n − (1− 2γ2)k2

f (n)
p (σ = ±`) (5.19)

The boundary condition for the mode f
(n)
p is

T

γ2
f (n)′
p ∓

[(
mω2

n +
1

2

T

`
(3− γ−2)

)
f (n)
p + 2iγmkωnf

(n)
r

]
= 0 (5.20)

Inserting the solution for fr, we find the full boundary condition

T

γ2
f (n)′
p ∓

(
mω2

n +
1

2

T

`
(3− γ−2)− 4γ2mk2ω2

n

ω2
n − (1− 2γ2)k2

)
f (n)
p = 0 (5.21)

Using the same procedure as we used for the transverse modes, we obtain the equation for

the eigenfrequencies given the equation of motion and the boundary condition. We find

that the eigenfrequencies are the zeros of the function

f(ω) =
[
x4(1− β2)2 − x2(1− β2)(2β2 + 6β4) + β4(1 + β2)2

]
sin

(
2x arcsin β

β

)
−

− 4β2
√

1− β2
[
x3(1− β2)− xβ2(1 + β2)

]
cos

(
2x arcsin β

β

)
= 0 (5.22)

where x = ω`. The equation is of a similar form to that of the transverse modes (eq. (4.33)).

One can easily see that for β → 1, the eigenfrequencies are again ωn` = n, and there

is no difference then between the transverse and planar modes. We plot the first few

eigenfrequencies and eigenmodes in figure 5.

5.3 The intercept

As in the transverse case, we can write the expressions for the contribution of the planar

and radial modes to the energy and angular momentum defined in section 2, expanding

around the classical solution to quadratic order. And as before, we can use them to see

that the combination δE − kδJ is equal to the Hamiltonian for the fluctuations, in this
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Figure 5. The first few eigenfrequencies (ωn`) for the planar mode as a function of β (left), and

the first few eigenfunctions plotted for β = 0.9 (right).

case the one of eq. (5.9). The expressions of E and J themselves contain terms not found

in the Hamiltonian, for instance terms linear in the fluctuations,

δE1 = Tλ

∫ `

−`
dσ

(
g3/2kσḟp +

1

2
g5/2k2σfr + g1/2f ′r

)
+ γ3/2mλk`(γkfr + ḟp)|±` (5.23)

δJ1 = Tλ

∫ `

−`
dσg1/2σ

(
gḟp +

1

2
(g2 + 3)kfr + kσf ′r

)
+ γ1/2mλ`((γ2 + 1)kfr + γḟp)|±`

(5.24)

When taking the combination δJ1 − 1
kδE1 one finds that all the terms in the bulk which

did not vanish become a total derivative which, when integrated, cancels out the remaining

boundary terms. Thus, the linear parts of δE and δJ are irrelevant to the intercept. The

quadratic part of δJ− 1
kδE similarly ends up taking the form of the Hamiltonian of eq. (5.9).

The next part of the calculation is to insert the mode expansion into the Hamiltonian,

and use the boundary condition and relation between the planar and radial modes to show

that in this case also, the Hamiltonian is diagonal. Defining the parameters

Mp(σ)2 =
1

4
k2(1+9g2) m2

p =
1

2
k2(3γ2−1) , m2

r = k2(2γ2−1) , c = 2γk (5.25)

one can write more compactly the Hamiltonian,

H = Tλ2

∫ `

−`
dσ

(
1

2
ḟ2
p +

1

2
g−2f ′2p +

1

2
Mp(σ)2f2

p

)
+mλ2

(
1

2
ḟ2
p −

1

2
m2
pf

2
p +

1

2
ḟ2
r −

1

2
m2
r

)
|±`

the solution for the radial mode equation of motion,

f (n)
r =

iωnc

ω2
n −m2

r

f (n)
p (5.26)

and the full boundary condition for fp

T

m
γ−2f (n)′

p = ±
(

(ω2
n −m2

p)f
(n)
p + iωncf

(n)
r

)
= ±

(
ω2
n −m2

p −
c2ω2

n

ω2
n −m2

r

)
f (n)
p . (5.27)
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Inserting the expansions for fp and the related fr into H:

H =
1

2
Tλ2N

∑
e−i(ωm+ωn)ταmαn

(
1− ωn

ωm

)
×

×
[∫ `

−`
dσfmfn +

m

T

(
1 +

c2m2
r

(ω2
m −m2

r)(ω
2
n −m2

r)

)
(f+
mf

+
n + f−mf

−
n )

]
(5.28)

