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1 Introduction

Yang-Baxter (YB) sigma model was originally introduced by Klimč́ık [1] as a class of

Poisson-Lie symmetric sigma models. It is characterized by a classical r-matrix that satis-

fies the modified classical YB equation (mCYBE). It was later shown to be integrable by

constructing the Lax pair [2]. The original YB sigma model can be applied only to sigma

models on group manifolds, but it was later generalized to coset sigma models in [3] and

to the case of the homogeneous classical YB equation (CYBE) in [4].

An interesting application of YB deformations is an integrable deformation of type IIB

superstring theory on the AdS5×S5 background [5–7], that has been studied in the context

of the AdS/CFT correspondence. Through various examples [8–13], it turned out that,

when we employ an Abelian classical r-matrix, the YB-deformed AdS5×S5 superstring can

be described as type IIB superstring on a TsT-transformed1 AdS5×S5 background [14–20]

(see [21] for a clear explanation and generalizations). Namely, Abelian YB deformation

was found to be equivalent to a TsT-transformation. For non-Abelian classical r-matrices,

1A TsT transformation is a sequence of two Abelian T -dualities with a coordinate shift in between.

– 1 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
7

the deformations of the AdS5 × S5 background have not been understood clearly; some

deformed backgrounds were obtained through non-commuting TsT-transformations (see

for example [22]) and some were obtained through a combination of diffeomorphisms and

T -dualities [23], but it is not clear whether an arbitrary YB deformation can be realized

as a combination of Abelian T -dualities and gauge symmetries of the supergravity (it

was recently shown in [24–28] that YB deformations can be also reproduced from non-

Abelian T -dualities [29–38]). As shown in a seminal paper [22], at least when an r-matrix

satisfies a certain criterion called unimodularity, the deformed AdS5 × S5 background are

solutions of type IIB supergravity. Moreover, for a non-unimodular r-matrix, the deformed

AdS5×S5 background was shown to satisfy the generalized supergravity equations of motion

(GSE) [39, 40], and a Killing vector Im appearing in the GSE was determined for a general

r-matrix. In a recent paper [41] (which appeared a few days after this manuscript was

posted to the arXiv), a more tractable expression for Im has been given for r-matrices

consisting only of bosonic generators (see appendix A for more details). On the same day,

the second version of [42] appeared on the arXiv, which has derived the GSE from the dual

sigma model of [35] in a general NS-NS background, and has determined the Killing vector

Im in the non-Abelian T -dualized backgrounds.

Recently, in [43–47], the GSE and YB deformations were studied from a viewpoint of

a manifestly T -duality covariant formulation of supergravity, called the double field theory

(DFT) [48–53] and its extensions. Through various examples of non-Abelian YB defor-

mations, it was noticed that YB deformations are equivalent to (local) β-transformations

of the AdS5 × S5 background [46]. The local β-transformations may be realized as gauge

transformations in DFT, known as the generalized diffeomorphism, and for many examples

of non-Abelian r-matrices, YB-deformed backgrounds were reproduced by acting general-

ized diffeomorphisms to the AdS5 × S5 background. However, until now the equivalence

between YB deformations and local β-transformations has not yet been proven.

In this paper, we show the equivalence for YB deformations of the AdS5 × S5 super-

string. To be more precise, we show that, for a classical r-matrix consisting of the bosonic

generators and satisfying the homogeneous CYBE, the YB deformed AdS5×S5 superstring

action can be regarded as the Green-Schwarz (GS) type IIB superstring action [54] defined

in a β-transformed AdS5×S5 background. During the proof, we perform a suitable identifi-

cation of the deformed vielbein and make a redefinition of the fermionic variable. These pro-

cedures can be clearly explained by using the double-vielbein formalism of DFT [48, 55–59].

We also find a manifestly O(10, 10)-invariant string action that reproduces the con-

ventional GS superstring action up to quadratic order in fermions. In the previous

works, T -duality covariant string theories with the worldsheet supersymmetry were stud-

ied in [60–62]. The GS-type string actions were also constructed in [63–65] but the target

space was assumed to be flat and have no the R-R fluxes. Our GS-type string action can

apply to arbitrary curved backgrounds with the R-R fields and is a generalization of the

previous ones (another T -duality manifest GS superstring action in a general background

was proposed in [66, 67] although the relation to our action is unclear so far).

We expect that the equivalence between YB deformations and β-deformations will

hold in more general backgrounds beyond the AdS5 × S5 background. As a non-trivial

– 2 –
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example, we study local β-deformations of the AdS3× S3×T4 background that contains a

non-vanishing H-flux. In this case, due to the presence of H-flux, it is not straightforward

to perform YB deformations.2 Therefore, we do not show the equivalence in this paper.

However, thanks to the homogeneous CYBE for the local β-deformations, all examples of

the β-deformed backgrounds are shown to satisfy the equations of motion of DFT, or the

(generalized) supergravity.

This paper is organized as follows. In section 2, we review the double-vielbein formal-

ism of DFT and find a simple β-transformation rule for the Ramond-Ramond (R-R) fields.

We also find the action of the double sigma model for type II superstring that reproduces the

conventional GS superstring action. In section 3, we concisely review YB deformations of

AdS5×S5 superstring and show the equivalence of homogeneous YB deformations and local

β-transformations. In section 4, we perform β-transformations of the AdS3×S3×T4 back-

ground and obtain various solutions. We also discuss a more general class of local O(10, 10)

transformations that are based on the homogeneous CYBE. Section 5 is devoted to con-

clusions and discussions. Various technical computations are explained in the appendices.

2 Local β-deformations in DFT

In this section, we review the basics of the type II DFT and find a simple transformation rule

for bosonic fields under local β-deformations. We also find a manifestly O(10, 10)-invariant

superstring action that reproduces the conventional GS type II superstring action.

2.1 DFT fields and their parameterizations

Bosonic fields in DFT are the generalized metric HMN , the T -duality-invariant dilaton d,

and the R-R potential Ĉ, which is an O(1, D−1)×O(D−1, 1) bispinor. In this subsection,

we review their definitions and basic properties by turning off fermions (such as gravitino).

Here, we employ the double-vielbein formalism developed in [48, 55–59] (see also [73]),

which is quite suitable for discussing YB deformations.

NS-NS fields. The generalized metric HMN (M,N = 0, . . . , 2D − 1) is defined as

H ≡ (HMN ) ≡ E SE
⊺
, E = (EM

N ) ∈ O(D,D) ,

S ≡ (SMN ) ≡ diag(−1, +1, · · · ,+1
︸ ︷︷ ︸

D

, −1, +1, . . . ,+1
︸ ︷︷ ︸

D

) , (2.1)

where the O(D,D) property of the generalized vielbein E is defined as

E η E
⊺
= η = E

⊺
η E , η ≡ (ηMN ) ≡

(

0 δnm
δmn 0

)

(m,n = 0, . . . , D − 1). (2.2)

The familiar properties of the generalized metric

H⊺
= H , H⊺

ηH = η , (2.3)

2There are several works [68–72] where YB deformations of the WZ(N)W model based on the mCYBE

have been studied.
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follow from the above definitions. For an O(D,D) matrix h satisfying h
⊺
Sh = S, namely

an O(1, D − 1)×O(D − 1, 1) matrix h, both E and E h give the same generalized metric

H. Thus, the generalized metric H can be regarded as a representative of a coset

O(D,D)

O(1, D − 1)×O(D − 1, 1)
, (2.4)

where O(1, D−1)×O(D−1, 1) is known as the double local Lorentz group [57]. We raise or

lower the O(D,D) indices by using the O(D,D)-invariant metric η like HM
N ≡ HMP ηPN ,

and then (2.3) indicates that the matrix HM
N has eigenvalues ±1. Then, we introduce the

double (inverse) vielbeins Va
M and V̄ā

M (a, ā = 0, . . . , D − 1) as the eigenvectors

HM
N Va

N = +Va
M , HM

N V̄ā
N = −V̄ā

M . (2.5)

Since the eigenvalues are different, they are orthogonal to each other

HMN Va
M V̄b̄

N = 0 , ηMN Va
M V̄b̄

N = 0 . (2.6)

Following [55–59], we normalize the double vielbeins as

ηab = ηMN Va
M Vb

N = HMN Va
M Vb

N = diag(−1, +1, . . . ,+1) ,

η̄āb̄ = ηMN V̄ā
M V̄b̄

N = −HMN V̄ā
M V̄b̄

N = diag(+1, −1, . . . ,−1) .
(2.7)

By introducing 2D × 2D matrices,

(VA
M ) ≡

(

Va
M

V̄ā
M

)

, (ηAB) ≡
(

ηab 0

0 η̄āb̄

)

, (HAB) ≡
(

ηab 0

0 −η̄āb̄

)

, (2.8)

where {A} ≡ {a, ā}, the above orthonormal conditions are summarized as

ηAB = VA
M ηMN (V

⊺
)NB , HAB = VA

M HMN (V
⊺
)NB . (2.9)

The matrix VA
M is always invertible and the inverse matrix is given by

(V −1)M
A = ηMN (V

⊺
)NB ηBA , (2.10)

which indeed satisfies

VA
M (V −1)M

B = ηMN VA
M VC

N ηCB = δBA . (2.11)

As long as we raise or lower the indices M, N with ηMN and A, B with ηAB (namely,

a, b and ā, b̄ with ηab and ηāb̄, respectively), there is no difference between VA
M and

(V −⊺
)A

M ≡ ηAB ηMN (V −⊺
)BN . Thus, in the following, we may not show the inverse or

the transpose explicitly.

– 4 –
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When D×D matrices, V m
a and V̄ m

ā, are invertible, we can parameterize the double

vielbeins as

(V M
a) =

1√
2

(

(e−⊺
)ma

Emn (e
−⊺

)na

)

, (V̄ M
ā) =

1√
2

(

(ē−⊺
)mā

Ēmn (ē
−⊺

)nā

)

, (2.12)

where we introduced matrix notations, e ≡ (em
a) and ē ≡ (ēm

ā). From (2.9), we find

Ēmn = −E
⊺

mn , gmn ≡ E(mn) = (e η e
⊺
)mn = −(ē η̄ ē

⊺
)mn . (2.13)

By denoting Bmn ≡ E[mn], the parameterizations of the double vielbeins and the general-

ized metric become

(V M
a) =

1√
2

(

(e−⊺
)ma

(g +B)mn (e
−⊺

)na

)

, (V̄ M
ā) =

1√
2

(

(ē−⊺
)mā

−(g −B)mn (ē
−⊺

)nā

)

, (2.14)

H =

(

(g −B g−1B)mn (B g−1)m
n

−(g−1B)mn gmn

)

=

(

δpm Bmp

0 δmp

)(

gpq 0

0 gpq

)(

δqn 0

−Bqn δqn

)

. (2.15)

The dual parameterization, that can be prescribed when Vm
a and V̄m

ā are invertible, is

VM
a =

1√
2

(

ẽm
a

(G−1 − β)mn ẽn
a

)

, V̄N
ā =

1√
2

(

˜̄em
ā

−(G−1 + β)mn ˜̄en
ā

)

,

Gmn ≡ (ẽ η ẽ
⊺
)mn = −(˜̄e η̄ ˜̄e

⊺
)mn , βmn = −βnm ,

(2.16)

and it provides the dual parameterization of the generalized metric

H =

(

Gmn (Gβ)m
n

−(β G)mn (G−1 − β Gβ)mn

)

=

(

δpm 0

−βmp δmp

)(

Gpq 0

0 Gpq

)(

δpn βpn

0 δnp

)

. (2.17)

When both parameterizations are possible, comparing (2.15) and (2.17), we obtain

Emn ≡ (E−1)mn = Gmn − βmn
(
Emn ≡ gmn +Bmn

)
,

gmn = EmpEnq G
pq , Bmn = EmpEnq β

pq .
(2.18)

In the following, we raise or lower the indices of {ema, ēm
ā, ẽm

a, ˜̄em
ā} as

ema = gmn en
b ηba , ēmā = gmn ēn

b̄ η̄b̄ā ,

ẽma = Gmn ẽn
b ηba , ˜̄emā = Gmn ˜̄en

b̄ η̄b̄ā ,
(2.19)

and then we obtain relations like (e−⊺
)ma = ema. We can then omit the inverse or the

transpose without any confusions as long as the indices are shown explicitly. By using the

two metrics, gmn and Gmn, we also introduce two parameterizations of the dilaton d,

√

|G| e−2φ̃ = e−2d =
√

|g| e−2Φ . (2.20)

– 5 –
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Ramond-Ramond fields. In order to study the ten-dimensional type II supergravity,

let us consider the case D = 10. Associated with the double local Lorentz group O(1, 9)×
O(9, 1), we introduce two sets of gamma matrices, (Γa)αβ and (Γ̄ā)ᾱβ̄ , satisfying

{Γa, Γb} = 2 ηab , {Γ̄ā, Γ̄b̄} = 2 η̄āb̄ ,

(Γa)† =− Γ0 Γa (Γ0)−1 = ∓Γa , a =

{

0
1, . . . , 9

,

(Γ̄ā)† = +Γ̄0 Γ̄ā (Γ̄0)−1 = ±Γ̄ā , ā =

{

0
1, . . . , 9

.

(2.21)

We also introduce the chirality operators

Γ11 ≡ Γ012···9 , Γ̄11 ≡ Γ̄012···9 , (Γ11)† = Γ11 , (Γ̄11)† = Γ̄11 ,

{Γa, Γ11} = 0 , {Γ̄ā, Γ̄11} = 0 , (Γ11)2 = 1 , (Γ̄11)2 = 1 ,
(2.22)

and the charge conjugation matrices Cαβ and C̄ᾱβ̄ satisfying3

C ΓaC−1 = −(Γa)
⊺
, C = −C

⊺
= −C−1 , C∗ = C ,

C̄ Γ̄ā C̄−1 = −(Γ̄ā)
⊺
, C̄ = −C̄

⊺
= −C̄−1 , C̄∗ = C̄ .

(2.23)

We can show C Γ11C−1 = −Γ11 and C̄ Γ̄11 C̄−1 = −Γ̄11 by using

C Γa1···an C−1 = (−1)
n(n+1)

2 (Γa1···an)
⊺
, C̄ Γ̄ā1···ān C̄−1 = (−1)

n(n+1)
2 (Γ̄ā1···ān)

⊺
. (2.24)

We raise or lower the spinor indices by using the charge conjugation matrices like

(Γa)αβ ≡ (Γa)γβ Cγα , (Γa)αβ ≡ Cβγ (Γa)αγ ,

(Γ̄ā)ᾱβ̄ ≡ (Γ̄ā)γ̄ β̄ C̄γ̄ᾱ , (Γ̄ā)ᾱβ̄ ≡ C̄ β̄γ̄ (Γ̄ā)ᾱγ̄ ,
(2.25)

and then from (2.23) we have

(Γa)αβ = (Γa)βα , (Γ̄ā)ᾱβ̄ = (Γ̄ā)β̄ᾱ . (2.26)

We define the R-R potential as a bispinor Ĉα
β̄ with a definite chirality

Γ11 Ĉ Γ̄11 = ± Ĉ , (2.27)

where the sign is for type IIA/IIB supergravity. The R-R field strength is defined as

F̂α
β̄ ≡ D+Ĉ

α
β̄ ≡ 1√

2

(
ΓM DM Ĉ + Γ11DM Ĉ Γ̄M

)
α
β̄ ,

ΓM ≡ V M
a Γ

a , Γ̄M ≡ V̄ M
ā Γ̄

ā ,

(2.28)

3In order to follow the convention of [74], we employ the charge conjugation matrices C− and C̄− of [58]

rather than C+ and C̄+. They are related as C− = C+ Γ11 and C̄− = C̄+ Γ̄11.

– 6 –
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where D+ is a nilpotent operator introduced in [58], and the covariant derivative DM for a

bispinor T α
β̄ and the spin connections are defined as [55, 56, 58]

DMT α
β̄ ≡ ∂MT α

β̄ +ΦM
α
γ T

γ
β̄ − T α

γ̄ Φ̄M
γ̄
β̄ ,

ΦM
α
β ≡ 1

4
ΦMcd (Γ

cd)αβ , Φ̄M
ᾱ
β̄ ≡ 1

4
Φ̄Mc̄d̄ (Γ

c̄d̄)ᾱβ̄

ΦMcd ≡ V N
c∇MVNd = V N

c

(
∂MVNd − ΓM

P
N VPd

)
,

Φ̄Mc̄d̄ ≡ V̄ N
c̄∇M V̄Nd̄ = V̄ N

c̄

(
∂M V̄Nd̄ − ΓM

P
N V̄P d̄

)
,

(2.29)

where∇M is the (semi-)covariant derivative in DFT [55, 75, 76] (see also [43] which employs

the same convention as this paper). Since D+ flips the chirality, F̂ has the opposite chirality

to Ĉ [58]

Γ11 F̂ Γ̄11 = ∓ F̂ . (2.30)

As it has been shown in [58], F̂ transforms covariantly under the O(1, 9)×O(9, 1) double

Lorentz transformations, and transforms as a scalar under generalized diffeomorphisms.

Further, from the nilpotency of D+, F̂ is invariant under gauge transformations of R-R

potential

δĈ = D+λ , Γ11 λ Γ̄11 = ∓λ , (2.31)

and the Bianchi identity is given by

D+F̂ = 0 . (2.32)

As in the case of the democratic formulation [77, 78], the self-duality relation

F̂ = −Γ11 F̂
(
= ± F̂ Γ̄11

)
, (2.33)

for type IIA/IIB supergravity is imposed by hand at the level of the equations of motion.

Section condition and gauge symmetry. In DFT, fields are defined on the doubled

spacetime with the generalized coordinates (xM ) = (xm, x̃m), where xm are the standard

“physical”D-dimensional coordinates and x̃m are the dual coordinates. For the consistency

of DFT, we require that arbitrary fields or gauge parameters A(x) and B(x) satisfy the

so-called section condition [49, 51, 52],

ηMN ∂MA(x) ∂NB(x) = 0 , ηMN ∂M∂NA(x) = 0 . (2.34)

In general, under this condition, fields and gauge parameters can depend on at mostD coor-

dinates out of the 2D coordinates xM . We frequently choose the “canonical solution” where

all fields and gauge parameters are independent of the dual coordinates; ∂̃m ≡ ∂
∂x̃m

= 0.

In this case, DFT reduces to the conventional supergravity. Instead, if all fields depend on

(D− 1) coordinates xi and only the dilaton d(x) has an additional linear dependence on a

dual coordinates z̃, DFT reduces to the generalized supergravity as discussed in [43, 45].

– 7 –
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When the section condition is satisfied, the gauge symmetry of DFT is generated by

the generalized Lie derivative [49, 52]

£̂V W
M ≡ V N ∂NWM −

(
∂NV M − ∂MVN

)
WN . (2.35)

This symmetry is interpreted as diffeomorphisms in the doubled spacetime, xM → xM +

V M (x). Indeed, under the canonical section ∂̃m = 0, this symmetry consists of the conven-

tional diffeomorphisms and B-field gauge transformations. If we parameterize the diffeo-

morphism parameter as (V M ) = (vm, ṽm), the vector vm corresponds to the D-dimensional

diffeomorphism parameter while the 1-form ṽm corresponds to the gauge parameter of the

B-field gauge transformation, B2 → B2 + dṽ1. Under the canonical section, this is the

whole gauge symmetry, but if we choose a different section, the generalized diffeomorphism

may generate other local O(D,D) transformations, such as β-transformations. For more

details, the reader may consult a concise review [79].

2.2 Diagonal gauge fixing

In this subsection, we review the diagonal gauge fixing introduced in [55, 58].

2.2.1 NS-NS fields

In order to constrain the redundantly introduced two vielbeins em
a and ēm

ā, we implement

the diagonal gauge fixing

em
a = ēm

ā , (2.36)

which is important to reproduce the conventional supergravity. Before the diagonal gauge

fixing, the double vielbeins transform as

Va
M → hMN Va

N , V̄ā
M → hMN V̄ā

N , (2.37)

under a global O(10, 10) rotation or a finite generalized diffeomorphism. We parameterize

the O(10, 10) matrix hMN as

hM
N =

(

pm
n qmn

rmn smn

)

, hMN =

(

smn rmn

qmn pm
n

)

(
ps

⊺
+ q r

⊺
= 1 , r s

⊺
+ s r

⊺
= 0 , pq

⊺
+ q p

⊺
= 0

)
,

(2.38)

and then obtain the following transformation rule:

em
a →

[(
s
⊺
+ E

⊺
r
⊺
)−1]

m
n en

a , ēm
ā →

[(
s
⊺ − E r

⊺
)−1]

m
n ēn

ā ,

ẽm
a →

(
p+ qE−1

)

m
n ẽn

a , ˜̄em
ā →

(
p− qE−⊺

)

m
n ˜̄en

ā ,

Emn → [(q + pE) (s+ rE)−1]mn , Emn → [(r + sE−1) (p+ qE−1)−1]mn .

(2.39)

At the same time, the dilaton transforms as

e−2d → |det(pm
n)| e−2d , (2.40)

and the bispinors of R-R fields, Ĉ and F̂ , are invariant.
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As we can see from (2.39), under a (geometric) subgroup (where rmn = 0),

hM
N =

(

pm
n qmn

0 (p−⊺
)mn

)

, hMN =

(

(p−⊺
)mn 0

qmn pm
n

)

(
pq

⊺
= −q p

⊺
)
, (2.41)

em
a and ēm

ā transform in the same manner. However, if we perform a general O(10, 10)

transformation with rmn 6= 0, even if we choose the diagonal gauge in the original duality

frame (em
a = ēm

ā), after the transformation, em
a → e′m

a and ēm
ā → ē′m

ā, we obtain

ē′m
ā = (Λ−1)āb e

′
m

b , Λa
b̄ ≡

[
e
⊺
(s+ rE)−1 (s− rE

⊺
) e−

⊺
]a

b̄ ∈ O(9, 1) . (2.42)

In order to maintain the diagonal gauge (2.36), we shall simultaneously perform an O(9, 1)

local Lorentz transformation for barred tensors that compensates the deviation of ēm
ā from

em
a. Namely, we modify the O(10, 10) transformation as [58]

VM
a → hM

N VN
a , V̄M

ā → hM
N Λā

b̄ V̄N
b̄ . (2.43)

After the diagonal gauge fixing, since there is no more distinction between {a, α} and

{ā, ᾱ}, we may simply replace {ā, ᾱ} by {a, α}. In this replacement, we should be careful

about the signature

η̄ab = −ηab , C̄αβ = Cαβ . (2.44)

In addition, we relate the two sets of gamma matrices as

Γ̄a = Γ11 Γa
(
{Γ̄a, Γ̄b} = −{Γa, Γb} = 2 η̄ab

)
, Γ̄11 = −Γ11 . (2.45)

2.2.2 R-R fields

According to the diagonal gauge fixing, there is no distinction between the two spinor

indices α and ᾱ, and we can convert the bispinors into polyforms:

Ĉα
β =

∑

n

1

n!
Ĉa1···an (Γa1···an)αβ , F̂α

β =
∑

n

1

n!
F̂a1···an (Γ

a1···an)αβ . (2.46)

From the identity,

Γ11 Γa1···ap =
(−1)

p(p+1)
2

(10− p)!
ǫa1···apb1···b10−p Γb1···b10−p

, (2.47)

where ǫ0···9 = −ǫ0···9 = 1, the self-duality relation (2.33) can be expressed as

F̂p = (−1)
p(p−1)

2 ∗ F̂10−p . (2.48)

Here, we have defined

F̂ ≡
∑

p

F̂p , F̂p ≡
1

p!
F̂m1···mp dx

m1 ∧ · · · ∧ dxmp ,

Ĉ ≡
∑

p

Ĉp , Ĉp ≡
1

p!
Ĉm1···mp dx

m1 ∧ · · · ∧ dxmp ,

(2.49)
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where the R-R fields with the curved indices are defined as

F̂m1···mp ≡ em1
a1 · · · emp

ap F̂a1···ap , Ĉm1···mp ≡ em1
a1 · · · emp

ap Ĉa1···ap . (2.50)

In addition, if we define the components of the spin connections as

Φacd ≡ V M
aΦMcd , Φ̄āc̄d̄ ≡ V̄ M

ā Φ̄Mc̄d̄ ,

Φācd ≡ V̄ M
āΦMcd , Φ̄ac̄d̄ ≡ V M

a Φ̄Mc̄d̄ ,
(2.51)

and compute their explicit forms under the canonical section ∂̃m = 0 as

Φābc=
1√
2

(

ωabc+
1

2
Habc

)

, Φ̄ab̄c̄=
1√
2

(

−ωabc+
1

2
Habc

)

,

Φ[abc]=
1√
2

(

ω[abc]+
1

6
Habc

)

, Φ̄[āb̄c̄]=
1√
2

(

−ω[abc]+
1

6
Habc

)

,

ηabΦabc=
1√
2

(
ηabωabc−2ec

m∂mΦ
)
= η̄āb̄ Φ̄āb̄c̄ ,

ωabc≡ ea
mωmbc , ωm

ab≡ 2en[a∂[men]
b]−eap ebq ∂[peq]

c emc ,

Habc≡ ea
m eb

n ec
pHmnp , Hmnp≡ 3∂[mBnp] ,

(2.52)

we can show that the relation (2.28) between F̂ and Ĉ can be expressed as [58]4

F̂ = dĈ − dΦ ∧ Ĉ +H3 ∧ Ĉ . (2.53)

Originally, the R-R fields were invariant under global O(10, 10) transformations or

generalized diffeomorphisms, but after the diagonal gauge fixing, according to the modified

transformation rule (2.43), they transform as

Ĉ → ĈΩ−1 , F̂ → F̂ Ω−1 , (2.54)

where Ω is the spinor representation of the local Lorentz transformation (2.42),

Ω−1 Γ̄aΩ = Λa
b Γ̄

b
(
Λa

b =
[
e
⊺
(s+ rE)−1 (s− rE

⊺
) e−

⊺
]a

b

)
. (2.55)

4Here, we have used the following identities for type IIA/IIB theory:

1

2

(

Γm
∂mĈ ∓ ∂mĈ Γm

)

=
∑

n

1

n!
(dC)a1···an

Γa1···an ,

1

2
∂mΦ

(

Γm
Ĉ ∓ Ĉ Γm

)

=
∑

n

1

n!
(dΦ ∧ C)a1···an

Γa1···an ,

1

8
ωmab

[

Γa (Γbc
Ĉ − Ĉ Γbc)∓ (Γbc

Ĉ − Ĉ Γbc) Γa
]

= −
∑

n

ω[a1

b
a2 C|b|a3···an]

2! (n− 2)!
Γa1···an ,

1

16
Habc

[

1

3

(

Γabc
Ĉ ∓ Ĉ Γabc

)

+
(

Γa
Ĉ Γbc ∓ Γbc

Ĉ Γa
)

]

=
∑

n

1

n!
(H3 ∧ C)a1···an

Γa1···an .
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For later convenience, we here introduce several definitions of R-R fields that can be

summarized as follows:

(Č, F̌ ; Č, F̌ )
β-twist

(for polyform e−β∨)

00

φ̃-untwist

eφ̃

��

(A, F ; /A, /F )

β-untwist

(for polyform eβ∨)
pp

B-untwist

(for polyform e−B2∧)
..
(Ĉ, F̂ ; Ĉ, F̂ )

B-twist

(for polyform eB2∧)

nn

Φ-untwist
eΦ

��
(Č, F̌ ; Č, F̌)

φ̃-twist

e−φ̃

TT

oo Eqs. (2.84) and (2.85)

(local Lorentz transformation)
// (Ĉ, F̂ ; Ĉ, F̂)

Φ-twist
e−Φ

TT

(2.56)

The quantities at the lower right, polyforms (Ĉ, F̂) and bispinors (Ĉ, F̂), are already

defined, which we call (B, Φ)-untwisted fields. There, the curved indices and flat indices

are interchanged by using the usual vielbein em
a like (2.50). The quantities at the upper

right, which we call the B-untwisted fields, are defined as

Ĉ ≡ e−Φ Ĉ , F̂ ≡ e−Φ F̂ , Ĉ ≡ e−Φ Ĉ , F̂ ≡ e−Φ F̂ . (2.57)

The curved and flat indices are again related as

Ĉm1···mn ≡ em1
a1 · · · emn

an Ĉa1···an , F̂m1···mn ≡ em1
a1 · · · emn

an F̂a1···an . (2.58)

The B-untwisted fields are rather familiar R-R fields satisfying

F̂ = dĈ +H3 ∧ Ĉ , (2.59)

which can be shown from (2.53). We also define a polyform A and its field strength F as

A = e−Φ eB2∧ Ĉ = eB2∧ Ĉ , F = e−Φ eB2∧ F̂ = eB2∧ F̂ . (2.60)

These are utilized in [77, 80, 81] to define R-R fields as O(D,D) spinors (see also [45])

/A ≡
∑

n

1

n!
Am1···mn γ

m1···mn |0〉 , /F ≡
∑

n

1

n!
Fm1···mn γ

m1···mn |0〉 . (2.61)

By using the dual fields (ẽm
a, βmn, φ̃), we can also introduce the dual R-R fields,

• β-untwisted fields: polyforms (Č, F̌ ) and bispinors (Č, F̌ ),

• (β, φ̃)-untwisted fields: polyforms (Č, F̌) and bispinors (Č, F̌).

