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1 Introduction

The data thus far collected by the experiments at the CERN Large Hadron Collider (LHC)

have reaffirmed the Standard Model as a remarkably successful theory of fundamental par-

ticles and their interactions. Thus, in absence of striking signature of new physics phe-

nomena, the theoretical community is compelled to perform calculations with ever smaller

uncertainties so that predictions with ever increasing accuracy and precision can be com-

pared to data of outstanding quality, thereby exposing subtle differences and discrepancies

that may reveal the presence of physics beyond the Standard Model.

In the context of strong interactions, accuracy is usually achieved by computing predic-

tions that include an increasing number of terms of the perturbative expansion in the strong

coupling αs (henceforth, the fixed-order expansion). Leading-order (LO) cross-sections in

QCD can be computed for an essentially arbitrary number of external particles. Automa-

tion has been achieved in recent years also for NLO calculations and an increasing number

of NNLO calculations is now available in computer programs. Moreover, for hadron-collider

processes with simple topologies, recent milestone calculations have achieved N3LO accu-

racy [1, 2]. This is particularly important because the main production channel of the Higgs
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boson, i.e. gluon-gluon fusion [3–5], falls under this category. Furthermore, precise theo-

retical predictions for LHC processes also require precise and reliable parton distribution

functions (PDFs). In particular, the lack of a N3LO determination of PDFs is an important

source of uncertainty on the Higgs cross-section [6]. Although a global determination of

such PDF set cannot be foreseen in the near future, several ingredients are either already

available, or focus of current research. For instance, deep-inelastic scattering (DIS) coeffi-

cient functions with massless quarks have been known at three loops for a long time [7], and

a lot of progress has been done in the context of heavy quarks, e.g. [8–12]. Another impor-

tant ingredient of this rather ambitious task is the determination of the DGLAP kernels,

which control the scale dependence of the PDFs, at N3LO. Recent progress with four-loop

splitting functions [13, 14] suggests that this calculation could be completed rather soon.

A complementary approach to the fixed-order expansion consists of exploiting all-order

resummation. In the context of PDF determination, small-x (or high-energy) resummation

is of particular relevance. Small-x resummation of DGLAP evolution is known to next-

to-leading logarithmic accuracy (NLL) and it is based on the BFKL equation [15–20].

However, the proper inclusion of LL and NLL corrections is far from trivial, due to the

perturbative instability of the BFKL evolution kernel. This problem has been tackled

by more than one group in the 1990s, see for instance refs. [21–24], refs. [25–30] and

refs. [31–34], and resulted in resummed anomalous dimensions for PDF evolution. These

techniques have recently been applied in the context of PDF determination in refs. [35, 36],

where small-x resummation at NLL accuracy has been included in the PDF evolution and

in the computation of DIS structure functions through the public code HELL [37, 38].

It has been found that small-x resummation stabilises the perturbative behaviour of

both evolution kernels and partonic coefficient functions, thereby improving the description

of structure-function data at low x. In particular, it is well-known that potentially large

logarithms at small-x are absent in NLO splitting functions due to accidental cancellations,

while they start to contribute at NNLO. As a consequence, PDFs determined with NNLO

theory improved by NLL small-x resummation differ rather significantly from the ones

determined with NNLO alone. Furthermore, while at NNLO the most singular term in

the gluon splitting function is of order α3
s
x log 1

x (the term with two logarithms being again

accidentally zero), at N3LO the most singular term is of order α4
s
x log3 1

x . Hence, the

aforementioned instability at low x is very likely to become rather worse at N3LO. Small-x

resummation would then be mandatory for improved precision. We note that in order

to resum all small-x logarithms that appear at N3LO, one would have to consider NNLL

resummation, which would be based on the three-loop BFKL kernel, which despite a lot

of recent progress [39–45] is not yet fully known.

In this work we examine in some detail the fixed-order expansion of the NLL resummed

splitting functions up to four loops. This exercise is interesting for several reasons. First,

it enables us to predict the coefficients of the leading and next-to-leading small-x contribu-

tions to the yet-unknown N3LO splitting functions, thus offering either a strong check or a

way of complementing the fixed-order result at small x. Second, because the resummation

also includes subleading effects, mostly related to the running of the strong coupling, we
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are able to assess the impact of unknown NNLL (or higher) contributions on the four-loop

result. Third, although we predict that N3LO splitting functions will be unstable at small-x

(much more than the NNLO ones), their inclusion will be most likely beneficial at moder-

ate and large x, and therefore we conclude that the most reliable result in future will be

obtained by using N3LO evolution provided it is supplemented by small-x resummation.

The expansion of the resummation to O(α4
s) presented here is also a crucial ingredient

for the N3LO+NLL matching procedure. Finally, by explicitly studying the behaviour of

subleading contributions up to forth order in perturbation theory, we are able to identify

a potential source of instability in our previous implementation of the resummation. We

propose here an improved way of dealing with this class of subleading contributions and

consequently we release a new version of the resummation code HELL 3.0, where these

changes are implemented.

2 DGLAP evolution at small x

In this section we summarise small-x resummation of the DGLAP splitting functions.

Small-x logarithms appear in the singlet sector and we have therefore to consider a 2 × 2

evolution matrix that couples together the quark singlet and the gluon. Currently, small-x

resummation is known to NLL and we find convenient to express resummed and matched

results as

PNkLO+NLL
ij (x, αs) = PNkLO

ij (x, αs) + ∆k+1P
NLL
ij (x, αs), i, j = g, q, (2.1)

where PNkLO
ij are the (k+1)-loop splitting functions and ∆k+1P

NLL
ij represent the resummed

predictions PNLL
ij minus their expansion up to order αk+1

s , namely

∆k+1P
NLL
ij (x, αs) = PNLL

ij (x, αs)−
k∑
j=0

αj+1
s P

NLL(j)
ij (x), (2.2)

where P
NLL(j)
ij (x) is theO(αj+1

s ) contribution to PNLL
ij (x, αs). Eq. (2.1) is valid, in principle,

for any value of k. Matching of the resummation to NNLO (k = 2 in the above notation)

was achieved in ref. [38] and later applied in refs. [35, 36] for PDF determination. In

this work we instead focus on the matching to the next perturbative order, namely N3LO

(k = 3). We note, however, that in order to really improve the quality of the result, one

should also increase the logarithmic accuracy of the resummation contribution so that no

potentially large logarithm is left unresummed. Therefore, one would like to reach at least

N3LO+NNLL: we will leave this rather ambitious goal to future work.

Small-x resummation of DGLAP evolution is usually performed in a conjugate (Mellin)

space. Therefore, we define the entries of the anomalous dimension matrix in the singlet

sectors as

γij(N,αs) =

∫ 1

0
dxxNPij(x, αs). (2.3)

In this non-standard notation, usually adopted in the small-x resummation literature, the

leading small-x logarithms of the form 1
x logk 1

x are mapped into poles in N = 0.
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2.1 Brief recap of small-x resummation of DGLAP evolution

We now recall how the resummation of DGLAP splitting functions is constructed, mainly

following ref. [38]. First, one considers the plus eigenvalue γ+(N,αs) of the singlet anoma-

lous dimension matrix eq. (2.3). This is resummed by first exploiting the duality between

DGLAP evolution and BFKL evolution, and then supplementing the result by the resum-

mation of a class of subleading contributions originating from the running of the strong

coupling. Additionally, requiring the symmetry of the resummed BFKL kernel and impos-

ing momentum conservation leads to perturbatively stable results. Since the knowledge of

the BFKL kernel at NkLO allows the resummation of γ+ at NkLL, at the moment we can

only reach NLL accuracy, γNLL
+ .

Once the eigenvalue γ+ is resummed, one proceeds with the resummation of γqg. Its

all-order behaviour at NLL is described by the equation [46, 47]

γNLL
qg (N,αs) = αs

∑
k≥0

hk

[
γk+(N,αs)

]
, (2.4)

where the square-bracket notation is defined by the recursion [30, 48][
γk+1

+ (N,αs)
]

=
(
γ+(N,αs)− k r(N,αs)

)[
γk+(N,αs)

]
, (2.5)

with

r(N,αs) = α2
sβ0

d

dαs
log
(
γ+(N,αs)

)
. (2.6)

Note that in refs. [37, 38] a variant of the resummation where r(N,αs) → αsβ0, which

corresponds to a limit in which γ+ is assumed to be proportional to αs, was used to infer

an uncertainty on γqg. Because only a finite number of coefficients hk are known, the

implementation of the resummation, described in ref. [37], is only approximate. However,

for not-too-large values of αs, the implementation is numerically stable and reliable.

Simple power-counting at small-N shows that the quark anomalous dimension γqg
starts at NLL. Therefore, at this accuracy we have some freedom in how we choose the

logarithmic accuracy of γ+ appearing in eq. (2.4). In ref. [37] a dedicated anomalous

dimension, denoted LL′, was constructed specifically for this purpose. This LL′ anomalous

dimension is essentially a LL anomalous dimension, but its singular structure, which at

resummed level is encoded in the position of the rightmost pole in N space, is taken from

the NLL result. The reason for using this hybrid object can be summarised as follows:

• on the one hand, it is preferable to use the γNLL
+ anomalous dimension in order to

avoid singularity mismatches between different entries of the anomalous dimension

matrix;

• on the other hand, since using γ+ at LL in eq. (2.4) is formally sufficient to achieve

NLL accuracy in γqg, it was convenient from a numerical point of view to use as much

of the LL result as possible, because of its better numerical stability.

However, recently in ref. [38] various improvements in the construction of the resummed

anomalous dimensions have been proposed and implemented in the numerical code HELL.

With these developments, the computation of the full NLL anomalous dimension is faster

and much more stable and reliable, and it is therefore now possible to either use the hybrid
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LL′ result or the full NLL one in eq. (2.4). In particular, the latter choice corresponds to the

original approach of ref. [30]. We will explore the effects of both options in the following.

All the other entries of the singlet anomalous dimension matrix can be derived from

the plus eigenvalue and γqg. In particular, the results can be written in a rather simple

form if we consider the resummed contributions ∆kγij , defined according to eq. (2.2):

∆kγ
NLL
gg (N,αs) = ∆kγ

NLL
+ (N,αs)−

CF
CA

∆kγ
NLL
qg (N,αs), (2.7a)

∆kγ
NLL
gq (N,αs) =

CF
CA

∆kγ
NLL
gg (N,αs), (2.7b)

∆kγ
NLL
qq (N,αs) =

CF
CA

∆kγ
NLL
qg (N,αs). (2.7c)

We recall that these relations are able to predict only the LL part of γgq, while we do

not have enough knowledge to predict its NLL part, which is then only approximate in

the equation above. Having all the anomalous dimensions in the singlet sector, we can

construct the splitting functions by Mellin inversion.1

2.2 Perturbative expansion of the resummation

We now consider the perturbative expansion of the resummed result presented in the

previous section. The goal is twofold. On the one hand, the expansion of the resummation

is needed to construct the resummed contributions ∆kγ
NLL
ij , ∆kP

NLL
ij , eq. (2.2), namely for

the matching of the resummed result to fixed order. On the other hand, the αs expansion

of the resummed results provides a prediction for the small-x behaviour of the fixed-order

splitting functions.