The integral plus the boundary terms are exactly of the form of the orthogonality relation

between fm and fn that can be derived using the boundary condition (5.27) and the general

orthogonality equation of the modes (4.12). Therefore,

H =
1

2
Tλ2N

∑
e−i(ωm+ωn)ταmαn

(
1− ωn

ωm

)
`(δn+m + δn−m) =

1

2

1

`

∑
n

α−nαn (5.29)

And the planar mode’s contribution to the intercept has the same form as that of the

transverse modes,

a = − 1

2β

∑
n>0

ωn` (5.30)

We can now calculate the intercept using the contour integral representation of the infinite

sum. We use the function f(ω) defined in eq. (5.22), and perform on it the same contour

integral defined in section 4.5. We find that we again get the same form of the divergences,

a quadratic divergence that goes like Λ2Larcsinβ
β , and logarithmic divergences proportional

to T
γm . These are all terms that can be eliminated by either redefining the physical T and

m, or renormalizing the Casimir force as in section 4.5. Using the same regularization

method used before of subtracting the divergent terms in their integral form, the final (and

finite) result is

ap = − 1

2πβ

∫ ∞
0

dy log

[
1− exp

(
−4 arcsinβ

β
y

)(
y2 − 2yγβ2 + γ2β2(1 + β2)

y2 + 2yγβ2 + γ2β2(1 + β2)

)2
]

(5.31)

The β → 1 limit is again 1
24 . Around it we can expand the result as

ap =
1

24
+

11

720π

1

γ3
+ . . . =

1

24
+

11

720π

(
2m

TL

)3/2

+ . . . (5.32)

The intercept as a function of β is plotted in figure 6.

6 Quantizing the non-critical string

The quantization of Polyakov’s bosonic string in non-critical dimensions is achieved by

adding a Liouville term. In Polyakov’s original paper [28], when picking the conformal

gauge for the world sheet metric γαβ = eφηαβ . Classically, the action is independent of φ,

but the Liouville field action for φ emerges in the careful analysis of the measure in the

path integral, where it is needed to preserve the Weyl invariance quantum mechanically.

The Liouville term in the action is proportional to 26 −D.
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Figure 6. The contribution to the intercept of the rotating string as a function of TL
2m = γ2β2

from the planar mode. The intercept is normalized by the value at m→ 0, which is 1
24 .

Polchinski and Strominger suggested [29] to cure the non-critical Nambu-Goto action

by similarly adding a term to the action that changes the corresponding Virasoro central

charge from c = D to c = 26. This can be achieved [34] by identifying the Liouville

field with the composite φ = −1
2 log (∂+X · ∂−X), which is the same as identifying the

worldsheet metric in the Polyakov action with the induced metric hαβ = ∂αX
µ∂βXµ of the

NG action. This new term, the Polchinski-Strominger (PS) term, is in fact the first term

added to the NG action in the effective string theory, where the effective action is written

in a long string expansion [23, 35, 36].

We assume that the PS term is what is needed for the consistency of the quantum

picture also for the case of the string with massive endpoints. In what follows we analyze

the PS term for our case.

6.1 The Polchinski-Strominger term and the intercept

The PS term in the action in the orthogonal gauge is

SPS =
B

2π

∫
d2σ∂+φ∂−φ =

B

2π

∫
d2σ

(∂2
+X · ∂−X)(∂2

−X · ∂+X)

(∂+X · ∂−X)2
(6.1)

The derivatives are

∂±X =
1

2
(∂τ ± ∂σ)X (6.2)

The coefficientB is fixed by requiring that the energy momentum tensor has the appropriate

conformal symmetry OPE in any dimension D, and it is B = (26 − D)/12. In terms of

derivatives in σ and τ ,

SPS =
B

2π

∫
d2σ

(Ẋ · (Ẍ + Ẋ ′))(Ẋ · (Ẍ − Ẋ ′))
(−Ẋ2)2

(6.3)

We compute the PS term’s contribution to the intercept by inserting the classical

rotating solution into the PS Hamiltonian HPS = −
∫
dσLPS to find its expectation value

at leading order. We use the rotating solution with R(σ) = 1
k sin(kσ) to be consistent with
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the gauge choice in which the action above is written. The result is

EPS = 〈HPS〉 = −
∫
dσLPS =

B

2π

∫ `

−`
dσk2 tan2(kσ) =

B

π
k(tan δ − δ) (6.4)

where δ = k` as defined in section 2. The term k tan δ diverges in the massless case where

δ = π/2. For small finite masses, it is finite but large.