By introducing an operator β ∨ F ≡ 1
2 β

mn ιm ιnF , we define these polyforms as

Č ≡ eβ∨A , F̌ ≡ eβ∨ F . Č ≡ eφ̃ eβ∨A , F̌ ≡ eφ̃ eβ∨ F , (2.62)

and their flat components as

Ča1···ap ≡ ẽa1
m1 · · · ẽapmp Čm1···mp , F̌a1···ap ≡ ẽa1

m1 · · · ẽapmp F̌m1···mp ,

Ča1···ap ≡ ẽa1
m1 · · · ẽapmp Čm1···mp , F̌a1···ap ≡ ẽa1

m1 · · · ẽapmp F̌m1···mp ,
(2.63)

by using the dual vielbein ẽm
a. Their corresponding bispinors are defined as

Č ≡
∑

n

1

n!
Ča1···an Γ

a1···an , F̌ ≡
∑

n

1

n!
F̌a1···an Γ

a1···an ,

Č ≡
∑

n

1

n!
Ča1···an Γa1···an , F̌ ≡

∑

n

1

n!
F̌a1···an Γ

a1···an .
(2.64)
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2.2.3 Single T -duality

As a simple application of the formula (2.54), let us explain how the R-R fields transform

under a single T -duality along the xz-direction,

(hMN ) =

(

110 − ez ez

ez 110 − ez

)

, ez ≡ diag(0, . . . , 0,
z-th
1 , 0, . . . , 0) . (2.65)

In this case, the vielbein and the dilaton transform as

e′ =
[
110 − (110 − E

⊺
) ez

]−1
e =

[
110 + g−1

zz (110 − E
⊺
) ez

]
e , eΦ

′
=

1√
gzz

eΦ , (2.66)

and the Lorentz transformation matrix is

Λ ≡ (Λa
b) = e

⊺
[
110 − ez (110 − E)

]−1 [
110 − ez (110 + E

⊺
)
]
e−

⊺
. (2.67)

This can be simplified as

Λa
b = δab − 2

ez
a ezb
gzz

, (2.68)

and we can easily see that the R-R field transforms under the T -duality as [80]

Ĉ′ = ĈΩ−1
z , Ωz ≡

eza√
gzz

Γ̄a Γ̄11 =
1√
gzz

Γz = Ω−1
z (Γm ≡ em

a Γa) , (2.69)

where we have supposed gzz ≥ 0.

From the identity (A.20), we obtain

Ĉ′ = ĈΩ−1
z =

1√
gzz

∑

n

1

n!

(

n Ĉ[a1···an−1
ean]z + Ĉa1···anb ezb

)

Γa1···an . (2.70)

By using the B-untwisted R-R potentials, Ĉ = e−Φ Ĉ and Ĉ = e−Φ Ĉ, (2.70) is expressed as

Ĉ ′ =
∑

n

1

n!

(

n Ĉ[a1···an−1
ean]z + Ĉa1···anb ez

b

)

Γa1···an , (2.71)

where we have used (2.66). For the curved components, using the transformation rule of

the vielbein (2.66), we obtain

Ĉ ′
m1···mn

= e′m1

a1 · · ·e′mn

an
(
nĈ[a1···an−1

ean]z+Ĉa1···anb ez
b
)

(2.72)

=nĈ[m1···mn−1
gmn]z+Ĉm1···mnz

+ng−1
zz

[
Ĉ[m1···mn−1

gzz−(n−1) Ĉ[m1···mn−2|z| gmn−1|z|
](
δzmn]

−E
⊺

mn]z

)

= Ĉm1···mnz+n

[

Ĉ[m1···mn−1
−(n−1)

Ĉ[m1···mn−2|z| gmn−1|z|
gzz

]

(
δzmn]

+Bmn]z

)
.

This reproduces the famous transformation rule,

Ĉ ′
i1···in = Ĉi1···inz + n Ĉ[i1···in−1

Bin]z + n (n− 1)
Ĉ[i1···in−2|z|Bin−1|z| gin]z

gzz
,

Ĉ ′
i1···in−1z = Ĉi1···in−1 − (n− 1)

Ĉ[i1···in−2
gin−1]z

gzz
,

(2.73)

where we have decomposed the coordinates as {xm} = {xi, xz}.
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It is also noted that, under the single T -duality after taking the diagonal gauge, an

arbitrary O(1, 9) spinor Ψα
1 and an O(9, 1) spinor Ψᾱ

2 transform as

Ψ1 → Ψ′
1 = Ψ1 , Ψ2 → Ψ′

2 = ΩΨ2 =
eza√
gzz

Γ̄a Γ̄11Ψ2 . (2.74)

When we consider a single T -duality connecting type IIA and type IIB superstring, these

transformations are applied to the spacetime fermions Θ1 and Θ2 introduced later.

2.3 β-transformation of R-R fields

In this subsection, we consider local β-transformations

hM
N =

(

110 010
rmn(x) 110

)

, hMN =

(

110 rmn(x)

010 110

)

(
rmn = −rnm

)
. (2.75)

From the general transformation rule (2.54), the R-R fields should transform as

Ĉ → Ĉ′ = ĈΩ−1 and F̂ → F̂ ′ = F̂ Ω−1. We here find an explicit form of Ω associated

with β-transformations [the final result is obtained in (2.95)].

2.3.1 Gauge fixing for dual fields

Let us first specify the dual vielbein ẽm
a explicitly. As we can see from (2.39), under

β-transformations, we have the following transformation rules:5

em
a → e′m

a =
[(
E−⊺ − r

)−1
E−⊺

]

m
n en

a ,

ẽm
a → ẽ′m

a = ẽm
a , Emn → E′mn = Emn + rmn .

(2.76)

Then, we can consistently relate em
a and ẽm

a as

ẽm
a = Emn e

n
b η

ba . (2.77)

This is equivalent to a direct identification of two parameterizations,

1√
2

(

emb η
ba

(g +B)mn e
n
b η

ba

)

= V Ma =
1√
2

(

(G−1 − β)mn ẽn
a

ẽm
a

)

, (2.78)

and consistent with the relation (2.18). If we introduce the flat components of Emn as

Eab ≡ ẽm
a ẽn

bEmn ≡ ηab − βab , (2.79)

we obtain

Emn = ẽm
a ẽn

b (E−1)ab = em
a en

b (E⊺
)ab . (2.80)

5The transformation rule of em
a given (2.76) make sense only when (E−⊺

)mn is not singular. When

(E−⊺

)mn is singular, we should express it as em
a → e′m

a =
[(

1 − E
⊺

r

)−1]

m

n en
a. When both Emn and

Emn are singular, we should choose another parameterization of the double vielbein, although we do not

consider such cases in this paper.
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Namely, we have simple expressions,

gmn = em
a en

b ηab , Bmn = em
a en

b βab ,

Gmn = ẽm
a ẽn

b ηab , βmn = ẽma ẽ
n
b β

ab .
(2.81)

In terms of Eab, the relation (2.77) can also be expressed as

em
a = ẽm

b (E−⊺
)b

a . (2.82)

From (2.82), the relation (2.20) between the two dilatons, Φ and φ̃, can be expressed as

eΦ = (det Eab)−
1
2 eφ̃ . (2.83)

2.3.2 Relation between untwisted R-R fields

From (2.56), the relation between (B,Φ)-untwisted R-R polyforms and the (β, φ̃)-untwisted

R-R polyforms can be expressed as

F̌ = eφ̃−Φ eβ∨ eB2∧ F̂ , F̂ = eΦ−φ̃ e−B2∧ e−β∨ F̌ ,

Č = eφ̃−Φ eβ∨ eB2∧ Ĉ , Ĉ = eΦ−φ̃ e−B2∧ e−β∨ Č .
(2.84)

As we show in appendix D by a brute force calculation, if rephrased in terms of bispinors,

these relations have quite simple forms

F̂ = F̌ Ω−1
0 , Ĉ = ČΩ−1

0 , F̌ = F̂ Ω0 , Č = ĈΩ0 ,

Ω−1
0 = (det Ecd)−

1
2Æ

(

−1

2
βab Γab

)

, Ω0 = (det Ecd)−
1
2Æ

(
1

2
βab Γab

)

,
(2.85)

where Æ is an exponential-like function with the gamma matrices totally antisymme-

trized [80]

Æ

(
1

2
βab Γab

)

≡
5∑

p=0

1

2p p!
βa1a2 · · ·βa2p−1a2p Γ

a1···a2p . (2.86)

In fact, this Ω0 is a spinor representation of a local Lorentz transformation,6

Ω−1
0 ΓaΩ0 =

(
E−1 E⊺

)a
b Γ

b , (2.87)

as we can show by employing the formula provided below [80] (see appendix E for a proof).

In this sense, the (B, Φ)-untwisted fields and the (β, φ̃)-untwisted fields are related by a

local Lorentz transformation.

Formula. For an arbitrary antisymmetric matrix aab, the spinor representation of a local

Lorentz transformation

Λa
b ≡

[
(η + a)−1 (η − a)

]a
b =

[
(η − a) (η + a)−1

]a
b ∈ O(1, D − 1) , (2.88)

is given by

Ω(a) =
[
det(δdc ± ac

d)
]− 1

2Æ

(

−1

2
aab Γ

ab

)

,

Ω−1
(a) =

[
det(δdc ± ac

d)
]− 1

2Æ

(
1

2
aab Γ

ab

)

, Ω−1
(a) Γ

aΩ(a) = Λa
b Γ

b .

(2.89)

6Note that Γ̄a = Γ11 Γa also satisfies the same relation, Ω−1
0 Γ̄a Ω0 =

(

E−1 E
⊺
)a

b Γ̄
b.
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2.3.3 General formula for Ω

Now, let us find the explicit form of Ω for β-transformations [recall (2.55)], satisfying

Ω−1 Γ̄aΩ = Λa
b Γ̄

b
[
Λ = e

⊺
(1 + rE)−1 (1− rE

⊺
) e−

⊺
]
. (2.90)

A key observation is that by using (2.77), (2.79), and (2.82), Λa
b can be decomposed into

a product of two Lorentz transformations,

Λ = Λ′ Λ−1
0 , Λ′ ≡ η−1 E ′−1 E ′⊺ η , Λ0 ≡ η−1 E−1 E⊺

η , (2.91)

where E ′ is defined by

E ′ab ≡
[
ẽ
⊺
(E−1 + r) ẽ

]ab ≡ ηab − β′ab (
β′ab ≡ βab − rmn ẽm

a ẽn
b
)
. (2.92)

Then, we can check the following relations associated with E ′ab:

E ′ab = ẽm
a ẽn

bE′mn = e′am e′bnE′⊺
mn , E′mn = Emn + rmn ≡ G′mn − β′mn ,

e′m
a ≡ E′⊺

mn ẽ
na = (E ′−⊺

)b
a ẽm

b , E′
mn =

[
(E−1 + r)−1

]

mn
≡ g′mn +B′

mn ,
(2.93)

where g′mn and B′
mn are the β-transformed metric and B-field, respectively. From the

invariance of d, ẽm
a, and φ̃ under β-transformations, the dilaton Φ in the β-transformed

background becomes

eΦ
′
= (det E ′

a
b)−

1
2 eφ̃ =

(det E ′
a
b)−

1
2

(det Ecd)−
1
2

eΦ . (2.94)

Corresponding to the decomposition (2.91), we can also decompose Ω as

Ω = Ω′Ω−1
0 =

[
det(E ′ E)ef

]− 1
2 Æ

(
1

2
β′ab Γab

)

Æ

(

−1

2
βcd Γcd

)

,

Ω−1 = Ω0Ω
′−1 =

[
det(E ′ E)ef

]− 1
2 Æ

(
1

2
βab Γab

)

Æ

(

−1

2
β′cd Γcd

)

.

(2.95)

where we have defined

Ω′ ≡ (det E ′
c
d)−

1
2Æ

(
1

2
β′ab Γab

)

, Ω′−1 = (det E ′
c
d)−

1
2Æ

(

−1

2
β′ab Γab

)

. (2.96)

This gives the desired local Lorentz transformation,

Ω−1 Γ̄aΩ = Ω0Ω
′−1 Γ̄aΩ′Ω−1

0 = (Λ′ Λ−1
0 )ab Γ̄

b = Λa
b Γ̄

b . (2.97)

The β-transformed R-R field is then expressed as

F̂ ′ = F̂ Ω−1 . (2.98)

In terms of the differential form, we can express the same transformation rule as

F̂ ′ = eΦ
′−Φ e−B′

2∧ er∨ eB2∧ F̂
(
F̂ ′
m1···mn

≡ e′m1

a1 · · · e′mn

an F̂ ′
a1···an

)
. (2.99)
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In terms of the B-untwisted field F̂ , the β-untwisted field F̌ , and the (β, φ̃)-untwisted field

F̌ , we can express the above formula as

F̂ ′ = e−B′
2∧ er∨ eB2∧ F̂ , F̌ ′ = F̌ , F̌ ′ = F̌ . (2.100)

Namely, the β- or (β, φ̃)-untwisted field is invariant under β-transformations, which has

been shown in [46] (see also [45]) by treating the R-R fields, A and F , as O(D,D) spinors.

Specifically, if the B-field and the dilaton Φ are absent before the β-transformation,

we have βab = 0, Eab = δba, and β′ab = −rmn ẽm
a ẽn

b. Then, (2.95) becomes

Ω = (det E ′
c
d)−

1
2 Æ

(

−1

2
rab Γab

)

(rab ≡ rmn ẽm
a ẽn

b) . (2.101)

In section 3, we see that this Ω plays an important role in YB deformations of AdS5 × S5

superstring [see eq. (3.64) where 2 η λab plays the same role as rab here].

2.4 T -duality-invariant Green-Schwarz action

In section 3, we study homogeneous YB deformations of the GS type IIB superstring

action and show that YB deformations are equivalent to β-deformations of the target

space. In order to show the equivalence, it will be useful to manifest the covariance of the

GS superstring theory under β-transformations. In this section, we provide a manifestly

O(10, 10) T -duality-covariant formulation of the GS type II superstring theory.

A manifestly T -duality covariant formulations of string theory, the so-called double

sigma model (DSM), has been developed in [60, 82–87] for the bosonic string. More recently,

the DSM for the GS type II superstring theory was formulated in [64] (see also [60–63, 65]

for other approaches to supersymmetric DSMs). The action by Park, in our convention, is

given by

S =
1

4πα′

∫ [
1

2
HMN ΠM ∧ ∗γΠN −DXM ∧

(
AM +ΣM

)
]

= − 1

4πα′

∫ √−γ d2σ

[
1

2
γᾱβ̄ HMN ΠM

ᾱ ΠN
β̄ + εᾱβ̄ DᾱX

M
(
Aβ̄M +Σβ̄M

)
]

, (2.102)

where γᾱβ̄ is the intrinsic metric on the string worldsheet and

ΠM ≡ DXM +ΣM , DXM ≡ dXM −AM , ε01 ≡ 1√−γ
,

(XM ) ≡
(

Xm

X̃m

)

, ΣM ≡
(

Σm

Σ̃m

)

≡ i√
2

(
Θ̄1 Γ

M dΘ1 +
¯̄Θ2 Γ̄

M dΘ2

)
,

(2.103)

and a worldsheet 1-form AM (σ) is defined to satisfy,

AM ∂MT = 0 , AM AM = 0 , (2.104)

for arbitrary supergravity fields or gauge parameters T (x). Here, the Dirac conjugates for

the spacetime fermions Θα
1 and Θᾱ

2 are defined respectively as

Θ̄1 ≡ Θ†
1 Γ

0 , ¯̄Θ2 ≡ −Θ†
2 Γ̄

0 , (2.105)
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which indeed transform as

Θ̄1 → Θ̄1 e−
1
4
ωab Γ

ab

, ¯̄Θ2 → ¯̄Θ2 e−
1
4
ω̄āb̄ Γ̄

āb̄

, (2.106)

under a double Lorentz transformation Θ1 → e
1
4
ωab Γ

ab

Θ1 and Θ2 → e−
1
4
ω̄āb̄ Γ̄

āb̄

Θ2. The

Majorana-Weyl conditions are defined as7

Θ1 = C (Γ0)
⊺
Θ∗

1 , Θ2 = −Γ̄11 C̄ (Γ̄0)
⊺
Θ∗

2 ,

Γ11Θ1 = Θ1 , Γ̄11Θ2 = ±Θ2 (IIA/IIB) ,
(2.107)

and then we obtain

Θ̄1 = Θ†
1 Γ

0 = Θ
⊺

1 C , ¯̄Θ2 = −Θ†
2 Γ̄

0 = −Θ
⊺

2 C̄ Γ̄11 . (2.108)

In [64], the target space was assumed to be flat, but here we generalize the action to

arbitrary curved backgrounds.

In order to consider the superstring action in the presence of fluxes, such as the H-flux

and the R-R fluxes, we introduce generalized tensors,

K(1)
MN ≡ − i√

2
V(M

a V̄N)
b̄ Θ̄1 Γa Γ

cdΘ1Φb̄cd ,

K(2)
MN ≡ − i√

2
V̄(M

ā VN)
b ¯̄Θ2 Γ̄ā Γ̄

c̄d̄Θ2 Φ̄bc̄d̄ ,

K(RR)

MN ≡ i

4
V(M

a V̄N)
b̄ Θ̄1 Γa F̂ Γ̄b̄Θ2 .

(2.109)

Then, we add the following term to the DSM action (2.102):

∆S ≡ 1

8πα′

∫

KMN ΠM ∧ ∗γΠN , KMN ≡ K(1)
MN +K(2)

MN +K(RR)

MN . (2.110)

By choosing the diagonal gauge, the explicit form of KMN becomes

KMN =

(

−(gκs g+BκsB+Bκa g+gκaB)mn (Bκs+gκa)m
n

−(κsB+κa g)mn (κs)mn

)

, (2.111)

κmn≡− i

4

(√
2Θ̄1ΓmΓabΘ1Φnab+

√
2 ¯̄Θ2 Γ̄n Γ̄

āb̄Θ2 Φ̄māb̄−
1

2
Θ̄1Γm F̂ Γ̄nΘ2

)

, (2.112)

where we defined κsmn ≡ κ(mn) and κamn ≡ κ[mn] and their indices are raised or lowered

with the metric gmn. Note that KMN is an O(10, 10) matrix up to quadratic order in

ΘI (I = 1, 2).

The modification of the DSM action, S → S+∆S, is equivalent to the replacement of

the generalized metric

HMN → MMN ≡ HMN +KMN . (2.113)

7The non-standard factor −Γ̄11 is introduced in the Majorana condition for Θ2 such that the condition

becomes the standard Majorana condition after the diagonal gauge fixing; Θ2 = C (Γ0)
⊺

Θ∗
2.
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The explicit form of MMN is given by

(MMN ) =

(

δpm Bmp

0 δmp

)(

gpq − κspq (κa)p
q

−(κa)pq gpq + (κs)pq

)(

δqn 0

−Bqn δnq

)

=

(

δpm B̂mp

0 δmp

)(

ĝpq 0

0 (ĝ−1)pq

)(

δqn 0

−B̂qn δnq

)

+O(Θ4) , (2.114)

where we defined

ĝmn ≡ gmn − κsmn , B̂mn ≡ Bmn + κamn . (2.115)

Then, we consider an action

S =
1

4πα′

∫ [
1

2
MMN ΠM ∧ ∗γΠN −DXM ∧

(
AM +ΣM

)
]

. (2.116)

Before we choose the diagonal gauge, spinors ΘI , R-R fields Fα
β̄, and the spin connec-

tions Φābc, Φ̄ab̄c̄ are invariant under global O(10, 10) transformations or (finite) generalized

diffeomorphisms, while HMN , KMN , ΠM , and ΣM transform covariantly and the action

is invariant.8 The global double Lorentz symmetry is manifest but the local one is not

manifest because ΣM contains non-covariant quantity dΘI (or KMN contains the spin con-

nection). The local symmetry becomes manifest only after eliminating the auxiliary fields.

On the other hand, if we choose the diagonal gauge fixing, although the global O(10, 10)

transformations are manifest, the covariance under generalized diffeomorphisms are lost,

because the barred indices are rotated under the compensating local Lorentz transforma-

tion. Indeed, the transformation rule of fermionic fields after the diagonal gauge fixing is

Θ1 → Θ1 , Θ2 → ΩΘ2 , (2.117)

where Ω is the one given in (2.55), and in general, it is non-constant. Accordingly, dΘ2

(and thus ΣM also) does not transform covariantly.

It is interesting to note that all information on the curved background is contained in

the generalized metric MMN . The usual generalized metric HMN contains only the P -P

or P̄ -P̄ components [see (2.6)] while other quantities such as the R-R fluxes are contained

in the P -P̄ or P̄ -P components KMN .

In the following, we show that the action (2.116) reproduces the conventional GS

superstring action [88] up to quadratic order in fermions ΘI .

2.4.1 Classical equivalence to the type II GS action

In order to reproduce the conventional action, we choose the canonical section ∂̃m = 0.

