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1 Introduction

Defects in two-dimensional systems have been studied for a long time, see eg [1, 2] and

references therein. In conformal field theory, attention has been focused primarily on defects

which preserve some or all of the conformal symmetry. If the defect lies along the real axis,

this can be expressed in terms of the continuity of various quantities. If the holomorphic

and anti-holomorphic components T and T̄ of the stress-energy tensor are each separately

continuous across the defect, it is said to be topological; if T−T̄ vanishes on the defect, it is

called reflecting or factorised and corresponds to some combination of conformal boundary

conditions on the upper and lower half planes. These are both examples of the more general

case of a conformal defect for which T − T̄ is continuous across the defect.

The Virasoro minimal models are amongst the simplest and most well-studied confor-

mal field theories. The boundary conditions and topological defects have been completely

classified in [3] and further studied in [4]. The situation of more general conformal defects

is much less clear. The conformal defects in the Ising model were classified in [5] (and in

the much simpler Lee-Yang model in [2]), but in general the only results found are either

perturbative or numerical [6]. More recently, we have also found exact expressions for

conformal defects in the tricritical Ising model [7] (based on ideas in [8]).
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There has also been a great deal of study of defects between different conformal field

theories, with exact classifications in a few cases [2], exact proposals [9] for defects related

to renormalisation group flows, and perturbative calculations [10].

One characteristic of a conformal defect is its transmission coefficient T , or equivalently

its reflection coefficient R = 1− T , which was defined in [2]. These take the values R = 0

for a topological defect and R = 1 for a factorised defect, and 0 < R < 1 for a general

conformal defect in a unitary theory [11].

The aim of this paper is to calculate the reflection coefficient for a class of conformal

defects in Virasoro minimal models defined as the fixed points of the perturbative renor-

malisation group flows considered in [6], and to compare this with the values found in [7]

for the tri-critical Ising model.

The structure of the paper is as follows. In section 2 we define the perturbed defects

that we will consider, state their fixed points and outline the calculation of the reflection

coefficient for these fixed points. For this calculation we need several of the structure

constants of the operator algebra of the defect fields. These are given in [12, 13] in terms of

topological field theory data but in section 3 we provide an alternative derivation of these

constants in terms of bulk and boundary CFT data, extending the results of [14].

In section 4 we calculate the perturbative integrals we need. In section 5 we give the

value of R at the fixed points in terms of the bulk and boundary CFT data; these do not

rely on the details of the model and so could have more general applicability. We then

specialise to the particular case of the (r, 2) defects in minimal models. In section 6 we

compare the perturbative results for R and the boundary entropy g with known results in

the tri-critical Ising model. Finally we state our conclusions in section 7.

2 The D(r,2) defect and its perturbations

We will concern ourselves only with diagonal Mp,q Virasoro minimal models, also known

as the (Ap−1, Aq−1) invariant [15]. These are labelled by two co-prime integers (p, q); we

shall take p ≥ 2, q ≥ 5. The model has (p − 1)(q − 1)/2 primary fields corresponding to

the Virasoro highest weight representations which are labelled by two integers (r, s) with

(r, s) ' (p− r, q − s). We are going to be especially interested in the representation (1, 3),

and we will write h = h13 = 2p/q − 1.

The elementary topological defects for this model were classified in [3], and are labelled

by the same representations of the Virasoro algebra as the bulk fields. The space of local

fields on the defects is also known. If we label the representations by a, then a primary

field on the defect is labelled by two representations (a, b) which give its properties under

the holomorphic and anti-holomorphic copies of the Virasoro algebra (but see the comment

below on the transformation rules for defect fields). The multiplicity Mab of the primary

field with labels (a, b) on the defect with label d (which is Ṽab;d
d in the notation of [3]) are

given in terms of the Verlinde fusion numbers Nabc by

Mab =
∑
e

NdaeNdeb =
∑
f

NddfNfab . (2.1)
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From the formula (2.1), a general (r, s) defect has (for s > 2 and q large enough) one chi-

ral field of weights (h, 0), one field of weights (0, h) and three fields of weight (h, h). A defect

of type (r, 2) is special in that it has one chiral field φ of conformal weights (h, 0), one chiral

field φ̄ of weights (0, h), but only a two dimensional space of fields {ϕα} of weights (h, h).

Furthermore, the (r, 2) topological defect can be constructed as the fusion (r, 1)

and (1, 2) topological defects and the operator product algebra of fields of type

(a, b) = ((1, s)(1, s′)) is unaffected by this fusion, in exactly the same way that the action of

topological defects on boundaries leaves operator algebras invariant [16]. This means that

when considering the algebra of fields generated by the set {1, φ, φ̄, ϕα}, we can restrict

attention to just the (1, 2) defect.