6.2 Renormalization of the Polchinski-Strominger term

In [30] it was found that, for the m = 0 case, the divergence in the PS term can be

renormalized by first modifying

SPS → S
(reg)
PS =

B

2π

∫
d2σ

(∂2
+X · ∂−X)(∂2

−X · ∂+X)

(∂+X · ∂−X)2 + α′ε4(∂2
+X · ∂2

−X)
(6.5)

Then, the divergence as ε is taken to zero can be canceled by a boundary counterterm of

the form

Sct ∝
1

ε

∫
dτ(Ẍ · Ẍ)1/4 (6.6)

The counterterm is one of the operators that one would expect to find on the boundary in

the effective string theory [23, 37], and resembles a mass term.

The result of this regularization is that the PS contribution to the intercept in the

massless case is

aPS(m = 0) =
26−D

24
(6.7)

which corresponds to taking δ = π/2 in eq. (6.4) and dismissing the infinite part that goes

like tan δ. The full intercept in that case, including the contribution from the fluctuations

turns out to be a = 1, independently of the spacetime dimension D.

For finite masses, the endpoint masses themselves act as the regulator, giving a finite

answer for finite masses. This can be seen clearly from eq. (6.3). The denominator goes like

Ẋ2, which is zero in the massless case (when the endpoints move at the speed of light), but

finite with masses. On the other hand, the fact that the result does not diverge for finite

masses is not enough. Since we would like a result that can be smoothly continued to the

massless result of [30], the term that diverges at the massless limit should be subtracted.

We now ask what is the correct way of doing this subtraction.

We note that with masses, using the classical boundary condition, we can write

T

mk
=

sin δ

cos2 δ
⇒ k tan δ =

T cos δ

m
=

T

γm
(6.8)

and define the effective length of the string and mass of the endpoint in the rotating frame

as we did in section 4.5,

m̃ = γm L̃ = L
arcsin β

β
=

2

k
sin δ × δ

sin δ
=

2δ

k
(6.9)

to write the PS energy as

EPS =
B

π

(
T

m̃
− 2δ2

L̃

)
(6.10)
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Then, it seems that we can renormalize EPS using the same kind of subtraction that we

used to regularize the contributions from the fluctuations, subtracting from the force the

term that remains when the string length is taken to infinity, and integrating back to leave

only the “finite” term that goes like 1/L (we assume no finite integration constant is left

as L→∞).

The finite (at all m) PS intercept is then simply

aPS = −1

k
E

(ren)
PS =

26−D
12π

δ =
26−D

12π
arcsin β (6.11)

For β → 1 then aPS = 26−D
24 as was found in [30]. As a function of 2m/TL, it is

aPS =
26−D

12π
arccos

(√
2m

2m+ TL

)
=

26−D
24

[
1− 2

π

(
2m

TL

)1/2

+
2

3π

(
2m

TL

)3/2

+ . . .

]
(6.12)

The subtraction from the PS term can also be achieved through a renormalization

of the mass. The term that diverges at the massless limit is proportional to 1
γm , as was

the divergent term we subtracted from the fluctuations’ contributions to the intercept

(see eq. (4.100)), and all these divergences are subtracted by adding appropriate mass

counterterms. To see explicitly how we do it in this case, we add to the action a boundary

counterterm

Sct = −δm
∫
dτ
√
−Ẋ2 (6.13)

which, evaluated for the classical rotating solution is

Sct = −δm
∫
dτ cos δ (6.14)

Then, to eliminate the divergent part in the PS term, we can take

2δm cos δ = −k tan δ ⇒ δm =
B

2π
k

sin δ

cos2 δ
= − B

4π

T

m
(6.15)

The last equality is due to the classical boundary condition, and the factor of two is there

because we take equal contributions from the two boundaries. The counterterm coefficient

δm is proportional then to T/m, and it diverges as m itself is taken to zero in such a way

that it cancels the divergence of the PS term.

If we take the result for aPS from above, our calculation of the full intercept in D

dimensions is now complete. It is given in total by

a = (D − 3)at + ap + aPS (6.16)

where at is the intercept of the transverse fluctuations computed in section 4, ap the planar

intercept of section 5, and aPS, the result in the present section is proportional to 26−D.

We plot the full intercept for D = 4 in figure 7, alongside the comparison to D = 26 where

the PS term does not play a role. In contrast, for D = 4 the PS intercept is dominant, and

results in larger corrections to a = 1 than given by the fluctuation modes.
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Figure 7. Left: the intercept in D = 4 (lower, blue line) and in D = 26 (orange). For D = 4

the PS term is dominant. Right: here we plot the contributions from the fluctuations separately,

where the dashed lines are at (blue) and ap (orange), and the solid line ap + at. We normalize this

by 1
12 , which is the value of at + ap at TL/m→∞.