Then, the condition (2.104) for AM indicates that AM takes the form (AM ) = (0, Am)

and DXM becomes

DXM =

(

dXm

dX̃m −Am

)

≡
(

dXm

Pm

)

, (2.118)

8More precisely, as discussed in [64, 87], AM does not transform covariantly because dXM does not

transform covariantly, and DXM ∧ AM is not invariant under generalized diffeomorphisms. However, the

variation is only the total-derivative term and the action is invariant under generalized diffeomorphisms.
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where, for simplicity, we defined Pm and treated it as a fundamental variable rather than

Am. The action then becomes

S =
1

4πα′

∫ [
1

2
MMN ΠM ∧ ∗γΠN − Pm ∧

(
dXm +Σm

)
]

− 1

4πα′

∫
(
dXm ∧ Σ̃m + dXm ∧ dX̃m

)
. (2.119)

We can expand the first line as

1

2
MMN ΠM ∧ ∗γΠN − Pm ∧

(
dXm +Σm

)

=
1

2
ĝmn

(
dXm +Σm

)
∧ ∗γ

(
dXn +Σn

)

+
1

2
ĝmn

[
Pm + Σ̃m − B̂mp (dX

p +Σp)
]
∧ ∗γ

[
Pn + Σ̃n − B̂nq (dX

q +Σq)
]

− Pm ∧
(
dXm +Σm

)

= ĝmn

(
dXm +Σm

)
∧ ∗γ

(
dXn +Σn

)
+
[
Σ̃n + B̂mn (dX

m +Σm)
]
∧
(
dXn +Σn

)

+
1

2
ĝmn

[
Pm + Σ̃m − B̂mp (dX

p +Σp)− ĝmp ∗γ (dXp +Σp)
]

∧ ∗γ
[
Pn + Σ̃n − B̂nq (dX

q +Σq)− ĝnq ∗γ (dXq +Σq)
]
, (2.120)

and eliminating the auxiliary fields Pm, we obtain

S =
1

4πα′

∫
[
ĝmn

(
dXm +Σm

)
∧ ∗γ

(
dXn +Σn

)
+ B̂mn

(
dXm +Σm

)
∧
(
dXn +Σn

)

− 2 dXm ∧ Σ̃m − Σm ∧ Σ̃m − dXm ∧ dX̃m

]
. (2.121)

By using the explicit expression for ΣM ,

ΣM =

(

Σm

Σ̃m

)

≡
(

Σm

Σ̂m +BmnΣ
n

)

,

(

Σm

Σ̂m

)

≡ i

2

(

Θ̄1 Γ
m dΘ1 +

¯̄Θ2 Γ̄
m dΘ2

Θ̄1 Γm dΘ1 − ¯̄Θ2 Γ̄m dΘ2

)

, (2.122)

and neglecting quartic terms in Θ and the topological term, the action becomes

S =
1

2πα′

∫

d2σ
√−γ L ,

L = −1

2

(
γᾱβ̄ − εᾱβ̄

)
(ĝmn + B̂mn) ∂ᾱX

m ∂β̄X
n − gmn ∂ᾱX

m
(
γᾱβ̄ Σn

β̄ + εᾱβ̄ Σ̂n
β̄

)
.

(2.123)

In order to compare the obtained action with the conventional GS superstring action,

let us further expand the Lagrangian as

L = −P ᾱβ̄
− (gmn +Bmn) ∂ᾱX

m ∂β̄X
n

− i P ᾱβ̄
+ ∂ᾱX

m Θ̄1 Γm

(

∂β̄Θ1 +
1

4
∂β̄X

n ω+nab Γ
abΘ1

)

− i P ᾱβ̄
− ∂ᾱX

m Θ̄2 Γm

(

∂β̄Θ2 −
1

4
∂β̄X

n ω−nab Γ̄
abΘ2

)

+
i

8
P ᾱβ̄
+ Θ̄1 Γm F̂ Γ̄nΘ2 ∂ᾱX

m ∂β̄X
n .

(2.124)
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where we have defined

P±ᾱβ̄ ≡
γᾱβ̄ ± εᾱβ̄

2
, Θ̄2 ≡ Θ†

2 Γ
0

( ¯̄Θ2 Γ̄m = Θ̄2 Γm

)
, (2.125)

and used the explicit form of the spin connection (2.52),

Φmab =
1√
2
ω+mab , Φ̄māb̄ = − 1√

2
ω−mab , ω±mab ≡ ωmab ±

1

2
em

cHcab . (2.126)

Further using

Γ̄ab = −Γab , F̂ Γ̄m = ∓ F̂ Γm (IIA/IIB) , (2.127)

we obtain the type II superstring action

LIIA/IIB = −P ᾱβ̄
− (gmn +Bmn) ∂ᾱX

m ∂β̄X
n

− i
(
P ᾱβ̄
+ ∂ᾱX

m Θ̄1 ΓmD+β̄Θ1 + P ᾱβ̄
− ∂ᾱX

m Θ̄2 ΓmD−β̄Θ2

)

∓ i

8
P ᾱβ̄
+ Θ̄1 Γm F̂ ΓnΘ2 ∂ᾱX

m ∂β̄X
n ,

(2.128)

where we defined

D±ᾱ ≡ ∂ᾱ +
1

4
∂ᾱX

m ω±m
ab Γab . (2.129)

For type IIA superstring, defining Θ ≡ Θ1 +Θ2, we obtain a simple action

LIIA = −P ᾱβ̄
− (gmn +Bmn) ∂ᾱX

m ∂β̄X
n

− i

2
γᾱβ̄ ∂ᾱX

m Θ̄ ΓmDβ̄Θ− i

2
εᾱβ̄ ∂ᾱX

m Θ̄ Γ11 ΓmDβ̄Θ ,
(2.130)

where we defined

Dᾱ ≡ ∂ᾱ +
1

4
∂ᾱX

m ωm
ab Γab −

1

8
∂ᾱX

mHm
ab Γab Γ

11 +
1

16
∂ᾱX

m F̂ Γm . (2.131)

On the other hand, for type IIB superstring, using the Pauli matrices σIJ
i (i = 1, 2, 3), we

can rewrite the action in a familiar form

LIIB = −P ᾱβ̄
− (gmn +Bmn) ∂ᾱX

m ∂β̄X
n

− i

2

(
γᾱβ̄ δIK + εᾱβ̄ σIK

3

)
Θ̄I ∂ᾱX

m ΓmDKJ
β̄ ΘJ ,

(2.132)

where we used (A.25) and defined

DIJ
ᾱ ≡ δIJ

(

∂ᾱ +
1

4
∂ᾱX

m ωm
ab Γab

)

+
1

8
σIJ
3 ∂ᾱX

mHmab Γ
ab

− 1

8

(

ǫIJ F̂1 + σIJ
1 F̂3 +

1

2
ǫIJ F̂5

)

∂ᾱX
n Γn ,

F̂p ≡
1

p!
F̂a1···ap Γ

a1···ap , (ǫIJ) ≡
(

0 1

−1 0

)

.

(2.133)

As discussed around (2.74), under a single T -duality along the xz-direction, the

fermionic variables transform as

Θ1 → Θ1 , Θ2 → 1√
gzz

Γz Θ2 . (2.134)

Since it flips the chirality of Θ2, it maps type IIA and IIB superstring to each other.
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3 YB deformations of AdS5 × S5 superstring

In this section, we revisit the homogeneous YB deformations of the AdS5×S5 superstring.

After a concise review of the supercoset construction of AdS5 × S5 superstring, we show

that the action of the YB sigma model can be expressed as the GS superstring action in

the β-deformed AdS5 × S5 background.

3.1 A supercoset construction of AdS5 × S5 superstring

3.1.1 Metsaev-Tseytlin action

Before considering YB deformations, we review a supercoset construction of the AdS5×S5

superstring action based on the supercoset

PSU(2, 2|4)
SO(1, 4)× SO(5)

. (3.1)

In order to perform the supercoset construction, we introduce a coset representative g ∈
SU(2, 2|4),9 and define the left-invariant current A as

A = g−1 dg , (3.2)

which satisfies the Maurer-Cartan equation

dA+A ∧A = 0 . (3.3)

By using the projections P (i) (i = 0, 1, 2, 3) to the Z4-graded components of g ≡ su(2, 2|4)
[see (B.8)], we decompose the left-invariant current as

A = A(0) +A(1) +A(2) +A(3) . (3.4)

We also define projection operators d± as

d± ≡ ∓P (1) + 2P (2) ± P (3) , (3.5)

which satisfy

Str
[
X d±(Y )

]
= Str

[
d∓(X)Y

]
. (3.6)

Now, we consider the sigma model action [89]

S =
T

2

∫

Str
(
A(2) ∧ ∗γA(2) −A(1) ∧A(3)

)

= −T

2

∫

d2σ
√−γ P ᾱβ̄

− Str
[
Aᾱ d−(Aβ̄)

]
, (3.7)

where T ≡ R2/2πα′ (R : the radius of AdS5 and S5) is the dimensionless string tension. In

order to relate the supercoset sigma model action to the AdS5 × S5 superstring action, let

9In order to obtain a matrix representation of the PSU(2, 2|4) group (which is necessary in appendix I),

we consider the SU(2, 2|4) group and project out the central generator Z as explained in appendix B.
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us prescribe a concrete parameterization of g and expand the action up the second order in

fermions. We first decompose the group element into the bosonic and the fermionic parts,

g = gb · gf , (3.8)

and parameterize the bosonic part gb as (see appendix B for the details)

gb = gAdS5 · gS5 , gAdS5 ≡ exp(xµ Pµ) · exp(ln z D) ,

gS5 ≡ exp(φ1 h1 + φ2 h2 + φ3 h3) · exp(ξ J56) · exp(rP5) .
(3.9)

Here, Pµ (µ, ν = 0, . . . , 3) and D are the translation and dilatation generators in the

conformal algebra so(2, 4), and hi (i = 1, 2, 3) are Cartan generators of the so(6) algebra,

given by

h1 ≡ J57 , h2 ≡ J68 , h3 ≡ P9 . (3.10)

On the other hand, we parameterize the fermionic part gf as

gf = exp(QI θI) , QI θI = (QI)α̌α̂ θIα̌α̂ , (3.11)

where the supercharges (QI)α̌α̂ (I = 1, 2) are labeled by two indices (α̌ , α̂ = 1, . . . , 4) and

θIα̌α̂ (I = 1, 2) are 16-components Majorana-Weyl fermions. Then, we can expand the

left-invariant current A as

A= g−1
f A(0) gf+QI dθI

=A(0)+[A(0),Q
I θI ]+

1

2

[
[A(0),Q

I θI ],Q
J θJ

]
+QI dθI+O(θ3) (3.12)

=

(

ea+
i

2
θ̄I γ̂

aDIJθJ

)

Pa−
1

2

(

ωab− 1

4
ǫIK θ̄I γ

cdRcd
abDKJθJ

)

Jab+QIDIJθJ+O(θ3) ,

where we have defined

A(0) ≡ g−1
b dgb =

(

em
aPa −

1

2
ωm

ab Jab

)

dXm ,

DIJ ≡ δIJ
(

d +
1

4
ωab γab

)

+
i

2
ǫIJ ea γ̂a , (Xm) = (xµ, z, r, ξ, φ1, φ2, φ3) ,

(3.13)

and used δIJ θ̄I γ̂
a dθJ = 0 and ǫIJ θ̄I γ

ab dθJ = 0.10 The vielbein ea = em
a dXm takes

the form

ea =

(
dx0

z
,
dx1

z
,
dx2

z
,
dx3

z
,
dz

z
, dr, sin r dξ, sin r cos ξ dφ1, sin r sin ξ dφ2, cos r dφ3

)

,

(3.14)

10We have also used

[A(0), Q
I
θI ] = Q

I

(

1

4
δ
IJ

ω
ab

γab +
i

2
ǫ
IJ

e
a
γ̂a

)

θJ ,

[

[A(0), Q
I
θI ], Q

J
θJ

]

= i θ̄I γ̂
a

(

1

4
δ
IJ

ω
cd

γcd +
i

2
ǫ
IJ

e
b
γ̂b

)

θJ Pa

+
1

4
ǫ
IK

θ̄I γ
cd

(

1

4
δ
KJ

ω
ab

γab +
i

2
ǫ
KJ

e
a
γ̂a

)

θJ dXm
Rcd

ef
Jef

+ (irrelevant terms proportional to the central charge Z) .
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and ωab = ωm
ab dXm and Rabcd are the corresponding spin connection and the Riemann

curvature tensor (see appendix A for our conventions). Using the expansion (3.12), we can

straightforwardly obtain

1

2
Str

[
Aᾱ d−(Aβ̄)

]
= ηab eᾱ

a eβ̄
b + i

[
eβ̄

a (θ̄1 γ̂a ∂ᾱθ1) + eᾱ
a (θ̄2 γ̂a ∂β̄θ2)

]

+
i

4

[

eβ̄
b eᾱ

a ωa
cd (θ̄1 γ̂b γcd θ1) + eᾱ

a eβ̄
b ωb

cd (θ̄2 γ̂a γcd θ2)
]

− eβ̄
a eᾱ

b θ̄1 γ̂a γ̂b θ2 , (3.15)

where eᾱ
a ≡ em

a ∂ᾱX
m. Further using eqs. (B.36), (B.40), and (B.41), we obtain

1

2
Str

[
Aᾱ d−(Aβ̄)

]
= gmn ∂ᾱX

m ∂β̄X
n + i

[
eβ̄

a Θ̄1 Γa ∂ᾱΘ1 + eᾱ
a Θ̄2 Γa ∂β̄Θ2

]

+
i

4

[

eβ̄
b eᾱ

a ωa
cd Θ̄1 Γb ΓcdΘ1 + eᾱ

a eβ̄
b ωb

cd Θ̄2 Γa ΓcdΘ2

]

− i

8
eβ̄

a eᾱ
b Θ̄I Γa F̂5 ΓbΘJ , (3.16)

where F̂5 is a bispinor

F̂5 ≡ 4 (Γ01234 + Γ56789) . (3.17)

Then, the action (3.7) becomes the GS type IIB superstring action (2.132) with the target

space given by the familiar AdS5 × S5 background:11

ds2 =
ηµν dx

µ dxν + dz2

z2
+ ds2

S5
, Bmn = 0 , eΦ F̂5 = 4

(
ωAdS5 + ωS5

)
. (3.18)

From the supergravity equations of motion (or the Weyl invariance of string theory), the

dilaton is determined as Φ = 0.

3.1.2 Killing vectors

For later convenience, let us calculate the Killing vectors T̂i ≡ T̂m
i ∂m associated with the

bosonic symmetries Ti of the AdS5 background. From the general formula (C.12) explained

in appendix C, the Killing vectors can be expressed as

T̂i = T̂i
m ∂m =

[
Adg−1

b

]

i
a ea

m ∂m = Str
(
g−1
b Ti gbPa

)
eam ∂m , (3.19)

11Here, we have defined (ηµν) = diag(−1, 1, 1, 1) and

ds2S5 ≡ dr2 + sin2
r dξ2 + cos2 ξ sin2

r dφ2
1 + sin2

r sin2
ξ dφ2

2 + cos2 r dφ2
3 ,

ωAdS5 ≡ −
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dz

z5
,

ωS5 ≡ sin3
r cos r sin ξ cos ξ dr ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3 (ωAdS5 = ∗10ωS5) .
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where we introduced a notation g Ti g
−1 ≡ [Adg]i

j Tj . By using our parameterization (3.9),

the Killing vectors on the AdS5 background are given by

P̂µ ≡ Str
(
g−1
b Pµ gbPa

)
eam ∂m = ∂µ ,

K̂µ ≡ Str
(
g−1
b Kµ gbPa

)
eam ∂m =

(
xν xν + z2

)
∂µ − 2xµ (x

ν ∂ν + z ∂z) ,

M̂µν ≡ Str
(
g−1
b Mµν gbPa

)
eam ∂m = xµ ∂ν − xν ∂µ ,

D̂ ≡ Str
(
g−1
b DgbPa

)
eam ∂m = xµ ∂µ + z ∂z .

(3.20)

The Lie brackets of these vector fields satisfy the same commutation relations (B.25) as

the conformal algebra so(2, 4) (with negative sign, [T̂i, T̂j ] = −fij
k T̂k):

[P̂µ, K̂ν ] = −2
(
ηµν D̂ − M̂µν

)
, [D̂, P̂µ] = −P̂µ , [D̂, K̂µ] = K̂µ ,

[M̂µν , P̂ρ] = −ηµρ P̂ν + ηνρ P̂µ , [M̂µν , K̂ρ] = −ηµρ K̂ν + ηνρ K̂µ ,

[M̂µν , M̂ρσ] = −ηµρ M̂νσ + ηµσ M̂νρ + ηνρ M̂µσ − ηνσ M̂µρ .

(3.21)

3.2 YB deformed AdS5 × S5 backgrounds

Let us now consider (homogeneous) YB deformations of the AdS5 × S5 superstring action.

A key ingredient that characterizes the YB deformation is an R-operator. It is a linear

operator R : g → g, that solves the homogeneous CYBE

CYBE(X,Y ) ≡ [R(X), R(Y )]−R([R(X), Y ] + [X, R(Y )]) = 0 , (3.22)

where X, Y ∈ g. We also define the dressed R-operator Rg as

Rg(X) ≡ g−1R(g X g−1) g , (3.23)

which also satisfies the homogeneous CYBE (3.22),

CYBEg(X,Y ) ≡ [Rg(X), Rg(Y )]−Rg([Rg(X), Y ] + [X, Rg(Y )]) = 0 , (3.24)

as long as R satisfies the homogeneous CYBE. Then, the action of YB-deformed AdS5×S5

superstring is given by

SYB = −T

2

∫

d2σ
√−γ P ᾱβ̄

− Str
[
Aᾱ d− ◦ O−1

− (Aβ̄)
]
, (3.25)

where we defined linear operators O± as

O± = 1± η Rg ◦ d± , (3.26)

and η ∈ R is a deformation parameter. This action reduces to the undeformed AdS5 × S5

action (3.7) by taking η = 0.

In this paper, we consider a class of R-operators that can be specified by using a

skew-symmetric classical r-matrix. By introducing an r-matrix r ∈ g⊗ g of the form

r =
1

2
rij Ti ∧ Tj , rij = −rji , Ti ∈ g , (3.27)
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the R-operator is defined as

R(X) = rij Ti Str(Tj X) , X ∈ g . (3.28)

Then, the YB deformations are characterized only by the r-matrix. In terms of the r-

matrix, the homogeneous CYBE (3.22) can be expressed as

fl1l2
i rjl1 rkl2 + fl1l2

j rkl1 ril2 + fl1l2
k ril1 rjl2 = 0 , (3.29)

where fij
k is the structure constant, [Ti, Tj ] = fij

k Tk.

3.2.1 Preparations

In the following, we rewrite the YB-deformed action in the form of the conventional GS

action, and show that the target space is a β-deformed AdS5× S5 background. In order to

determine the deformed background, it is sufficient to expand the action up to quadratic

order in fermions,

SYB = S(0) + S(2) +O(θ4) . (3.30)

This kind of analysis has been performed in [74] for the q-deformation of AdS5 × S5 and

in [13] for homogeneous YB deformations. However, the obtained deformed actions in the

previous works are very complicated and it is not easy to read off the deformed back-

ground explicitly. In this paper, we provide a general formula for the deformed back-

ground for an arbitrary r-matrix satisfying homogeneous CYBE, though our analysis is

limited to the cases where the r-matrices are composed only of the bosonic generators of

the superalgebra g.12

In order to expand the YB sigma model action (3.25), let us introduce some notations.

Since we are supposing that the r-matrices are composed of the bosonic generators, the

dressed R-operator Rgb acts as

Rgb(Pa) = λa
bPb +

1

2
λa

bc Jbc , Rgb(Jab) = λab
cPc +

1

2
λab

cd Jcd , Rgb(Q
I) = 0 .

(3.31)

According to the definition (3.28), the (dressed) R-operator is skew-symmetric

Str
[
Rgb(X)Y

]
= rij

[
Adg−1

b

]

i
k
[
Adg−1

b

]

j
l Str(Tk Y ) Str(Tl X) = −Str

[
X Rgb(Y )

]
, (3.32)

and by choosing X and Y as Pa or Jab, we obtain the following relations:

λab ≡ λa
c ηcb = −λba , λab

c = −1

2
ηcdRabef λd

ef , λab
ef Refcd = −λcd

ef Refab . (3.33)

For later convenience, we introduce the deformed currents as

J± ≡ O−1
± A± . (3.34)

12Rewriting of the YB sigma model action to the standard GS form based on the κ-symmetry was done

in [22] to full order in fermionic variables, and there, the deformed background associated with a general

r-matrix was determined.
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By using the results of appendix F, it can be expanded as

J± = O−1
±(0)(A(0)) +O−1

±(0)(A(1)) +O−1
±(1)(A(0)) +O(θ2)

= ea±Pa −
1

2
W ab

± Jab +QI DIJ
± θJ +O(θ2) , (3.35)

where we have defined

ea±≡ eb k±b
a , k±a

b≡
[
(1±2ηλ)−1

]

a
b , W ab

± ≡ωab±2η ec±λc
ab , (3.36)

DIJ
± ≡ δIJ D±+

i

2
ǫIJ ea± γ̂a , D±≡ d+

1

4
W ab

± γab . (3.37)

As it turns out, ea± and W ab
± , respectively, play the roles of the two vielbeins and the

torsionful spin connections ω± (2.126) in the deformed background.13

3.2.2 NS-NS sector

Let us first consider the NS-NS part of the YB sigma model action,

S(0) = −T

2

∫

d2σ
√−γ P ᾱβ̄

− Str
[
Aᾱ(0) d− ◦ O−1

−(0)(Aβ̄(0))
]
. (3.38)

From (F.4), we can easily see that it takes the form

S(0) = −T

∫

d2σ
√−γ P ᾱβ̄

− ηab eᾱ
a eβ̄

c k−c
b . (3.39)

By comparing this with the NS-NS part of the GS action [i.e. the first line of (2.132)], we

can regard (3.39) as the NS-NS part of the string sigma model on a deformed background

g′mn = e(m
a en)

b k+ab , B′
mn = e[m

a en]
b k+ab . (3.40)

Then, we obtain

E′mn ≡
[
(g′ +B′)−1

]mn
= (k−1

+ )ab ea
m eb

n = (η + 2 η λ)ab ea
m eb

n . (3.41)

In the original AdS5 × S5 background, the B-field is absent and we have

Emn = gmn = em
a en

b ηab , Emn = ηab ea
m eb

n . (3.42)

Therefore, the deformation can be summarized as

Emn → E′mn = Emn + 2 η λab ea
m eb

n . (3.43)

By comparing this with the β-transformation rule (2.76), we can regard the YB deformation

as β-deformation with the parameter

rmn = 2 η λab ea
m eb

n . (3.44)

13More precisely, we have W±ab ∧ ea∓ ∧ eb∓ =
(

ω[∓]ab ±
1
2
ec∓ H ′

cab

)

∧ ea∓ ∧ eb∓, where ω[±] represent the spin

connections associated with the vielbeins e± and H ′
3 represents the H-flux in the deformed background.
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If we compute the dual field in the deformed background, we obtain

G′
mn = ηab em

a en
b , β′mn = −2 η λab ea

m eb
n . (3.45)

The dual metric is invariant under the deformation Gmn → G′
mn = Gmn, while the β-field,

which is absent in the undeformed background, is shifted as βmn = 0 → β′mn = −rmn.

In addition, the YB-deformed dilaton Φ′ that is consistent with the kappa invariance

(or supergravity equations of motion) has been proposed in [13, 22] as

eΦ
′
= (det k+)

1
2 = (det k−)

1
2 . (3.46)

In order to compare this with the β-transformation law of the dilation, we consider the two

vielbeins e±m
a = eb k±b

a introduced in (3.36). Here, we can rewrite k±a
b as

k±a
b ≡

[
(1± 2 η λ)−1

]

a
b = ea

m
[
(1± g r)−1

]

m
n en

b = ea
m
[
(1± E r)−1

]

m
n en

b , (3.47)

by using rmn of (3.44) and Bmn = 0 in the undeformed background. Then, e±m
a becomes

e±m
a =

[
(E−⊺ ± r)−1E

⊺
]

m
n en

a . (3.48)

Comparing this with the β-transformation rule (2.76), we can identify e−m
a as the

β-deformed vielbein e′m
a. Similarly, e+m

a can be identified as the β-deformed barred

vielbein ē′m
a,

e−m
a ↔ e′m

a , e+m
a ↔ ē′m

a . (3.49)

Namely, we can express the deformed metric as

g′mn = e+m
a e+n

b ηab = e−m
a e−n

b ηab , (3.50)

and the invariance of e−2d = e−2Φ√−g under β-deformations shows

e−2Φ′
=

√−g√
−g′

e−2Φ =
det(em

a)

det(e±m
a)

e−2Φ = (det k±)
−1 e−2Φ . (3.51)

Recalling Φ = 0 in the undeformed background, the transformation rule (3.46) can be

understood as the β-transformation. Therefore, NS-NS fields are precisely β-deformed

under the homogeneous YB deformation.

For later convenience, let us rewrite rmn of (3.44) by using the r-matrix instead of λab.

From the definition, λab can be expressed as

λab = Str
[
Rgb(P

a)Pb
]
. (3.52)

By using the r-matrix r = 1
2 r

ij Ti ∧ Tj , this can be expressed as

Str
[
Rgb(P

a)Pb
]
= rij Str

(
g−1
b Ti gbPb) Str(g

−1
b Tj gbPa) = −rij

[
Adg−1

b

]

i
a
[
Adg−1

b

]

i
b ,

(3.53)
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and we obtain

rmn = −2 η rij
[
Adg−1

b

]

i
a
[
Adg−1

b

]

j
b ea

m eb
n . (3.54)

By using the Killing vectors (3.19) we obtain a very simple expression

rmn = −2 η rij T̂m
i T̂n

j . (3.55)

The β-field after the deformation takes the form

β′mn = −rmn = 2 η rij T̂m
i T̂n

j , β′ ≡ 1

2
β′mn ∂m ∧ ∂n = 2 η

(
1

2
rij T̂i ∧ T̂j

)

, (3.56)

and we can calculate the associated non-geometric R-flux

Rmnp ≡ 3β[m|q ∂qβ
|np] . (3.57)

By using the Lie bracket for the Killing vector fields [T̂i, T̂j ] = −fij
k T̂k, we obtain

Rmnp = −8 η2
(
fl1l2

i rjl1 rkl2 + fl1l2
j rkl1 ril2 + fl1l2

k ril1 rjl2
)
T̂m
i T̂n

j T̂ p
k = 0 , (3.58)

upon using the homogeneous CYBE (3.29). This shows the absence of the R-flux in ho-

mogeneous YB-deformed backgrounds as noted in [46].

3.2.3 R-R sector

Next, we determine the R-R fields from the quadratic part of the YB sigma model action

S(2), and show that the R-R fields are also β-deformed with the rmn given in (3.55).