In ref. [38] we have already determined the expansion of the NLL resummed splitting

functions to O(α3
s), which was needed to match resummation to NNLO. In that case, there

was no point in using the result of the expansion to predict the NNLO behaviour at small-x,

as the three-loop splitting functions are known [49, 50]. In this work we push the expansion

to one extra order, O(α4
s). These results would be needed to match resummation to

N3LO, and specifically to construct N3LO+NLL resummed results. The four-loop splitting

functions, however, are not yet fully known [13, 14]. Therefore, at the moment our results

can be used to construct approximations, valid at small x, of the unknown N3LO splitting

functions, or simply to supplement the ongoing computation with the knowledge of the

exact small-x behaviour. In future, when the four-loop splitting functions will be computed,

it will also serve as a cross check.

In order to obtain the expansion of the resummed entries of the anomalous dimension

matrix, we have to expand both γNLL
+ and γNLL

qg to the desired accuracy; the other anoma-

lous dimensions are recovered using eqs. (2.7). Let us first introduce a generic notation for

the expansion of the plus anomalous dimension,

γ+(N,αs) = αsγ0 + α2
sγ1 + α3

sγ2 + α4
sγ3 +O(α5

s), (2.8)

1In phenomenological applications, a damping at large x is added to make the transition from the small-

x region (where the resummation is relevant) to the large-x region (where the fixed-order description is

appropriate) as smooth as possible, and finally momentum conservation is reimposed. These details have

been described in ref. [38] and are not repeated here.
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which is valid both for the NLL anomalous dimension and for the auxiliary LL′ one. The

expansion of the qg anomalous dimension, according to eqs. (2.4), (2.5) and (2.6), is given by

γNLL
qg (N,αs) = αsh0 + α2

sh1γ0 + α3
s[h2γ0(γ0 − β0) + h1γ1]

+ α4
s[h3γ0(γ0 − β0)(γ0 − 2β0) + h2γ1(N)(2γ0 − Tβ0) + h1γ2]

+O(α5
s), (2.9)

where the anomalous dimensions γ0,1,2 are the coefficients eq. (2.8) of the expansion of

either γNLL
+ or γLL′

+ , depending on the choice adopted in eq. (2.4). Note that the expansion

eq. (2.9) depends on a parameter T . This parameter has been introduced to account for

the two variants of the resummation of running coupling contributions described above. In

particular, when r(N,αs) as given by eq. (2.6) is used then T = 2, while for the variation

r(N,αs)→ αsβ0 then T = 1. The first hk coefficients appearing in eq. (2.9) are [47]

h0 =
nf
3π
, h1 =

nf
3π

5

3
, h2 =

nf
3π

14

9
, h3 =

nf
3π

(
82

81
+ 2ζ3

)
. (2.10)

Note that the knowledge of γNLL
qg to O(α4

s) requires the expansion of the plus anomalous

dimension up to O(α3
s), as it does not depend on γ3. This is due to the fact that γqg is a

pure NLL quantity, as it is clear from the factor of αs in front of eq. (2.4).

We thus need to compute the first four orders of γNLL
+ , while we just need the first three

orders of γLL′
+ as it only possibly enters in the expansion of γqg. The precise construction of

these resummed anomalous dimensions was presented in detail in ref. [38], and we do not

repeat it here (some details are given in appendix A). We just recall that due to the actual

construction of the plus eigenvalue, which is based on the duality between DGLAP and

BFKL evolutions, the LL and LL′ resummed anomalous dimensions automatically contain

the fixed LO anomalous dimension, while the NLL anomalous dimension contains the

NLO one.2 However, the qg anomalous dimension, eq. (2.4), requires a purely resummed

anomalous dimension, which goes to zero at large N , in order to avoid producing spurious

large-N terms (see discussion in appendix B.2 of ref. [37]). Therefore, we first define the

resummed contributions ∆1γ
LL′
+ and ∆2γ

NLL
+ to be the resummed results at LL′ and NLL

minus the LO and NLO anomalous dimensions, respectively (the notation is the same as in

ref. [38]). Then, we construct the purely resummed LL′ and NLL anomalous dimensions as

γLL′
+ (N,αs) = αsγ

LL′
0 (N) + ∆1γ

LL′
+ (N,αs), (2.11a)

γNLL
+ (N,αs) = αsγ

NLL
0 (N) + α2

sγ
NLL
1 (N) + ∆2γ

NLL
+ (N,αs). (2.11b)

The functions γLL′
0 , γNLL

0 and γNLL
1 are not fixed by the resummation, and we thus have

a degree of arbitrariness in how to define them. Instead, the expansions of the resummed

contributions

∆1γ
LL′
+ (N,αs) = α2

sγ
LL′
1 (N) + α3

sγ
LL′
2 (N) +O(α4

s), (2.12a)

∆2γ
NLL
+ (N,αs) = α3

sγ
NLL
2 (N) + α4

sγ
NLL
3 (N) +O(α5

s) (2.12b)

2These fixed-order anomalous dimensions used in the construction of resummation are actually approx-

imated, as explained in ref. [38]. This fact is however immaterial for the present discussion.
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can be derived from the resummed results of ref. [38]. Their computation is presented in

appendix A. Part of them, specifically γLL′
1 and γNLL

2 , have been already computed and

presented in ref. [38]. The next terms, γLL′
2 and γNLL

3 , are reported here for the first time.

Starting from LL′ resummation, the first order of the anomalous dimension was chosen

in ref. [37] to include the LL and NLL contributions of the LO anomalous dimension. The

NLL term, being it a constant at this order, is further multiplied by a function 1/(N + 1)

to make it vanish at large N . The expression, which we adopt also here, is

γLL′
0 =

a11

N
+

a10

N + 1
, (2.13)

where aij are defined in eq. (A.3). The next orders, as predicted by the resummation, are

given by (see appendix A)

γLL′
1 =β0

(
3

32
κ0−c0

)(
1

N
− 4N

(N+1)2

)
(2.14)

γLL′
2 =

λ2

N2
+
λ1

N
−(λ2+λ1)

4N

(N+1)2

+

(
a11

N2
+

2(a11+a10)

(N+1)2

)[
a11a10

(N+1)2
− a11a10

4

4N

(N+1)2

+a11

(
a11

N
+a10−

2(a11+a10)N

N+1

)
[ψ1(N+1)−ζ2]

]
, (2.15)

where all the coefficients are defined in appendix A. Eq. (2.15) is a new result. Note that, by

construction, both γLL′
1 and γLL′

2 vanish in N = 1, as the resummation is built to preserve

momentum conservation.

Moving to the NLL resummation, we need to choose both the LO and NLO contribu-

tions. We decide to adopt the same strategy as in the LL′, i.e. keeping only the LL and

NLL contributions from the fixed orders. In particular, for the LO term we use exactly

the same approximation used for the LL′, and at NLO, due to the fact that the LL term

is accidentally zero, we simply have a NLL term,

γNLL
0 =

a11

N
+

a10

N + 1
, (2.16)

γNLL
1 =

a21

N
− 2a21

N + 1
, (2.17)

where a21, the NLL coefficient of the NLO, is defined in eq. (A.3). In γNLL
1 we have also

included a subtraction term of the same form as the NLL term in γNLL
0 , which restores

momentum conservation, i.e. γNLL
1 (1) = 0. We have decided to add this feature as the effect

is formally NNLL, and it makes it more in line with the LL′ case where the O(α2
s) term

vanishes in N = 1. We stress that we have played with variants of both γNLL
0 and γNLL

1 ,

adding momentum conservation to the first, relaxing it in the second, varying the way it is

implemented, and so on: the effect at the level of the splitting functions is moderate. The

third and fourth coefficients are instead found expanding the resummation, and their form

– 7 –
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is (see appendix A)

γNLL
2 =β2

0

κ0

16

(
1

N
− 4N

(N+1)2

)
+

(
a11

N2
+

2(a11+a10)

(N+1)2

)[
ρ+

a21

N+1
+

a11a10

(N+1)2
−
(
ρ+

a21

2
+
a11a10

4
−β0a11

) 4N

(N+1)2

+a11

(
a11

N
+a10−

2(a11+a10)N

N+1
+β0

)
[ψ1(N+1)−ζ2]

]
, (2.18)

γNLL
3 =

ρ3

N3
+
ρ2

N2
+
ρ1

N
−(ρ3+ρ2+ρ1)

4N

(N+1)2

+

(
a21

N2
+

2(a21+a20)

(N+1)2

)[
ρ+

a21

N+1
+

a11a10

(N+1)2
−
(
ρ+

a21

2
+
a11a10

4
−β0a11

) 4N

(N+1)2

+a11

(
a11

N
+a10−

2(a11+a10)N

N+1
+β0

)
[ψ1(N+1)−ζ2]

]
+

(
a2

11

N2
+

2a11(a11+a10)

(N+1)2

){(
a2

10

2
−a10(a11−β0)−a2

11

)(
2

(N+1)3
− N

(N+1)2

)
+

(
a21a10

a11
+a20

)(
1

(N+1)2
− N

(N+1)2

)
+

(
a21

N
+a20−

2(a21+a20)N

N+1

)
[ψ1(N+1)−ζ2]

+

(
a11

N
+a10−

2(a11+a10)N

N+1

)2(
ζ3−

1

2
ψ2(N+1)

)
+

(
a11

N
+a10−

2(a11+a10)N

N+1

)[(
3ζ3−

1

2
ψ2(N+1)

)
β0+

χ̃′1(0,N)

a11

+
2a10

(N+1)3
+
a21/a11

(N+1)2

]}
, (2.19)

where again the various coefficients are defined in appendix A, and we have left implicit

the function χ̃′1(0, N), eq. (A.49). Eq. (2.18) was already presented in ref. [38],3 while

eq. (2.19) is a new result of this study.

Before moving further, some comments are in order. We observe that, due to accidental

zeros of the LL singularity both at NLO and NNLO, the leading singularity at these two

orders is the NLL one, namely 1/N and 1/N2, respectively. These NLL poles are predicted

correctly by NLL resummation, so in particular γNLL
2 has the exact leading singularity

(γNLL
1 has it by construction). In contrast, the leading singularity of both γLL′

1 and γLL′
2 is

predicted by the resummation and thus, being the resummation just accurate at LL, is not

exact. While the full LL′ anomalous dimension, being an all-order result, is reliable, each

term of its perturbative expansion may not be. In particular, these two terms, γLL′
1 and

γLL′
2 , do not contain anything of the exact result, because they are zero at LL. Since the

impact of these two orders in the expansion of resummed splitting functions (in particular

Pqg and Pqq) may be substantial, we may expect that using LL′ resummation may give rise

3Note that eq. (2.18) differs from the analogous result of ref. [38] by the subleading (NNLL) β0 terms

appearing in the second and third lines. Their origin is discussed in appendix B.
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to somewhat unreliable resummed contributions when matched to high orders, e.g. NNLO

or N3LO. More precisely, we may expect NLL resummation, which has the exact leading

contributions at these two orders, to lead to more reliable matched results to high orders.

These considerations suggest that the use of the NLL anomalous dimension in the

construction of γqg (as originally suggested in ref. [30]) is preferred. Thus, from now on

we will adopt the NLL anomalous dimension as default ingredient for the resummation

of anomalous dimension matrix, and possibly consider LL′ resummation as a variant to

estimate the impact of subleading logarithmic contributions. Both options are now available

in the new 3.0 version of the HELL code.