7 The quantum Regge trajectory

The full Hamiltonian for all the modes about the rotating solution, can be written as

H =
2

L

∞∑
n=1

(
αi−nα

i
n + αp−nα

p
n

)
− k ((D − 3)at + ap + aPS) (7.1)

where i = 3, . . . , D − 1 and p denotes the operators for the single planar mode. The

operators αn are normal ordered and the intercept that we calculated in the previous

sections is added. We also count the effect of the Polchinski-Strominger term by adding

only its expectation value 〈HPS〉 = −kaPS. We assume that any extra excitations that

might arise from it are not present at the leading order.

We can construct the spectrum of states the usual way by acting on the vacuum with

α−n for n > 0. The vacuum will be a state representing the rotating solution with no

fluctuations and annihilated by all αn with n > 0.

The worldsheet Hamiltonian was related to the target space energy and angular mo-

mentum through H = δE − kδJ . We want to look at the effect of the new modes on the

Regge trajectories. For the massless case, we can write the quantum trajectory as

J +N = α′E2 + a (7.2)

where N is the quantum radial excitation number. In the massive case we can define the

number operators

Nt =
∞∑
n=1

αi−nα
i
n Np =

∞∑
n=1

αp−nα
p
n (7.3)

and using them, write

J − Jcl(E) = −1

k
H = (D − 3)at + ap −

2

kL
(Nt +Np) (7.4)
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N State Nt +Np No. of states

1 αi−1|0〉 ω
(t)
1 ` D − 3

αp−1|0〉 ω
(p)
1 ` 1

αi−2|0〉 ω
(t)
2 ` D − 3

αp−2|0〉 ω
(p)
2 ` 1

2 αi−1α
j
−1|0〉 2ω

(t)
1 ` (D − 3)2

αi−1α
p
−1|0〉 ω

(t)
1 `+ ω

(p)
1 ` D − 3

αp−1α
p
−1|0〉 2ω

(p)
1 ` 1

Table 1. The first two excited states and their masses. In total there are D−2 states with N = 1

and (D − 2)2 + 1 with N = 2, as expected. The level N = 1 is split in two, and the level N = 2 is

split in five.

Thus the generalization of eq. (7.2) to the case of the rotating string with endpoint masses

turns out to be

J +
1

β
(Nt +Np) = Jcl(E) + a (7.5)

We now use a = (D− 3)at + ap + aPS. When acting with Nt or Np on a generic state built

from acting with creation operators on the vacuum, their value is

Nt =

∞∑
n=1

ω(t)
n `N (t)

n Np =

∞∑
n=1

ω(p)
n `N (p)

n (7.6)

where Nn counts the number of the corresponding α−n used to construct the state. The

eigenfrequencies (times `) are the solutions of the equations we wrote down in previous

sections (eqs. (4.33) and (5.22)).

The last few equations tell us that, for a given J we can build the radial trajectories

defined by eq. (7.5). We can also think of eq. (7.5) as defining multiple parallel orbital

trajectories for J as a function of E, noting that the ωn and the intercept are themselves

implicitly J-dependent through their dependence on β. This also means that, unlike in

the massive case, the spacing between parallel orbital trajectories is not constant when the

string has massive endpoints.

We can define the N -th energy level as the collection of the states with a given value of

N =
∑

n n(N
(t)
n +N

(p)
n ). Unlike the massless case, where N is exactly the number operator

of eq. (7.2), there are two types of degeneracies that are removed in the massive case,

and not all states with equal N will have the same mass. First, the distinction between

the planar and transverse modes means that states constructed from αp−n have different

masses from those constructed from αi−n, so we have to count Nt and Np separately.

Second, for both the planar and transverse fluctuations the eigenfrequencies no longer

obey ωn+m = ωn + ωm, which obviously holds in the massless case where ωn` = n.

We list the first two levels of states in table 1. To calculate the mass of each state, we

have to insert Nt +Np into the Regge trajectory (7.5) and then solve for E.
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8 Generalization to asymmetric string

The previous sections have all assumed that the two endpoint masses are identical. Here

we let go of this assumption and generalize the results of the above for the case of two

different masses m1 6= m2 on the endpoints. We take a mass m1 at σ = `1, and m2 at

σ = −`2.