The fact that there is a two-dimensional space of fields {ϕa} on the (r, 2) defects allows

one to choose a canonical basis of these fields with special properties so that the analysis

of the sewing constraints is correspondingly simpler. These sewing constraints have been

solved in [14] for the (1, 2) defect in the non-unitary Lee-Yang model, the (A1, A4) theory, in

which D(1,2) is the only non-trivial defect and {1, φ, φ̄, ϕα} are the only non-trivial primary

defect fields. In this paper we extend this analysis to the fields {1, φ, φ̄, ϕα} on defects of

type D(r,2) in all the (Ap, Aq) models.

We are interested in the perturbations of the defect D(r,2) by a combination of the

fields φ and φ̄,

S =

∫ (
λφ(x) + λ̄φ̄(x)

)
dx , (2.2)

where the parameters λ and λ̄ are independent. This is a relevant perturbation if h < 1

which is the case if p < q.

One important question is that of the transformation properties of fields on a defect

under a conformal transformation. We will use the conventions of [13] which imply that

defect fields always transform with the absolute value of the derivative of the conformal

map, even if they are “chiral” defect fields. This is possible because the defect defines a

direction through the insertion point of the field (the tangent vector along the defect), and

so a defect field can pick up an extra phase under a conformal transformation: this is chosen

so that all defect fields transform with the absolute value of the derivative of the conformal

map. This has the advantage of making the perturbation well-defined on defects that are

closed loops and making the correlation function independent of the orientation of the defect

at the location of the defect field (as one would expect if the defect is genuinely topological).

The question remains whether this choice for the transformation law of “chiral” defect fields

is unique: the corresponding situation for a boundary and boundary fields was considered

by Runkel [17], and there seems no way to fix it a priori; we stick to the conventions of [13]

here for the good reasons cited above.

The expectation values in the perturbed defect D(r,2)(λ, λ̄) are formally given by

〈O 〉D(r,2)(λ,λ̄) = 〈O exp(−S) 〉D(r,2)
. (2.3)

This is only formal since there may be UV divergences in the integrals when the inser-

tion points of two fields φ or two fields φ̄ meet and IR divergences from integration along

the whole real axis. This means that the general procedure of regularisation and renor-

malisation may be needed to given meaning to the expression (2.3). This is explained in
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Affleck and Ludwig [18] and applied by Recknagel et al. in [19] to the case of boundary

perturbations of the unitary minimal models where q = p+ 1.

As explained in [6], when y = 1 − h is small and positive, the results of [19] can

immediately be applied to the case of defects with the perturbation (2.2) with the prediction

(from third order perturbation theory) of three conformal defects at the fixed points

(i) λ = λ∗, λ̄ = 0 (2.4)

(ii) λ = 0, λ̄ = λ∗ (2.5)

(iii) λ = λ̄ = λ∗ (2.6)

The fixed points (i) and (ii) can be identified as the defect D(2,1) (if r = 2) and (more

generally) the superposition D(r−1,1) ⊕ D(r+1,1); the fixed point (iii) is a potential new

conformal defect, denoted by C in [6] in the case of the perturbation of the defect D(1,2).

The value of λ∗ is given (to first order in y) by

λ∗ =
y

Cφφφ
, (2.7)

where Cφφφ is the coefficient of the field φ in the operator product expansion of φ with

itself (3.9). Since Cφφφ depends on the normalisation of φ, so does the value λ∗ but this will

cancel in any physical quantities and in particular in our calculation of R.

2.1 The perturbative calculation of the reflection and transmission coefficients

The transmission and reflection coefficients of a conformal defect along the real axis were

defined in [2] as

R =
〈T 1T 1 + T 2T 2〉

〈(T 1 + T 2)(T 1 + T 2)〉
, T = 1−R (2.8)

where T 1 and T 1 are inserted at the point iY on the upper half-plane, while T 2 and T 2

are inserted at the point −iY . For the unperturbed topological defect,

〈 T 1T 1 〉 = 〈 T 2T 2 〉 = 0 , 〈 T 1T 2 〉 = 〈 T 1T 2 〉 =
c

32Y 4
, (2.9)

and so R = 0 and T = 1.