2.3 The four-loop splitting functions at small-x in the Q0MS scheme

The results of the previous section allow to construct all ∆4γ
NLL
ij , and thus by Mellin inver-

sion all ∆4P
NLL
ij , needed to match NLL resummation to N3LO evolution. While these re-

sults will be in practice of no use until the computation of the N3LO splitting functions will

be completed, it is interesting to extract from them the small-x terms at LL and NLL of the

yet unknown four-loop splitting functions. These may be also useful to construct approxi-

mate predictions of the four-loop splitting functions while waiting for their full computation.

We remind the reader that the resummation procedure previously described lead to

all-order results which are not in the traditional MS scheme, but rather in a related fac-

torization scheme called Q0MS [39, 47, 51, 52], which is particularly suitable for small-x

resummation. Indeed, in the MS scheme there are some cancellations of large small-x con-

tributions taking place between parton evolution and coefficient functions. The Q0 variant

of the scheme automatically removes these large contributions from both objects, leading

to resummed predictions which are perturbatively much more stable. For this reason, here

as well as in previous studies, we always use the Q0MS scheme for results including small-x

resummation. The difference between the MS and Q0MS factorization schemes influences

the resummation of the anomalous dimensions beyond the leading logarithmic accuracy, as

well as the resummation of the coefficient functions. We first concentrate on Q0MS, while

we present results for MS in the next section.

The small-N expansion of the expansion terms of γNLL
+ is given in appendix A. With

those results, we can construct all the other entries using eqs. (2.9) and (2.7). Denoting

with γ
(k)
ij the exact O(αk+1

s ) anomalous dimension, we have

γ(3)
gg (N) =

1

N4

C4
A

π4
2ζ3

+
1

N3

1

π4

[
C4
A

(
−1205

162
+

67

36
ζ2 +

1

4
ζ2

2 −
77

6
ζ3

)
+ nfC

3
A

(
−233

162
+

13

36
ζ2 + ζ3

)
+ nfC

2
ACF

(
617

243
− 13

18
ζ2 +

2

3
ζ3

)]
+O

(
1

N2

)
, (2.20a)

γ(3)
qg (N) =

1

N3

C3
Anf
3π4

(
82

81
+ 2ζ3

)
+O

(
1

N2

)
. (2.20b)
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The gq and qq anomalous dimensions are obtained by simply multiplying the gg and qg

ones by CF /CA, even though we stress again that only the 1/N4 pole of the resulting gq

anomalous dimension is correct. Hence we have

γ(3)
gq (N) =

1

N4

C3
ACF
π4

2ζ3 +O
(

1

N3

)
, (2.21a)

γ(3)
qq (N) =

1

N3

C2
ACFnf
3π4

(
82

81
+ 2ζ3

)
+O

(
1

N2

)
. (2.21b)

The corresponding small-x logarithms in the four-loop splitting functions are easily ob-

tained by Mellin inversion of eqs. (2.20), according to

M−1

[
1

N4

]
=

1

6

log3 1
x

x
, M−1

[
1

N3

]
=

1

2

log2 1
x

x
, (2.22)

where M−1 denotes the inverse Mellin transform. Thus, four-loop splitting functions ex-

hibit a much stronger growth at small-x than those at a previous order, which behave like

α3
sx
−1 log x. To our knowledge, the NLL contribution to Pgg is explicitly presented here

for the first time.

2.4 The four-loop splitting functions at small-x in the MS scheme

The effect of scheme change between Q0MS and MS turns out to be of relative order α3
s,

and thus all the fixed-order results considered in previous studies on small x resummation

happened to be identical in either scheme. However, in this work we are considering

resummation matched (or expanded) to N3LO, thus becoming sensitive to the scheme

choice even at fixed order. It is thus important to recall how the conversion is performed.

The goal of this subsection is also to provide the small-x contributions of the N3LO splitting

functions in the MS scheme, namely in the scheme in which the full four-loop computation

will likely be carried out.

A factorization scheme change is a multiplicative redefinition of the PDFs f and co-

efficient functions C. Focussing on MS and Q0MS, and considering both processes with

one or two hadrons in the initial state (i.e. coefficient functions with one or two flavour

indices), we have

fMS
i (N,Q2) = Λ−1

ij (N,αs)fj(N,Q
2), (2.23)

CMS
i (N,αs) = Cj(N,αs)Λji(N,αs), (2.24)

CMS
ij (N,αs) = Ckl(N,αs)Λik(N,αs)Λjl(N,αs), (2.25)

where αs = αs(Q
2) and we denoted with a MS label quantities in that scheme and without

label quantities in the Q0MS scheme. Accordingly, the anomalous dimensions change as

γMS
ij (N,αs) = Λ−1

ik (N,αs)γkl(N,αs)Λlj(N,αs)− Λ−1
ik (N,αs)Q

2dΛkj(N,αs)

dQ2
. (2.26)

The function Λij is a matrix in flavour space implementing the scheme change. As far as

small-x scheme changes are concerned, this matrix is trivial in its non-singlet part, so we
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focus only on the singlet. Up to NLL, its form is given by [30]4

(
Λgg Λgq
Λqg Λqq

)
=

(
R CF

CA
(R− 1)

0 1

)
+ αs

(
· ·
v ·

)
+ NNLL, (2.27)

where both R and v are LL functions, i.e. functions of αs/N to all orders. The form of

the LL part of the matrix is such that the scheme change has no effect on the LL part of

the anomalous dimension matrix. The three empty slots in the NLL part of the matrix

have an effect only on the γgq entry at NLL, which is however not determined by NLL

resummation (as we already stressed), and are thus of no relevance. Furthermore, they

also affect the resummation of partonic coefficient functions but this effect is beyond the

accuracy currently achieved in the context of small-x resummation. Thus, at the currently

available logarithmic accuracy, the three empty slots can be any LL function of αs/N .

The scheme-change function was calculated long ago [47]

R(M) =

√
−1

M

Γ(1−M)χ0(M)

Γ(1+M)χ′0(M)
exp

{
Mψ(1)+

∫ M

0
dc

ψ′(1)−ψ′(1−c)
2ψ(1)−ψ(c)−ψ(1−c)

}
, (2.28)

v(M) =
R(M)−1

M
h(M), (2.29)

where h(M) =
∑

k≥0 hkM
k is the function used for resumming γqg, eq. (2.4), χ0(M)

is the BFKL kernel at LO (eq. (A.39) in N = 0), Γ(M) and ψ(M) the gamma and

digamma functions respectively. The functions R(M) and v(M) have to be evaluated in

M = γ+(N,αs) in eq. (2.27), where γ+ is the resummed one (in either scheme, as only its

LL part needs to be correct, and at LL the scheme change is ineffective on the anomalous

dimensions). The form of v, eq. (2.29), is such that at NLL both γqg and γqq are the same

in MS and Q0MS. Additionally, we have already noted that the matrix structure of Λij at

LL is such that is has no effect on the LL anomalous dimensions. Thus, the only anomalous

dimension which is sensitive at NLL to the scheme change is γgg, and we have

γMS
gg (N,αs) = γgg(N,αs) + α4

s

[
β08ζ3γ

3
0(N) +O

(
1

N2

)]
+O(α5

s), (2.30)

having used the expansion of the function R in powers of M ,

R(M) = 1 +
8

3
ζ3M

3 +O(M4). (2.31)

The scheme change contribution is entirely due to the derivative term in eq. (2.26). Of

course, also the NLL part of γgq changes by the scheme change, but as we already repeated

several times NLL resummation is not able to predict it. To conclude, we report the actual

4Note that there is a typo in ref. [30] that we correct here.
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expansion to NLL of the gg anomalous dimension in the MS scheme:

γMS(3)
gg (N) =

1

N4

C4
A

π4
2ζ3

+
1

N3

1

π4

[
C4
A

(
−1205

162
+

67

36
ζ2 +

1

4
ζ2

2 −
11

2
ζ3

)
+ nfC

3
A

(
−233

162
+

13

36
ζ2 −

1

3
ζ3

)
+ nfC

2
ACF

(
617

243
− 13

18
ζ2 +

2

3
ζ3

)]
+O

(
1

N2

)
. (2.32)

At this accuracy, all the other entries are identical to their Q0MS counterparts given in

section 2.3. To our knowledge, the NLL contributions to Pgg in the MS scheme are explicitly

presented here for the first time.

3 Numerical results and discussion

Thus far we have presented analytical results. We now concentrate on numerics and we

illustrate the difference between the two variants of the resummation discussed above.

We also present approximate results for the four-loop splitting functions which are based

on the expansion of the resummation and we critically assess the trustworthiness of this

construction.

3.1 Resummed splitting functions at NNLO+NLL

First, we consider the four singlet splitting functions at fixed order and with resummation

using the NLL anomalous dimension, which is the new default in HELL 3.0. In figure 1

we show Pgg (blue) and Pqg (orange) in the left plot, and Pgq (blue) and Pqq (orange) in

the right plot, at LO (dotted), NLO (dashed), NNLO (dot-dot-dashed) and NNLO+NLL

(solid). The resummed result is supplemented with an uncertainty band, which aims to

estimate the impact of unknown subleading logarithmic contributions. Following ref. [38],

this band is obtained by considering variations of the way RC resummation of γ+ is imple-

mented and of the way the resummation of γqg is performed, and summing in quadrature

the two effects.5 The qualitative aspect of these results is the same of those obtained with

the HELL 2.0 settings of ref. [38], i.e. using the LL′ anomalous dimension.6

To better appreciate similarities and differences, we compare the two variants of the

resummation in figure 2, focussing on Pqg on the left and on Pgg on the right. The current

default, denoted with “NNLO+NLL” (solid red) is compared to the choice we made in

ref. [38], which has been labelled “NNLO+NLL (LL′)” (dot-dashed green). For complete-

ness, we also show fixed-order results (gray). We see that the difference for Pgg are very

5In fact, in ref. [38] we considered only the second variation for Pqg and Pqq; we now use a more symmetric

approach and use both for all the splitting functions.
6We warn the reader that we have discovered a bug in the implementation of our NLL results. The

numerical impact is not dramatic and it is discussed in detail in appendix B. All numerical results presented

here, including the ones with HELL 2.0 settings (i.e., using the LL′ anomalous dimension), have been

obtained with the corrected implementation of the resummation.
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Figure 1. The resummed and matched splitting functions at NNLO+NLL (solid) accuracy com-

pared with the fixed-order results at LO (dotted), NLO (dashed) and NNLO (dot-dot-dashed). The

left plot shows Pgg (blue) and Pqg (orange), and the right plot Pgq (blue) and Pqq (orange). The

plots are for αs = 0.2 and nf = 4 in the Q0MS scheme.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10-910-810-710-610-510-410-310-210-11

x 
P
q
g
(x
)

x

αs = 0.20,  nf = 4,  Q0MS‾‾‾

LO
NLO
NNLO
NNLO+NLL
NNLO+NLL (LL')

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

10-910-810-710-610-510-410-310-210-11

x 
P
g
g
(x
)

x

αs = 0.20,  nf = 4,  Q0MS‾‾‾

LO
NLO
NNLO
NNLO+NLL
NNLO+NLL (LL')

Figure 2. Comparison between resummed and matched splitting functions in two variants of

small-x resummation.

small and well within the uncertainty band. The difference for Pqg is not large either,

even though the uncertainty bands are smaller and comparable in size with such a differ-

ence. Similar considerations hold for the other splitting functions because, as it is clear

from figure 1, Pqq and Pgq behave similarly to Pqg and Pgg at small x, due to the colour-

charge relations, eqs. (2.7). We have checked that the comparison between the predictions

obtained using the NLL anomalous dimension versus the LL′ remains equivalent also at

NLO+NLL accuracy.