As noticed in [13, 74], the deformed action naively does not have the canonical form

of the GS action (2.132), and we need to choose the diagonal gauge and perform a suitable

redefinition of the bosonic fields Xm. Since the analysis is considerably complicated, we

relegate the details to appendix H, and here we explain only the outline.

The quadratic part of the deformed action S(2) can be decomposed into two parts

S(2) = Sc
(2) + δS(2) . (3.59)

For a while, we focus only on the first part Sc
(2) since the second part δS(2) is completely

cancelled after some field redefinitions. The explicit expression of Sc
(2) is given by

Sc
(2) = −i T

∫

d2σ
√−γ

[

P ᾱβ̄
+ e−ᾱ

a θ̄1 γ̂aD+β̄θ1 + P ᾱβ̄
− e+ᾱ

a θ̄2 γ̂aD−β̄θ2

+ i P ᾱβ̄
+ ǫIJ θ̄1 e−ᾱ

a γ̂a e+β̄
b γ̂b θ2

]

. (3.60)

This action contains the two deformed vielbeins e±m
a similar to the DSM action (2.116)

prior to taking the diagonal gauge. As we observed in (3.49), these vielbeins e−m
a and

e+m
a correspond to the two vielbeins e′m

a and ē′m
ā introduced in (2.14), respectively. In

order to rewrite the action into the canonical form of the GS action, we need to choose the
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diagonal gauge em
a = ēm

ā. For this purpose, we first rewrite the action (3.60) in terms of

the 32× 32 gamma matrices. By using relations (B.36), (B.40), and (B.41), we obtain

Sc
(2) = −i T

∫

d2σ
√−γ

[

P ᾱβ̄
+ Θ̄1 e−ᾱ

a ΓaD+β̄Θ1 + P ᾱβ̄
− Θ̄2 e+ᾱ

a ΓaD−β̄Θ2

− 1

8
P ᾱβ̄
+ Θ̄1 e−ᾱ

a Γa F̂5 e+β̄
b ΓbΘ2

]

,

(3.61)

whereD±ᾱΘI ≡
(
∂ᾱ+

1
4 W±ᾱ

ab Γab

)
ΘI and F̂5 is the undeformed R-R 5-form field strength

F̂5 =
1

5!
F̂a1···a5 Γ

a1···a5 = 4
(
Γ01234 + Γ56789

)
. (3.62)

Next, we eliminate the barred vielbein e+m
a by using

e+m
a = (Λ−1)ab e−m

b = Λb
a e−m

b , Λa
b ≡ (k−1

− )a
c k+c

b ∈ SO(1, 9) , (3.63)

which follows from (3.36). By further using the identity [recall the formula (2.89)]

Ω−1 ΓaΩ = Λa
b Γb , Ω = (det k−)

1
2 Æ

(
−η λab Γab

)
, (3.64)

the action becomes

Sc
(2) = −i T

∫

d2σ
√−γ

[

P ᾱβ̄
+ Θ̄1 e

′
ᾱ
a ΓaD+β̄Θ1 + P ᾱβ̄

− Θ̄2Ω
−1 e′ᾱ

a ΓaΩD−β̄Θ2

− 1

8
P ᾱβ̄
+ Θ̄1 e

′
ᾱ
a Γa F̂5Ω

−1 e′β̄
c ΓcΩΘ2

]

.

(3.65)

We then perform a redefinition of the fermionic variables ΘI ,

Θ′
1 ≡ Θ1 , Θ′

2 ≡ ΩΘ2 , (3.66)

which corresponds to the transformation rule of fermions (2.117) under the diagonal gauge

fixing. As the result of the redefinition, we obtain

Sc
(2) = −T

∫

d2σ
√−γ

[

P ᾱβ̄
+ i Θ̄′

1 e
′
ᾱ
a ΓaD

′
+β̄Θ

′
1 + P ᾱβ̄

− i Θ̄2 e
′
ᾱ
a ΓaD

′
−β̄Θ

′
2

− 1

8
P ᾱβ̄
+ i Θ̄1 e

′
ᾱ
a Γa F̂5Ω

−1 e′β̄
b ΓbΘ

′
2

]

, (3.67)

where the derivatives D′
± are defined as

D′
+ ≡ D+ = d +

1

4
W ab

+ Γab ,

D′
− ≡ Ω ◦D− ◦ Ω−1 = d +

1

4
W ab

− ΩΓabΩ
−1 +ΩdΩ−1

= d +
1

4

[
Λa

c Λ
b
dW

cd
− + (ΛdΛ−1)ab

]
Γab .

(3.68)
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As we show in appendix G, the spin connection ω′ab associated with the deformed vielbein

e′a and the deformed H-flux H ′
abc satisfy

ω′ab +
1

2
e′cH

′cab = W ab
+ ,

ω′ab − 1

2
e′cH

′cab = Λa
c Λ

b
dW

cd
− + (ΛdΛ−1)ab ,

(3.69)

and D′
± can be expressed as

D′
± = d +

1

4

(

ω′ab ± 1

2
e′cH

′cab
)

Γab . (3.70)

Then, the deformed action (3.67) becomes the conventional GS action at order O(θ2) by

identifying the deformed R-R field strengths as

F̂ ′ = F̂5Ω
−1 . (3.71)

The transformation rule (3.71) has originally been given in [22] but our expression of

Ω (3.64) may be more useful to recognize the homogeneous YB deformations as β-twists.

Indeed, (3.71) is precisely the β-transformation rule of the R-R field strengths (2.98).

Another evidence for the equivalence between YB deformations and local β-deformations,

based on the κ-symmetry variations, is given in appendix I.

Finally, let us consider the remaining part δS(2). This is completely canceled by re-

defining the bosonic fields Xm [13, 74],

Xm → Xm +
η

4
σIJ
1 ecm λc

ab θ̄I γab θJ +O(θ4) , (3.72)

as long as the r-matrix satisfies the homogeneous CYBE. Indeed, this redefinition gives a

shift S(0) → S(0) + δS(0), and as explained in appendix H.2, the deviation δS(0) satisfies a

quite simple expression (the shift of S(2) is higher order in θ)

δS(0) + δS(2)

=
η2 T

2

∫

d2σ
√−γ P ᾱβ̄

− σIJ
1

[
CYBE(0)

g

(
J
(2)
+m, J

(2)
−n

)]ab
θ̄I γab θJ ∂ᾱX

m ∂β̄X
n , (3.73)

where CYBE
(0)
g (X,Y ) represents the grade-0 component of CYBEg(X,Y ) defined in (3.24).

This shows that δS(2) is completely cancelled out by δS(0) when the r-matrix satisfies the

homogeneous CYBE.

4 β-deformations with H-flux: AdS3 × S3 × T4

In the previous section, we have shown that the YB sigma model on the AdS5 × S5 back-

ground associated with an r-matrix r = 1
2 r

ij Ti∧Tj can be regarded as the GS superstring

theory defined on a β-deformed AdS5 × S5 background with the β-deformation parame-

ter rmn = −2 η rij T̂m
i T̂n

j . The same conclusion will hold also for other backgrounds in

string theory.
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In this section, we study deformations of an AdS background with H-flux. In the

presence of H-flux, it is not straightforward to define the YB sigma model, and we shall

concentrate only on β-deformations. As an example, we here consider the AdS3 × S3 ×T4

solution

ds2 =
−(dx0)2 + (dx1)2 + dz2

z2
+ ds2

S3
+ ds2

T4 ,

B2 =
dx0 ∧ dx1

z2
+

1

4
cos θ dφ ∧ dψ , Φ = 0 ,

ds2
S3

≡ 1

4

[
dθ2 + sin2 θ dφ2 +

(
dψ + cos θ dφ)2

]
,

(4.1)

which contains the non-vanishing H-flux

H3 = −2
dx0 ∧ dx1 ∧ dz

z3
− 1

4
sin θdφ ∧ dψ ∧ dθ . (4.2)

Using the Killing vectors T̂i of the AdS3 × S3 × T4 background, we consider local β-

deformations with deformation parameters of the form, rmn = −2 η rij T̂m
i T̂n

j . We consider

several r-matrices rij satisfying the homogeneous CYBE, and show that all of the β-

deformed backgrounds satisfy the equations of motion of (generalized) supergravity.

In order to find the Killing vectors explicitly, we introduce a group parameterization

for AdS3 × S3 (for simplicity, we do not consider the trivial T4 directions)

g = gAdS3 · gS3 · gT4 , gAdS3 = exp(xµPµ) · exp(ln z D) (µ = 0, 1) ,

gS3 = exp(φTL
4 ) · exp(θ TL

3 ) · exp(ψ TR
4 ) .

(4.3)

Here, similar to the AdS5 × S5 case (see appendix B), we have introduced the so(2, 2) ×
so(4) generators (Pǎ ,Pâ ,Jǎb̌ ,Jâb̂) (ǎ, b̌ = 0, 1, 2; â, b̂ = 3, 4, 5) as the following 8 × 8

supermatrices:

Pǎ =

(
1
2 γǎ 04
04 04

)

, Jǎb̌ =

(

−1
2 γǎb̌ 04
04 04

)

, γǎ ≡
(

+γǎ 02
02 −γǎ

)

,

Pâ =

(

04 04
04 − i

2 γâ

)

, Jâb̂ =

(

04 04
04 −1

2 γâb̂

)

, γâ ≡
(

−γâ 02
02 +γâ

)

,

(4.4)

where 2× 2 gamma matrices γǎ and γâ are defined as

{γ0, γ1, γ2} = {i σ3 , σ1 , σ2} , {γ3, γ4, γ5} = {σ1 , σ2 , σ3} . (4.5)

We have also defined the conformal basis {Pµ ,Mµν , D ,Kµ} as

Pµ ≡ Pµ + Jµ2 , Kµ ≡ Pµ − Jµ2 , Mµν ≡ Jµν , D ≡ P2 . (4.6)

The generators of su(2)L × su(2)R ≃ so(4) are defined as

TL
3 =

1

2
(P3 − J4,5) , TR

3 =
1

2
(P3 + J4,5) ,

TL
4 =

1

2
(P4 − J5,3) , TR

4 =
1

2
(P4 + J5,3) ,

TL
5 =

1

2
(P5 − J3,4) , TR

5 =
1

2
(P5 + J3,4) ,

(4.7)
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which satisfy the commutation relations,

[TL
i , T

L
j ] = −ǫijk T

L
k , [TR

i , TR
j ] = ǫijk T

R
k , [TL

i , T
R
j ] = 0 (ǫ345 = 1) . (4.8)

By computing the Maurer-Cartan 1-form A = g−1 dg, and using the supertrace formula

Str(PaPb) = ηab , Str(Jab Jcd) = Rabcd ,

Rǎb̌
čď ≡ −2 δ

[č
[ǎ δ

ď]

b̌]
, Râb̂

ĉd̂ ≡ 2 δ
[ĉ
[â δ

d̂]

b̂]
,

(4.9)

we can reproduce the above metric (4.1).

Then, we can find the Killing vectors T̂i of this background associated with the genera-

tor Ti by using the formula (3.19), or T̂m
i =Str

[
g−1T igPa

]
eam. The result is summarized as

P̂µ = ∂µ , M̂µν = xµ ∂ν − xν ∂µ , D̂ = xµ ∂µ + z ∂z ,

K̂µ = (xν xν + z2) ∂µ − 2xµ (x
ν ∂ν + z ∂z) ,

T̂L
3 = cosφ∂θ + sinφ

(

− 1

tan θ
∂φ +

1

sin θ
∂ψ

)

,

T̂R
3 = cosψ ∂θ + sinψ

(
1

sin θ
∂φ − 1

tan θ
∂ψ

)

,

T̂L
4 = ∂φ , T̂R

4 = ∂ψ ,

T̂L
5 = sinφ∂θ + cosφ

(
1

tan θ
∂φ − 1

sin θ
∂ψ

)

,

T̂R
5 = − sinψ ∂θ + cosψ

(
1

sin θ
∂φ − 1

tan θ
∂ψ

)

.

(4.10)

We note that among the AdS isometries, P̂µ, M̂01, and D̂ are symmetry of the B-field,

£P̂µ
B2 = £M̂01

B2 = £D̂B2 = 0 , (4.11)

while the special conformal generators K̂µ change the B-field by closed forms,

£K̂0
B2 = −2 dx1 ∧ dz

z
, £K̂1

B2 =
2dx0 ∧ dz

z
. (4.12)

In the following, we first study β-deformations by using Killing vectors P̂µ, M̂01, D̂, and

TR
4 . Then, non-trivial cases using the Killing vectors K̂µ are studied in section 4.3.

4.1 Abelian deformations

Let us begin by studying simple examples associated with Abelian r-matrices. As it has

been known well [8–13, 21], YB deformations associated with Abelian r-matrices can be

also realized as TsT-transformations.
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4.1.1 r = 1
2
P0 ∧ P1

Let us first consider an Abelian r-matrix

r =
1

2
P0 ∧ P1 . (4.13)

From P̂0 = ∂0 and P̂1 = ∂1, the β-transformation parameter is rmn = −η (δm0 δn1 − δm1 δn0 ).

After the β-transformation, we obtain the background

ds2 =
−(dx0)2 + (dx1)2

z2 + 2 η
+

dz2

z2
+ ds2

S3
+ ds2

T4 ,

B2 =
dx0 ∧ dx1

z2 + 2 η
+

1

4
cos θ dφ ∧ dψ , e−2Φ =

z2 + 2 η

z2
.

(4.14)

As we have mentioned above, we can also obtain the background by a TsT transformation

from the background (4.1); (1) T-dualize along the x1-direction, (2) (active) shift x0 →
x0 + η x1, (3) T-dualize along the x1-direction. This background is of course a solution of

supergravity.

As a side remark, noted that this background interpolates a linear dilaton background

in the UV region (z ∼ 0) and the undeformed AdS3×S3×T4 background in the IR region

(z → ∞). Indeed, by performing a coordinate transformation

x± =
x0 ± x1√

2
, z = eρ , (4.15)

the deformed background becomes

ds2 = − 2 e−2ρ

1 + 2 η e−2ρ
dx+ dx− + dρ2 + ds2

S3
+ ds2

T4 , e−2Φ = 1 + 2 η e−2ρ ,

B2 = − e−2ρ

1 + 2 η e−2ρ
dx+ ∧ dx− +

1

4
cos θ dφ ∧ dψ .

(4.16)

In the asymptotic region e−2ρ ≫ η−1 (i.e. z ∼ 0), the background approaches to a solution

that is independent of the deformation parameter η

ds2 = −2 dx+dx− + dρ2 + ds2
S3

+ ds2
T4 , Φ = ρ ,

B2 = −dx+ ∧ dx− +
1

4
cos θ dφ ∧ dψ ,

(4.17)

where we ignored the constant part of the dilaton and rescaled light-cone coordinates x± as

x± →
√

2 η x± . (4.18)

The AdS3 part of the background (4.16) is precisely the geometry obtained via a null de-

formation of SL(2,R) WZW model [90] (see also [91]), which is an exactly marginal defor-

mation of the WZW model (see [92–95] for recent studies). Note also that, under a formal

T -duality along the ρ-direction, the solution (4.17) becomes the following solution in DFT:

ds2 = −2 dx+dx− + dρ2 + ds2
S3

+ ds2
T4 , Φ = ρ̃ ,

B2 = −dx+ ∧ dx− +
1

4
cos θ dφ ∧ dψ ,

(4.19)
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where the dilaton depends linearly on the dual coordinate ρ̃. This background can be also

interpreted as the following solution of GSE:

ds2 = −2 dx+dx− + dρ2 + ds2
S3

+ ds2
T4 , Φ = 0 ,

B2 = −dx+ ∧ dx− +
1

4
cos θ dφ ∧ dψ , I = ∂ρ .

(4.20)

4.1.2 r = 1
2
P+ ∧ TR

4

As the second example, let us consider an Abelian r-matrix

r =
1

2
P+ ∧ TR

4

(

P+ ≡ P0 + P1√
2

)

. (4.21)

For convenience, let us change the coordinates such that the background (4.1) becomes

ds2 = −2 e2ρ dx+ dx− + dρ2 + ds2
S3

+ ds2
T4 , Φ = 0 ,

B2 = − e2ρ dx+ ∧ dx− +
1

4
cos θ dφ ∧ dψ .

(4.22)

In this coordinate system, the Killing vectors take the form, P̂+ = ∂+ and T̂R
4 = ∂ψ. Then,

the associated β-deformed (or TsT-transformed) background is given by

ds2=−2e2ρdx+dx−+dρ2+
η

2
e2ρdx− (dψ+2 cosθdφ)+ds2

S3
+ds2

T4 , Φ=0 ,

B2=−e2ρdx+∧dx−+1

4
cosθdφ∧dψ− η

4
e2ρdx−∧(dψ+2 cosθdφ) .

(4.23)

This background has been studied in [96], where the twist was interpreted as a spectral

flow transformation of the original model in the context of the NS-R formalism.

4.1.3 r = 1
2
D ∧ M01

Let us also consider a slightly non-trivial example r = 1
2 D∧M01, which is also an Abelian

r-matrix. The associated β-deformed background is given by

ds2 =
ηµν dx

µ dxν − 2 η z−1 xµ dx
µ dz +

(

1 +
2 η xµ xµ

z2

)

dz2

z2 − η (η − 2)xµ xµ
+ ds2

S3
+ ds2

T4 ,

e−2Φ =
z2 − η (η − 2)xµ x

µ

z2
,

B2 =
dx0 ∧ dx1 − η z−1 (x1 dx0 − x0 dx1) ∧ dz

z2 − η (η − 2)xµ xµ
+

1

4
cos θ dφ ∧ dψ .

(4.24)

We can easily check that this is a solution of the supergravity. In order to obtain the same

background by performing a TsT transformation, we should first change the coordinates

such that the Killing vectors D̂ and M̂01 become constant, and perform a TsT transforma-

tion, and then go back to the original coordinates. The β-transformation is much easier in

this case.
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In order to describe the same β-deformation in the global coordinates

ds2 = − cosh2 ρ dτ2 + sinh2 ρ dχ2 + dρ2 + ds2
S3

+ ds2
T4 , Φ = 0 ,

B2 = cosh2 ρ dτ ∧ dχ+
1

4
cos θ dφ ∧ dψ ,

(4.25)

we change the group parameterization as

gAdS3 = exp(i τ D + i χM01) · exp(ρP1) . (4.26)

In this case, we can compute the Killing vectors as

D̂ = −i ∂τ , M̂01 = −i ∂χ . (4.27)

Then, the β-deformed background becomes

ds2 =
− cosh2 ρ dτ2 + sinh2 ρ dχ2

1 + η (η − 2) cosh2 ρ
+ dρ2 + ds2

S3
+ ds2

T4 ,

Φ =
1

2
ln

[
1

1 + η(η − 2) cosh2 ρ

]

,

B2 = (1− η)
cosh2 ρ dτ ∧ dχ

1 + η (η − 2) cosh2 ρ
+

1

4
cos θ dφ ∧ dψ .

(4.28)

If the deformation parameter η and the angular coordinate χ are replaced as

η → 1−
√
α , χ →

√
αχ , (4.29)

the AdS part of this background reproduce the background obtained in [91, 97] through a

current-current deformation of the SL(2,R) WZW model (see eqs. (5.1)–(5.3) in [91]).

4.2 Non-unimodular deformations

Let us next consider β-deformations associated with non-Abelian r-matrices. In particular,

we consider non-unimodular r-matrices, namely non-Abelian r-matrices satisfying

I ≡ η rij [Ti, Tj ] = η rij fij
k Tk 6= 0 . (4.30)

In general, as was shown in [22], YB deformations associated with non-unimodular r-

matrices give backgrounds that do not satisfy the usual supergravity equations but rather

the GSE [39, 40, 43–45], which include non-dynamical Killing vector Im (see appendix A).

As it was observed experimentally [47, 98–100], the extra vector Im typically takes the

form (see appendix A for a derivation in the case of the AdS5 × S5 superstring)

Im = Îm ≡ −η rij [T̂i, T̂j ]
m = η rij fij

k T̂m
k

(
[T̂i, T̂j ]

m = £T̂i
T̂m
j = −fij

k T̂m
k

)
.

(4.31)

Using rmn = −2 η rij T̂m
i T̂n

j obtained in (3.55) and the Killing property of T̂i, we can also

express the experimental formula as [46, 47, 98–100]

Im = Dnr
nm , (4.32)
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where Dn is the usual covariant derivative associated with the undeformed AdS3× S3×T4

background.

Interestingly, as we explain in section 4.2.2, in some examples, even for non-unimodular

r-matrices, the β-deformed backgrounds satisfy the usual supergravity equations of motion.

Such example has not been observed in the case of the AdS5 × S5 background,14 and this

is due to a particular property of the AdS3 × S3 × T4 background as explained below.

4.2.1 r = 1
2
c̄µ D ∧ Pµ

Let us consider the simplest non-unimodular r-matrix r = 1
2 c̄

µD ∧ Pµ, satisfying

I = η c̄µ [D, Pµ] = cµPµ 6= 0
(
cµ ≡ η c̄µ

)
. (4.33)

The β-deformed background becomes

ds2 =
ηµν dx

µ dxν + 2 z−1 (c0 dx1 − c1 dx0) dz +
[
1 + 2 z−2 (c1 x0 − c0 x1)

]
dz2

z2 + cµ cµ + 2 (c1 x0 − c0 x1)

+ ds2
S3

+ ds2
T4 , e−2Φ =

z2 + cµ c
µ + 2 (c1 x0 − c0 x1)

z2
,

B2 =
dx0 ∧ dx1 − z−1 cµ dx

µ ∧ dz

z2 + cµ cµ + 2 (c1 x0 − c0 x1)
+

1

4
cos θ dφ ∧ dψ ,

(4.34)

where cµ ≡ ηµν c
ν . Although this is not a solution of the usual supergravity, by introducing

a Killing vector,

I = cµP̂µ = cµ ∂µ , (4.35)

it becomes a solution of the GSE.

4.2.2 r = 1
2
c̄µ M01 ∧ Pµ

The next example is a non-unimodular r-matrix r = 1
2 c̄

µM01 ∧ Pµ, satisfying

I = −cµPµ 6= 0
(
cµ ≡ η c̄µ

)
. (4.36)

The β-deformed background becomes

ds2 =
ηµν dx

µ dxν

z2 − 2 cµ xµ
+

dz2

z2
+ ds2

S3
+ ds2

T4 , e−2Φ =
z2 − 2 cµ x

µ

z2
,

B2 =
dx0 ∧ dx1

z2 − 2 cµ xµ
+

1

4
cos θ dφ ∧ dψ .

(4.37)

where cµ ≡ ηµν c
ν . As usual, by introducing

I = −cµP̂µ = −cµ ∂µ , (4.38)

this background satisfies the GSE.

14See a recent paper [41] for a general analysis of such backgrounds, called the “trivial solutions” of GSE.
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Here, note that the defining properties of Im,

£Igmn = 0 , £IBmn = 0 , (4.39)

require that the parameters should satisfy c0 = ±c1. In terms of DFT, the above deformed

background can be expressed as

(HMN ) =

(

(g −B g−1B)mn (B g−1)m
n

−(g−1B)mn gmn

)

, d = Φ− 1

2
ln
√−g + Iµ x̃µ . (4.40)

This solves the equations of motion of DFT for arbitrary parameters cµ, but they satisfy

the strong constraint

∂PHMN ∂Pd = 0 , (4.41)

only when c0 = ±c1. Therefore, we have to choose c0 = ±c1.

In fact, this background has a distinctive feature that has not been observed before.

According to the classification of [22], the condition for a YB-deformed background to

be a standard supergravity background is the unimodularity condition. However, in this

example, the background (4.37) satisfies the GSE even if we perform a rescaling Im → λ Im

with arbitrary λ ∈ R. In particular, by choosing λ = 0, the background (4.37) without Im

satisfies the usual supergravity equations of motion. As we explain below, the reason for

the unusual behavior is closely related to the degeneracy of (g ±B)mn.

According to [43], the condition for a solution of the GSE to be a standard supergravity

background is given by

£̂Y HMN = 0 , HMN Y M Y N = ∇MY M , (4.42)

where ∇M is the (semi-)covariant derivative in DFT and

XM ≡
(

Im

0

)

, Y M ≡ HM
N XN =

(

−(g−1B)mn I
n

(g −B g−1B)mn I
n

)

. (4.43)

In our example with c0 = ±c1, (g±B)mn I
n = 0 is satisfied, and this leads to Y M = ±XM .

Then, from the null and generalized Killing properties of XM

HMN XM XN = 0 , £̂XHMN = 0 , ∇MXM = 0 , (4.44)

the condition (4.42) is automatically satisfied, and our GSE solution is also a solution of the

standard supergravity. If we regard the background (4.37) as a solution of supergravity, the

strong constraint is satisfied for an arbitrary cµ and it is not necessary to require c0 = ±c1.

4.2.3 r = 1
2

(
āµD ∧ Pµ + b̄µM01 ∧ Pµ

)

As a more general class of r-matrices, let us consider

r =
1

2

(
āµD ∧ Pµ + b̄µM01 ∧ Pµ

)
. (4.45)
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The homogeneous CYBE requires

ā0 b̄1 − ā1 b̄0 = 0 , −ā0 b̄0 + a1 b̄1 = 0 , (4.46)

and we consider a non-trivial solution

r =
1

2

(
c̄ D + d̄M01

)
∧ (P0 ± P1) . (4.47)

The non-unimodularity becomes

I = (c− d) (P0 ± P1)
(
c ≡ η c̄ , d ≡ η d̄

)
. (4.48)

The corresponding β-deformed background is given by

ds2 =
ηµν dx

µ dxν ∓ 2 c z−1 (dx0 ∓ dx1) dz +
[
1± 2 z−2 (c± d)(x0 ∓ x1)

]
dz2

z2 ± 2 (c± d)(x0 ∓ x1)

+ ds2
S3

+ ds2
T4 , e−2Φ =

z2 ± 2 (c± d)(x0 ∓ x1)

z2
,

B2 =
dx0 ∧ dx1 + c z−1 (dx0 ∓ dx1) ∧ dz

z2 ± 2 (c± d)(x0 ∓ x1)
+

1

4
cos θ dφ ∧ dψ .