The most extreme case of asymmetry is that of a string with one massless endpoint and

an infinite mass on the other, corresponding to Neumann-Dirichlet boundary conditions for

the string. In that case, one can write the usual mode expansion and find that ωn = n− 1
2

(n = 1, 2, . . .), and the contribution to the intercept from a single mode with ND boundary

conditions is4

aND = −1

2

∞∑
n=1

(
n− 1

2

)
= − 1

48
(8.1)

as opposed to + 1
24 from modes with NN or DD boundary conditions. This example illus-

trates that the intercept can change drastically for asymmetric boundary conditions, and

that, for the string with massive endpoints, we can expect to see the intercept flip sign

when one endpoint mass is much larger that the other.

In the following we use the parametrization R(σ) = σ to compute the correction from

the fluctuations.

The two classical boundary conditions are

T`i
mi

= β2
i γ

2
i (8.2)

The two arms of the string rotate with the same angular velocity k, so

βi = k`i ⇒ β1

`1
=
β2

`2
(8.3)

This is used together with the boundary conditions to write β2 as a function of β1 and the

ratio between the masses:

β2 =
β2

1 − 1 +
√
β4

1 + β2
1(4r2 − 2) + 1

2β1r
r ≡ m1

m2
(8.4)

In the following we write our expressions in terms of β1 and β2, where the two parameters

are always related by the last equation.

Transverse modes. To generalize the the calculation of section 4 to the asymmetric

case, we generalize the boundary conditions of eq. (4.29) to

Tk

γ2
1

f ′n −
(
m1ω

2
n +

1

2
Tk2`1

)
= 0 (8.5)

Tk

γ2
2

f ′n +

(
m2ω

2
n +

1

2
Tk2`2

)
= 0 (8.6)

4The sum can be renormalized using Zeta function regularization. One simple way but non-rigorous way

to get it is to say that 1
2

+ 3
2

+ 5
2
. . . = 1

2
(1 + 2 + 3 + . . .) − (1 + 2 + 3 + . . .) = − 1

2
ζ(1) = 1

24
.
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The generalization of the eigenfrequency equation is(
β1

γ2
+
β2

γ1

)
y cos [y (arccos(β1)− arccos(−β2))] +(

y2

γ1γ2
− β1β2

)
sin [y (arccos(β1)− arccos(−β2))] = 0 (8.7)

where y ≡ ωn
k . If we take the symmetric case, β1 = β2 = β, the equation reduces to

eq. (4.33) (y in the above is x/β in the previous definition).

The intercept is again given by

at = −1

2

∞∑
n=1

ωn
k

(8.8)

and can be computed by performing the integral (which generalizes eq. (4.103))

at = − 1

2π

∫ ∞
0

dy log

(
1− e−2(arcsinβ1+arcsinβ2)y (y − β2

1γ1)(y − β2
2γ2)

(y + β2
1γ1)(y + β2

2γ2)

)
(8.9)

Planar mode. In a similar generalization of eq. (5.31), the planar mode intercept is

given by

ap = − 1

2π

∫ ∞
0

dy

log

[
1− e−2(arcsinβ1+arcsinβ2)y

(
y2 − 2yγ1β1 + γ2

1(1 + β2
1)

y2 + 2yγ1β1 + γ2
1(1 + β2

1)

)(
y2 − 2yγ2β2 + γ2

2(1 + β2
2)

y2 + 2yγ2β2 + γ2
2(1 + β2

2)

)]
(8.10)

PS term. The result is simply generalized by inserting the different boundary values δ1

and δ2 into eq. (6.4)

aPS =
26−D

24π
(δ1 + δ2) =

26−D
24π

(arcsin β1 + arcsin β2) (8.11)

The last three equations summarize all that is needed to compute the intercept in

the general case. They are written in terms of β1 and β2, which are related as in eq. (8.4)

above. We plot them as a function of β1 and the ratio r = m1/m2 in figure 8. The quadratic

approximation is not expected to be valid for all values of the parameters. Therefore, we

also draw the expected range of validity in the same figure. We require that the two arms

of the string both satisfy T`i/mi > 1, which, given eq. (8.2), amounts to requiring βi >
1√
2
.

The plots (1)–(4) in figure 8 are best trusted then in the area specified by plot (5).

9 Assessment of next to leading order corrections

In all previous sections, we have analyzed the system when the fluctuations are taken to

be “small”, by expanding the action, energy, and angular momentum to quadratic order in

the fluctuations. Here we would like to show that we are in fact working on a long string

expansion, and show for which values of the physical parameters it is valid.
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(1) (2)

(3) (4)

(5)

Figure 8. The intercept as a function of β1 and r = m1/m2. (1) The transverse intercept (8.9). In

this plot the intercept changes sign and along the black line at = 0. (2) The planar intercept (8.10).