A striking feature of the result is the small size of the uncertainty band that we obtain

for Pqg. This is rather counterintuitive because Pqg (and Pqq) start at NLL and they are

therefore known only at their leading non-vanishing logarithmic accuracy. Perhaps this

signals the limitation in our way of estimated theoretical uncertainties, which is currently

purely based on the variation of subleading contributions related to the running of the
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Figure 3. Comparison between the resummed contributions ∆4Pqg (left) and ∆4Pgg (right) to be

added to N3LO splitting functions (when available) in two variants of small-x resummation.

strong coupling. Thus, in order to better assess the impact of subleading logarithms, it

would be important to push the accuracy of the resummation, at least for the quark-

initiated splitting functions, one logarithmic order higher.

We now consider the resummation matched to one order higher, in view a future

combination with N3LO splitting functions. Also in this case, we compare the two variants

of resummation, which led to very similar results when matched to NNLO. We have already

argued from theoretical grounds that usage of the LL′ variant is less favourable because one

has less control over the subleading poles that appear in the expansion of the resummation.

In figure 3 we see that this worry is indeed justified. In these plots we show the resummed

contributions x∆4Pqg (on the left) and x∆4Pgg (on the right), which would have to be

added to the N3LO splitting functions according to eq. (2.1). The solid red curve denotes

the default resummation in HELL 3.0 based on the NLL anomalous dimension, while in

dot-dashed green we show the LL′ variant. Both plots show an issue of the LL′, which

was absent when matching at lower orders: the resummed contributions give rise to a

(most likely) spurious contribution at moderate x, which is instead absent if full NLL is

employed in the resummation. Indeed, for x & 10−3 ÷ 10−2 we expect to be outside the

resummation region, and the effect of resummation should be smaller compared to the

fixed-order contribution, which is more reliable in this region. This behaviour is violated in

∆4Pij when using the LL′ anomalous dimension, due a large contribution of γLL′
2 , eq. (2.15),

entering in eq. (2.9), which makes ∆4Pij even larger than ∆3Pij in this region, despite it

being of higher order in αs. Consistently, the green curve also has a rather large uncertainty

band in that region, which makes it almost compatible with the red curve, which has

instead a smaller uncertainty, as one would expect. We interpret this behaviour as further

confirmation of the aforementioned theoretical arguments in favour of our new default.

However, it should be stressed once again that both curves feature the same logarithmic

accuracy, and hence this discrepancy contributes to our theoretical uncertainty.
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Figure 4. Approximate N3LO prediction (solid) of the Pqg (left) and Pgg (right) splitting functions

as obtained by the O(α4
s) expansion of the resummation. The NLL asymptotic behaviour is also

shown (light solid).

3.2 Approximate N3LO

We can use the expansion of the resummed splitting functions to O(α4
s) to make an approx-

imate prediction of the N3LO splitting functions, simply by adding it to the exact NNLO

ones. This is shown in solid red in figure 4 for Pqg (left plot) and Pgg (right plot), and in

dot-dashed green for the LL′ variant. According to the discussion in the previous section,

the latter curve is not expected to be accurate in the region of moderately large x, where it

has an unphysically large effect. These predictions are further supplemented by the same

uncertainty band that appears on resummed results, which happens to be invisible for

Pqg when using our new default implementation7 (and thus confirms that our uncertainty

band underestimates the actual uncertainty on Pqg). Additionally, we also show in light

solid black the asymptotic small-x behaviour at N3LO, as obtained by adding to the exact

NNLO the pure NLL contributions, eq. (2.20), without any subleading effects. Note that

these results are obtained in the Q0MS scheme. While we have not implemented the re-

summation (and hence its expansion) in MS, we can easily plot the asymptotic behaviour

of the splitting functions in this scheme, exploiting the results of section 2.4. The quark

splitting function Pqg is unaffected, while the MS asymptotic result for Pgg, eq. (2.32), is

shown in solid cyan.

In the small-x limit, approximate predictions behave as their asymptotic expansions,

by construction. The difference is due to subleading NNLL contributions, behaving as
1
x log 1

x at this order (a straight line in the plots). While these NNLL contributions are

subleading at asymptotically small x, their effect is sizeable for all the x range shown in

the plots, which is rather large, reaching x = 10−9. This is true in particular for Pgg,

7Indeed, at this order, our uncertainty band originates from the parameter T appearing in eq. (2.9), and

on the potential dependence of the anomalous dimensions γ0,1,2 on the parameter T ′ defined in appendix A.

Since the NLL anomalous dimension is more precise than the LL′ one, none of the γNLL
0,1,2 depends on T ′,

while γLL′
2 does (and also γNLL

3 , which contributes to Pgg). It is the latter (T ′) dependence that generates

the uncertainty bands in figure 4, while the T parameter variation has no appreciable effect at this order

on any of the two variants.
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where the pure NLL asymptotic curve is very different from the approximate N3LO, so

much that in order to display the asymptotic behaviour we had to plot xPgg(x) in a rather

extended range. For this reason, we also added an inset which zooms in to the region

10−5 < x < 0.1, most relevant for HERA and LHC physics, to better appreciate the

perturbative behaviour of the fixed-order splitting functions. This shows once again that

subleading contributions have a very important role at intermediate and moderately small

values of x. Similar conclusions were reached some time ago in ref. [53] (see also ref. [54]

for a similar study in the non-singlet case). This also suggests that the approximate N3LO

prediction that we plotted has a huge uncertainty, likely larger than what we estimate with

our uncertainty bands.

By comparing resummed results (figure 1) and their expansions (figure 2), we can

conclude that, while the small-x contributions to Pqg, as obtained from the expansion of

the resummation, behave in a perturbative way, the prediction of the N3LO contribution

to Pgg, which is more directly sensitive to the (perturbatively unstable) BFKL kernel,

is very different from its all-order counterpart, as it was the NNLO contribution. We

must conclude that these approximate N3LO predictions cannot be regarded as a faithful

estimate of the actual N3LO (especially for Pgg and Pgq) due to potentially underestimated

subleading contributions. However, what we can certainly conclude is that exact N3LO

evolution (when available) will be unreliable at small x, and thus it will necessarily have

to be supplemented with the all-order resummation of small-x contributions.

As we have argued before, because of the sensitivity of the N3LO splitting functions

to subleading logarithmic contributions, it would be important to push the resummation

to NNLL accuracy. However, NNLL resummation requires at least the knowledge of the

NNLO BFKL kernel, which is so far only known in a collinear approximation [39]. It will

be important in the future to explore the possibility of computing the BFKL kernel to

NNLO [40–45], and perhaps to consider the option of using its collinear approximation.

Finally, it interesting to note that the asymptotic behaviour in MS appears to be

closer to the all-order result (albeit computed in a different scheme). This suggests that a

future study of the resummation in MS may reveal interesting properties in terms of the

size of subleading contributions, despite the fact that in this scheme we expect stronger

cancellations between coefficient functions and parton evolution.

4 Conclusions

In this paper we have discussed the role of higher-order corrections to the splitting func-

tions, which govern the evolution of the parton distribution functions. In particular, we

have exploited results in small-x resummation to study the behaviour of the yet-unknown

four-loop splitting functions in the singlet sector. Our results stress once again the fact

that small-x singularities lead to loss of perturbative stability, when higher orders are con-

sidered. This has been masked so far by accidental cancellations at NLO but it becomes

apparent at NNLO, even though also there the strongest singularity is accidentally zero,

thus slightly mitigating the perturbative deterioration. Instead, at the next orders there

are no accidental cancellations, so the perturbative instability is no longer moderated, and
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we estimate it to be rather severe at N3LO. Thanks to this work, this potential instability

can be solved by adding the resummation to the full four-loop splitting functions, when

these will become available.

We have also investigated the possibility of using the expansion of the resummation

to construct approximate N3LO splitting functions. Unfortunately, we have found that

subleading corrections, which are only partially included in our approach, have a sizeable

impact at moderate x, thus rendering the construction of approximate fixed-order splitting

functions rather uncertain. However, our asymptotic results can be used as a check on

the full four-loop calculation, or for complementing an approximate computation based on

integer Mellin moments.

While performing these studies we have encountered a potential source of instability in

the way the resummation of the quark anomalous dimension γqg was implemented in HELL

2.0 in ref. [38], which was based on a hybrid resummation formula denoted LL′. Therefore,

we have adopted as a new default a resummation fully based on NLL and consequently

released a new version of the resummation code HELL 3.0:

www.ge.infn.it/∼bonvini/hell

As the distinction between the two choices is beyond the accuracy of the calculation, the old

option can be, and should be, still used to estimate theoretical uncertainties. Furthermore,

we anticipate that an analogous situation appears in the resummation of partonic coefficient

functions. This issue will be discussed in a forthcoming study [55]. Finally, these results

have been recently exploited in a double-resummed calculation of the Higgs production

cross section [56].
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A Perturbative expansion of resummed anomalous dimensions to N3LO

In this appendix we derive the expansion in powers of αs of the resummed plus eigenvalue

of the singlet anomalous dimension matrix presented in ref. [38]. Specifically, we provide

the detailed computation of the expansion of the NLL resummed anomalous dimensions up

to O(α4
s), and of the LL′ anomalous dimension up to O(α3

s), as needed for matching NLL

resummation in DGLAP evolution to N3LO. We recall that the anomalous dimensions at

LL′ and NLL are constructed as [38]

γresLL′
+ (N,αs) = γDL-LO(N,αs)+∆DL-LOγ

NLL
rc (N,αs)+γLO+LL′

match (N,αs)

−
[
∆DL-LOγ

NLL
rc (1,αs)+γLO+LL′

match (1,αs)
]
fmom(N), (A.1a)

γresNLL
+ (N,αs) = γDL-NLO(N,αs)+∆DL-NLOγ

NLL
rc (N,αs)+∆γrc

ss(N,αs)+γssmatch(N,αs)

−
[
∆DL-LOγ

NLL
rc (1,αs)+∆γrc

ss(1,αs)+γssmatch(1,αs)
]
fmom(N), (A.1b)
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where γDL-(N)LO is the double-leading (DL) anomalous dimension, ∆DL-(N)LOγ
NLL
rc is the

contribution (to be added to the DL) coming from the resummation of running-coupling

(RC) effects, ∆γrc
ss is a running-coupling correction to the fixed-coupling DL construc-

tion at NLL, γLO+LL′

match and γssmatch are matching functions to cancel mismatched singu-

larities, and the second line of each equation restores momentum conservation, i.e. the

constraint γres LL′
+ (1, αs) = γres NLL

+ (1, αs) = 0, through a subleading function fmom defined

in eq. (A.8). All these ingredients have been presented in ref. [38] and will be used in

the following.