For the defect with perturbation (2.2), the expansion of the perturbed quantities us-

ing (2.3) gives

〈 T 1T 1 〉 =
1

4
λ2λ̄2

∫
dx dx′ dy dy′〈 T (iY )T (iY )φ(x)φ(x′)φ̄(y)φ̄(y′) 〉

− 1

24
λ3λ̄2

∫
dx dx′ dx′′ dy dy′〈 T (iY )T (iY )φ(x)φ(x′)φ(x′′)φ̄(y)φ̄(y′) 〉

− 1

24
λ2λ̄3

∫
dx dx′ dy dy′ dy′′〈 T (iY )T (iY )φ(x)φ(x′)φ̄(y)φ̄(y′)φ̄(y′′) 〉

+O(λ6) , (2.10)

〈 T 1T 2 〉 =
c

32Y 4

+
1

2
λ2

∫
dx dx′〈 T (iY )T (−iY )φ(x)φ(x′) 〉

+
1

2
λ̄2

∫
dy dy′〈 T (iY )T (−iY ) φ̄(y)φ̄(y′) 〉+O(λ3) , (2.11)
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φα φβ
=

∑
γ C

γ
αβ φγ

Figure 1. The OPE of defect fields.

and so to find the leading order term in R, we only need to calculate the first term in

〈 T 1T 1 〉 and 〈 T 2T 2 〉. It turns out there are neither UV nor IR divergences in these

integrals, their dependence on Y is simply Y −4 and the reflection coefficient R (to leading

order) is indeed independent of Y as expected. We shall take Y = 1 from now on.

The consequence is that the only correlation function we need to evaluate is

〈 T (i)T (i)φ(x)φ(x′)φ̄(y)φ̄(y′) 〉 , (2.12)

where the insertion points can be in any order. This is equal to

〈 T (−i)T (−i)φ(−x)φ(−x′)φ̄(−y)φ̄(−y′) 〉 , (2.13)

by rotation through π.

The analytic structure is simple,

〈
T (i)T (i)φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
= C (x′ − x)2−2h (y′ − y)2−2h

(i− x)2(i− x′)2(i+ y)2(i+ y′)2
, (2.14)

but the constant C depends on the order of the insertion points {x, x′, y, y′} and is deter-

mined by the operator algebra structure constants, so we now turn to the calculation of

some of the structure constants of the local fields on the defect D(r,2).

3 The structure constants

In this section we will calculate some structure constants for the (r, 2) defect in the diagonal

Virasoro Minimal models. These structure constants can be found in terms of topological

field theory data [12, 13] which is a general method allowing one to find all the structure

constants in the defect theory, but we will not use it here and instead only use elementary

properties of the conformal field theory to find the particular structure constants we need for

the perturbative calculation of the reflection coefficient in the minimal models. While the

calculation is motivated by the (r, 2) minimal model defects, the results will be expressed

in terms of the bulk and boundary CFT data and so are applicable to any defect with the

same fusion rules.

We note here that we will use the conventions of [13] so that the structure constant

Cγαβ is the coefficient of the field φγ appearing in the OPE of the fields φα(x) with φβ(y) on

the defect oriented opposite to the real line with x > y, which means that this coefficient

appears in the OPE of the fields φα with φβ as they appear along the defect. Rotating by

π, we obtain the picture in figure 1.
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3.1 The bulk theory

The (Ap−1, Aq−1) Virasoro minimal model has (p−1)(q−1)/2 bulk primary fields, of which

we are especially interested in the field ϕ of type (1, 3). If we set t = p/q, then

h1,3 = h = 2t− 1 , (3.1)

and h < 1 if t < 1, that is p < q.

The fusion rules for this field are

[ϕ] ? [ϕ] = [1] + [ϕ] + [χ] , (3.2)

where χ is of type (1,5) and has conformal weights (h′, h′) where h′ = h1,5 = 6t−2. Hence,

the OPE of ϕ with itself is

ϕ(z, z̄)ϕ(w, w̄) =
dϕϕ

|z − w|4h
+
Cϕϕϕ ϕ(w, w̄)

|z − w|2h
+
Cχϕϕ χ(w, w̄)

|z − w|4h−2h′
+ . . . (3.3)

The structure constant Cϕϕϕ clearly depends on the choice of dϕϕ (see [20, 21] for different

conventions) but the combination
(Cϕϕϕ)2

dϕϕ
(3.4)

is independent of the normalisation. It takes the value

(Cϕϕϕ)2

dϕϕ
= −(1− 2t)2 Γ(2− 3t)

Γ(3t− 1)

Γ(4t− 1)2

Γ(2− 4t)2

Γ(t)3

Γ(1− t)3

Γ(1− 2t)4

Γ(2t)4
. (3.5)

We are interested in the small y limit, with h = 1− y in which case

(Cϕϕϕ)2

dϕϕ
=

16

3
− 16y +O(y)2 . (3.6)

3.2 The defect theory

The defects of the (Ap−1, Aq−1) Virasoro models are not intrinsically oriented, but the oper-

ator product of fields along the defect depends on the ordering of the fields; we shall assume

that we can define an orientation for the defects but that all results will be independent of

this orientation.