(3) The PS intercept (8.11). (4) The full intercept with all three contributions in D = 4. (5) The

domain of validity defined by β1, β2 >
1√
2

(see text). The white area is where both `1 and `2 are

both (beginning to be) long and the approximation can be trusted. In the light blue area only

one of the arms of the string is long, and dark blue means both are short. Note that in (1) and

(2) the values in the plot are normalized by dividing by the β → 1 result, so namely, a value of

1 in the plot means the contribution of the mode to the intercept is 1
24 . In (3) the values should

similarly be multiplied by D−26
24 . The values in (4) are the values of the intercept with no further

normalization factors.
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We would like to show that, in expanding the action to quadratic order in the fluctua-

tions, we are effectively using a long string expansion, with higher order terms suppressed

by powers of L−1. Therefore, we are also consistent in using the effective string theory

action of section 6 which is itself subject to corrections in higher powers of L−1. More

precisely, the first requirement that follows from writing the effective string action as we

have, is that the string length should be much longer than the intrinsic length scale T−1/2,

or TL2 � 1.

To verify that the corrections coming from the fluctuations are small for long strings,

and to quantify what it means for the string to be long in this case, we look at the simplest

next order terms, which are those of the contribution to the intercept from the transverse

modes. We do it first in the gauge with R(σ) = 1
k sin(kσ).

The next terms are of order λ4. We write the string and point particle contributions

to the transverse intercept, which have similar forms. The bulk terms are

ast,δz = −Tλ
2

2k

∫ `

−`
dσ

(
δż2 + δz′2 +

λ2

4 cos2(kσ)
(3δż4 − δz′4 − 2δż2δz′2)

)
(9.1)

and from the boundary we have

app,δz = − mλ2

2k cos δ

(
δż2 +

3λ2

4 cos2 δ
δż4

)
(9.2)

The condition that the next order be small for all terms is

λ2

cos2 δ
δż2 � 1 (9.3)

For the boundary part this is exactly the condition, while to reach this condition for the

bulk part we simply note that cos(kσ) ≥ cos δ and make the assumption that δz′ ∼ δż.

We can estimate the l.h.s. of the inequality as follows. First, cos−2 δ = γ2 = 1 + TL
2m

by the boundary conditions. Next we evaluate the order of magnitude of the fluctuations,

λδz, to be of the order of the characteristic length of the string defined by `s ≈ T−1/2

so λ2δz2 ∼ T−1, while each derivative adds factors of order k ∼ 1/` or ωn ∼ n/`. The

contribution from eigenfrequencies ωn with large n is regularized when summing over them,

so we do not need to keep track of factors of n. This results in the condition

1

mL
� 1 (9.4)

Note that the assessment above is consistent with the leading order contribution being of

order one, as was found in previous sections. The string part is of the order

T

k

∫ `

−`
dσλ2(δż2 + δz′2) ∼ T

k
× `× k2

T
∼ k` = O(1) (9.5)

with corrections from the endpoint terms that go like

mλ2

k cos δ
δż2 ∼ mk

T cos δ
∼ 1

βγ
(9.6)

Where in the last part we used the boundary condition, T
mk = γ2β.
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An alternative assessment would have had the amplitude of the fluctuations to be

proportional to the second length scale in the problem, λδz ∼ m−1. Then the condition

on the length is mL� T
m2 .

A second condition on the validity of the expansion is that our definition of the inter-

cept as

a ≡ 〈δ (J − Jcl(E))〉 ≈
〈
δJ − 1

k
δE

〉
(9.7)

should make sense. We want to check that the next term in the correction to Jcl(E) is

small, namely that
∂J

∂E
δE � 1

2

∂2J

∂E2
(δE)2 (9.8)

The first derivative is 1
k = L

2β , and computing the second derivative leads to the condition

L

β
δE � 1

T

1 + β2

4β
√

1− β2 + 2(1 + β2) arcsin β
(δE)2 (9.9)

TL � 1 + β2

4
√

1− β2 + 2(1 + β2)arcsinβ
β

δE (9.10)

The function on the r.h.s. is always in the range 1
6 to 1

π , so does not add any constraints

on β, only that

TL� δE (9.11)

Now if δE ∼ a/L where a is order one, then the constraint reads simply

TL2 � 1 (9.12)

With the previous constraint of mL � 1 we find that for the approximation to hold, our

string needs to be long compared with both length scales in the problem, m−1 and T−1/2.