Before starting, we recall that the DL anomalous dimension is constructed starting

from the fixed-order BFKL kernel matched to the fixed-order anomalous dimension. Thus,

one of the ingredients of (N)LL resummation is the (N)LO anomalous dimension. In ref. [38]

an approximate form for the input anomalous dimension was suggested to facilitate the

numerical implementation and to solve a potential issue. The approximation does not

represent any loss of accuracy, as the only requirements needed for the input anomalous

dimension are to be accurate at NLL and to conserve momentum, both of which are satisfied

in the approximation of ref. [38]. At LO and NLO they are given by

γ̂0 =
a11

N
+ a10 −

2(a11 + a10)N

N + 1
, (A.2a)

γ̂1 =
a21

N
+ a20 −

2(a21 + a20)N

N + 1
, (A.2b)

with

a11 =
CA
π
, (A.3a)

a21 = nf
26CF − 23CA

36π2
, (A.3b)

a10 = −
11CA + 2nf (1− 2CF /CA)

12π
, (A.3c)

a20 =
1

π2

[
1643

24
− 33

2
ζ2 − 18ζ3 + nf

(
4

9
ζ2 −

68

81

)
+ n2

f

13

2187

]
. (A.3d)

In the next, we start from LL′ resummation, and then move to NLL. The computation fol-

lows closely the one presented in section 3 and 4 of ref. [38], extending it to one extra order.

A.1 Expansion of the LL′ anomalous dimension

We start expanding the LL′ anomalous dimension up to O(α3
s). The first ingredient for

resummation is the DL resummed anomalous dimension γDL, which is obtained from the

implicit equation

χΣ(γDL(N,αs), N, αs) = N. (A.4)

The function χΣ(M,N,αs) is the so-called off-shell BFKL kernel [29, 37]. For LL resum-

mation it is given by [29]

χLO
Σ (M,N,αs) =χs

(αs
M

)
+χs

(
αs

1−M+N

)
+αsχ̃0(M,N)+cLO

mom(αs)fmom(N), (A.5)

– 18 –
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where the function χs(αs/M) is the dual of the LO anomalous dimension αsγ̂0,

αsγ̂0

(
χs

(αs
M

))
= M ⇔ χs

(
1

γ̂0(N)

)
= N, (A.6)

and

χ̃0(M,N) = χ01

[
ψ(1) + ψ(1 +N)− ψ(1 +M)− ψ(2−M +N)

]
(A.7)

is the off-shell extension of the LO BFKL kernel after subtracting double counting with

χs. The last term restores the momentum conservation constraint γDL(1, αs) = 0, namely

by duality χΣ(0, 1, αs) = 1, through a function

fmom(N) =
4N

(N + 1)2
, (A.8)

and with the coefficient

cLO
mom(αs) = −χs

(αs
2

)
− αsχ̃0(0, 1). (A.9)

The coefficient χ01 appearing in eq. (A.7) is the first of the expansion of χs,

χs

(αs
M

)
=
∞∑
k=1

χ0k

(αs
M

)k
. (A.10)

All χ0k coefficients are determined in terms of a11 and a10, eq. (A.3), through eq. (A.6)

and eq. (A.2). In particular, the first three coefficients are given by

χ01 = a11, χ02 = a11a10, χ03 = a11(a2
10 − 2a11a10 − 2a2

11). (A.11)

Following ref. [38], we write the αs-expansion of the DL anomalous dimension

γDL-LO(N,αs) = αsγ̂0(N) + α2
s γ̃1(N) + α3

s γ̃2(N) +O(α4
s), (A.12)

where γ̂0 is the input LO anomalous dimension eq. (A.2) used in the definition of χs,

eq. (A.6), while γ̃1 and γ̃2 are the predictions of the resummation that we aim to find.

Then, we substitute it into eq. (A.4) with χΣ given in eq. (A.5), and expand the equation

in powers of αs. The most delicate function to expand is the collinear χs in eq. (A.5), for

which we find (omitting arguments to facilitate reading)

χs

(
αs

γDL-LO

)
=χs

(
1

γ̂0

[
1−αs

γ̃1

γ̂0
+α2

s

γ̃2
1−γ̂0γ̃2

γ̂2
0

+O(α3
s)

])
=χs

(
1

γ̂0

)
−αs

γ̃1

γ̂2
0

χ′s

(
1

γ̂0

)
+α2

s

[
γ̃2

1−γ̂0γ̃2

γ̂3
0

χ′s

(
1

γ̂0

)
+
γ̃2

1

2γ̂4
0

χ′′s

(
1

γ̂0

)]
+O(α3

s)

=N+αs
γ̃1

γ̂′0
+α2

s

[
γ̃2

γ̂′0
− γ̃

2
1 γ̂
′′
0

2γ̂′30

]
+O(α3

s), (A.13)

where in the last equality we have used the definition eq. (A.6), and the formulae for the

derivatives

χ′s

(
1

γ̂0

)
= − γ̂

2
0

γ̂′0
, χ′′s

(
1

γ̂0

)
=
γ̂2

0

γ̂′0

[
2γ̂0 −

γ̂2
0 γ̂
′′
0

γ̂′20

]
, (A.14)
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which can be derived from the very same definition. The prime ′ denotes a derivative with

respect to the argument of the function, so χ′s(1/γ̂0) is a derivative with respect to 1/γ̂0,

and γ̂′′0 is a double derivative with respect to N . The anticollinear χs gives instead

χs

(
αs

1− γDL-LO +N

)
= αs

χ01

1 +N
+ α2

s

χ02 + χ01γ̂0

(1 +N)2
+O(α3

s). (A.15)

The kernel eq. (A.5) expands as

χ̃0(γDL-LO(N,αs), N) = χ̃0(0, N) + αsγ̂0χ̃
′
0(0, N) +O(α2

s), (A.16)

where the derivative is with respect to M , i.e. the first argument. Putting everything

together eq. (A.4) brings to the expanded equality

N = N + αs

[
γ̃1

γ̂′0
+

χ01

1 +N
+ χ̃0(0, N)−

(χ01

2
+ χ̃0(0, 1)

)
fmom(N)

]
+ α2

s

[
γ̃2

γ̂′0
− γ̃2

1 γ̂
′′
0

2γ̂′30
+
χ02 + χ01γ̂0

(1 +N)2
+ γ̂0χ̃

′
0(0, N)− χ02

4
fmom(N)

]
+O(α3

s), (A.17)

from which it immediately follows

γ̃1(N) =−γ̂′0(N)

[
χ01

1+N
+χ̃0(0,N)−

(χ01

2
+χ̃0(0,1)

)
fmom(N)

]
, (A.18)

γ̃2(N) =
γ̃2

1(N)γ̂′′0 (N)

2γ̂′20 (N)
−γ̂′0(N)

[
χ02+χ01γ̂0(N)

(1+N)2
+γ̂0(N)χ̃′0(0,N)−χ02

4
fmom(N)

]
. (A.19)

Note that the O(α0
s) term cancels automatically, because γ̂0 in eq. (A.12) is the one used

in the definition of χs, eq. (A.6). The expansion terms of the off-shell kernel χ̃0(M,N),

eq. (A.7), are given by

χ̃0(0, N) = − χ01

1 +N
, χ̃′0(0, N) = − χ01

(1 +N)2
+ χ01[ψ1(1 +N)− ζ2], (A.20)

which lead to the predictions

γ̃1(N) = 0, (A.21)

γ̃2(N) = −γ̂′0(N)

[
χ02

(1 +N)2
+ χ01[ψ1(1 +N)− ζ2]γ̂0(N)− χ02

4
fmom(N)

]
. (A.22)

As already noted in ref. [38], the fact that γ̃1 vanishes is not surprising: indeed, the LL

pole of the exact NLO γ
(1)
+ and NNLO γ

(2)
+ are accidentally zero, so the only part which is

supposed to be predicted correctly by LL resummation was indeed expected to vanish.

– 20 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
5

Having computed the expansion of the DL part, we now move to the RC contributions.

The function that resums the running-coupling effects is given by [38]

γrc(N,αs) = Mmin + β0ᾱs

[
z
k′ν(z)

kν(z)
− 1

]
, (A.23)

where kν(z) is a Bateman function, with

1

ᾱs
=

1

αs
+

κ′ − 2c′/M2
min

κ̄+ 2(N − c̄)/M2
min

(A.24a)

z =
1

β0ᾱs

√
N − c̄

κ̄/2 + (N − c̄)/M2
min

(A.24b)

ν =

(
c′

N − c̄
+

κ′ − 2c′/M2
min

κ̄+ 2(N − c̄)/M2
min

)
ᾱsz, (A.24c)

c̄(αs) = c(αs)− αsc′(αs), κ̄(αs) = κ(αs)− αsκ′(αs). (A.24d)

In the equations above, Mmin(αs) is the position of the minimum of the BFKL kernel,8

and c(αs) and κ(αs) are the value and curvature of the kernel at such minimum. In

deriving eq. (A.23), the αs-dependence of the BFKL kernel has been approximated linearly,

keeping the value of the kernel and its αs-derivative correct. In ref. [38] a variant of

this approximation in which the kernel is assumed to be proportional to αs (i.e., as if it

was a purely LO kernel) was considered to study the impact of subleading logarithmic

contributions. This variant is recovered by letting c′ → c/αs, κ
′ → κ/αs, and represents an

equally valid alternative. The RC contribution to be added to the DL-LO result is given by

∆DL-LOγrc(N,αs)≡ γrc(N,αs)−

[
Mmin−

√
N−c

κ/2+(N−c)/M2
min

−β0αs

]

=β0α
2
s

3κ0/32−c0

N

+β0α
3
s

[
c0

3κ0/32−c0

N2
+T ′

3κ1/32−c1

N
+κ0

β0+6m1

16N
+κ0

24c0−3κ0

256N2

]
+O(α4

s), (A.25)

where κ0,1 and c0,1 are the O(α1,2
s ) terms of κ and c, and m1 is determined from Mmin(αs) =

1/2 + αsm1 + O(α2
s). To cover both αs-dependence approximations, we have introduced

a parameter T ′ which equals 2 in the default approximation and equals 1 in the limit

c′ → c/αs, κ
′ → κ/αs. The values of κ1, c1 and m1 depend on the actual kernel used. For

LL′ resummation, the DL-NLO is used for RC resummation, differently from pure LL re-

summation which uses the DL-LO kernel. Thus, the second order coefficients in eq. (A.25)

are mNLO
1 , cNLO

1 and κNLO
1 , explicitly given in section A.3. Because in LL′ resummation

the RC contributions, computed from the NLO BFKL kernel, are matched to the DL-LO

8Note that in ref. [38] we suggested to compute the Mmin from the kernel in symmetric variables, while

we now decided to use the one in DIS variables, as we discuss in greater detail in section A.3.
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anomalous dimension, there is a mismatch in the singularities at small x which are cured

by the matching function γLO+LL′

match defined in ref. [38]. Its expansion gives

γLO+LL′

match (N,αs) =α3
s

16c0(δκ1+6κ0δm1)+κ0(16δc1−3δκ1−15κ0δm1)

512N2
+O(α4

s), (A.26)

where

δm1 = mNLO
1 −mLO

1 , (A.27)

δc1 = cNLO
1 − cLO

1 , (A.28)

δκ1 = κNLO
1 − κLO

1 , (A.29)

are the differences between the coefficients computed with the DL-NLO and the DL-LO

BFKL kernels. Explicit results are given in section A.3.