Since the space of fields {ϕα} of weights (h, h) is only two-dimensional for a defect of

type (r, 2), we can take as a basis the fields ϕL and ϕR which are the limits of the bulk

field ϕ as it approaches the defect from the left or the right respectively as one looks along

the defects — see figure 2.

Note that the operator product algebra of the fields {1, φ, φ̄, ϕL, ϕR} does not close

on these fields, other fields can arise as well, namely fields with weights (h, h′), (h′, h) and

(h′, h′) which we denote by ψ, ψ̄ and {χL, χR} (which again are the limits of the field χ(z, z̄)

as it approaches the defect from the left and the right). Although we should mention the

existence of these fields and their occurrence in the operator products of some of the fields

{φ, φ̄, ϕα}, we will not need any of the structure constants including these fields as they

will not contribute to any of the sewing constraints considered later on.
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ϕ(x+ iy)

ϕL(x)

ϕ(x− iy)

ϕR(x)

Figure 2. The fields ϕL and ϕR defined as limits of the bulk field.

Φa ha h̄a

1 0 0

φ h 0

φ̄ 0 h

ϕα h h

ψ h′ h

ψ̄ h h′

χα h′ h′

(3.7)

Table 1. Some of the primary fields occurring on the defect (r, 2).

We use the generic labels {a, b, . . .} for all of these fields and the labels {α, β, . . .} for

the set {L,R}. The conformal weights of the field Φa are (ha, h̄a) as in table 1.

We now define the structure constants between these fields from their operator product

expansions (we show the possibility of fields {ψ, ψ̄, χα} appearing in an OPE by placing

the fields in square brackets [ ]).

If both fields are chiral, there are 8 structure constants {dφφ, dφ̄φ̄, C
φ
φφ, C

φ̄

φ̄φ̄
, Cα

φφ̄
, Cα

φ̄φ
}

appearing in the OPEs (recall here that x and y are ordered along the defect):

φ(x)φ(y) =
dφφ

|x− y|2h
+
Cφφφ φ(y)

|x− y|h
+ . . . (3.8)

φ̄(x)φ̄(y) =
dφ̄φ̄

|x− y|2h
+
C φ̄
φ̄φ̄
φ̄(y)

|x− y|h
+ . . . , (3.9)

φ(x)φ̄(y) = CLφφ̄ ϕL(x, y) + CRφφ̄ ϕR(x, y) + . . . , (3.10)

φ̄(x)φ(y) = CLφ̄φ ϕL(y, x) + CRφ̄φ ϕR(y, x) + . . . . (3.11)

With one chiral field on the left, there are 12 structure constants {C φ̄φα, C
φ

φ̄α
, Cβφα, C

β

φ̄α
}

in the OPEs

φ(x)ϕα(z, z̄) =
C φ̄φα φ̄(z̄)

|x− z|2h
+
CLφα ϕL(z, z̄)

|x− z|h
+
CRφα ϕR(z, z̄)

|x− z|h
+ [ψ] + . . . , (3.12)

φ̄(x)ϕα(z, z̄) =
Cφ
φ̄α
φ(z)

|x− z̄|2h
+
CL
φ̄α
ϕL(z, z̄)

|x− z̄|h
+
CR
φ̄α
ϕR(z, z̄)

|x− z̄|h
+ [ψ̄] + . . . . (3.13)

– 7 –
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likewise there are 12 structure constants {C φ̄αφ, C
φ

αφ̄
, Cβαφ, C

β

αφ̄
} in the OPEs with one field

chiral on the right:

ϕα(z, z̄)φ(x) =
C φ̄αφ φ̄(z̄)

|z − x|2h
+
CLαφ ϕL(z, z̄)

|z − x|h
+
CRαφ ϕR(z, z̄)

|z − x|h
+ [ψ] + . . . , (3.14)

ϕα(z, z̄)φ̄(x) =
Cφ
αφ̄
φ(z)

|z̄ − x|2h
+
CL
αφ̄
ϕL(z, z̄)

|z̄ − x|h
+
CR
αφ̄
ϕR(z, z̄)

|z̄ − x|h
+ [ψ̄] + . . . . (3.15)

Finally there are 20 structure constants {dαβ , Cφαβ , C
φ̄
αβ , C

γ
αβ} in the OPEs involving no

chiral fields:

ϕα(z, z̄)ϕβ(w, w̄) =
dαβ

|z − w|4h
+

Cφαβφ(w)

|z − w|h|z̄ − w̄|2h
+

C φ̄αβφ̄(w̄)

|z̄ − w̄|h|z − w|2h

+
CLαβϕL(w, w̄)

|z − w|2h
+
CRαβϕR(w, w̄)

|z − w|2h
+ [ψ, ψ̄, χα] + . . . . (3.16)

Having defined the fifty-two structure constants we need to calculate, we now set about

finding relations. The simplest come from the fact that the orientation of the defect is in

fact not physical.