We can also see the nature of the approximation a little more explicitly by looking at

the contribution of a single mode. We substitute

δz =
√
N 1

ωn
cos(ωnτ)fn(σ) (9.13)

into condition (9.3) and evaluate the r.h.s. explicitly for the single mode. In the simple

case of a symmetric string fn is either cos(ωnσ) or sin(ωnσ). The normalization constant

N is N = 1
2T`2λ2 , and the eigenmodes normalized as in section 4.2.1, with

1

`

∫ `

−`
dσf2

n(σ) +
γm

T`
((f+

n )2 + (f−n )2) = 1 (9.14)

We pick an even mode with fn = c cos(ωnσ), with c determined from the above equation.

The result is (for x = ωn`)

λ2

cos2 δ
δż2 =

(
`T
2m + 1

)
sin2

(
τx
`

)
cos2(x)

`

(
2m cos2(x)

√
2T`
m + 4 + T`

(
2 + sin(2x)

x

)) ∼ (
T`
2m + 1

)
m`

(
cos2 x

√
2T`
m + 4 + T`

m

)
(9.15)
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If we are in the regime T`/m� 1, then

λ2

cos2 δ
δż2 ∼ 1

m`
(9.16)

So the correction is indeed small when TL/m � 1 and mL � 1.5 When the two hold,

then also TL2 � 1.

To check that the above discussion was not gauge dependent, we see that we find the

same condition of mL� 1 using the gauge with R(σ) = σ. We can look at the boundary

part of the intercept and see that it is actually identical to that in eq. (9.3),

app,δz = −γmλ
2

2k

(
δż2 +

3γ2λ2

4
δż4

)
(9.17)

and so we find the same condition mL� 1 by demanding that γ2λ2δż2 � 1 and estimating

the size of the fluctuations as before.

10 Summary and future prospects

In this paper we have computed the leading order quantum correction to the classical Regge

trajectory of the string with massive endpoints. We have seen that quantum fluctuations

around a rotating string solution for the string with massive endpoints with angular velocity

k, obey the relation

a ≡ 〈δ (J − Jcl(E))〉 =

〈
δJ − 1

k
δE

〉
= −1

k
〈Hws(δX

i)〉 , (10.1)

That is, the quantum intercept is equal to the expectation value of the world sheet Hamilto-

nian, computed for the fluctuations. The Hamiltonian was seen to be diagonal for both the

transverse and planar modes, with the intercept then being proportional to the sum of the

eigenfrequencies of the fluctuations. The eigenfrequencies are dependent on the masses at

the endpoints of the string through the boundary conditions of each mode, and ultimately

we can write a compactly as a function of the endpoint velocities.

In the course of computing the intercept, we also computed the spectrum of fluctuations

around the rotating string, which we used to define the radial trajectories of the string with

massive endpoints, as

J +
1

β
(Nt +Np) = Jcl(E) + a (10.2)

In addition to the intercept, the spectrum of fluctuations is such that some of the degen-

eracies of the regular bosonic string with massless endpoints are removed, resulting in the

splitting of levels.

The intercept of the rotating string is comprised of three parts. One is the contribution

of the D − 3 fluctuation modes orthogonal to the plane of rotation, one from the mode in

the plane, and another from the Polchinski-Strominger term in the effective action.

5The passage from ` to L in this gauge is L = 2` sin δ
δ

(see eq. (2.13)), so ` ∼ L.

– 46 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
8

Each of the contributions is divergent, or has a term that diverges when the endpoint

masses are taken to zero. The contributions to the intercept from the fluctuations around

the rotating solution are given by the infinite sum over the mode’s eigenfrequencies which is

divergent. We have shown how to calculate it using a contour integral method, and offered

a prescription for renormalizing the divergences by looking at the corresponding Casimir

force and subtracting the constant terms in the L→∞ limit. The contribution due to the

PS term in the non-critical effective string action contained a term that was divergent in

the massless limit. In that case, the finite endpoint masses can be thought of as a regulator

to that divergence, and we used the same prescription to subtract it. We noted that all

divergences are of a form that can be subtracted by adding appropriate counterterms and

renormalizing the string tension and endpoint masses.

We showed that the approximation we used, in which the action is truncated to include

only terms quadratic in the fluctuations is a long string approximation, so the results we

have obtained are only relevant at high energies. In that sense, what we computed is the

quantum correction to the asymptotic Regge trajectory at high energies. In the regime

where our computation is to be trusted, the intercept is close to 1, which is the massless

result of [30], and receives some small corrections due to the masses.