(4.49)

By introducing a Killing vector,

I = (c− d) (P̂0 ± P̂1) = (c− d) (∂0 ± ∂1) , (4.50)

this background becomes a solution of the GSE. In particular, when c = d, this becomes a

supergravity background.

Similar to the previous example, the Killing vector again satisfies (g±B)mn I
n = 0, and

even if we rescale the Killing vector as Im → λ Im, this is still a solution of the GSE. As a

particular case λ = 0, the background (4.49) becomes a solution of the usual supergravity.

Let us also consider the case,

r =
1

2
āµD ∧ Pµ

(
i.e., b̄µ = 0

)
. (4.51)

In this case, the β-deformed background becomes

ds2 =
ηµν dx

µ dxν + 2 z−1 (a0 dx1 − a1 dx0) dz + [1 + 2 z−2 (a1x0 − a0x1)] dz2

z2 + aµaµ + 2(a1x0 − a0x1)

+ ds2
S3

+ ds2
T4 , e−2Φ =

z2 + aµ aµ + 2 (a1 x0 − a0 x1)

z2
,

B2 =
dx0 ∧ dx1 + z−1dz ∧ (−a0 dx0 + a1 dx1)

z2 + aµ aµ + 2 (a1 x0 − a0 x1)
+

1

4
cos θ dφ ∧ dψ , I = aµ ∂µ ,

(4.52)

and this is a solution of the GSE for arbitrary aµ ≡ η āµ. In this case, we can freely rescale

the Killing vector Im only when a0 = ±a1.
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4.3 “β-deformations” with generalized isometries

In the previous subsections, we have not considered the special conformal generators K̂µ.

As in the case of AdS5 × S5 background, if there is no B-field, we can obtain various

solutions from β-deformations using K̂µ. However, in the AdS3 × S3 × T4 background,

we cannot naively use K̂µ according to £K̂µ
B2 6= 0. Indeed, even for a simple Abelian

r-matrix, such as r = 1
2 K0 ∧ K1 or r = 1

2 K+ ∧ P+, the β-deformed background does

not satisfy the supergravity equations of motion. In this subsection, we explain how to

utilize the special conformal generators, and obtain several solutions from (generalization

of) β-deformations.

In the canonical section ∂̃m = 0, if there exists a pair (vm, ṽm) satisfying

£vgmn = 0 , £vB2 + dṽ1 = 0 , £vΦ = 0 , (4.53)

it means that the background admits a generalized Killing vector (V M ) = (vm, ṽm)

satisfying

£V HMN = 0 , £V d = 0 . (4.54)

Then, the equation (4.12) shows that there exist generalized Killing vectors K̂M
µ associated

with the Killing vectors K̂m
µ . Since a generalized vector of the form V M = ∂Mf(x), which

we call a trivial Killing vector, is always a generalized Killing vector, there is ambiguity in

the definition of the generalized Killing vector. Using the ambiguity, we can find a set of

generalized Killing vectors T̂i = (T̂M
i ) that satisfy

£̂
T̂i
HMN = £̂

T̂i
d = 0 , £̂

T̂i
T̂
M
j + £̂

T̂j
T̂
M
i = 0 , (4.55)

as well as the conformal algebra so(2, 2) by means of the C-bracket

[V, W ]MC ≡ 1

2
(£̂V W − £̂WV )M . (4.56)

Note that, according the requirement £̂
T̂i
T̂M
j + £̂

T̂j
T̂M
i = 0, the C-bracket coincides with

the D-bracket, [V, W ]MD ≡ £̂V W
M . We can find the following set of generalized Killing

vectors:

D̂ ≡ x+ ∂+ + x− ∂− + z ∂z , P̂+ ≡ ∂+ , P̂− ≡ ∂− ,

M̂+− = x+ ∂+ − x− ∂− + z−1 ∂̃z ,

K̂+ = z2 ∂+ + 2 (x−)2 ∂− + 2x− z ∂z + 2 ∂̃− − 2x−

z
∂̃z ,

K̂− = 2 (x+)2 ∂+ + z2 ∂− + 2x+ z ∂z − 2 ∂̃+ +
2x+

z
∂̃z ,

(4.57)

which satisfy

ηMN K̂
M
± P̂

N
∓ = ±2 , ηMN D̂

M
M̂

N
+− = 1 , ηMN T̂

M
i T̂

N
j = 0 (others) . (4.58)
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If we could find generators T̂′
i which satisfy

ηMN T̂
′M
i T̂

′N
j = 0 , (4.59)

they are on a common D-dimensional section, and we can find a duality frame where

the generalized Killing vectors take the form (T′M
i ) = (T′m

i , 0). If it is possible, the

generalized Killing vectors reduces to the usual Killing vector and we can consider the

usual β-deformations in such duality frame. However, it seems unlikely to be the case in

the AdS3×S3×T4 background, and in the following, we employ the above set of generalized

Killing vectors.

4.3.1 r = 1
8
K+ ∧ P+

Let us first consider an Abelian r-matrix r = 1
8 K+ ∧ P+ associated with the Abelian

generalized isometries; [K̂+, P̂+]C = 0. Since K̂+ has the dual components, it is not clear

how to perform a “β-deformation.” We thus change the generalized coordinates such that

the dual components disappear.

We here employ the simple coordinate transformation law by Hohm and Zwiebach [101].

Namely, under a generalized coordinate transformation xM → x′M , the generalized tensors

are transformed as

H′
MN (x′) = FM

K(x′, x)FN
L(x′, x)HKL(x) , e−2d′(x′) =

∣
∣
∣det

∂xM

∂x′N

∣
∣
∣ e−2d′(x′) ,

FM
N (x′, x) ≡ 1

2

(
∂x′M
∂xP

∂xN

∂x′P
+

∂xP

∂x′M
∂x′P
∂xN

)

.

(4.60)

We can easily check that a generalized coordinate transformation

z̃′ = z̃ +
lnx−

z
, x′M = xM (others) , (4.61)

indeed removes the dual components; (K′M
+ ) = (K̂ ′m

+ , 0) and (P′M
+ ) = (P̂ ′m

+ , 0). In fact,

this transformation H′
MN = FM

K FN
LHKL with

(FM
N ) =

(

110 qmn

0 110

)

, q−z = −qz− = − 1

x− z
, (4.62)

is precisely a B-field gauge transformation,

B2 → B2 −
dx− ∧ dz

x− z
. (4.63)

In the transformed background, the B-field is shifted

ds2 =
−2 dx+ dx− + dz2

z2
+ ds2

S3
+ ds2

T4 ,

B2 =
dx− ∧ (x− dx+ − z dz)

x− z2
+

1

4
cos θ dφ ∧ dψ , e−2Φ = 1 ,

(4.64)
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we can check the isometries

£K̂+
gmn = £K̂+

Bmn = £K̂+
Φ = 0 , £P̂+

gmn = £P̂+
Bmn = £P̂+

Φ = 0 . (4.65)

Then, we can perform the usual β-deformation associated with r = 1
8 K+ ∧ P+,

ds2 =
−2 dx+ dx− + η dx− (dx− − 2x− z−1 dz)

z2 + η (x−)2
+

dz2

z2
+ ds2

S3
+ ds2

T4 ,

B2 =
dx− ∧ (x− dx+ − z dz)

x− [z2 + η (x−)2]
+

1

4
cos θ dφ ∧ dψ , e−2Φ =

z2 + η (x−)2

z2
.

(4.66)

Finally, we go back to the original coordinates, HMN = (F−1)M
K (F−1)N

LHKL, and

obtain

ds2=
−2dx+dx−+ηdx− (dx−−2x− z−1dz)

z2+η (x−)2
+
dz2

z2
+ds2

S3
+ds2

T4 ,

B2=
dx−∧dx++ηx− z−1dx−∧dz

z2+η (x−)2
+
1

4
cosθdφ∧dψ , e−2Φ=

z2+η (x−)2

z2
.

(4.67)

This is a new solution of the usual supergravity.

4.3.2 General procedure

In general, it is not easy to find a generalized coordinate transformation like (4.61), which

removes the dual components of the generalized Killing vectors. However, in fact, it is not

necessary to find such a coordinate transformation. As it is clear from the above procedure,

for an r-matrix, r = 1
2 r

ij Ti ∧ Tj , associated with the generalized Killing vectors, the

previous deformation is simply a transformation

HMN → H′
MN = hM

K hN
LHKL , hM

N ≡ δNM − 2 η rij T̂iM T̂
N
j . (4.68)

Requiring the generalized Killing vectors T̂i contained in the r-matrix to be mutually

orthogonal (i.e. ηMN T̂M
i T̂N

j = 0), we can easily see that the transformation matrix hM
N

is an O(D,D) matrix. In general, this O(D,D) transformation is a combination of a β-

transformation and diffeomorphisms, but in particular, when all of T̂i do not have the dual

components, this hM
N reduces to the usual β-transformation matrix. We can easily check

that the above solution (4.67) can be obtained from the original background in the single

step (4.68).

When we consider a non-unimodular r-matrix, we suppose that the formula (4.30) will

be correct in a duality frame where T̂i take the form (T̂M
i ) = (T̂m

i , 0). Then, the deformed

background will be a solution of modified DFT (mDFT) [43] with

XM = ÎM ≡
(

Îm

Îm

)

≡ η rij [T̂i, T̂j ]
M
C . (4.69)

In terms of the GSE, it is a solution with Im = Îm and Zm = ∂mΦ+ InBnm + Îm.
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4.3.3 r = 1
2
K+ ∧ K−

For an Abelian r-matrix r = 1
2 K+ ∧ K−, we do not find a generalized coordinate system

where dual components of both K̂M
+ and K̂M

− vanish. However, from the general proce-

dure (4.68), we can easily obtain the deformed background

ds2 =
−2 dx+ dx− + dz2 + 2 η [2 (x− dx+ + x+ dx−)− (2x+ x− + z2) dz

z ]2

z2 + 2 η (z2 − 2x− x+)2

+ ds2
S3

+ ds2
T4 , e−2Φ =

z2 + 2 η (2x+ x− − z2)2

z2
,

B2 =
dx− ∧ dx+ − 4 η (2x+ x− − z2)(dx− ∧ dx+ + (x− dx+ − x+ dx−) ∧ dz

z

z2 + 2 η (z2 − 2x− x+)2

+
1

4
cos θ dφ ∧ dψ .

(4.70)

We can easily see that this is a solution of the usual supergravity.

4.3.4 r = 1
2
M+− ∧ K+ or r = 1

2
D ∧ K+

Let us next consider a non-unimodular r-matrix r = 1
2 M+− ∧ K+, satisfying

I = η [M+−, K+] = ηK+ . (4.71)

In this case, the deformed background

ds2 =
−2 dx− dx+ + dz2 − 2 η (dx− − x− dz

z ) [2x+ dx− + 2x− dx+ − (2x+ x− + z2) dz
z ]

z2 − 2 η x− (2x−x+ − z2)

+ ds2
S3

+ ds2
T4 , e−2Φ =

z2 − 2 η x− (2x+ x− − z2)

z2
,

B2 =
1

4
cos θ dφ ∧ dψ

+
(1 + 2 η x−) dx− ∧ dx+ + η [ 2 (x−)2 dx+ − (4x+ x− − z2) dx− ] ∧ dz

z

z2 − 2 η x− (2x+ x− − z2)
, (4.72)

satisfies the equations of motion of mDFT with XM = η K̂M
+ .

Similar to the example studied in section 4.2.2, we can freely rescale XM as

XM →λXM (λ ∈ R), and in a particular case λ = 0, (4.72) can be regarded as a so-

lution of the usual supergravity.

Interestingly, we can obtain the same background also by considering an r-matrix

r = 1
2 D∧K+, satisfying I = η [D, K+] = −ηK+. This also may be related to the degeneracy

of (g ±B)mn in the AdS3 × S3 × T4 background.

4.3.5 Non-orthogonal case: r = 1
2
D ∧ M+−

Let us finally comment on an Abelian r-matrix r = 1
2 D ∧ M+−, which is a generalized

version of the example considered in section 4.1.3. In this case, the associated generalized

Killing vectors D̂M and M̂N
+− are not orthogonal to each other, ηMN D̂M M̂N

+− 6= 0, and

hM
N in (4.68) is not an O(10, 10) matrix. Accordingly, the deformed background is not
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a solution of the usual supergravity. In order to reproduce the example of section 4.1.3

from the general procedure (4.68), we need to utilize trivial Killing vectors. Indeed, by

introducing a trivial Killing vector, N̂M ≡ ∂M ln z, M̂′M
+− ≡ M̂M

+− − N̂M takes the form

(M̂′M
+−) = (Mm

+−, 0), and the transformation matrix hM
N associated with an r-matrix

r = 1
2 D ∧ M̂′

+− is an O(10, 10) matrix. The deformed background reproduces the same

background obtained in section 4.1.3.

As this example indicates, the null condition cij ≡ ηMN T̂M
i T̂N

j = 0, is very important.

Since a gauge transformation in DFT (i.e. generalized diffeomorphism) is a local O(D,D)

rotation, in order to realize the deformation hM
N as a gauge symmetry in DFT, hM

N

should be an O(D,D) matrix. This requirement is equivalent to a condition

rik ckl r
lj
T̂
M
i T̂

N
j = 0 . (4.73)

It is interesting to find a set of generalized Killing vectors T̂M
i and an r-matrix (satisfying

CYBE) that satisfy the above condition with cij 6= 0, but here we simply require cij = 0.

Note that the same the null condition cij = 0 is known in the context of the non-Abelian

T -duality. As it has been studied in [102, 103], the null condition played an important role

in gauging non-Abelian isometries.

4.3.6 Short summary

Let us summarize this subsection. Usually, we prepare a bi-vector r̂ = 1
2 r

ij T̂i∧T̂j satisfying

the homogeneous CYBE (or the Poisson condition)

[r̂, r̂]S ≡ rij rkl [T̂i, T̂k] ∧ Tj ∧ Tl = −rij rkl fik
m T̂m ∧ T̂j ∧ T̂l = 0 , (4.74)

where [·, ·]S is the Schouten bracket, and perform a local β-transformation

hM
N =

(

110 010
rmn(x) 110

)

, rmn(x) = −2 η rij T̂m
i T̂n

j . (4.75)

In this subsection, in order to allow for the non-standard Killing vectors K̂µ satisfy-

ing (4.12), we have generalized the Killing vectors T̂i into the generalized Killing vectors T̂i.

The generalized Killing vectors T̂i are defined such that their C-bracket satisfy the same

commutation relations as those of T̂i. The homogeneous CYBE is generalized by replacing

the usual Lie bracket with the C-bracket, and performing O(D,D) transformations

hM
N = δNM − 2 η rij T̂iM T̂

N
j , (4.76)

we have obtained several new solutions of DFT. In particular, when all of the general-

ized Killing vectors T̂M
i do not have the dual components, this generalized transformation

reduces to the usual local β-transformations.
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5 Conclusions

In this paper, we have shown that, after suitable field redefinitions, a homogeneous YB-

deformed AdS5 × S5 superstring action associated with bosonic isometries can be always

express as the usual GS superstring action up to quadratic order in fermions. The de-

formations were made only in the supergravity backgrounds and they were identified as

local β-deformations. We have also found a DSM action that reproduces the GS type II

superstring action up to quadratic order in fermions. After taking the diagonal gauge,

the spacetime fermion is transformed as Θ2 → ΩΘ2 under β-transformations. We found

an explicit form of Ω in terms of the β-transformation parameter and the NS-NS fields.

Moreover, β-deformations of H-fluxed AdS backgrounds were also studied and various solu-

tions are obtained. In several examples of non-unimodular deformations, we unexpectedly

obtained solutions of the usual supergravity.

In this paper, we have mainly focused on the YB deformations of the AdS5 × S5

superstring, but the equivalence between homogeneous YB deformations and local β-

deformations will be shown also for other backgrounds.15 Indeed, if we observe the NS-NS

part of the deformed action discussed in section 3.2.2, it is clear that we have not used

specific properties of the psu(2, 2|4) algebra. At least when the B-field is absent, and the

algebra g admits a projection P to the bosonic coset generators Pa and κab ≡ Str(Pa Pb)

is non-degenerate, the bosonic part of a coset YB sigma model associated with a skew-

symmetric R-operator becomes

S(0) ∼
∫

d2σ
√−γ P ᾱβ̄

− Str
[
Aᾱ P ◦ O−1

− (Aβ̄)
]∣
∣
θ=0

=

∫

d2σ
√−γ P ᾱβ̄

− eᾱ
a eβ̄

b k+ab , (5.1)

where P (Aᾱ) ≡ eᾱ
a Pa, Rg(Pa) ≡ λa

b Pb, and k+ab ≡ [(κ−1 + η κ−1 λ)−1]ab. According to

the skew-symmetry λab = −λba [λab ≡ (κ−1 λ)ab] , the YB deformation

Emn = Gmn → E′mn = Gmn + η λab ea
m eb

n
(
Gmn ≡ em

a en
b κab

)
, (5.2)

can be regarded as a (local) β-deformation. The YB deformations of R-R fields are rather

non-trivial, but we expect that the equivalence between YB deformations and local β-

deformation will be shown in more general cases, as long as the r-matrix consists of bosonic

generators. In a general analysis performed in [22], the YB sigma model action associated

with a general r-matrix satisfying the homogeneous (or modified) CYBE has been expressed

in the standard form of the GS superstring to all order in fermions. When the r-matrix

contains fermionic generators, we expect the deformation of the target space can be no

longer regarded as a local β-deformation. It will be an interesting future direction to

clarify what kind of deformations are made in such cases.

As we showed in section 4, all of the β-deformed AdS3 × S3 × T4 backgrounds are so-

lutions of (generalized) supergravity and string theory is well-defined in such backgrounds.

In this sense, the local β-deformations are certain duality transformations in string theory.

It will be interesting future work to check the integrability of string sigma model on the

15See a recent paper [104] for a generalization of the “YB deformations” (or the open-closed string map)

beyond the coset spaces.
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β-deformed AdS3×S3×T4 backgrounds obtained in this paper. It is also important to for-

mulate the homogeneous YB deformations of type II superstring in H-fluxed background

and show the equivalence to β-transformations.

In this paper, we obtained the O(10, 10)-invariant DSM action for type II superstring.

Although we considered only up to the quadratic order in fermionic variables, it is important

to obtain the complete action. In fact, a T -duality manifest GS superstring action has been

proposed also in [66, 67]. In our approach, the R-R field strengths are contained in the P -P̄

or P̄ -P components of the generalized metric MMN , but also in the approach of [66, 67],

they will appear in the “left-right” mixing terms. It is interesting future work to make

the connection between the double-vielbein formalism and the approach of [66, 67] clearer,

and obtain a T -duality manifest GS superstring action in arbitrary curved backgrounds.

In the conventional GS superstring, from the requirement of the kappa invariance, the

(generalized) supergravity equations of motion has been obtained [40]. By generalizing

this analysis, it will be important to derive the type II DFT equations of motion from the

T -duality manifest GS superstring action.

It is also important to formulate the DSM that manifests the symmetry of non-Abelian

T -dualities. When the target space is a group manifold, such DSM has been formulated

in [105, 106] and its symmetry is clearly discussed in [107] (see also [28, 108] for relevant re-

cent works). Its generalization to coset space will be important for a clearer understanding

of YB deformations. In the usual DSM, the generalized vector DXM has the form

DXM ≡
(

dXm

dX̃m −Am

)

=

(

dXm

Bmn dX
n + gmn ∗γ dXn

)

, (5.3)

upon using the equations of motion. In order to keep the integrability of dX ′m after an

O(D,D) transformation

0 = d2X ′m = d
(
smn dX

n + rmnBnp dX
p + rmn gnp ∗γ dXp

)
, (5.4)

we have to require the existence of a set of generalized Killing vectors [109]

V (m)N ≡
(
r(m)n, s(m)

n

)
, £̂V (m)HMN = 0 . (5.5)

As discussed in [109], in the case of β-transformations (smn = δmn and rmn = −rnm), by

requiring the set of generalized Killing vectors V (m) to form a closed algebra by means of

the C-bracket, the homogeneous CYBE for the bi-vector [r̂, r̂]S = 0 (r̂ ≡ 1
2 r

mn ∂m ∧ ∂n) is

required. In the case of an Abelian r-matrix, we can find a coordinate system where all of

the relevant Killing vectors T̂i are constant vector, and the bi-vector rmn = −2 η rij T̂m
i T̂n

j

automatically satisfies the requirement (5.5) and we can perform the β-deformation without

breaking the integrability. This is the usual constant β-shift in the presence of Abelian

isometries, that can also realized as a TsT-transformation. In the case of non-Abelian

r-matrices, since we cannot find a coordinate system where all of the Killing vectors T̂i are

constant vectors, the requirement (5.5) is too restroctive. It will be interesting future work

to relax the requirement (5.4) by reformulating the DSM that manifests the symmetry of

non-Abelian isometries.
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A Conventions and formulas

Differential form and curvature. The antisymmeterization is defined as

A[m1···mn] ≡
1

n!

(
Am1···mn ± permutations

)
. (A.1)

For conventions of differential forms, we use

ε01 =
1√−γ

, ε01 = −√−γ , d2σ = dτ ∧ dσ ,

(∗γαq)ᾱ1···ᾱp+1−q =
1

q!
εβ̄1···β̄q

ᾱ1···ᾱp+1−q αβ̄1···β̄q
,

∗γ(dσᾱ1 ∧ · · · ∧ dσᾱq) =
1

(p+ 1− q)!
εᾱ1···ᾱq

β̄1···β̄p+1−q
dσβ̄1 ∧ · · · ∧ dσβ̄p+1−q ,

(A.2)

on string worldsheet while in the spacetime, we define

ε1···D =− 1√−g
, ε1···D =

√−g , ǫ1···D =−1 , ǫ1···D =1 ,

(∗αq)m1···mp+1−q =
1

q!
εn1···nq

m1···mp+1−q αn1···nq , dDx=dx1∧· · ·∧dxD ,

∗(dσm1∧· · ·∧dσmq)=
1

(p+1−q)!
εm1···mq

n1···np+1−q dx
n1∧· · ·∧dxnp+1−q ,

(ιvαn)=
1

(n−1)!
vnαnm1···mn−1 dx

m1∧· · ·∧dxmn−1 .

(A.3)

The spin connection is defined as

ωm
ab ≡ 2 en[a ∂[men]

b] − ep[a eb]q ∂[peq]
c emc , (A.4)

which satisfies

dea + ωa
b ∧ eb = 0 , (A.5)

where ea ≡ em
a dxm and ωa

b ≡ ωm
a
b dx

m. The Riemann curvature tensor is defined as

Ra
b ≡

1

2
Ra

bcd e
c ∧ ed ≡ dωa

b + ωa
c ∧ ωc

b , Ra
bcd = em

a eb
n ec

p ed
q Rm

npq . (A.6)
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(Generalized) supergravity. Our conventions for the type II GSE [39, 40, 43–45] are

as follows:

Rmn−
1

4
HmpqHn

pq+2Dm∂nΦ+DmUn+DnUm=Tmn ,

R+4Dm∂mΦ−4 |∂Φ|2− 1

2
|H3|2−4

(
ImIm+UmUm+2Um∂mΦ−DmUm

)
=0 ,

−1

2
D
kHkmn+∂kΦHk

mn+UkHkmn+DmIn−DnIm=Kmn , (A.7)

d∗F̂n−H3∧∗F̂n+2−ιIB2∧∗F̂n−ιI ∗F̂n−2=0 ,

where Dm is the usual covariant derivative associated with gmn and we have defined

Tmn ≡ 1

4
e2Φ

∑

p

[
1

(p− 1)!
F̂(m

k1···kp−1F̂n)k1···kp−1
− 1

2
gmn |F̂p|2

]

,

Kmn ≡ 1

4
e2Φ

∑

p

1

(p− 2)!
F̂k1···kp−2 F̂mn

k1···kp−2 ,

F̂n ≡ dĈn−1 +H3 ∧ Ĉn−3 − ιIB2 ∧ Ĉp−1 − ιIĈn+1 .

(A.8)

The Killing vector I = Im ∂m is defined to satisfy

£Igmn = 0 , £IB2 + d
(
U − ιIB2

)
= 0 , £IΦ = 0 , Im Um = 0 . (A.9)

When I = 0, the GSE reduce to the usual supergravity equations of motion.

When we describe the GSE as a special case of the modified DFT [43], the Killing

vector Im and Um are packaged into a null generalized Killing vector

XM ≡
(

Im

Um − InBnm

)

, £̂XHMN = 0 , £̂Xd = 0 , ηMN XM XN = 0 . (A.10)

In a particular gauge Um = InBnm (see [45] for the details), the dual components of XM

vanish. We also define a generalized null vector

Y M ≡ HM
N XN =

(

Um

Im − UnBnm

)

, ηMN Y M Y N = 0 . (A.11)

As shown in [22], a YB deformed AdS5 × S5 background associated with a non-

unimodular r-matrix is a solution of the GSE. From various examples, we experimentally

know that the Killing vector Im in the deformed background takes the form (4.31)

Im = η rij fij
k T̂m

k . (A.12)

Here, we derive the experimental formula for YB deformed AdS5×S5 backgrounds. In the

case of the AdS5 × S5 backgrounds, a general formula for I was obtained in [22], and by

neglecting contributions from fermionic generators, a simple expression

I = −η

2
κij Str

{

[Ti, R(Tj)] Adg

(

J
(2)
+ + J

(2)
−

)}

,

(κij) ≡ κ−1 , κ ≡ (κij) , κij ≡ Str(Ti Tj) ,
(A.13)
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was given in a quite recent paper [41]. This expression becomes

I = −η

2
κij rkl κjl (e

a
+ + ea−) Str

(
[Ti, Tk] gPa g

−1
)

=
η

2
rik (ea+ + ea−) fik

j [Adg]a
l κjl = η rij fij

k
[
Adg−1

]

k
b k−b

a e′a ≡ Ia e′a , (A.14)

where we have used

[Adg]a
k κki = Str(gPa g

−1 Ti) = Str(Pa g
−1 Ti g) =

[
Adg−1

]

i
c ηca ,

ea+ + ea− = (k−1
− k+)b

a e′b + e′b = [(2− k−1
+ ) k+]b

a e′b + e′b = 2 k+b
a e′b = 2 kab− e′b .