3.3 Symmetry relations

Since the defect is not intrinsically oriented, our labelling over-counts the structure con-

stants: sixteen constants are related by changing the orientation of the defect, as follows:

CLφφ̄ = CRφ̄φ , CRφφ̄ = CLφ̄φ , dLL = dRR , dLR = dRL , (3.17)

CLLL = CRRR , C
R
LL = CLRR , C

L
LR = CRRL , C

L
RL = CRLR . (3.18)

CRφR = CLLφ , CLφR = CRLφ , CRφL = CLRφ , CLφL = CRRφ , (3.19)

CRφ̄R = CLLφ̄ , CLφ̄R = CRLφ̄ , CRφ̄L = CLRφ̄ , CLφ̄L = CRRφ̄ . (3.20)

3.3.1 Bulk field relations

We can use the fact that ϕL and ϕR are the limits of bulk fields to find dLL, dLR, dRL and

dRR, as well as CLLL, CRLL, CLRR and CRRR.

In the bulk, we have (3.3). Bringing this OPE towards a defect from the left, we obtain

dLL = dϕϕ , CLLL = Cϕϕϕ , CRLL = CφLL = C φ̄LL = 0 . (3.21)

We have also found that

C
χL
LL = Cχϕϕ , C

χR
LL = CψLL = Cψ̄LL = 0 , (3.22)

but these four constants are not of interest to us.

Likewise, bringing the bulk OPE (3.3) towards a defect from the right, we obtain

dRR = dϕϕ , CRRR = Cϕϕϕ , CLRR = CφRR = C φ̄RR = 0 . (3.23)

– 8 –
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We can relate dLR to dLL using the expansion of a defect operator as a linear combination

of projectors onto the various sectors of the bulk theory,1

D̂a =
∑
b

γabP̂b , (3.24)

to get

dLR =
〈ϕ| D̂a |ϕ〉
〈0| D̂a |0〉

=
γaϕ
γa0

〈ϕ|ϕ〉
〈0|0〉

=
γaϕ
γa0

dLL ≡ γ dLL , (3.25)

where γ is given in terms of the coefficients γab in the defect operator expansion. Using

the expression for the minimal model defects in terms of projectors given in [3],

D̂r,2 =
∑
r′,s

S(r,2),(r′,s)

S(1,1),(r′,s)
P̂r′,s , (3.26)

where S(rs)(r′s′) is the modular S-matrix given in the appendix, we find

dLR = γ dLL , γ = 2 cos(2πt)− 1 , (3.27)

which is independent of r, as expected.

3.4 Defect — boundary identification

We next use the fact that the OPE algebra of φ along the real axis is the same as that of

the boundary field on the (r, 2) boundary — we obtain this identification by bringing the

(r, 2) defect next to the identity boundary as considered in [16]. Likewise, the algebra of φ̄

is also the same as the boundary algebra.

This means that

dφφ = dφ̄φ̄ , Cφφφ = C φ̄
φ̄φ̄
, (3.28)

and these are given by the structure constants of the boundary CFT. These constants de-

pend on the normalisation of the fields and there is one convention-independent

combination,

(Cφφφ)2

dφφ
. (3.29)

Using Runkel’s solution to the boundary algebra [21], the result is

(Cφφφ)2

dφφ
=

Γ(2− 3t)Γ(t)Γ(1− 2t)3

Γ(2− 4t)2Γ(−1 + 2t)Γ(1− t)2
, (3.30)

which has the small y expansion

(Cφφφ)2

dφφ
=

8

3
− 4y +O(y2) . (3.31)

Note that the structure constant again does not depend on r.

1In general a defect is a sum of maps between equivalent pairs of left and right representations, but if

each pair of representations appears at most once then these are simply projectors.
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3.4.1 Three-point function constraints

We can express the three point function

〈Φa(u)Φb(v)Φc(w)〉 , (3.32)

in two different ways, using the OPE of Φa with Φb first, or instead using the OPE of Φb

with Φc first, leading to the constraint∑
e

Ceabdec =
∑
f

dafC
f
bc . (3.33)

Taking a and c chiral, this gives the simple relations

C φ̄φRdφ̄φ̄ = Cφ
Rφ̄
dφφ , C

φ̄
φLdφ̄φ̄ = Cφ

Lφ̄
dφφ , (3.34)

Cφ
φ̄R
dφφ = C φ̄Rφdφ̄φ̄ , C

φ

φ̄L
dφφ = C φ̄Lφdφ̄φ̄ , (3.35)

which, using (3.28) become

C φ̄φR = Cφ
Rφ̄
, C φ̄φL = Cφ

Lφ̄
, Cφ

φ̄R
= C φ̄Rφ , Cφ

φ̄L
= C φ̄Lφ . (3.36)