The finite result for the intercept for the general case of two different endpoint masses

was summarized in eqs. (8.9), (8.10), and (8.11). In the symmetric case, we can write

the full intercept as an expansion in 2m
TL at high energies, combining eqs. (4.105), (5.32),

and (6.12),

a = (D − 3)at + ap + aPS ≈ 1− 26−D
12π

(
2m

TL

)1/2

+
199− 14D

240π

(
2m

TL

)3/2

(10.3)

The leading order term is from the PS term alone. Furthermore, for D = 4 the overall

coefficient of 26 −D from the PS term is also larger than that of the fluctuations, so the

PS term has the dominant contribution to the intercept overall. Therefore, one of the

conclusions of this paper in that in the presence of endpoint masses the chief correction to

the intercept comes from the modification of the expectation value of the PS term, rather

than the contribution from the fluctuations of the string. In the critical dimension D = 26,

there is a weaker dependence on the masses, as aD=26 ≈ 1− 11
16π (2m/TL)3/2.

Following what was accomplished in this paper, there are several open questions for

future inquiry. These include:

• A more precise and in depth formulation of the effective string theory with boundary

terms. In particular we have assumed that the PS term does not get any correction

from the boundary term. The PS term including its coefficient was determined [29]

so that one retrieves the right OPE for the worldsheet energy-momentum tensor.

A similar treatment has to be performed in the presence of the mass term on the

boundary. More generally, the question is whether also for the present case, where

on the boundary scale invariance is broken explicitly, one has to follow the same

procedure for curing the worldsheet scale anomaly in non-critical dimensions as for

the massless case. In particular, one can write down additional possible equivalent
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classical actions for the system. For instance, one could write the Polyakov action

for the string instead of Nambu-Goto. A natural question to ask is whether the

quantization of these other actions will lead to the same quantum picture derived in

this paper.

• As was explained in the introduction the spectra of hadrons are characterized by

several different intercepts depending on the masses of the endpoint particles as well

as on the electrical charges and spin and isospin of the corresponding trajectories. In

this paper we have considered only the former dependence. We intend to study also

the latter. It will be very interesting to compare the predictions of this theoretical

analysis with the observational values of the intercept. The question is whether

one can isolate the dependence on the endpoint masses and to what extent it is

similar to the quantum Regge trajectories calculated here for the string with massive

endpoints. A key question for the future work is how to account for the fact that

the phenomenological intercept (which we define in the plane of M2 and the orbital

angular momentum) is always negative.

• In [38] we have considered the strong decay width of stringy hadrons. The intercept

entered in various points of the analysis in particular in relating the result derived

in [39] for the critical dimension and that for non-critical dimensions in [40]. Now

that we have determined the quantization of the string with massive endpoints and

the corresponding intercept, it is possible to go back and use the result of this compu-

tation to improve our understanding on the strong decay processes and their width.

• The intercept plays an important role not only in the spectra but also in the scattering

of hadrons. This is manifested for instance in the Veneziano amplitude. A natural

question to ask is how is this formula modified for strings with massive endpoints.

This is an open question that we currently investigate. It is very plausible that

the differences between the intercepts associated with this model and that of the

massless string case play an important role in the modifications of the scattering

amplitudes. Moreover, in the analysis of scattering the asymptotic high energy (or

large L) intercept computed here is more likely to be relevant than in other aspects

of phenomenology.

• Related to the last point, in a recent paper [17] a universal correction to the Veneziano

amplitude in a quite general setup of weakly interacting high spin particles was found

using a bootstrap approach. The result was found in the asymptotic imaginary an-

gle limit of large s and large t. Moreover, from a string perspective the universal

correction could be associated with endpoint masses and their modification of the

classical Regge trajectory. Namely, the leading correction to the amplitude is asso-

ciated with the leading order term ∼ α′m3/2E1/2 in the expansion of the massive

modified Regge trajectory Jcl(E). The quantum intercept we have computed now in-

cludes the next terms in the asymptotic expansion. The full Regge trajectory defined

by Jcl(E) + a(m/TL) now contains more terms in the asymptotic expansion whose

– 48 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
8

effects on the amplitude could be explored, the next to leading term being the zeroth

order term in the intercept, which is just 1.

• In this model we considered the impact of the massive endpoint only on the bosonic

string. A related question is what is the impact of the massive endpoints on a

fermionic string and in the context of the various superstring theories. In addition

we intend to explore models where the endpoint particles are fermionic and carry non-

trivial spin. These models presumably have more relevance for describing hadrons in

terms of strings.
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