Putting everything together, the expansion in powers of αs of the full LL′ anomalous

dimension is given by

γres LL′
(N,αs) = αsγ̂0(N) + α2

sβ0

(
3

32
κ0 − c0

)(
1

N
− fmom(N)

)
+ α3

s

{
λ2

N2
+
λ1

N
− (λ2 + λ1)fmom(N)

− γ̂′0(N)

[
χ02

(1 +N)2
+ χ01[ψ1(1 +N)− ζ2]γ̂0(N)− χ02

4
fmom(N)

]}
+O(α4

s), (A.30)

with

λ1 =β0

[
3

32
T ′κNLO

1 −T ′cNLO
1 +

β0+6mNLO
1

16
κ0

]
(A.31a)

λ2 =β0
48c0κ0−3κ2

0−256c2
0

256
+

16c0(δκ1+6κ0δm1)+κ0(16δc1−3δκ1−15κ0δm1)

512
. (A.31b)

Using eq. (A.11) and replacing the explicit form of γ̂0(N), eq. (A.2), we obtain the results

presented in eq. (2.14) and eq. (2.15).

A.2 Expansion of the NLL anomalous dimensions

We now move to the NLL anomalous dimension. This time, we need to push our expansion

to one order higher. The off-shell kernel needed for NLL resummation is

χNLO
Σ (M,N,αs) = χs,NLO(M,αs) + χs,NLO(1−M +N,αs)

+ αsχ̃0(M,N) + α2
sχ̃1(M,N) + α2

sχ
corr
1 (M,N,αs)

+ cNLO
mom(αs)fmom(N). (A.32)

The function χs,NLO(M,αs) is the generalization of χs to the next order, which is obtained

as the exact dual of the NLO anomalous dimension,

χs,NLO

(
αsγ̂0(N) + α2

s γ̂1(N), αs
)

= N. (A.33)

– 22 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
5

This kernel can be expanded as

χs,NLO(M,αs) =

∞∑
j=0

αjs

∞∑
k=1

χjk

(αs
M

)k
, (A.34)

which generalizes eq. (A.10), which is just the j = 0 part of this function. All these

coefficients are given in terms of a11, a10, a21 and a20; the relevant ones for what follows are

χ11 = a21, χ12 = a21a10 + a11a20, χ21 = 0. (A.35)

The kernel χ̃1(M,N) was given in eqs. (A.23)–(A.29) of ref. [37], and can be written as

χ̃1(M,N) = χ̃u
1(M,N)− χ̃u

1(0, N) + χ̃u
1(0, 0), (A.36)

where the function

χ̃u
1(M,N) = χ̆1(M,N)−χ02

(
1

M2
+

1

(1−M+N)2

)
−χ11

(
1

M
+

1

1−M+N

)
(A.37)

is regular in M = 0 and 1−M +N = 0. The function χ̆1 is given by [37]

χ̆1(M,N) =−1

2
χ0(M,N)χ01

[
2ψ1(1+N)−ψ1(M)−ψ1(1−M+N)

]
− 1

2
β0χ01

[(
χ0(M,N)

χ01

)2

−ψ1(M)−ψ1(1−M+N)

]

+
χ2

01

4

{(
12χ11−26χ02

3χ2
01

− 1

2
−2ζ2

)[
ψ(1)−ψ(M)

]
+3ζ(3)+ψ2(M)+ζ2

[
ψ

(
1+M

2

)
−ψ
(
M

2

)]
+4φ+

L (M)

+
3

4(1−2M)

[
ψ1

(
1+M

2

)
−ψ1

(
M

2

)
+ψ1

(
1

4

)
−ψ1

(
3

4

)]
−
(

9

2
+

6χ02

χ2
01

)
2+3M(1−M)

16

[
ψ1(1+M

2 )−ψ1(M2 )+ψ1(1
4)−ψ1(3

4)

1−2M

+
ψ1(1+M

2 )−ψ1(M2 )+ψ1(−1
4)−ψ1(1

4)

2(1+2M)

−
ψ1(1+M

2 )−ψ1(M2 )+ψ1(3
4)−ψ1(5

4)

2(3−2M)

]

+(M↔ 1−M+N)

}
, (A.38)

with

χ0(M,N) = χ01

[
ψ(1) + ψ(1 +N)− ψ(M)− ψ(1−M +N)

]
, (A.39)

φ+
L (M) =

∫ 1

0
dx xM−1 Li2(x)

1 + x
. (A.40)
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The extra term χcorr
1 (M,N) was corrected in ref. [38]; however, there was another issue,

which we have discovered only now. This issue has an effect at NLL, namely the claimed ac-

curacy, but it manifests itself (at NLL) only in terms of O(α4
s) and beyond of the anomalous

dimension (for this reason, the comparison of the expansion of the anomalous dimension

with the exact one at three loops was successful). The origin of the issue and our solution

are discussed in detail in section B. The actual expression that we use here is given by

χcorr
1 (M,N,αs) = β0

[
− χ01ψ1(1−M +N) +

χ0(M,N)

M
+ χ′0(M,N)

− (1−M +N)−1

1 +N

(
χ01 − χ′s

(
αs

1−M +N

))]
. (A.41)

Finally, the momentum conservation coefficient is given by

cNLO
mom = −χs,NLO(2, αs)− αsχ̃0(0, 1)− α2

sχ̃1(0, 1)− α2
sχ

corr
1 (0, 1, αs). (A.42)

We now consider the expansion of the DL-NLO anomalous dimension

γDL-NLO(N,αs) = αsγ̂0(N) + α2
s γ̂1(N) + α3

s γ̃2(N) + α4
s γ̃3(N) +O(α5

s), (A.43)

where both γ̂0(N) and γ̂1(N) are now an input, eq. (A.2), and γ̃2(N) and γ̃3(N) are the

objects that we aim to compute. The expansion of the collinear χs,NLO proceeds as in

eq. (A.13), and gives

χs,NLO(γDL-NLO, αs) = N + α2
s

γ̃2

γ̂′0
+ α3

s

[
γ̃3

γ̂′0
− γ̃2γ̂

′
1

γ̂′20

]
+O(α4

s). (A.44)

The anticollinear χs,NLO expands as

χs,NLO(1−γDL-NLO+N,αs) =αs
χ01

1+N
+α2

s

[
χ02+χ01γ̂0

(1+N)2
+

χ11

1+N

]
+α3

s

[
χ03+2χ02γ̂0+χ01γ̂

2
0

(1+N)3
+
χ12+χ11γ̂0+χ01γ̂1

(1+N)2
+

χ21

1+N

]
+O(α4

s). (A.45)

The kernels give instead

χ̃0(γDL-NLO, N) = χ̃0(0, N) + αsγ̂0χ̃
′
0(0, N) + α2

s

[
γ̂1χ̃

′
0(0, N) +

1

2
γ̂2

0 χ̃
′′
0(0, N)

]
+O(α3

s), (A.46)

χ̃1(γDL-NLO, N) = χ̃1(0, N) + αsγ̂0χ̃
′
1(0, N) +O(α2

s), (A.47)

χcorr
1 (γDL-NLO, N, αs) = χcorr

1 (0, N, 0) + αs[γ̂0∂Mχ
corr
1 (0, N, 0) + ∂αsχ

corr
1 (0, N, 0)]

+O(α2
s), (A.48)

where implicit derivatives denoted with a ′ are with respect to M , i.e. the first argument.
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The new functions appearing in the equations above are given by

1

2
χ̃′′
0(0,N) =− χ01

(1+N)3
+χ01

[
ζ3−

1

2
ψ2(1+N)

]
, (A.49a)

χ̃1(0,N) = χ̃u
1(0,0)

=χ2
01

[
5

2
ζ3−

1

24

]
+χ01β0ζ2+χ02

[
53

18
−ζ2

]
−χ11, (A.49b)

χ̃′
1(0,N) = χ̃u′

1 (0,N)

=

(
3χ2

01

4
+χ02

)(
1

(3+2N)2
+

1

(1−2N)2

)[
9ζ2
32
− 3

128

(
Φ1(N)−16+2ψ1

(
1

4

))]
+

(
χ2
01

4
+11χ02

)
2

(1+2N)2

[
−9ζ2

32
− 3

128

(
Φ1(N)−2ψ1

(
1

4

))]
+

[(
9χ2

01

2048
+

3χ02

512

)(
1

3+2N
− 1

1−2N

)
+

(
3χ2

01

1024
+

33χ02

256

)
1

1+2N

]
Φ2(N)

+χ11[ψ2(2+N)−ζ2]−2β2χ01ζ3

+χ02

[
887

108
+

167

24
ζ2+

3

2
ζ3−

2

(1+N)3
− 13

6
ψ1(1+N)− 47

48
ψ1

(
1

4

)]
+χ2

01

[
23

144
− ζ2

32
+

37

40
ζ22 +

ζ2
8

Φ1(N)+
1

64
ψ1

(
1

4

)
+

(
ζ2
2
− 1

8

)
ψ1(1+N)

+
1

2
ψ2
1(1+N)+

1

12
ψ3(1+N)−φ+′

L (1+N)

]
, (A.49c)

Φn(N) =ψn

(
1+N

2

)
−ψn

(
1+

N

2

)
, (A.49d)

χcorr
1 (0,N,0) =β0χ01[ψ1(1+N)−2ζ2], (A.49e)

∂Mχ
corr
1 (0,N,0) =β0χ01

[
3ζ3−

1

2
ψ2(1+N)

]
, (A.49f)

∂αsχ
corr
1 (0,N,0) =β0

2χ02

(1+N)3
. (A.49g)

Plugging each expansion in eq. (A.4) we find

N =N+αs

[
χ01

1+N
+χ̃0(0,N)−

(χ01

2
+χ̃0(0,1)

)
fmom(N)

]
+α2

s

[
γ̃2

γ̂′0
+
χ02+χ01γ̂0

(1+N)2
+

χ11

1+N
+γ̂0χ̃

′
0(0,N)+χ̃1(0,N)+χcorr

1 (0,N,0)

−
(χ02

4
+
χ11

2
+χ̃1(0,1)+χcorr

1 (0,1,0)
)
fmom(N)

]
+α3

s

[
γ̃3

γ̂′0
− γ̃2γ̂

′
1

γ̂′20
+
χ03+2χ02γ̂0+χ01γ̂

2
0

(1+N)3
+
χ12+χ11γ̂0+χ01γ̂1

(1+N)2
+

χ21

1+N

+γ̂1χ̃
′
0(0,N)+

1

2
γ̂2

0 χ̃
′′
0(0,N)+γ̂0χ̃

′
1(0,N)+γ̂0∂Mχ

corr
1 (0,N,0)+∂αsχ

corr
1 (0,N,0)

−
(χ03

8
+
χ12

4
+
χ21

2
+∂αsχ

corr
1 (0,1,0)

)
fmom(N)

]
+O(α4

s). (A.50)
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Using eq. (A.20), we find that both the O(α0
s) and O(αs) contributions vanish automati-

cally. From the O(α2
s) and O(α3

s) terms it immediately follows

γ̃2(N) = −γ̂′0
[

χ02

(1 +N)2
+

χ11

1 +N
+ χ̃1(0, N) + χcorr

1 (0, N, 0) + χ01[ψ1(1 +N)− ζ2]γ̂0

−
(χ02

4
+
χ11

2
+ χ̃1(0, 1) + χcorr

1 (0, 1, 0)
)
fmom(N)

]
. (A.51)

γ̃3(N) =
γ̃2γ̂
′
1

γ̂′0

− γ̂′0
[
χ03 + 2χ02(γ̂0 + β0)

(1 +N)3
+
χ12 + χ11γ̂0

(1 +N)2
+

χ21

1 +N
+ χ01

[
ζ3 −

1

2
ψ2(1 +N)

]
γ̂2

0

+ χ01[ψ1(1 +N)− ζ2]γ̂1 + γ̂0χ̃
′
1(0, N) + β0χ01

[
3ζ3 −

1

2
ψ2(1 +N)

]
γ̂0

−
(
χ03 + 2β0χ02

8
+
χ12

4
+
χ21

2

)
fmom(N)

]
, (A.52)

where we have partially used information from eqs. (A.20) and (A.49). Further using

eq. (A.49) we can rewrite eq. (A.51) as9

γ̃2(N) = −γ̂′0
[

χ02

(1 +N)2
+

χ11

1 +N
+ ρ+ χ01[ψ1(1 +N)− ζ2](γ̂0 + β0)

−
(χ02

4
+
χ11

2
+ ρ− β0χ01

)
fmom(N)

]
(A.53)

with

ρ = χ2
01

[
5

2
ζ3 −

1

24

]
+ χ02

[
53

18
− ζ2

]
− χ11

=
1

π2

[
C2
A

(
−74

27
+

11

12
ζ2 +

5

2
ζ3

)
+ nfCA

(
4

27
+

1

6
ζ2

)
+ nfCF

(
7

27
− 1

3
ζ2

)]
. (A.54)

The N3LO function γ̃3(N) cannot be simplified significantly, so we do not manipulate

it further.