Taking only a chiral and the two non-chiral fields equal, this gives the slightly more

complicated

CRφRdRR + CLφRdLR = CφRRdφφ = 0 , CRφ̄RdRR + CLφ̄RdLR = C φ̄RRdφ̄φ̄ = 0 , (3.37)

CRφLdRL + CLφLdLL = CφLLdφφ = 0 , CRφ̄LdRL + CLφ̄LdLL = C φ̄LLdφ̄φ̄ = 0 , (3.38)

which using (3.25) become

CRφR = −γCLφR , CRφ̄R = −γCLφ̄R , CLφL = −γCRφL , CLφ̄L = −γCRφ̄L . (3.39)

Taking a chiral and the other two fields different, we get

CφLRdφφ = dLLC
L
Rφ + dLRC

R
Rφ , C φ̄LRdφ̄φ̄ = dLLC

L
Rφ̄ + dLRC

R
Rφ̄ , (3.40)

CφRLdφφ = dRRC
R
Rφ + dRLC

L
Rφ , C φ̄RLdφ̄φ̄ = dRRC

R
Rφ̄ + dRLC

L
Rφ̄ . (3.41)

Using dLR = γdϕϕ, these become

CφLR =
dϕϕ
dφφ

(CLRφ + γCRRφ) , C φ̄LR =
dϕϕ
dφφ

(CLRφ̄ + γCRRφ̄) , (3.42)

CφRL =
dϕϕ
dφφ

(CRLφ + γCLLφ) , C φ̄RL =
dϕϕ
dφφ

(CRLφ̄ + γCLLφ̄) . (3.43)

Finally, taking only b chiral, we get

C φ̄Rφdφ̄φ̄ = dRRC
R
φφ̄ + dRLC

L
φφ̄ , C φ̄Lφdφ̄φ̄ = dLRC

R
φφ̄ + dLLC

L
φφ̄ , (3.44)

Cφ
Rφ̄
dφφ = dRRC

R
φ̄φ + dRLC

L
φ̄φ , Cφ

Lφ̄
dφφ = dLRC

R
φ̄φ + dLLC

L
φ̄φ . (3.45)
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Looking at the first of these, it becomes

C φ̄Rφ =
1

dφ̄φ̄
(dRRC

R
φφ̄ + dRLC

L
φφ̄)

=
dϕϕ
dφφ

(CRφφ̄ + γCLφφ̄)

=
dϕϕ
dφφ

(CRφφ̄ + γCRφ̄φ) . (3.46)

Likewise we get

C φ̄Lφ =
dϕϕ
dφφ

(γCRφφ̄ + CRφ̄φ) , (3.47)

Cφ
Rφ̄

=
dϕϕ
dφφ

(CRφ̄φ + γCRφφ̄) , (3.48)

Cφ
Lφ̄

=
dϕϕ
dφφ

(γCRφ̄φ + CRφφ̄) , (3.49)

which also imply

Cφ
Rφ̄

= C φ̄Lφ , Cφ
Lφ̄

= C φ̄Rφ . (3.50)

3.4.2 Bulk field expectation operator product

To find CRLR we use the inner product matrix dαβ of defect fields ϕL and ϕR and cyclicity

of the three point constant Cαβγ defined by

〈ϕα(u, ū)ϕβ(v, v̄)ϕγ(w, w̄)〉 = Cαβγ (|u− v||v − w||v − w|)−2h . (3.51)

Using Cγαβ = dγεCαβε and Cαβγ = Cγβα and the relations (3.21) and (3.23), we get

CRLR = dRRCLRR + dRLCLRL

= dRRCRRL + dRLCLLR

= dRR(dLLC
L
RR + dLRC

R
RR) + dRL(dRLC

L
LL + dRRC

R
LL)

= (dRRdLR + dRLdRL)Cϕϕϕ

= (dRR + dRL)dRLC
ϕ
ϕϕ . (3.52)

With the inner-product matrix dαβ = 〈ϕα|ϕβ〉,

dαβ =

(
dLL dLR
dRL dRR

)
= dϕϕ

(
1 γ

γ 1

)
, (3.53)

and its inverse

dαβ =

(
dLL dLR

dRL dRR

)
=

1

dϕϕ(1− γ2)

(
1 −γ
−γ 1

)
, (3.54)

we obtain

CRLR =
γ

1 + γ
Cϕϕϕ . (3.55)

Likewise, we find all four of these structure constants are equal,

CRRL = CLLR = CLRL = CRLR =
γ

1 + γ
Cϕϕϕ . (3.56)
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Φa(x) Φa(x) Φa(x)ϕL(x−1)

ϕ(x+ i)

ϕL(x+1)︸ ︷︷ ︸ ︸ ︷︷ ︸
CbLa CbaL

Figure 3. The relation between Cb
La and Cb

aL from continuity in the bulk.