(A.15)

Then, the curved components become

Im = Ia e′a
m = Ia (k−1

− )a
b eb

m = η rij fij
k
[
Adg−1

]

k
b eb

m = η rij fij
k T̂m

k , (A.16)

and the formula (4.31) is reproduced. Here, it is noted that, although the right-hand side

of (A.16) is expressed by using the Killing vectors T̂m
i on the undeformed background, the

Killing vector Im on the left-hand side should be understood as a vector field defined on

the YB-deformed AdS5 × S5 background. Note also that if we use an identity rij fij
k =

1
2 r

kj fij
i,16 (see (5.5) of [22]), we can also express Im in terms of the trace of the structure

constant17

Im =
η

2
rij fkj

k T̂m
i . (A.17)

Formulas for gamma matrices and spinors. Products of antisymmetrized 32 × 32

gamma matrices satisfy

Γa1···ap Γb1···bq =

p+q
∑

r=|p−q|

(−1)
u(u−1)

2 p! q!

u! v!w!
η[a1c1 · · · ηavcv δav+1

[b1
· · · δap]bu

Γ|c1···cv|bu+1···bq ]

[

u ≡ 1

2
(p+ q − r) , v ≡ 1

2
(p− q + r) , w ≡ 1

2
(−p+ q + r)

]

,

(A.18)

where the under-barred indices are totally antisymmetrized and the integer r takes values

r = |p− q| , |p− q|+ 2 , . . . , p+ q − 2 , p+ q , (A.19)

and u, v and w are non-negative integers. As particular cases, we obtain

Γa1···an Γb = Γa1···anb + nΓ[a1···an−1 ηan]b . (A.20)

Γa Γb1···bn = Γab1···bn + n ηa[b1 Γb2···bn] . (A.21)

16Here, indices i, j, k are restricted to a subalgebra of so(2, 4)× so(6) such that the r-matrix is invertible

(see [22] for more details). Accordingly, the indices in (A.17) are also limited to the subalgebra.
17As shown in [24–28], YB deformations can be also realized as non-Abelian T -dualities. In this context,

a relation between the trace of the structure constant fki
k and the Killing vector Im was noted in [24] (see

also [26]). This relation was further clarified in [27] and a simple expression Ii = fki
k was obtained in [42].
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Arbitrary 32-component Majorana spinors Θ and Ψ satisfy

Θ̄ Γa1a2···an Ψ = (−1)
n(n+1)

2 Ψ̄ Γa1a2···an Θ , (A.22)

Θ̄ Γa1···an Ψ = 0 (n = 1, 2, 5, 6, 9, 10) . (A.23)

For spinors with a definite chirality, Γ11Ψ± = ±Ψ± and Γ11Θ± = ±Θ±, we have

Θ̄+ Γa1a2···an Ψ± =

{

(−1)
n(n+1)

2 Ψ̄± Γa1a2···an Θ+ (n:odd/even)

0 (n:even/odd)
,

Θ̄− Γa1a2···an Ψ∓ =

{

(−1)
n(n+1)

2 Ψ̄∓ Γa1a2···an Θ− (n:odd/even)

0 (n:even/odd)
,

(A.24)

Θ̄+ Γb1 Γa1a2···an Γb2 Ψ± =

{

(−1)
n(n+1)

2 Ψ̄± Γb2 Γa1a2···an Γb1 Θ+ (n:odd/even)

0 (n:even/odd)
,

Θ̄− Γb1 Γa1a2···an Γb2 Ψ∓ =

{

(−1)
n(n+1)

2 Ψ̄∓ Γb2 Γa1a2···an Γb1 Θ− (n:odd/even)

0 (n:even/odd)
.

(A.25)

B psu(2, 2|4) algebra

In this appendix, we collect our conventions and useful formulas on the psu(2, 2|4) algebra
(see for example [110] for more details).

B.1 Matrix realization

8 × 8 supermatrix representation. The super Lie algebra su(2, 2|4) can be realized

by using 8× 8 supermatrices M satisfying StrM = 0 and the reality condition

M†H +HM = 0 , M =

(

A B

C D

)

, (B.1)

where StrM ≡ TrA− TrD and the hermitian matrix H is defined as

H ≡
(

Σ 04
04 14

)

, Σ ≡
(

02 −i σ3
i σ3 02

)

= σ2 ⊗ σ3 . (B.2)

A trivial element satisfying the above requirement is the u(1) generator

Z = i

(

14 04
04 14

)

, (B.3)

and the psu(2, 2|4) is defined as the quotient su(2, 2|4)/u(1).
The psu(2, 2|4) has an automorphism Ω defined as

Ω(M) = −KMstK−1 , K =

(

K 04
04 K

)

, (B.4)
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where K is a 4× 4 matrix

K ≡








0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0








, K−1 = −K , (B.5)

and Mst represents the supertranspose of M defined as

Mst =

(

A
⊺ −C

⊺

B
⊺

D
⊺

)

. (B.6)

By using the automorphism Ω (of order four), we decompose g = psu(2, 2|4) as

g = g(0) ⊕ g(1) ⊕ g(2) ⊕ g(3) , (B.7)

where Ω(g(k)) = ik g(k) (k = 0, 1, 2, 3) and the projector to each vector space g(k) can be

expressed as

P (k)(M) ≡ 1

4

[
M+ i3k Ω(M) + i2k Ω2(M) + ik Ω3(M)

]
. (B.8)

Bosonic generators. The bosonic generators of psu(2, 2|4) algebra, Pa and Jab, can be

represented by the following 8× 8 supermatrices:

{Pa} ≡ {Pǎ ,Pâ} , {Jab} ≡ {Jǎb̌ ,Jâb̂} ,

Pǎ =

(
1
2 γǎ 04
04 04

)

, Jǎb̌ =

(

−1
2 γǎb̌ 04
04 04

)

(ǎ, b̌ = 0, . . . , 4) ,

Pâ =

(

04 04
04 − i

2 γâ

)

, Jâb̂ =

(

04 04
04 −1

2 γâb̂

)

(â, b̂ = 5, . . . , 9) ,

(B.9)

where we defined 4×4 matrices γǎ ≡ (γǎǐ
ǰ) (̌i, ǰ = 1, . . . , 4) and γǎ ≡ (γǎǐ

ǰ) (̂i, ĵ = 1, . . . , 4)

{γǎ} ≡
{
γ̄0 , γ̄1 , γ̄2 , γ̄3 , γ̄5

}
, {γâ} ≡

{
−γ̄4 ,−γ̄1 ,−γ̄2 ,−γ̄3 ,−γ̄5

}
, (B.10)

γ̄1 =








0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0







, γ̄2 =








0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0







, γ̄3 =








0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0







,

γ̄0 = −i γ̄4 =








0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0







, γ̄5 = i γ̄1γ̄2γ̄3γ̄0 =








1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1







,

(B.11)

and their antisymmeterizations γǎb̌ ≡ γ[ǎ γb̌] and γâb̂ ≡ γ[â γb̂]. Here, γ̄µ (µ = 0, . . . , 3) and

(γa) ≡ (γǎ, γâ) satisfy

{γ̄µ , γ̄ν} = 2 ηµν , (ηµν) ≡ diag(−1, 1, 1, 1) , (γa)
⊺
= K γaK

−1 . (B.12)
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The conformal basis, {Pµ, Mµν , D, Kµ}, of a bosonic subalgebra su(2, 2) ∼= so(2, 4)

that corresponds to the AdS isometries, can be constructed from Pǎ and Jǎb̌ as

Pµ ≡ Pµ + Jµ4 , Kµ ≡ Pµ − Jµ4 , Mµν ≡ Jµν , D ≡ P4 , (B.13)

where Pµ, Mµν , D, and Kµ represent the translation generators, the Lorentz generators,

the dilatation generator, and the special conformal generators, respectively. On the other

hand, a bosonic subalgebra su(4) ∼= so(6) that corresponds to the isometries of S5 are

generated by Pâ and Jâb̂. We choose the Cartan generators of su(4) as follows

h1 ≡ J57 , h2 ≡ J68 , h3 ≡ P9 . (B.14)

For later convenience, let us also define 16× 16 matrices γa, γ̂a, and γab as

(γa) ≡ (γǎ, γâ) = (γǎ ⊗ 14, 14 ⊗ γâ) ,

(γ̂a) ≡ (γ̂ǎ, γ̂â) = (γǎ ⊗ 14, 14 ⊗ iγâ) ,

(γab) ≡ (γǎb̌, γâb̂) = (γǎb̌ ⊗ 14 ,14 ⊗ γâb̂) ,

(B.15)

which satisfy

(γǎ)
† = γ0̌ γǎ γ0̌ , (γâ)

† = −γ0̌ γâ γ0̌ , (γa)
⊺
= (K ⊗K)−1 γa (K ⊗K) ,

(γ̂ǎ)
† = γ0̌ γ̂ǎ γ0̌ , (γ̂a)

⊺
= (K ⊗K)−1 γ̂a (K ⊗K) ,

{γa, γb} = 2 ηab , {γ̂ǎ, γ̂b̌} = 2 ηǎb̌ , {γ̂â, γ̂b̂} = −2 δâb̂ .

(B.16)

We can easily see γǎb̌ = γ[ǎ γb̌] and γâb̂ = γ[â γb̂]. If we also define γ̂ǎb̌ ≡ γ̂[ǎ γ̂b̌] and

γ̂âb̂ ≡ γ̂[â γ̂b̂], they satisfy

γ̂ab = −1

2
Rab

cd γcd , (B.17)

where Rab
cd are the tangent components of Riemann tensor in AdS5 × S5, whose non-

vanishing components are

Rǎb̌
čď = −2 δ

[č
[ǎ δ

ď]

b̌]
, Râb̂

ĉd̂ = 2 δ
[ĉ
[â δ

d̂]

b̂]
. (B.18)

Fermionic generators. The fermionic generators (QI)α̌α̂ (α̌, α̂ = 1, . . . , 4) are given by

(Q1)α̌α̂ =

(

04 i δα̌
ǐ
K ĵα̂

−δα̂
î
Kα̌ǰ 04

)

, (Q2)α̌α̂ =

(

04 −δα̌
ǐ
K ĵα̂

i δα̂
î
Kα̌ǰ 04

)

. (B.19)

As discussed in [74], these matrices do not satisfy the reality condition (B.1) but rather

their redefinitions QI do. The choice, QI or QI , is a matter of convention, and we here

employ QI by following [74]. We also introduce Grassmann-odd coordinates θI ≡ (θα̌α̂)I
which are 16-component Majorana-Weyl spinors satisfying

(QI θI)
†H +H (QI θI) = 0 . (B.20)
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Since the matrices QI satisfy

(QI)†α̌α̂ = −iK−1
α̌β̌

(QI)β̌β̂ K−1

β̂α̂
,

H (QI)α̌α̂H−1 = i (γ0)β̌
α̌ (QI)β̌α̂ ,

(B.21)

the condition (B.20) is equivalent to the Majorana condition

θ̄I ≡ θ†I γ
0 = θ

⊺

I (K ⊗K) , (B.22)

or more explicitly,

θ̄α̌α̂I = θIβ̌β̂ K
β̌α̌K β̂α̂ . (B.23)

Commutation relations. The generators of su(2, 2|4) algebra, Pa, Jab, QI , and Z

satisfy the following commutation relations:

[Pa, Pb] =
1

2
Rab

cd Jcd , [Jab, Pc] = ηcaPb − ηcbPa ,

[Jab, Jcd] = ηac Jbd − ηad Jbc − ηbc Jad + ηbd Jac ,

[QI θI , Pa] =
i

2
ǫIJ QJ γ̂a θI , [QI θI , Jab] =

1

2
δIJ QI γab θJ ,

[QI θI , Q
J ψJ ] = −i δIJ θ̄I γ̂

a ψJ Pa −
1

4
ǫIJ θ̄I γ

ab ψJ Rab
cd Jcd −

1

2
δIJ θ̄I ψJ Z ,

(B.24)

and the psu(2, 2|4) algebra is obtained by dropping the last term proportional to Z.

On the other hand, the bosonic generators {Pµ,Mµν , D,Kµ} satisfy the so(2, 4)

algebra,

[Pµ, Kν ] = 2
(
ηµν D −Mµν

)
, [D, Pµ] = Pµ , [D, Kµ] = −Kµ ,

[Mµν , Pρ] = ηµρ Pν − ηνρ Pµ , [Mµν , Kρ] = ηµρKν − ηνρKµ ,

[Mµν , Mρσ] = ηµρMνσ − ηµσ Mνρ − ηνρMµσ + ηνσ Mµρ .

(B.25)

Supertrace and projections. For generators of the psu(2, 2|4) algebra, the supertrace

become

Str(PaPb) = ηab , Str(Jab Jcd) = Rabcd ,

Str(QIθI Q
JλJ) = −2 ǫIJ θ̄I λJ ,

(B.26)

where Rabcd ≡ Rab
ef ηec ηdf and

ηab ≡
(

ηǎb̌ 0

0 ηâb̂

)

, ηǎb̌ ≡ diag(−1, 1, 1, 1, 1) , ηâb̂ ≡ diag(1, 1, 1, 1, 1) . (B.27)

Each Z4-component g(i) is spanned by the following generators:

g(0)= spanR{Jab} , g(1)= spanR{Q1} , g(2)= spanR{Pa} , g(3)= spanR{Q2} .
(B.28)

Then, from the definition of d± (3.5),

d± ≡ ∓P (1) + 2P (2) ± P (3) . (B.29)

we obtain

d±(Pa) = 2Pa , d±(Jab) = 0 , d±(Q
I) = ∓σIJ

3 QJ . (B.30)
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B.2 Connection to ten-dimensional quantities

By using the 16 × 16 matrices γa defined in (B.15), the 32 × 32 gamma matrices (Γa)
α
β

are realized as

(Γa) ≡
(
Γǎ, Γâ

)
≡

(
σ1 ⊗ γǎ, σ2 ⊗ γâ

)
. (B.31)

We can also realize the charge conjugation matrix as

C = i σ2 ⊗K ⊗K . (B.32)

The 32-component Majorana-Weyl fermions ΘI expressed as

ΘI =

(

1

0

)

⊗ θI , (B.33)

which satisfies the chiral conditions

Γ11ΘI = ΘI . (B.34)

The Majorana condition is given by

Θ̄I = Θ
⊺

I C =
(

0 1
)

⊗ θ̄I . (B.35)

This decomposition leads to the following relations between 32- and 8-component fermions:

θ̄I γ̂aθJ = Θ̄IΓaΘJ , (B.36)

θ̄I γ̂a γ̂b θJ = −i Θ̄I Γa Γ01234 ΓbΘJ = i Θ̄I Γa Γ56789 ΓbΘJ , (B.37)

i σ1 ⊗ 14 ⊗ 14 = Γ01234 , σ2 ⊗ 14 ⊗ 14 = Γ56789 , (B.38)

The second relation plays an important role for a supercoset construction of the AdS5×S5

background since the R-R bispinor in the AdS5 × S5 background takes the form

F̂5 =
1

5!
F̂a1···a5 Γ

a1···a5 = 4 (Γ01234 + Γ56789) . (B.39)

Indeed, we obtain

θ̄I γ̂a γ̂bθJ =
i

8
Θ̄I Γa F̂5 ΓbΘJ . (B.40)

We can also show the following relations:18

θ̄I γ̂a γbc θJ = Θ̄I Γa ΓbcΘJ , (B.41)

θ̄I γab θJ = −i Θ̄I Γ01234 ΓabΘ = −i Θ̄I Γ56789 ΓabΘJ , (B.42)

θ̄I γab γcd θJ = −i Θ̄I Γ01234 Γab ΓcdΘJ = −i Θ̄I Γ56789 Γab ΓcdΘJ . (B.43)

18Recall that γab has only the components (γab) = (γǎb̌, γâb̂).
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C Geometry of reductive homogeneous space

In this appendix, we review geometry of reductive homogeneous spaces (see for exam-

ple [111, 112] for more details).

C.1 Generalities

Let us consider a homogeneous space G/H and decompose the Lie algebra as a direct

sum of vector spaces, g = h ⊕ k. If [k, h] ⊂ k is satisfied, G/H is called reductive, and if

[k, k] ⊂ h is further satisfied, G/H is called symmetric. We denote the basis of h as {Ji}
(i = 1, . . . , dimG− dimH) and those of k as {Pa} (a = 1, . . . , dimG− dimH).

We choose a gauge where the coset representative g(x) is expanded only in terms of

Km, like g(x) = exp(xm Km) (m = 1, . . . , dimG− dimH) . Here, {Km} is arbitrary as long

as {Km} and {Ji} span the vector spaces g. An obvious choice is {Km} = {Pa}, but it is

not necessary to choose in that way. Once we fix the set {Km}, in order to maintain the

gauge choice under a left multiplication g(x) → gL g(x), we need to simultaneously perform

a local right multiplication,

g(x) → g(x′) = gL g(x)h−1(x) (h ∈ H) . (C.1)

Then, if we expand the left-invariant Maurer-Cartan 1-form as

A ≡ g−1 dg = ea Pa − Ωi
Ji , (C.2)

we obtain the following transformation laws under the left multiplication (C.1):

ea(x) → e′a(x′) = Λa
b e

b(x) , Ωi(x) → Ω′i(x′) =
[
Λi

jΩ
j − (h−1 dh)i

]
(x) , (C.3)

where we have defined hPa h
−1 = Λb

a Pb and h Ji h
−1 ≡ Λj

i Pj. This shows that Ω
i behaves

as a connection of H. From the decomposition (C.2), the Maurer-Cartan equations become

0 = dA+A ∧A =

(

dea − Ωi ∧ eb fib
a +

1

2
eb ∧ ec fbc

a

)

Pa

−
(

dΩi − 1

2
Ωj ∧ Ωk fjk

i − 1

2
eb ∧ ec fbc

i

)

Ji .

(C.4)

If we regard ea as the vielbein on G/H and suppose the absence of torsion

T a ≡ dea + ωa
b ∧ eb = 0 , (C.5)

the Maurer-Cartan equations show that the spin connection can be expressed as

ωa
b = −Ωi fib

a +
1

2
ec fcb

a . (C.6)

Moreover, the associated Riemann curvature tensor is expressed as

Ra
b ≡ 1

2
ec ∧ edRcd

a
b ≡ dωa

b + ωa
c ∧ ωc

b

= −1

2
ee ∧ ef

(

fef
i fib

a +
1

2
fef

c fcb
a − 1

2
fed

a ffb
d

)

,

Ra
bcd = −

(

fcd
i fib

a +
1

2
fcd

e feb
a − 1

2
fce

a fdb
e

)

.

(C.7)
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In order to obtain the Killing vectors on G/H, let us consider an infinitesimal left

multiplication

gL = 1 + ǫi Ti , h = 1− ǫiWi
i
Ji , (C.8)

under which the coordinates are supposed to transform as

x′m = xm + ǫi T̂m
i . (C.9)

We obtain

ǫi
(
Ti g + gWi

i
Ji

)
= δǫg = g(x+ ǫi T̂i)− g(x) = ǫi T̂m

i ∂mg

= ǫi T̂m
i g

(
em

a
Pa − Ωm

i
Ji

)
,

(C.10)

and this leads to
[
Adg−1

]

i
j Tj ≡ g−1 Ti g = T̂ a

i Pa −
(
T̂m
i Ωm

i +Wi
i
)
Ji , (C.11)

where T̂ a
i ≡ T̂m

i em
a. We thus obtain the following expression:

T̂ a
i =

[
Adg−1

]

i
a , Wi

i = −T̂m
i Ωm

i −
[
Adg−1

]

i
i . (C.12)

Under the same variation, we obtain

δǫA = ǫi
[
eaWi

i fai
b
Pb + (dWi

i − ΩjWi
k fjk

i) Ji
]
, (C.13)

δǫe
a = ǫi ebWi

i fbi
a , δǫΩ

i = ǫi
(
ΩjWi

k fjk
i − dWi

i
)
. (C.14)

If we define the metric on G/H as

gmn ≡ em
a en

b κab , (C.15)

by using a constant matrix κab satisfying

fi(a
c κb)c = 0 , (C.16)

the metric is invariant under the variation,

δǫgmn = −2 ǫi e(m
a en)

bWi
i fi(a

c κb)c = 0 . (C.17)

We can check that the variation is the same as the Lie derivative,

δǫem
a = ǫi£T̂i

em
a = ǫi

(
T̂n
i ∂nem

a + ∂mT̂n
i en

a
)
, (C.18)

and the invariance of the metric indicates that T̂m
i are Killing vectors associated with the

generator Ti.

From Ti g = T̂m
i ∂mg − gWi

i Ji, we can calculate commutators of two variations as

[Ti, Tj ] g = −(£T̂i
T̂j)

m ∂mg +
(
T̂n
i ∂nWj

i − T̂n
j ∂nWi

i +Wi
j Wj

k fjk
i
)
g Ji . (C.19)

On the other hand, from [Ti, Tj ] = fij
k Tk, we can also express the left-hand side as

[Ti, Tj ] g = fij
k Tk g = fij

k T̂m
k ∂mg − fij

k gWk
i
Ji , (C.20)

and by comparing these, we obtain

[T̂i, T̂j ]
m = (£T̂i

T̂j)
m = −fij

k T̂m
k ,

T̂n
i ∂nWj

i − T̂n
j ∂nWi

i +Wi
j Wj

k fjk
i = −fij

k gWk
i .

(C.21)
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C.2 AdS5 × S5

In the case of the (bosonic) coset

AdS5 × S5 =
SO(2, 4)

SO(1, 4)
× SO(6)

SO(5)
, (C.22)

the two sets of generators are given by

{Pa} =
{
Pa

}
, {Ji} =

{
Jab/

√
2!
}
, (C.23)

and it is a symmetric coset space (fab
c = 0). The normalization 1√

2!
is introduced to prevent

overcounting coming from the summation of antisymmetrized indices. Quantities with the

index i always contains the factor 1√
2!

and, for example, the Maurer-Cartan 1-form (C.2)

is expressed as

A = ea Pa − Ωi
Ji ↔ A = eaPa −

1

2
Ωab Jab . (C.24)

From (C.6) and fab
c = 0, the spin connection becomes

ωa
b = −1

2
Ω[cd] f[cd]b

a = Ωac ηcb , (C.25)

where we used f[cd]b
a = 2 ηb[c δ

a
d] (see [J, P]-commutator of (B.24)) and we obtain

A = eaPa −
1

2
ωab Jab , (C.26)

independent of the explicit parameterization of g like (3.9).

From (C.7) and fab
c = 0, the Riemann curvature tensor becomes

Ra
bcd = −1

2
fcd

[ef ] f[ef ]b
a = fcd

[ae] ηeb . (C.27)

This explains why the [P, P]-commutator in (B.24) is expressed in terms of the Riemann

tensor; fcd
[ab] = Rab

cd = Rcd
ab.

D Equivalence of (2.84) and (2.85)

In this appendix, we prove that the relation (2.84),

F̂ = eΦ−φ̃ e−B2∧ e−β∨ F̌ , (D.1)

is equivalent to the relation (2.85),

F̂ = F̌ Ω−1
0 , Ω−1

0 = (det Eab)−
1
2Æ

(

−1

2
βab Γab

)

. (D.2)

Since eΦ−φ̃ = (det Eab)−
1
2 from (2.83), we here show the equivalence of two relations,

F̂ = e−B2∧ e−β∨ F̌ ⇔ F̂ = F̌ Ω̄−1
0 , Ω̄−1

0 ≡ Æ

(

−1

2
βab Γab

)

, (D.3)

where F̂ ≡ e−Φ F̂ and F̌ ≡ e−φ̃ F̌ .
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D.1 Evaluation of F̂ = e−B2∧ e−β∨ F̌

Let us first evaluate e−B2∧ e−β∨ F̌ . This can be expanded as

e−B2∧ e−β∨ F̌ =
∑

k: even
odd

[ k
2
]

∑

t=0

t+[D−k
2

]
∑

s=0

(−1)s

2s+t s! t! (k − 2 t)!
Bm1m2 · · ·Bm2s−1m2s β

n1n2 · · ·βn2t−1n2t

× F̌n1···n2tm2s+1···m2s+k−2t
dxm1 ∧ · · · ∧ dxm2s+k−2t

=
∑

r: even
odd

[ r
2
]

∑

s=0

s+[D−r
2

]
∑

t=0

(−1)s

2s+t s! t! (r − 2s)!
βc1c2 · · ·βc2t−1c2t βb1b2 · · ·βb2s−1b2s

× em1
b1 · · · em2s

b2s F̌c1···c2tm2s+1···mr dx
m1 ∧ · · · ∧ dxmr , (D.4)

where the square bracket [n] denotes the integral part of n, and in the second equality, we

have used relations (2.63) and (2.81). Then, F̂ with flat indices becomes

F̂a1···ak ≡ ea1
m1 · · · eakmk F̂m1···mk

=

[ k
2
]

∑

s=0

s+[D−k
2

]
∑

t=0

(−1)s k!