We now move to the running-coupling contributions. The RC correction to the duality

is implemented through the function

∆γrc
ss(N,αs) = −β0αs

[
χ′′0(M)χ0(M)

2χ′0
2(M)

− 1

]
M=γs(αs/N)

= −α4
sβ0

χ3
01

N3
12ζ3 +O(α5

s), (A.55)

9Note that this expression differs from the analogous in ref. [38] by NNLL terms, due to the correction

to the function χcorr
1 .
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which contributes at NLL. Further RC corrections from RC resummation, eq. (A.23), are

NNLL corrections. They amount to

∆DL-NLOγrc(N,αs) ≡ γrc(N,αs)−

[
Mmin −

√
N − c

κ/2 + (N − c)/M2
min

− β0αs

+
1

4
β0α

2
s

(
3

κ′ − 2c′/M2
min

κ+ 2(N − c)/M2
min

− c′

N − c

)]
= β2

0α
3
s

κ0

16N

+ β2
0α

4
s

[
κ0(192c0 − 7κ0)

1024N2
+
κ0(2mNLO

1 − 3β0) + T ′κNLO
1

16N

]
+O(α5

s), (A.56)

where as before T ′ is either 2 or 1 depending on the approximate αs dependence chosen.

To cancel the singularity mismatch between eq. (A.56) and eq. (A.55) we further need the

matching function

γssmatch(N,αs) =
1

4
β0α

2
s

[
c0

N − αsc0
− c′

N − c
+
c′ − c0

N

]
= −α4

sβ0c0
(1 + T ′)cNLO

1

4N2
+O(α5

s). (A.57)

The coefficients above are the ones obtained from the NLO kernel, given in section A.3.

Putting everything together according to eq. (A.1), we obtain

γres NLL(N,αs) = αsγ̂0(N) + α2
s γ̂1(N)

+ α3
s

{
β2

0

κ0

16

(
1

N
− fmom(N)

)
− γ̂′0

[
χ02

(1 +N)2
+

χ11

1 +N
+ ρ+ χ01[ψ1(1 +N)− ζ2](γ̂0 + β0)

−
(χ02

4
+
χ11

2
+ ρ− β0χ01

)
fmom(N)

]}
+ α4

s

{
ρ3

N3
+

ρ2

N2
+
ρ1

N
− (ρ3 + ρ2 + ρ1)fmom(N)

− γ̂′1
[

χ02

(1 +N)2
+

χ11

1 +N
+ ρ+ χ01[ψ1(1 +N)− ζ2](γ̂0 + β0)

−
(χ02

4
+
χ11

2
+ ρ− β0χ01

)
fmom(N)

]
− γ̂′0

[
χ03 + 2χ02(γ̂0 + β0)

(1 +N)3
+
χ12 + χ11γ̂0

(1 +N)2
+

χ21

1 +N

−
(
χ03 + 2β0χ02

8
+
χ12

4
+
χ21

2

)
fmom(N)

+ χ01

[
ζ3 −

1

2
ψ2(1 +N)

]
γ̂0(γ̂0 + β0) + χ012ζ3β0γ̂0

+ χ01[ψ1(1 +N)− ζ2]γ̂1 + γ̂0χ̃
′
1(0, N)

]}
+O(α5

s), (A.58)
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where

ρ3 = −β0χ
3
0112ζ3, (A.59a)

ρ2 = β2
0κ0

[
3

16
c0 −

7

1024
κ0

]
− β0c0c

NLO
1

1 + T ′

4
, (A.59b)

ρ1 = β2
0

κ0(2mNLO
1 − 3β0) + T ′κNLO

1

16
, (A.59c)

and with χ̃′1(0, N) given in eq. (A.49). The O(α4
s) contribution in eq. (A.58) is a new result.

Eq. (A.58) is rather complex and not optimal to be used in a numerical code. In

particular, we also need to compute the inverse Mellin transform of this object in order to

provide the expansion of the resummed splitting functions, and it is clearly very complicated

(if not impossible) to obtain analytic expressions for such inverse. Thus, we consider a pole

expansion of the O(α4
s) term of eq. (A.58), γNLL

3 . Specifically, we compute the residues of

all the poles in N = 0,−1,−2, and construct an approximation based only on these terms,

γNLL
3 (N) '

3∑
j=0

g0j

N j+1
+

6∑
j=0

g1j

(N + 1)j+1
+

2∑
j=0

g2j

(N + 2)j+1
. (A.60)

This approximation has the advantage of describing in x space all contributions behav-

ing as xk logj x for all non-vanishing terms with j ≥ 0 and for k = −1, 0, 1, namely all

non-vanishing terms at small x plus the leading corrections to them. Of course this ap-

proximation will not be accurate at large x, but since the final results will be damped at

large x the inaccuracy should be negligible. To verify the quality of our approximation, we

have compared it with a simpler approximation which does not include the contributions

from the poles in N = −2, i.e. those terms behaving as x logj x in x space. The difference

between the two results is almost imperceptible.

Before concluding, it is useful to extract from eq. (A.58) its small-x behaviour up to

NLL, which provides a prediction for the yet unknown four-loop anomalous dimensions.

Expanding the anomalous dimensions eq. (A.2) in N = 0,

γ̂0(N) =
a11

N
+ a10 +O(N), γ̂′0(N) = −a11

N2
+O(N0), (A.61)

γ̂1(N) =
a21

N
+O(N0), γ̂′1(N) = −a21

N2
+O(N0), (A.62)

and knowing that χ̃′1(0, N) is finite in N = 0, we can easily compute the N = 0 expansion

of eq. (A.58). For this result, we also need the function φ+
L (M) and its derivative evaluated

in M = 0, 1,10

φ+
L (0) = −ζ2 log 2 +

13

8
ζ3, φ+

L (1) = ζ2 log 2− 5

8
ζ3, (A.63)

φ+′
L (0) = −13

16
ζ4, φ+′

L (1) = − 3

16
ζ4. (A.64)

10We could not compute the derivatives analytically, so we have used the PSLQ algorithm to find the

results of the integrals.
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Denoting with γ
(n)
+ the exact anomalous dimensions at O(αn+1

s ), we find

γ
(2)
+ (N) =

CA
π3N2

C2
A(54ζ3 + 99ζ2 − 395) + nf (CA − 2CF )(18ζ2 − 71)

108
+O

(
1

N

)
, (A.65)

γ
(3)
+ (N) =

C4
A

π4N4
2ζ3

+
C2
A

π4N3

[
C2
A

(
−1205

162
+

67

36
ζ2 +

1

4
ζ2

2 −
77

6
ζ3

)
+ nfCA

(
−233

162
+

13

36
ζ2 + ζ3

)
+ nfCF

(
233

81
− 13

18
ζ2 +

4

3
ζ3

)]
+O

(
1

N2

)
(A.66)

To our knowledge, the NLL term at N3LO was never explicitly presented in the literature.

Note that the scheme is Q0MS. The conversion to MS was presented in section 2.4.

A.3 Computation of the coefficients describing the minimum of the BFKL

kernel

In this section we compute the expansion coefficients of c(αs) and κ(αs) of the BFKL kernel

in symmetric variables. We will assume that the minimum is not in M = 1/2, but in

M̃min(αs) =
1

2
+ αsm̃1 + α2

sm̃2 + . . . . (A.67)

The expansion coefficients of the minimum can be found by solving perturbatively the

minimum condition

∂Mχ(M,αs)|M=M̃min(αs) = 0, (A.68)

where this χ(M,αs) is the on-shell kernel in symmetric variables, obtained by the on-shell

condition

χ(M,αs) = χσ(M,χ(M,αs), αs), (A.69)

where χσ(M,N,αs) is the off-shell kernel in symmetric variables, related to the DL kernel

via [29, 38]

χσ(M,N,αs) = χΣ(M +N/2, N, αs). (A.70)

Using eq. (A.69) in eq. (A.68) we get (here M -partial derivatives act on the first argument,

which is then set to the written value)

∂Mχ
σ
(
M̃min(αs), c(αs), αs

)
= 0, (A.71)

having used the definition c(αs) = χ(M̃min(αs), αs) which, in terms of the off-shell kernel,

leads to the implicit equation

c(αs) = χσ(M̃min(αs), c(αs), αs). (A.72)
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Equations (A.71) and (A.72) can be iteratively solved order by order in perturbation theory.

Introducing the expansions

c(αs) = αsc0 + α2
sc1 + . . . (A.73)

χσ(M,N,αs) = αsχ
σ
0 (M,N) + α2

sχ
σ
1 (M,N) + . . . (A.74)

we have

0 =αs∂Mχ
σ
0

(
1

2
+αsm̃1+. . . ,αsc0+. . .

)
+α2

s∂Mχ
σ
1

(
1

2
+αsm̃1+. . . ,αsc0+. . .

)
+. . . (A.75)

αsc0+α2
sc1+. . .=αsχ

σ
0

(
1

2
+αsm̃1+. . . ,αsc0+. . .

)
+α2

sχ
σ
1

(
1

2
+αsm̃1+. . . ,αsc0+. . .

)
+. . .

(A.76)

and further expanding we get

0 =αs∂Mχ
σ
0

(
1

2
,0

)
+α2

s

[
m̃1∂

2
Mχ

σ
0

(
1

2
,0

)
+c0∂N∂Mχ

σ
0

(
1

2
,0

)
+∂Mχ

σ
1

(
1

2
,0

)]
+. . . (A.77)

αsc0+α2
sc1+. . .=αsχ

σ
0

(
1

2
,0

)
+α2

s

[
m̃1∂Mχ

σ
0

(
1

2
,0

)
+c0∂Nχ

σ
0

(
1

2
,0

)
+χσ1

(
1

2
,0

)]
+. . .

(A.78)

From these equations we find that ∂Mχ
σ
0

(
1
2 , 0
)

= 0, which was our assumption in eq. (A.67).