3.4.3 Continuity of bulk fields

We can relate the structure constants CbaL and CbLa by moving the insertion point of the

field ϕL from the right of the field a to the left through the bulk. If the defect is oriented

along the x axis in the plane, then the field ϕL can be moved through the upper half plane,

as in figure 3.

Likewise, we can relate CbaR and CbR,a by moving the field ϕR through the lower

half plane.

Since the OPEs of the bulk field ϕ and the defect field ϕL with Φa are

φa(u, ū)ϕ(z, z̄) = CbaϕΦb(u, ū)(u− z)hb−ha−h(ū− z̄)h̄b−h̄a−h + . . . , (3.57)

φa(u, ū)ϕL(z, z̄) = CbaLΦb(u, ū)|u− z|hb−ha−h|ū− z̄|h̄b−h̄a−h + . . . , (3.58)

ϕL(z, z̄)φa(u, ū) = CbLaΦb(u, ū)|z − u|hb−ha−h|z̄ − ū|h̄b−h̄a−h + . . . , (3.59)

we get the relations

CbLa = exp(iπ(hb − h̄b − ha + h̄a))C
b
aL , (3.60)

CbRa = exp(−iπ(hb − h̄b − ha + h̄a))C
b
aR . (3.61)

We again list the cases according to the number of chiral fields involved:

• No chiral fields: we find identities consistent with equation (3.56)

CRLR = CRRL , CLLR = CLRL . (3.62)

• If Φb is chiral and Φa is not; with ζ = exp(iπh):

CφLα = ζCφαL , C φ̄Lα = ζ−1C φ̄αL , CφRα = ζ−1CφαR , C φ̄Rα = ζC φ̄αR , (3.63)

and hence

CφLL = C φ̄LL = CφRR = C φ̄RR = 0 , CφLR = ζCφRL , C φ̄LR = ζ−1C φ̄RL , (3.64)

where the first four structure constants were already found to be zero in equa-

tions (3.21) and (3.23).
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• If Φa is chiral and Φb is not:

CLLφ = ζ−1CLφL , C
R
Lφ = ζ−1CRφL , CLLφ̄ = ζCLφ̄L , CRLφ̄ = ζCRφ̄L , (3.65)

CLRφ = ζCLφR , CRRφ = ζCRφR , CLRφ̄ = ζ−1CLφ̄R , C
R
Rφ̄ = ζ−1CRφ̄R , (3.66)

CφLR = ζCφRL , C φ̄LR = ζ−1C φ̄RL . (3.67)

• If both Φa and Φb are chiral:

C φ̄Lφ = ζ−2C φ̄φL , Cφ
Lφ̄

= ζ2Cφ
φ̄L
, C φ̄Rφ = ζ2C φ̄φR , Cφ

Rφ̄
= ζ−2Cφ

φ̄R
. (3.68)

3.5 Unknown constants

We summarise the results so far, distinguishing the structure constants by the number of

chiral fields they involve.

3.5.1 No chiral fields

These are all known in terms of the bulk field data:

dRR = dLL = dϕϕ , dLR = dRL = γ dϕϕ , (3.69)

CLLL = CRRR = Cϕϕϕ , CRLL = CLRR = 0 , (3.70)

CRLR = CLLR = CRRL = CLRL =
γ

1 + γ
Cϕϕϕ . (3.71)

3.5.2 Three chiral fields

These are also all known in terms of the boundary field theory data [21]:

C φ̄
φ̄φ̄

= Cφφφ , dφ̄φ̄ = dφφ , (3.72)

Cφ
φ̄φ̄

= C φ̄φφ = C φ̄
φφ̄

= C φ̄
φ̄φ

= Cφ
φφ̄

= Cφ
φ̄φ

= 0 . (3.73)

3.5.3 Two chiral fields

The 24 structure constants involving two chiral fields can be written in terms of just two

of these, which we can take to be

CLφ̄φ , and CLφφ̄ . (3.74)
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Listing the remaining 22 structure constants:

CRφφ̄ = CLφ̄φ , CRφ̄φ = CLφφ̄ , (3.75)

C φ̄Rφ =
dϕϕ
dφφ

(CLφ̄φ + γCLφφ̄) , C φ̄Lφ =
dϕϕ
dφφ

(γCLφ̄φ + CLφφ̄) , (3.76)

Cφ
Rφ̄

=
dϕϕ
dφφ

(CLφφ̄ + γCLφ̄φ) , Cφ
Lφ̄

=
dϕϕ
dφφ

(γCLφφ̄ + CLφ̄φ) , (3.77)