2s+t s! t! (k − 2s)!
βc1c2 · · ·βc2t−1c2t

× β[a1a2 · · ·βa2s−1a2s (E
⊺
)a2s+1

b2s+1 · · · (E⊺
)ak]

bk F̌b2s+1···bkc1···c2t

=

[ k
2
]

∑

s=0

s+[D−k
2

]
∑

t=0

k−2s∑

u=0

(−1)s k!

2s+t s! t!u! (k − 2s− u)!
βc1c2 · · ·βc2t−1c2t

× β[a1a2 · · ·βa2s−1a2s βa2s+1
b1 · · ·βa2s+u

bu F̌|b1···bu|a2s+u+1···ak]c1···c2t , (D.5)

where we used ea
m = (E⊺

)a
b ẽb

m and (E⊺
)a

b = δba + βa
b.

D.2 Evaluation of F̂ = F̌ Ω̄−1
0

Next, by using the definitions,

F̌ =
∑

k: even
odd

1

k!
F̌a1···ak Γ

a1···ak , Ω̄−1
0 =

[D
2
]

∑

ℓ=0

(−1)ℓ

2ℓ ℓ!
βb1b2 · · ·βb2ℓ−1b2ℓ Γb1···b2ℓ , (D.6)

let us expand the right-hand side of F̂ = F̌ Ω̄−1
0 as

F̂ =

[D
2
]

∑

ℓ=0

∑

k: even
odd

(−1)ℓ

2ℓ ℓ! k!
F̌a1···ak β

b1b2 · · ·βb2ℓ−1b2ℓ Γa1···ak Γb1···b2ℓ

=

[D
2
]

∑

ℓ=0

∑

k: even
odd

2ℓ+k∑

s=|2ℓ−k|

(−1)
r(r−1)

2 sCr (2ℓ)!

2ℓ ℓ! s! (2ℓ− r)!

× β[b1b2 · · ·βb2ℓ−1b2ℓ] ηb1c1 · · · ηbrcr F̌br+1···b2ℓcr+1···cs Γ
c1···cs , (D.7)
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where we used the formula (A.18) and defined r ≡ 2ℓ−k+s
2 . Then, the R-R field strength

F̂a1···ak with flat indices becomes

F̂a1···ak =
∑

ℓ,r

(−1)
r(r−1)

2 kCr (2ℓ)!

2ℓ ℓ! (2ℓ−r)!
β[b1b2 · · ·βb2ℓ−1b2ℓ] ηb1[a1 · · ·ηbrar F̌br+1···b2ℓar+1···ak] , (D.8)

where the under-barred indices are totally antisymmetrized and non-negative integers ℓ

and r run over the region where the following relations are satisfied:

0 ≤ 2 ℓ− r , 0 ≤ k − r , 0 ≤ k + 2 ℓ− 2 r ≤ D . (D.9)

We can further expand the right-hand side of (D.8) as19

F̂a1···ak =
∑

ℓ, r, u

(−1)s 2u k!

2ℓ s! t!u! (k − r)!
βb1b2 · · ·βb2t−1b2t

× β[a1a2 · · ·βa2s−1a2s βa2s+1
c1 · · ·βar cu F̌|c1···cu|ar+1···ak]b1···b2t , (D.10)

where s and t are defined as

2 s ≡ r − u , 2 t ≡ 2 ℓ− r − u , (D.11)

and non-negative integers ℓ, r, and u run over the region where

0 ≤ s , 0 ≤ t , r ≤ k , 0 ≤ k + 2 t− 2 s ≤ D , (D.12)

are satisfied. If we change the variables, we obtain a more explicit expression,

F̂a1···ak =

[ k
2
]

∑

s=0

s+[D−k
2

]
∑

t=0

k−2s∑

u=0

(−1)s k!

2s+t s! t!u! (k − 2s− u)!
βc1c2 · · ·βc2t−1c2t

× β[a1a2 · · ·βa2s−1a2s βa2s+1
d1 · · ·βardu F̌|d1···du|ar+1···ak]c1···c2t . (D.13)

This precisely matches with (D.5) and the equivalence has been proven.

19We used the identity for arbitrary totally antisymmetric tensors Cab, Aa1···ar
, and Bar+1···a2ℓ ,

C
[a1a2 · · ·Ca2ℓ−1a2ℓ] Aa1···ar

Bar+1···a2ℓ

=
∑

u

(−1)
u(u−1)

2 2u ℓ!

s! t!u!

r! (2ℓ− r)!

(2ℓ)!
C

b1b2 · · ·Cb2t−1b2t

×
(

C
a1a2 · · ·Ca2s−1a2s

)(

C
c1d1 · · ·Ccudu

)

Aa1···a2sc1···cu Bd1···dub1···b2t ,

where 0 ≤ r ≤ 2ℓ, 2s ≡ r − u, and 2t ≡ 2ℓ− r − u. The range of the summation over u is as follows:

u =

{

0 , 2 , . . . ,min(r, 2ℓ− r) for r even ,

1 , 3 , . . . ,min(r, 2ℓ− r) for r odd .

– 58 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
7

E The spinor rotation Ω

In this appendix, we prove the formula (2.89) in an arbitrary even dimension D. Namely,

we prove that the spinor representation of a local Lorentz transformation Λa
b ≡ (O−1

+ O−)ab
(O± ≡ δab ± aab, a

ab = −aba) is given by

Ω(a) = (detO±)
− 1

2Æ

(

−1

2
aab Γ

ab

)

, Ω−1
(a) = (detO±)

− 1
2Æ

(
1

2
aab Γ

ab

)

. (E.1)

If we define matrices

Ω± ≡ Æ

(

±1

2
aab Γ

ab

)

=
5∑

p=0

(±1)p

2p p!
ab1b2 · · · ab2p−1b2p Γ

b1b2···b2p−1b2p , (E.2)

we can easily show the identity,

(O∓)
a
b Γ

bΩ± − (O±)
a
bΩ± Γb = [Γa, Ω±]∓ aab {Γb, Ω±} = 0 , (E.3)

and this leads to

Ω−1
± ΓaΩ± = (O−1

∓ O±)
a
b Γ

b . (E.4)

Choosing the lower sign, we obtain the desired relation,

Ω−1
− ΓbΩ− = Λa

b Γ
b . (E.5)

In the following, we rescale Ω− and define Ω(a) such that Ω−1
(a) = Ω(−a). The relation (E.4)

implies that Ω−1
± is proportional to Ω∓, and we denote their relation as

Ω−1
− =

1

|Ω|2 Ω+ . (E.6)

We shall show |Ω|2=det(δba−aa
b)=detO−(=detO+), and then we find that Ω(a)≡|Ω|−1Ω−

satisfies the relation Ω−1
(a) = Ω(−a).

We can compute |Ω|2 = Ω−Ω+ as

|Ω|2 =
D/2
∑

p=0

(2p)!

22p (p!)2
a[b1b2 · · · ab2p−1b2p] a[b1b2 · · · ab2p−1b2p]

=

D/2
∑

p=0

∑

0≤b1<···<b2p≤D−1

∑

σ∈S2p

(
sgn(σ)

2p p!
abσ(1)bσ(2)

· · · abσ(2p−1)bσ(2p)

)

×
∑

σ′∈S2p

(
sgn(σ′)
2p p!

abσ′(1)bσ′(2) · · · abσ′(2p−1)bσ′(2p)

)

=

D/2
∑

p=0

∑

0≤b1<···<b2p≤D−1

εb1 Pf
[
a(b1, . . . , b2p)

]2
, (E.7)
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where S2p is the symmetric group on a set of 2p indices, sgn(σ) is the sign of a permutation

σ ∈ S2p and εb1 ≡ ηb1b1 is −1 for b1 = 0 and +1 for b1 ≥ 1. The Pfaffian

Pf[A(b1, . . . , b2p)] ≡
∑

σ∈S2p

(
sgn(σ)

2p p!
Abσ(1)bσ(2)

· · ·Abσ(2p−1)bσ(2p)

)

, (E.8)

is the polynomial in matrix elements of the antisymmetric matrix A(b1, . . . , b2p) which is

defined by

A(b1, . . . , b2p) =











0 Ab1b2 . . . Ab1b2p−1 Ab1b2p

−Ab1b2 0 . . . Ab2b2p−1 Ab2b2p
...

...
. . .

...
...

−Ab1b2p−1 −Ab2b2p−1 . . . 0 Ab2p−1b2p

−Ab1b2p −Ab2b2p . . . −Ab2p−1b2p 0











. (E.9)

As it is well known, the square of the Pfaffian Pf[A(b1, . . . , b2p)]
2 coincides with

det[A(b1, . . . , b2p)].

If we define a matrix function pA(x) (x ∈ R) of a D ×D antisymmetric matrix A as

pA(x) = − det(x ηab −Aab) , (E.10)

its Taylor series around x = 0 is

pA(x) = xD + c2 x
D−2 + · · ·+ cD−2 x

2 + cD , (E.11)

where the coefficients c2p (p = 0 , 1 , . . . , D/2) are given by

c2p =
1

(D − 2p)!
p
(D−2p)
A (0) =

∑

0≤b1<···<b2p≤D−1

εb1 det
[
A(b1, . . . , b2p)

]
. (E.12)

From this, we finally obtain

|Ω|2 =
D/2
∑

p=0

∑

0≤b1<···<b2p≤D−1

εb1 det
[
a(b1, . . . , b2p)

]

= pa(1) = − det
(
ηab − aab

)
= det

(
δba − aa

b
)
= detO− . (E.13)

F Expansion of O−1
±

In this appendix, we expand the operators O−1
± ≡ (1± η Rg ◦ d±)−1 in terms of θ. To this

end, we first use the parameterization g = gb · gf, and expand Rg(X) as

Rg(X) = g−1
f g−1

b R(gb gfX g−1
f g−1

b ) gb gf

= Rgb(X)− [χ, Rgb(X)] +Rgb([χ, X])

+
1

2
Rgb([χ, [χ, X]]) +

1

2
[χ, [χ, Rgb(X)]]− [χ, Rgb([χ, X])] +O(θ3) , (F.1)

– 60 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
7

where Rgb(X) ≡ g−1
b R(gbX g−1

b ) gb and χ ≡ QI θI . We can then expand O± as

O± = 1± η Rg ◦ d± = O±(0) +O±(1) +O±(2) +O(θ3) ,

O(0)(X) = 1± η Rgb(d±(X)) ,

O±(1)(X) = ±η Rgb([χ, d±(X)])∓ η [χ, Rgb ◦ d±(X)] ,

O±(2)(X) = ∓η

2

(
[χ, [χ, Rgb ◦ d±(X)]]−Rgb([χ, [χ, d±(X)]])

)
− [χ, O±(1)(X)] .

(F.2)

The inverses can be also expanded as

O−1
± =

1

1± η Rg ◦ d±
= O−1

±(0) +O−1
±(1) +O−1

±(2) +O(θ3) ,

O−1
±(0) =

1

1± η Rgb ◦ d±
,

O−1
±(1) = −O−1

±(0) ◦ O±(1) ◦ O−1
±(0) ,

O−1
±(2) = −O−1

±(0) ◦ O±(2) ◦ O−1
±(0) −O−1

±(1) ◦ O±(1) ◦ O−1
±(0) .

(F.3)

Order O(θ0). The leading order part O−1
±(0) of the inverse operators act as

O−1
±(0)(Pa) = k±a

bPb ∓ η k±a
b λb

cd Jcd ,

O−1
±(0)(Jab) = Jab , O−1

±(0)(Q
I) = QI ,

(F.4)

where we have used (3.31) and defined k±a
b as

k±a
b ≡

[
(1± 2 η λ)−1

]

a
b . (F.5)

Note that k±a
b satisfies k±ab ≡ k±a

c ηcb = k∓ba due to the antisymmetry of λab given

in (3.33).

Order O(θ1). At the next order, we obtain

O±(1)(Pa) = ±ηQI

(

i ǫIJ λa
b γ̂b −

1

2
δIJ λa

bc γbc

)

θJ , O±(1)(Jab) = 0 ,

O±(1)(Q
IψI) = − i

2
η θ̄I

(
2σIJ

3 λb
c γ̂c + i σIJ

1 λb
cd γcd

)
ψJ η

baPa + (J-term) ,

(F.6)

where “(J-term)” represents terms proportional to Jab that are not relevant to our com-

putation. Then, the operations of the inverse operators are

O−1
±(1)(Pa) = ∓ηQI k±a

b

(

i ǫIJ λb
c γ̂c −

1

2
δIJ λb

cd γcd

)

θJ , O−1
±(1)(Jab) = 0 ,

O−1
±(1)(Q

IψI) =
i

2
η θ̄I k

ba
±
(
2σIJ

3 λb
c γ̂c + i σIJ

1 λb
cd γcd

)
ψJPa + (J-term) .

(F.7)
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Order O(θ2). Finally, the operators at the quadratic order are given by

O±(2)(Pa) = ± i

2
η θ̄I γ̂

b

(

i ǫIJ λa
c γ̂c −

1

2
δIJ λa

cd γcd

)

θJ Pb

∓ i

2
η θ̄I

(

i ǫIJ λb
c γ̂

c − 1

2
δIJ ηbe λe

cd γcd

)

γ̂a θJ Pb + (J-term) ,

O±(2)(Jab) = 0 .

The inverses are

O−1
±(2)(Pa) = ∓ i

2
θ̄I k

bh
± k±a

d

[

(δIJ δcb + 2 η σIJ
3 λb

c) γ̂c

(

−η

2
λd

ef γef

)

+
(η

2
λb

ef γef

)

(δIJ δcd + 2 η σIJ
3 λd

c) γ̂c

+
i

2
ǫIJ

[
γ̂b (2 η λd

c γ̂c)− (2 η λb
c γ̂c) γ̂d

]

+ i σIJ
1 (η λb

ef γef )
(

−η

2
λd

fg γfg

)

+
i

2
σIJ
1 (2 η λb

d γ̂d) (2 η λd
c γ̂c)

]

θJ Ph + (J-term) . (F.8)

Operators of O−1
±(2) on other generators are not necessary for the computation of the action.

G Deformed torsionful spin connections

In this appendix, we show that two torsionful spin connections W ab
± introduced in (3.36)

satisfy the following relations (we basically follow the discussion of [22]):

ω′ab
+ ≡ ω′ab +

1

2
e′cH

′cab = W ab
+ , (G.1)

ω′ab
− ≡ ω′ab − 1

2
e′cH

′cab = Λa
c Λ

b
dW

cd
− + (ΛdΛ−1)ab , (G.2)

which are assumed in (3.69).

G.1 Two expressions of the deformed H-flux

In order to show (G.1) and (G.2), we here obtain two expressions for the deformed H-

flux. Let us begin by considering two expressions of the deformed B-field [recall (3.40)

and (3.36)]

B′
2 = −η λab e

a
+ ∧ eb+ = η Str

[
J
(2)
+ ∧Rg(J

(2)
+ )

]∣
∣
θ=0

= −η λab e
a
− ∧ eb− = η Str

[
J
(2)
− ∧Rg(J

(2)
− )

]∣
∣
θ=0

,
(G.3)

where J± are defined in (3.34) and J
(n)
± ≡ P (n) J±. Since we are only interested in the

B-field at order O(θ0), in the following computation, we ignore terms involving the grade-1

and 3 components of A and J± (where we have d± ∼ 2P (2)).
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The exterior derivatives of the two expressions in eq. (G.3) become

H ′
3 ≡

1

3!
H ′

abc e
′a ∧ e′b ∧ e′c ≡ dB′

2

= η d Str
[
J
(2)
± ∧Rg(J

(2)
± )

]∣
∣
θ=0

= 2 η Str
[
dJ

(2)
± ∧Rg(J

(2)
± ) + J

(2)
± ∧ {A, Rg(J

(2)
± )}

]∣
∣
θ=0

= 2 η Str
[
dJ

(2)
± ∧Rg(J

(2)
± ) + J

(2)
± ∧ {J (0)

± + J
(2)
± , Rg(J

(2)
± )}

]∣
∣
θ=0

± 4 η2 Str
[
J
(2)
± ∧ {Rg(J

(2)
± ), Rg(J

(2)
± )}

]∣
∣
θ=0

. (G.4)

Here, in the third line, we have used a relation

d
[
Rg(B)

]
= Rg(dB)− {A, Rg(B)}+Rg({A, B})

[
{B, C} ≡ B ∧ C + C ∧B

]
. (G.5)

for g-valued 1-forms B and C, and in the last equality, we have used the relation

A|θ=0 = O±(J±)
∣
∣
θ=0

= J
(0)
± + J

(2)
± ± 2 η Rg(J

(2)
± )

∣
∣
θ=0

. (G.6)

It is easy to see that the last term in (G.4) vanishes by using the cyclic property of the

supertrace and the homogeneous CYBE

{Rg(J
(2)
± ), Rg(J

(2)
± )} − 2Rg{Rg(J

(2)
± ), J

(2)
± } = 0 . (G.7)

Now, we utilize the deformed structure equation [22]

dJ± = d
(
O−1

± A
)
= −O−1

± dO±O−1
± A+O−1

± (dA)

= ∓ηO−1
± (dRg) d± J± −O−1

± (A ∧A)

= ∓ηO−1
±

[
−{A, Rg(d± J±)}+Rg {A, d± J±}

]
d± J± − 1

2
O−1

± {A, A}

= −1

2
O−1

± {J±, J±} ∓ ηO−1
± Rg {J±, d± J±}

+
η2

2
O−1

±
[
{Rg(d± J±), Rg(d± J±)} − 2Rg

(
{Rg(d± J±), d± J±}

)]

= −1

2
O−1

± {J±, J±} ∓ ηO−1
± Rg {J±, d± J±} , (G.8)

where we have repeatedly used A = O±(J±), and in the last equality, we have used the

homogeneous CYBE. In the following computation, since terms involving J
(1)
± or J

(3)
± are

irrelevant, we have

dJ± = −1

2
{J±, J±} ∓ 2 ηO−1

± Rg{J (2)
± , J

(2)
± } , (G.9)

and then (G.4) is simplified as

H ′
3 = 2 η Str

[(
{J±, J (2)

± } − 1

2
P (2) {J±, J±} ∓ 2 η P (2)O−1

± Rg{J (2)
± , J

(2)
± }

)
∧Rg(J

(2)
± )

]∣
∣
θ=0

= 2 η Str
[
{J (2)

± , J
(2)
± } ∧ O−1

∓ Rg(J
(2)
± )

]∣
∣
θ=0

, (G.10)
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where, in the last equality, we have used relations20

±η d±O−1
± Rg = ±ηO−⊺

∓ d±Rg = 1−O−⊺

∓ ,

{J+, J (2)
+ } − 1

2
P (2){J+, J+} = {J (2)

+ , J
(2)
+ } .

(G.11)

We can further rewrite the expression (G.10) by using the operator M = O−1
− O+ and its

inverse M−1 = O−1
+ O−. From

P (0)M±1 P (2) = P (0)O−1
∓ (O∓ ± 4 η Rg)P

(2) = ±4 η P (0)O−1
∓ Rg P

(2) , (G.12)

we can rewrite (G.10) as

H ′
3 = ±1

2
Str

[
{J (2)

± , J
(2)
± } ∧M±1(J

(2)
± )

]∣
∣
θ=0

. (G.13)

Finally, by introducing a notation

M(Pc)|θ=0=(Λ−1)c
aPa+

1

2
Mc

abJab , M−1(Pc)|θ=0=Λc
aPa+

1

2
(M−1)c

abJab ,
[
Λa

b=(k−1
− )a

c k+c
b , Mc

ab≡ 4ηk−c
dλd

ab , (M−1)c
ab≡−4ηk+c

dλd
ab
]
,

(G.14)

and using ea+ = Λb
a e′b, we obtain two expressions for the deformed H-flux

H ′
3 =

1

2
Λ[c

g Λa
e Λb]

f Mg,ef e
′a ∧ e′b ∧ e′c

[
Mc,ab ≡ Mc

ef ηea ηfb
]

(G.15)

= −1

2
M−1

[c,ab] e
′a ∧ e′b ∧ e′c

[
M−1

c,ab ≡ (M−1)c
ef ηea ηfb

]
. (G.16)

G.2 Deformed torsionful spin connections

By considering the leading order part O(θ0) of (G.9), we obtain

dea± + (ω[±])
a
b ∧ eb± = 0 , (G.17)

where the spin connections (ω[±])ab associated with the deformed vielbeins ea± have the form

ω[±]ab = W±ab +
1

2
ec±

(
M±1

a,bc +M±1
b,ca −M±1

c,ab

)
. (G.18)

In particular, for the spin connection ω′ab ≡ ωab
[−] associated with the deformed vielbeins

e′a = ea−, using the formula H ′
abc = −3M−1

[c,ab] in (G.16), we obtain the first relation (G.1) as

ω′ab +
1

2
e′cH

′cab = ω′ab − 1

2
e′c

[
(M−1)a

bc + (M−1)b
ca + (M−1)c

ab
]

= W ab
− − e′c (M−1)c

ab = W ab
− + 4 η e′c k+c

d λd
ab = W ab

+ , (G.19)

20The transpose of an operator O is defined as Str[AO(B) ] = Str[O
⊺

(A)B ]. Since Rg is defined to be

antisymmetric, R
⊺

g = −Rg, and d± satisfies d
⊺

± = d∓ [see (3.6)], we can for example show O
⊺

± = 1∓η d∓ Rg,

d± O± = O
⊺

∓ d±, and d± O−1
± = O−⊺

∓ d±.
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where in the last equality we have used21

W ab
+ = W ab

− + 2 η (ec+ + ec−)λc
ab = W ab

− + 2 η e′c (Λc
d + δdc )λd

ab

= W ab
− + 2 η e′c [(k−1

− )c
e + (k−1

+ )c
e] k+e

d λd
ab = W ab

− + 4 η e′c k+c
d λd

ab . (G.20)

On the other hand, if we take the upper sign in (G.17), from ea+ = Λb
a e′b, we obtain

de′a +
[
(Λ−1)c

a dΛb
c + Λad ω+de Λc

e
]
∧ e′c = 0 . (G.21)

From the upper sign of (G.18), H ′
abc = 3Λa

d Λb
e Λc

f M[d,ef ] in (G.15), and the identity

Λa
dMd,bc = −(M−1)a,bc, we can show

Λa
d ω+de Λc

e = Λa
dW+de Λc

e +
1

2
Λa

d Λc
e Λb

f e′b
(
Md,ef +Me,fd −Mf,de

)

= Λa
d Λc

e
(
W+de − Λb

f e′bMf,de

)
+

1

2
e′bH ′

bac

= Λa
d Λc

eW−de +
1

2
e′bH ′

bac . (G.22)

This together with (G.21) shows the second relation (G.2),

ω′ab = Λa
d Λ

b
eW

de
− + (ΛdΛ−1)ab +

1

2
e′cH

′cab . (G.23)

H Deformed Lagrangian at order O(θ2)

In this appendix, we show that the YB-deformed sigma model action can be rewritten as

the conventional GS superstring action (up to quadratic order in fermions) by performing

suitable field redefinitions.

H.1 A derivation of the deformed Lagrangian at O(θ2)

Let us start with a straightforward computation of the deformed Lagrangian L(2) by using

the results obtained in appendix F. For convenience, we decompose L(2) as

L(2) = L(2,0,0) + L(0,0,2) + L(1,1,0) + L(0,1,1) + L(0,2,0) + L(1,0,1) +O(θ4) , (H.1)

where we have defined

L(a,b,c) ≡ −T

2
P ᾱβ̄
− Str[Aᾱ(a) d− ◦ O−1

−(b)(Aβ̄(c))] , (H.2)

and Aᾱ(a) (a = 0, 1, 2) have the following form as we can see from (3.12):

Aᾱ(0) ≡ eaᾱPa −
1

2
ωᾱ

ab Jab , Aᾱ(1) ≡ QI DIJ
ᾱ θJ ,

Aᾱ(2) ≡
i

2
θ̄I γ̂

aDIJ
ᾱ θJ Pa +

1

8
ǫIK θ̄I γ

cdRcd
abDKJ

ᾱ θJ Jab .

(H.3)

21In order to show the relation W ab
+ = W ab

− − e′c (M−1)c
ab, it will be easier to observe the bosonic part

of the relation J
(0)
+ = P (0) M−1(J−).
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Each part is given by

L(2,0,0)+L(0,0,2)=−i
T

2
P ᾱβ̄
− θ̄I

(
e+ᾱ

a γ̂aD
IJ
β̄ +e−β̄

a γ̂aD
IJ
ᾱ

)
θJ . (H.4)

L(1,1,0)=−i
T

2
P ᾱβ̄
− θ̄I

[(

2ησIJ
3 e−β̄

aλa
b γ̂b−

i

2
σIJ
1 δW−β̄

bc γbc

)

DᾱθJ

+
i

2
σIJ
1

(
2η e−β̄

aλa
c γ̂c

)(
eᾱ

d γ̂d
)
θJ−

(
1

4
δW−β̄

bc γbc

)
(
σIJ
3 eᾱ

d γ̂d
)
θJ

]

.