Note that, more in general, we have ∂Mχ
σ
0

(
1
2 , N

)
= 0 for any N , which implies that

∂N∂Mχ
σ
0

(
1
2 , 0
)

= 0. Before listing the results, let us also consider the curvature κ, with

expansion

κ(αs) = αsκ0 + α2
sκ1 + . . . (A.79)

which is given by κ(αs) = ∂2
Mχ(M̃min, αs) and hence, in terms of off-shell kernel [57],

κ(αs) =
∂2
Mχ

σ

1− ∂Nχσ

∣∣∣∣
M=M̃min(αs),N=c(αs)

. (A.80)

Expanding this equation we find

κ(αs) =

[
αs∂

2
Mχ

σ
0

(
1

2
+αsm̃1+. . . ,αsc0+. . .

)
+α2

s∂
2
Mχ

σ
1

(
1

2
+. . . ,0+. . .

)
+. . .

]
×
[
1+αs∂Nχ

σ
0

(
1

2
+. . . ,0+. . .

)
+. . .

]
=αs∂

2
Mχ

σ
0

(
1

2
,0

)
+α2

s

[
∂2Mχ

σ
1

(
1

2
,0

)
+∂2Mχ

σ
0

(
1

2
,0

)
∂Nχ

σ
0

(
1

2
,0

)
+c0∂N∂

2
Mχ

σ
0

(
1

2
,0

)
+m̃1∂

3
Mχ

σ
0

(
1

2
,0

)]
+. . . (A.81)
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Note that the last term vanishes due to the fact that the LO kernel is symmetric, and

hence all its odd M -derivatives are zero. Putting everything together, we then obtain

c0 = χσ0 , (A.82)

κ0 = ∂2
Mχ

σ
0 , (A.83)

m̃1 = −∂Mχ
σ
1

κ0
, (A.84)

c1 = χσ1 + c0∂Nχ
σ
0 , (A.85)

κ1 = ∂2
Mχ

σ
1 + κ0∂Nχ

σ
0 + c0∂N∂

2
Mχ

σ
0 , (A.86)

where every off-shell kernel is implicitly assumed to be computed in M = 1/2, N = 0.

Explicitly, we have at lowest order

c0 = χ014 log 2, (A.87a)

κ0 = χ0128ζ3, (A.87b)

while for the higher order coefficients the result depends on the actual kernel considered.

For DL-LO kernel we have

m̃LO
1 = 0, (A.88a)

cLO
1 = 8χ02 − 8χ2

01ζ2 log 2

= −15.00496429− 0.04503163717nf , (A.88b)

κLO
1 = 192χ02 − χ2

01

(
144ζ2

2 log 2 + 56ζ2ζ3

)
= −507.744719− 1.080759292nf , (A.88c)

while for DL-NLO kernel we have

m̃NLO
1 = β0

(
4 log 2

7ζ3
− 1

2

)
, (A.89a)

cNLO
1 = χ02

[
33π3

64
− 26

3
log 2

]
+ 8β0χ01

[
log 2− log2 2

]
+ χ114 log 2

+ χ2
01

[
73π3

786
− log 2

2
− 2ζ2 log 2− 11

2
ζ3 + 2φ+

L

(
1

2

)]
= −11.696833425− 0.4102968810nf , (A.89b)

κNLO
1 = χ02

[
−3π3

32
+

55π5

64
− 182

3
ζ3

]
+ χ1128ζ3 + β0χ01[64 log 2 + 56ζ3 − 112 log 2ζ3]

+ χ2
01

[
−9π3

128
+

79π5

786
− 7

2
ζ3 − 14ζ2ζ3 − 372ζ5 + 2φ+′′

L

(
1

2

)]
= −494.250393369− 5.23585215538nf . (A.89c)

Unfortunately, we could not be able to express the function φ+
L (M), eq. (A.40), and its

second derivative computed in M = 1/2 in terms of elementary constants. Finally, the

differences of the coefficients needed for the LL′ result have the following numerical values:

δm1 = −0.1492429211 + 0.00904502552nf , (A.90a)

δc1 = 3.308130862− 0.3652652438nf , (A.90b)

δκ1 = 13.49432608− 4.155092863nf . (A.90c)
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Note that ultimately one wants to construct the anomalous dimensions which are dual to the

BFKL kernel in asymmetric (or DIS) variables. In ref. [38] we argued that ∆DL-(N)LOγ
(N)LL
rc ,

which contains the RC resummation corrections to be added to the DL result, could be

computed directly from the kernel in symmetric variables, as the conversion from symmet-

ric to asymmetric amounts to adding +N/2 to the anomalous dimension, which is then

subtracted again by the matching. However, the argument was superficial, and induced

by the collinear approximation of the kernel used for computing the resummation of RC

effects. Indeed, the actual DL BFKL kernel in symmetric variables behaves asymptotically

as −2M in the collinear region, which by duality (either fixed-coupling or running-coupling)

reproduces the −N/2 behaviour which is then removed by the conversion from symmetric

to asymmetric variables. Therefore, using a collinear approximation to the kernel is more

appropriate if the kernel is the one in asymmetric variables. Thus, the RC parameters (c,

κ and Mmin) should be the ones of such kernel. While the curvature and the value of the

kernel at the minimum are not sensitive to the conversion, the position of the minimum is,

and thus in the 3.0 version of the HELL code we use the results of ref. [38] with

Mmin(αs) = M̃min(αs) + c(αs)/2. (A.91)

Note that in the expansion of this appendix this implies that m1 = m̃1 + c0/2, while δm1,

eq. (A.90a), remains unchanged.

B Running coupling corrections to the DGLAP-BFKL duality

The BFKL kernel (in symmetric variables) is not fully symmetric for the exchange

M ↔ 1−M because of a number of effects, all induced by the running of the strong

coupling. The origin of these effects can be traced back to (see e.g. [29]):

• the scale at which αs is computed in different pieces of the fixed-order kernel;

• the conversion from the unintegrated (kt-dependent) PDFs, to which the original

BFKL equation refers, to the integrated (collinear) PDFs, to which the DGLAP

equation refers;

• the so-called running coupling corrections to the duality, namely the correct deriva-

tion of the duality between DGLAP and BFKL taking into account the scale depen-

dence of the strong coupling.

These effects have been extensively discussed in the literature and they will not be red-

erived; here we limit ourselves to present them. All these effects can be implemented as

corrections to the BFKL kernel, which then gives by naive (i.e., fixed-coupling) duality

the correct NLL contributions to the resummed anomalous dimension. These corrections

amount to the following expression to be added to the symmetric kernel,

∆χ(M,αs) = α2
sβ0

[
−ψ1(1−M) +

χ0(M)

M
+
χ0(M)χ′′0(M)

2χ′0(M)

]
+O(α3

s), (B.1)
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where the three contributions in square brackets correspond to the three items above,

respectively. The last term contains a χ′0(M) in the denominator, which is singular in

M = 1/2, and thus produces a new singularity that makes the result perturbatively un-

stable. It has been realised long ago [28, 29] that these singular contributions can be

removed (resummed) if the running coupling corrections to duality are accounted for to all

orders rather than included perturbatively. This is the goal of the RC resummation, which

provides an anomalous dimension where these contributions are resummed by solving the

BFKL equation with running coupling (in a given approximation). Thus, it is convenient

to translate the last correction to the kernel in a correction to the anomalous dimension,

which is then regulated when the RC resummed result is added. This is always possible,

and a simple computation reveals that one can pour the last term of eq. (B.1) into

∆γ(N,αs) = −αsβ0

[
χ0(M)χ′′0(M)

2χ′20 (M)

]
M=γs(αs/N)

, (B.2)

up to subleading logarithms. This expression, however, is not yet optimal for numerical

implementation. Indeed, expanding this contribution we get

∆γ(N,αs) = −αsβ0 +O(α4
s). (B.3)

This implies that the naive dual of the kernel (the symmetric kernel plus ∆χ, eq. (B.1),

without the last term) does not coincide with the high-energy limit of the exact anomalous

dimension atO(αs). This is problematic when one wants to resum the collinear singularities

of the kernel using χs, the dual of the LO anomalous dimension, as the singularities would

not cancel. One could in principle cure this problem by computing χs from a modified

fixed-order anomalous dimension to which the −αsβ0 term, eq. (B.3), has been subtracted,

namely γ̂0 → γ̂0 + αsβ0. However, this becomes too artificial and not very physical. A

better way to solve the issue is to pour back the lowest order term of the expansion of ∆γ

into ∆χ. We would thus have (using the same names for the modified objects)

∆γ(N,αs) = −αsβ0

[
χ0(M)χ′′0(M)

2χ′20 (M)
− 1

]
M=γs(αs/N)

, (B.4)

∆χ(M,αs) = α2
sβ0

[
−ψ1(1−M) +

χ0(M)

M
+ χ′0(M)

]
+O(α3

s). (B.5)

In this way, the singularities of the kernel can be resummed with the standard χs, and the

dual anomalous dimension receives a correction of order O(α4
s), which is then accounted

for to all orders by RC resummation. This ∆γ, eq. (B.4), is indeed the function ∆γrc
ss,

eq. (A.55), used in our construction. The ∆χ contribution, instead, generates the χcorr
1

term appearing in the off-shell kernel, eq. (A.32). Indeed, the naive off-shell extension of

∆χ gives

∆χ(M,αs)→ α2
sβ0

[
−ψ1(1−M +N) +

χ0(M,N)

M
+ χ′0(M,N)

]
+O(α3

s). (B.6)

The actual χcorr
1 that we use, eq. (A.41), further adds a higher order contribution to resum

the singularity in M = 1 + N , thus stabilizing the resulting kernel without affecting the

logarithmic accuracy of the resummed anomalous dimension.
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Figure 5. Comparison between resummed and matched splitting functions in HELL 3.0 with LL′

anomalous dimension and HELL 2.0, which contained a bug.

In our previous implementation of the resummation, ref. [38], we used a different

(wrong) form of χcorr
1 , taken from ref. [29],

χcorr, HELL 2.0
1 (M,N,αs) = α2

sβ0

[
−ψ1(1−M +N) +

χ0(M,N)

M
− χ01

M2

]
+O(α3

s), (B.7)

which differs from the correct eq. (B.6) by the last term. The singularity of the last

term is the correct one, and thus leads to a proper resummation through χs, which is the

argument used by ref. [29] to introduce such a “subtraction” term. However, the missing

M -dependent contributions at O(α2
s) produce spurious NLL contributions in the anomalous

dimension. This NLL effect starts to appear at O(α4
s), which explains why the comparison

of the three-loop anomalous dimension obtained from the resummation to the exact result

was successful. For this reason, the full resummed result after the correction is not very

different from the previous bugged one.

To conclude, we show in figure 5 the comparison between the Pqg and Pgg splitting

functions obtained using the LL′ anomalous dimension before (dot-dashed gray) and after

(dot-dashed green) the correction of the bug, and the new definition of Mmin, eq. (A.91).

Both splitting functions appear to be harder after bug corrections, which is due to both

γNLL
+ and γLL′

+ being indeed harder. We stress however that much of this effect is induced

by the change in Mmin, rather than to the correction in χcorr
1 . The uncertainty band on Pqg

is significantly reduced, again mostly due to the different Mmin used. Overall, however, the

effect is not dramatic, and likely comparable to (if not smaller than) unknown subleading

corrections, which in Pqg are likely underestimated by our uncertainty band, as we already

commented in section 3.
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