(H.5)

L(0,1,1)=−i
T

2
P ᾱβ̄
− θ̄I

[(

2ησIJ
3 e+ᾱ

aλa
b γ̂b+

i

2
σIJ
1 δW+ᾱ

bc γbc

)

Dβ̄θJ

+
i

2
σIJ
1

(
2η e+ᾱ

aλa
c γ̂c

)(
eβ̄

d γ̂d
)
θJ+

(
1

4
δW+ᾱ

bc γbc

)
(
σIJ
3 eβ̄

d γ̂d
)
θJ

]

,

(H.6)

L(0,2,0)=−i
T

2
P ᾱβ̄
− θ̄I

[

e+ᾱ
a
(
δIJ δba+2ησIJ

3 λa
b
)
γ̂b

(
1

4
δW−β̄

cd γcd

)

+

(
1

4
δW+ᾱ

cd γcd

)

e−β̄
a
(
δIJ δba+2ησIJ

3 λa
b
)
γ̂b

+
i

2
ǫIJ

[(
e+ᾱ

a γ̂a
)(
2η e−β̄

cλc
d γ̂d

)
−
(
2η e+ᾱ

aλa
b γ̂b

)(
e−β̄

c γ̂c
)]

+
i

8
σIJ
1

(
δW+ᾱ

ab γab
)(
δW−β̄

cd γcd
)

+
i

2
σIJ
1

(
2η e+ᾱ

aλa
b γ̂b

)(
2η e−β̄

cλc
d γ̂d

)
]

θJ . (H.7)

L(1,0,1)=−i
T

2
P ᾱβ̄
−

(
−2σIK

3 θ̄I e[ᾱ
a γ̂aD

KJ
β̄] θJ

)
. (H.8)

Here, we have defined δW ab
± as

δW ab
± = ±2 η ec± λc

ab , (H.9)

which are parts of the torsionful spin connections

W ab
± = ωab + δW ab

± . (H.10)

Gathering the results (H.4)–(H.8), we can calculate L(2). In the following computation,

it may be useful to use the following identities:

θ̄I γ̂a γcd θJ = θ̄J γcd γ̂a θI , θ̄I γ̂a γ̂bθJ = −θ̄J γ̂b γ̂a θI ,

θ̄I γab θJ = θ̄J γab θI , θ̄I γab γcd θJ = −θ̄Jγcd γab θI .
(H.11)
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The result is

L(2) = −i
T

2
P ᾱβ̄
− θ̄I

{
[
σIJ
3 eβ̄

a + e−β̄
b (δIJ δab + 2 η σIJ

3 λb
a)
]
γ̂aD+ᾱ

+
[
−σIJ

3 eᾱ
a + e+ᾱ

b (δIJ δab + 2 η σIJ
3 λb

a)
]
γ̂aD−β̄

+
i

2
ǫIJ

[(
e+ᾱ

a γ̂a
)(
eβ̄

b γ̂b + 2 η e−β̄
c λc

d γ̂d
)
+
(
e−β̄

a γ̂a
)(
eᾱ

b γ̂b − 2 η e+ᾱ
a λa

b γ̂b
)]

+
i

2
σIJ
1

[(
2 η e−β̄

a λa
c γ̂c

)(
eᾱ

d γ̂d
)
+
(
2 η e+ᾱ

a λa
c γ̂c

)(
eβ̄

d γ̂d
)

+
(
2 η e+ᾱ

a λa
b γ̂b

)(
2 η e−β̄

c λc
d γ̂d

)]

+
i

2
σIJ
1

[

δW+ᾱ
ab γabDβ̄ − δW−β̄

ab γabDᾱ +
1

4

(
δW+ᾱ

ab γab
)(
δW−β̄

cd γcd
)
]}

θJ

= −i
T

2
P ᾱβ̄
− θ̄I

{

2πIJ
+ e−β̄

a γ̂aD+ᾱ + 2πIJ
− e+ᾱ

a γ̂aD−β̄ + i ǫIJ e−β̄
a γ̂a e+ᾱ

b γ̂b

+
i

2
σIJ
1

[
(
e+ᾱ

a γ̂a
)(
e−β̄

b γ̂b
)
−
(
eᾱ

a γ̂a
)(
eβ̄

b γ̂b
)

+ δW+ᾱ
ab γabDβ̄ − δW−β̄

ab γabDᾱ +
1

4

(
δW+ᾱ

ab γab
)(
δW−β̄

cd γcd
)
]}

θJ . (H.12)

In the second equality, we have used

2πIJ
+ e−ᾱ

a =σIJ
3 eβ̄

a + e−β̄
b
(
δIJ δab + 2 η σIJ

3 λb
a
)
,

2πIJ
− e+ᾱ

a =− σIJ
3 eᾱ

a + e+ᾱ
b
(
δIJ δab + 2 η σIJ

3 λb
a
)
,

(H.13)

where the projection operators πIJ
± are defined by

πIJ
± =

δIJ ± σIJ
3

2
. (H.14)

Now, we decompose the deformed Lagrangian into two parts

L(2) = Lc
(2) + δL(2) , (H.15)

where Lc
(2) takes the form of the canonical GS Lagrangian after taking the diagonal gauge

(see section 3.2.3) while δL(2) is the remaining part. The explicit form of Lc
(2) is given by

Lc
(2)=−iT θ̄I

[

P ᾱβ̄
− πIJ

+ e−β̄
a γ̂aD+ᾱ+P ᾱβ̄

− πIJ
− e+ᾱ

a γ̂aD−β̄+
i

2
ǫIJ e−β̄

a γ̂a e+ᾱ
b γ̂b

]

θJ

=−iT

[

P ᾱβ̄
+ e−ᾱ

a θ̄1 γ̂aD+β̄θ1+P ᾱβ̄
− e+ᾱ

a θ̄2 γ̂aD−β̄θ2+iP ᾱβ̄
+ ǫIJ θ̄1 e−ᾱ

a γ̂a e+β̄
b γ̂b θ2

]

.

(H.16)

On the other hand, the remaining term δL(2) has the form

δL(2) =
T

4
P ᾱβ̄
− σIJ

1 θ̄I

[

δW+ᾱ
ab γ̂abDβ̄ − δW−β̄

ab γ̂abDᾱ

+
1

4

(
δW+ᾱ

ab γab
)(
δW−β̄

cd γcd
)
+
(
e+ᾱ

a γ̂a
)(
e−β̄

b γ̂b
)
−
(
eᾱ

a γ̂a
)(
eβ̄

b γ̂b
)
]

θJ .

(H.17)
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By using (H.11), this can be rewritten as

δL(2)=
T

4
P ᾱβ̄
− σIJ

1 θ̄I

[
(
δW+ᾱ

ab∂β̄−δW−β̄
ab∂ᾱ

)
γab

+
1

8

(
δW+ᾱ

abωβ̄
cd−δW−β̄

abωᾱ
cd+δW+ᾱ

ab δW−β̄
cd
)[
γab, γcd

]

+
1

2
(e+ᾱ

a e−β̄
b−eᾱ

a eβ̄
b) [γ̂a, γ̂b]

]

θJ

=
T

4
P ᾱβ̄
− σIJ

1 θ̄I

[

δW+ᾱ
ab∂β̄−δW−β̄

ab∂ᾱ+(δW+ᾱ)
a
cωβ̄

cb−(δW−β̄)
a
cωᾱ

cb

+(δW+ᾱ)
a
c δW−β̄

cb− 1

2
(e+ᾱ

c e−β̄
d−eᾱ

c eβ̄
d)Rcd

ab

]

γabθJ , (H.18)

where we used

γ̂ab = −1

2
Rab

cd γcd , [γab, γcd] = −2
(
ηac γbd − ηbc γad − ηad γbc + ηbd γac

)
. (H.19)

In the following, we show that δL(2) are completely canceled by performing an appropriate

redefinition of the bosonic fields Xm.

H.2 Bosonic shift

We consider the redefinition of Xm,

Xm → Xm + ξm , ξm ≡ η

4
σIJ
1 ecm λc

ab θ̄I γab θJ +O(θ4) . (H.20)

This was originally considered in [13, 74] such that the unwanted terms involving

σIJ
1 θ̄I γab ∂ᾱθJ in (H.18) are canceled out by the deviation of the Lagrangian under the

shift (H.20), δLYB = δL(0) +O(θ2) where

L(0) ≡ −T P ᾱβ̄
− E′

mn ∂ᾱX
m ∂β̄X

n

(
E′

mn = g′mn +B′
mn = em

a en
b k+ab = Str[AmO−1

− (An)]|θ=0

)
.

(H.21)

As we show below, in fact, δL(2) is completely canceled out under the redefinition (H.20)

when the r-matrix satisfies the homogeneous CYBE, which has been checked for specific

examples in the previous works.

For simplicity, we introduce a shorthand notation

1√
2!

Jab → Ji , (H.22)

with combinatoric factors discussed around (C.25). In this notation, the commutation

relations of bosonic generators {Pa, Ji} and matrices {γ̂a, γi} become

= fab
i Ji , [Ji, Jj] = fij

k Jk , [Pa, Pi] = fai
bPb ,

[γ̂a, γ̂b] = −2 fab
i γi , [γi, γj ] = −2 fij

k γk .
(H.23)
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Then, δL(2) in (H.18) can be expressed as

δL(2) =
T

2
P ᾱβ̄
− σIJ

1 θ̄I γk
(
δW+ᾱ

k ∂β̄θJ − δW−β̄
k ∂ᾱθJ

)

− T

4
P ᾱβ̄
−

[
(
δW+ᾱ

i ωβ̄
j + ωᾱ

i δW−β̄
j + δW+ᾱ

i δW−β̄
j
)
fij

k

+
(
e+ᾱ

a e−β̄
b − eᾱ

a eβ̄
b
)
fab

k

]

σIJ
1 θ̄I γk θJ . (H.24)

A computation of δL(0). A straightforward computation shows

δL(0) = −T P ᾱβ̄
− £ξE

′
mn ∂ᾱX

m ∂β̄X
n

= −T P ᾱβ̄
−

(
ξp ∂pE

′
mn + ∂mξpE′

pn + ∂nξ
pE′

mp

)
∂ᾱX

m ∂β̄X
n

= −T

2
P ᾱβ̄
− σIJ

1 θ̄I γk
(
δW+m

k ∂nθJ − δW−n
k ∂mθJ

)
∂ᾱX

m ∂β̄X
n

− η T

2
P ᾱβ̄
− σIJ

1 θ̄I γk θJ

[

λc
k em

a en
b ecp ∂pk+ab + ∂mλa

k e−n
a + ∂nλa

k e+m
a

+ 2 ecp λc
k
(
∂[pem]a e−n

a + ∂[pen]a e+m
a
)]

∂ᾱX
m ∂β̄X

n ,

(H.25)

where we have used e±m
a = k±b

a em
b and δW±m

k = ±2 η e±m
c λc

k. From this, we can

easily see that the terms involving σIJ
1 θ̄I γk ∂ᾱθJ in δL(0) and δL(2) cancel each other out.

We can further compute ∂pk+ab and ∂mλa
k as follows by recalling their original defi-

nitions. The ∂mλa
k can be obtained from

∂mλc
i Ji = ∂m

[
P (0)Rgb(Pc)

]∣
∣
θ=0

= −P (0)[Am, Rgb(Pc)]
∣
∣
θ=0

+ P (0)Rgb

(
[Am, Pc]

)∣
∣
θ=0

=
[
em

a (λk
i fac

k − λc
b fab

i) + ωm
j (λc

k fjk
i − λd

i fjc
d)
]
Ji . (H.26)

where we have used

∂mRg( · ) = −[Am, Rg(·) ] +Rg([Am, · ]) , Am|θ=0 = em
aPa − ωm

k Jk ,

Rg(Pa)|θ=0 = λa
bPb − λa

k Jk , Rg(Ji)|θ=0 = λi
bPb − λi

k Jk .
(H.27)

Similarly, we obtain

∂mk+ab = ∂mStr
[
PbO−1

+ (Pa)
]∣
∣
θ=0

= −1

2
Str

[
d−(Pb)O−1

+ ◦ ∂mO+ ◦ O−1
+ (Pa)

]∣
∣
θ=0

= −1

2
Str

[
O−⊺

+ ◦ d−(Pb) ∂mO+ ◦ O−1
+ (Pa)

]∣
∣
θ=0

= −η

2
Str

[
d−O−1

− (Pb) ∂mRg ◦ d+ ◦ O−1
+ (Pa)

]∣
∣
θ=0

= −2 η k+a
c k−b

d Str
[
Pd

{
−[Am, Rg(Pc)] +Rg([Am, Pc])

}]∣
∣
θ=0

= −2 η k+a
c k−bd

[
em

e (λk
d fec

k − λc
k fek

d) + ωm
k (λc

e fke
d − λe

d fkc
e)
]
. (H.28)

By using several identities, such as

em
a = e±m

b
(
δab ± 2 η λb

a
)
, ∂[men]

a = −ω[m
ab en]b , (H.29)
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and the explicit forms of the structure constants, we can straightforwardly obtain

δL(0) = −T

2
P ᾱβ̄
− σIJ

1 θ̄I γk
(
δW+m

k ∂nθJ − δW−n
k ∂mθJ

)
∂ᾱX

m ∂β̄X
n

+
T

4
P ᾱβ̄
−

[(
δW+m

i ωn
j + ωm

i δW−n
j
)
fij

k + 2 η
(
em

a e−n
c λc

b − e+m
c λc

a en
b
)
fab

k

+ 4 η2
(
e+m

c λc
j e−n

b − e+m
b e−n

c λc
j
)
fbj

a λa
k

− 4 η2
(
e+m

c λc
a e−n

b + e+m
a e−n

c λc
b
)
fab

j λj
k
]

σIJ
1 θ̄I γk θJ ∂ᾱX

m ∂β̄X
n .

(H.30)

A computation of δL(0) + δL(2). Now, the sum of (H.30) and (H.24) becomes

δL(0) + δL(2)

=
T

4
P ᾱβ̄
−

[

4 η2 (e+m
a λa

i)(e−n
b λb

j) fij
k

+ 2 η
(
em

a e−n
c λc

b − e+m
c λc

a en
b
)
fab

k −
(
e+m

a e−n
b − em

a en
b
)
fab

k

+ 4 η2
(
e+m

c λc
j e−n

b − e+m
b e−n

c λc
j
)
fbj

a λa
k

− 4 η2
(
e+m

c λc
a e−n

b + e+m
a e−n

c λc
b
)
fab

j λj
k

]

σIJ
1 θ̄I γk θJ ∂ᾱX

m ∂β̄X
n , (H.31)

where we used δW i
± = ±2 η ec± λc

i in the first line. Moreover, the second line is simplified as

2 η
(
em

a e−n
c λc

b − e+m
c λc

a en
b
)
−
(
e+m

a e−n
b − em

a en
b
)
= 4 η2 e+m

c λc
a e−n

d λd
b ,

(H.32)

and we obtain

δL(0) + δL(2) = η2 T P ᾱβ̄
−

[

(e+m
c λc

a)(e−n
d λd

b) fab
k + (e+m

a λa
i)(e−n

b λb
j) fij

k

+
(
e+m

c λc
j e−n

b − e+m
b e−n

c λc
j
)
fbj

a λa
k

−
(
e+m

c λc
a e−n

b + e+m
a e−n

c λc
b
)
fab

j λj
k
]

σIJ
1 θ̄I γk θJ ∂ᾱX

m ∂β̄X
n .

(H.33)

Remarkably, the quantities in the square bracket of (H.33) are precisely the grade-0 com-

ponent of CYBEg(J
(2)
+m, J

(2)
−n),

[
CYBE(0)

g (J
(2)
+m, J

(2)
−n)

]k
= (e+m

c λc
a)(e−n

d λd
b) fab

k + (e+m
a λa

i)(e−n
b λb

j) fij
k

+
(
e+m

c λc
j e−n

b − e+m
b e−n

c λc
j
)
fbj

a λa
k

− (e+m
c λc

a e−n
b + e+m

a e−n
c λc

b) fab
j λj

k ,

(H.34)

where we have used J
(2)
±m = e±m

aPa [see (3.35)]. Therefore, we obtain

δL(0) + δL(2) = η2 T P ᾱβ̄
− σIJ

1

[
CYBE(0)

g (J
(2)
+m, J

(2)
−n)

]i
θ̄I γ̂i θJ ∂ᾱX

m ∂β̄X
n , (H.35)

which shows that δL(0)+δL(2) vanishes when the r-matrix satisfies the homogeneous CYBE.
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I The κ-symmetry transformation

In fact, the YB sigma model action defined in (3.25) is invariant under the following κ-

symmetry variations (see [7] for the details):

O−1
− g−1 δκg = P ᾱβ̄

−
{
Q1 κ1ᾱ, J

(2)

−β̄

}
+ P ᾱβ̄

+

{
Q2 κ2ᾱ, J

(2)

+β̄

}
, (I.1)

δκ
(√−γ γᾱβ̄

)
=

1

4

√−γ Str
[

Υ
([

Q1κᾱ1(+), J
(1)β̄
+(+)

]
+

[
Q2 κᾱ2(−), J

(3)β̄
−(−)

])

+ (ᾱ ↔ β̄)
]

, (I.2)

where κIᾱ (I = 1, 2) are local fermionic parameters and we have defined Υ ≡ diag(14, −14).

Here and hereafter, worldsheet vectors with (±) are projected with the projection operator

P±ᾱ
β̄, like J ᾱ

±(±) ≡ P ᾱβ̄
± J±β̄ .

In this appendix, following the procedure of [74], we rewrite the κ-variations (I.1)

and (I.2) as the standard κ-variations in the GS type IIB superstring [113],

δκX
m = − i

2
e′am Θ̄I Γa δκΘ

′
I +O(Θ′3) , (I.3)

δκΘ
′
I =

1

4
(δIJ γᾱβ̄ − σIJ

3 ǫᾱβ̄) e′β̄
a ΓaK

′
Jᾱ +O(Θ′2) , (I.4)

1√−γ
δκ
(√−γ γᾱβ̄

)
= −2 i K̄

′(ᾱ
1(+)D

′β̄)
+(+)Θ

′
1 − 2 i K̄

′(ᾱ
2(−)D

′β̄)
−(−)Θ

′
2

+
i

8

[

K̄
′(ᾱ
1(+) F̂

′ e′β̄)a(+) ΓaΘ
′
2 − Θ̄′

1 e
′(β̄|a
(−) Γa F̂

′K ′|ᾱ)
2(−)

]

+O(Θ′3) , (I.5)

where the detailed notations are explained below. In the course of the rewriting, we need

to identify the supergravity background (e′m
a, B′

mn, F̂
′) as the β-deformed AdS5 × S5

background. In this sense, the following computation serves as a non-trivial check of the

equivalence between YB deformations and local β-deformations.

Bosonic fields. We first consider the κ-symmetry transformation of the bosonic fields

Xm, which can be extracted from the grade-2 component of (I.1). From (I.1), we can

easily see

P (2) ◦ O−1
− g−1 δκg = 0 . (I.6)

The left-hand side can be expanded as

P (2)◦O−1
− g−1 δκg=P (2)

[(

em
a δκX

m+
i

2
θ̄I γ̂

a δκθI

)

O−1
−(0)(Pa)+O−1

−(1)

(
QI δκθI

)
+O(θ3)

]

=

[

emb δκX
m+

i

2

(
δIJ δcb+2ησIJ

3 λb
c
)
θ̄I γ̂c δκ θJ

]

kba− Pa

− η

2
σIJ
1 θ̄I λb

cd γcd δκθJ k
ba
− Pa+O(θ3) . (I.7)

Now, by performing the redefinition (3.72) of Xm, the term proportional to σIJ
1 disappears

and we obtain

0 =

[

emb δκX
m +

i

2

(
δIJ δcb + 2 η σIJ

3 λb
c
)
θ̄I γ̂c δκθJ

]

kba− Pa +O(θ3) . (I.8)
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Then, solving the equation (I.8) for δκX
m, we obtain

δκX
m = − i

2
(k−1

− )ab e
bm θ̄1 γ̂a δκθ1 −

i

2
(k−1

+ )ab e
bm θ̄2 γ̂a δκθ2 +O(θ3)

= − i

2
eam− Θ̄1 Γa δκΘ1 −

i

2
eam+ Θ̄2 Γa δκΘ2 +O(Θ3) , (I.9)

where it is note that the inverse of e±m
a = em

b k±b
a is e±a

m = (k−1
± )a

b eb
m. Finally, by

using Λa
b Γb = Ω−1 ΓaΩ and the redefined fermions Θ′

I given in (3.66), (I.9) becomes

δκX
m = − i

2
e′am Θ̄1 Γa δκΘ1 −

i

2
e′am Θ̄2Ω

−1 ΓaΩ δκΘ2 +O(Θ3)

= − i

2
e′am Θ̄′

I Γa δκΘ
′
I +O(Θ3) , (I.10)

which is the usual κ-variation (I.3) of Xm.

Fermionic fields. Next, let us consider the κ-variations of fermionic variables. These

can be found from

P (1)O−1
− g−1 δκg = P ᾱβ̄

− {Q1 κ1ᾱ, J
(2)

−β̄
} ,

P (3)O−1
− g−1 δκg = P ᾱβ̄

+ {Q2 κ2ᾱ, J
(2)

+β̄
} .

(I.11)

Indeed, the left-hand side gives

P (1)O−1
− g−1 δκg = Q1 δκθ1 +O(θ2) , P (3)O−1

− g−1 δκg = Q2 δκθ2 +O(θ2) . (I.12)

In order to evaluate the right-hand side, we use the following relations [74]:

QI Pǎ +PǎQ
I =

1

2
QI γ̂ǎ , QI Pâ +PâQ

I = −1

2
QI γ̂â , (I.13)

which can be verified by using the matrix representations of Pa and QI given in (B.9)

and (B.19). Then, the transformations (I.11) become

Q1δκθ1 =
1

2
P ᾱβ̄
− Q1

(
e−β̄

ǎ γ̂ǎ − e−β̄
â γ̂â

)
κ1ᾱ +O(θ2) ,

Q2δκθ2 =
1

2
P ᾱβ̄
+ Q2

(
e+β̄

ǎ γ̂ǎ − e+β̄
â γ̂â

)
κ2ᾱ +O(θ2) .

(I.14)

By using relations (B.33) and (B.35), these can be rewritten as

δκΘ1 =
1

2
P ᾱβ̄
− e−β̄

a ΓaK1ᾱ +O(Θ2) ,

δκΘ2 =
1

2
P ᾱβ̄
+ e+β̄

a ΓaK2ᾱ +O(Θ2) ,

(I.15)

where we have introduced

KI ≡
(

0

1

)

⊗ κI , K̄I ≡
(

1 0
)

⊗ κ̄I , (I.16)
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and used

ΓǎKI =

(

1

0

)

⊗ γ̂ǎ κI , ΓâKI = −
(

1

0

)

⊗ γ̂â κI . (I.17)

Finally, using the redefined fermions Θ′
I and considering redefinitions of KI ,

K ′
1 = K1 , K ′

2 = ΩK2 , (I.18)

we obtain the standard κ-variations of the fermions (I.4).

Worldsheet metric. Finally, we rewrite the κ-variation (I.2) of γᾱβ̄ into the standard

form (I.5).

By using the expansion (3.35) of the deformed currents J±, the variation (I.2) can be

expanded as

1√−γ
δκ
(√−γ γᾱβ̄

)
= −i κ̄ᾱ1(+)D

β̄ 1J
+(+)θJ − i κ̄ᾱ2(−)D

β̄ 2J
−(−)θJ + (ᾱ ↔ β̄) +O(θ3) , (I.19)

where we have used commutation relations of su(2, 2|4) algebra

[
Q1 κᾱ1(+), J

(1)β̄
+(+)

]
=

(

−1

2
κ̄ᾱ1(+)D

β̄ 1J
+(+)θJ +O(θ3)

)

Z+ (P-term) ,

[
Q2κᾱ2(−), J

(3)β̄
−(−)

]
=

(

−1

2
κ̄ᾱ2(−)D

β̄ 2J
−(−)θJ +O(θ3)

)

Z+ (P-term) ,

(I.20)

and supertrace formulas

Str
[
ΥZ

]
= 8 i , Str

[
Υ(other generators)

]
= 0 . (I.21)

It is noted that the redefinition (3.72) of Xm does not affect the variation of the worldsheet

metric at the leading order in θ.

Then, by using the 32× 32 gamma matrices, the variation can be expressed as

1√−γ
δκ
(√−γ γᾱβ̄

)
= −i K̄ᾱ

1(+)D
β̄
+(+)Θ1 − i K̄ᾱ

2(−)D
β̄
−(−)Θ2

+
i

16

[

K̄ᾱ
1(+) F̂5 e

β̄a
+(+) ΓaΘ2 − K̄ᾱ

2(−) F̂5 e
β̄a
−(−) ΓaΘ1

]

+ (ᾱ ↔ β̄) +O(Θ3) , (I.22)

where we have used relations

κ̄ᾱI(±) γab θJ = K̄ᾱ
I(±) ΓabΘJ , κ̄ᾱI(±) γ̂a θJ =

i

8
K̄ᾱ

I(±) F̂5 ΓaΘJ . (I.23)
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Finally, we perform the redefinitions (3.66) and (I.18). By using relations (3.69) and (3.71),

the variation of the worldsheet metric becomes

1√−γ
δκ
(√−γ γᾱβ̄

)
= −i K̄ ′ᾱ

1(+)D
′β̄
+(+)Θ

′
1 − i K̄ ′ᾱ

2(−)D
′β̄
−(−)Θ

′
2

+
i

16

[

K̄ ′ᾱ
1(+)

(
F̂5Ω

−1
)
e′β̄a(+) ΓaΘ

′
2 − Θ̄′

1 e
′β̄a
(−) Γa

(
F̂5Ω

−1
)
K ′ᾱ

2(−)

]

+ (ᾱ ↔ β̄) +O(Θ′3)

= −i K̄ ′ᾱ
1(+)D

′β̄
+(+)Θ

′
1 − i K̄ ′ᾱ

2(−)D
′β̄
−(−)Θ

′
2

+
i

16

[

K̄ ′ᾱ
1(+) F̂

′ e′β̄a(+) ΓaΘ
′
2 − Θ̄′

1 e
′β̄a
(−) Γa F̂

′K ′ᾱ
2(−)

]

+ (ᾱ ↔ β̄) +O(Θ′3) . (I.24)

In this way, we have obtained the standard κ-variation of the worldsheet metric (I.5).
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