C φ̄φR = ζ−2dϕϕ
dφφ

(CLφ̄φ + γCLφφ̄) , C φ̄φL = ζ2dϕϕ
dφφ

(γCLφ̄φ + CLφφ̄) , (3.78)

Cφ
φ̄R

= ζ2dϕϕ
dφφ

(CLφφ̄ + γCLφ̄φ) , Cφ
φ̄L

= ζ−2dϕϕ
dφφ

(γCLφφ̄ + CLφ̄φ) , (3.79)

CRφφ = CLφφ = CRφ̄φ̄ = CLφ̄φ̄ = 0 , (3.80)

CφRφ = CφLφ = C φ̄
Rφ̄

= C φ̄
Lφ̄

= 0 , (3.81)

CφφR = CφφL = C φ̄
φ̄R

= C φ̄
φ̄L

= 0 . (3.82)

It will be convenient to introduce κ and Γ to parametrise CL
φφ̄

and CL
φ̄φ

as

CLφφ̄ = κΓ , CLφ̄φ = κ−1Γ , CLφφ̄ = κ2CLφ̄φ . (3.83)

It will turn out that Γ is real and non-negative and κ is a pure phase. We note that these

two structure constants can be found from the results in [13] — they are related to Cs
defined in [13]: eq. (2.19).

3.5.4 One chiral field

The twenty-four structure constants involving just one chiral field can, using the previous

identities, be written in terms of just four:

CRφL , CRφ̄L , CLφR , CLφ̄R . (3.84)

We list the remaining twenty constants here for convenience:

CRLφ = ζ−1CRφL , CRLφ̄ = ζCRφ̄L , (3.85)

CLRφ = ζ−1CLφR , CLRφ̄ = ζCLφ̄R , (3.86)

CLφL = −γCRφL , CRφR = −γCLφR , (3.87)

CLφ̄L = −γCRφ̄L , CRφ̄R = −γCLφ̄R , (3.88)

CLLφ = ζ−1CLφL = −γζ−1CRφL , CLLφ̄ = ζCLφ̄L = −γζ CRφ̄L , (3.89)

CRRφ = ζ−1CRφR = −γζ−1CLφR , CRRφ̄ = ζCRφ̄R = −γζ CLφ̄R , (3.90)

CφLR =
1− γ2

ζ

dϕϕ
dφφ

CLφR , C φ̄LR = (1− γ2)
dϕϕ
dφφ

CRφ̄L , (3.91)

CφRL =
1− γ2

ζ2

dϕϕ
dφφ

CLφR , C φ̄RL = ζ (1− γ2)
dϕϕ
dφφ

CRφ̄L , (3.92)

CφLL = C φ̄LL = CφRR = C φ̄RR = 0 . (3.93)
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a b

cd

e

f

d c

ba

k g

=
∑
ef

CeabC
f
cddef

(
hd

ha hb

hc
he

)(
h̄d

h̄a h̄b

h̄c
h̄e

)∗
δhe,hf δh̄e,h̄f

=
∑
kg

CgbcC
k
dadgk

hd
ha
hk

hb

hc


̄hd

h̄a
h̄k

h̄b

h̄c


∗

δhk,hgδh̄k,h̄g

Figure 4. Two ways of calculating a four-point defect field correlation function.

3.6 The four-point function sewing constraints

We will use crossing relations for four point correlation functions to find sewing constraints

that will enable us to determined the remaining six structure constants {CL
φ̄φ
, CL

φφ̄
, CRφL,

CR
φ̄L
, CLφR, C

L
φ̄R
}.

The four-point function 〈ΦaΦbΦcΦd〉 of fields on a defect can be expressed in terms of

conformal blocks in two different ways, as illustrated in figure 4.

The conformal blocks are functions which satisfy the crossing relations [21]

i

j
p
k

l
=
∑
q

F

[
j k

i l

]
pq

i

j k

l
q (3.94)

where the F-matrices are known constants, again given explicitly in [21]. Substituting (3.94)

into the expressions in figure 4 leads to further sewing constraints that the structure con-

stants must satisfy.

The simplest relations arise when there is only a single channel in both diagrams, i.e.

the sum is over a single pair of weights (he, h̄e) and a single pair of weights (hg, h̄g). Note

that since the space of fields with weights (h, h) is two-dimensional, this does not mean

that the OPE has to include only a single field. In all the cases where there is only a single

channel, the F -matrix is just the number 1 and so the sewing constraints become just

∑
e,f

CeabC
f
cddef =

∑
g,k

CgbcC
k
dadgk . (3.95)

We now list all the non-zero cases in which the fields a, b, c and d are taken from

{φ, φ̄, ϕα} and for which there is only a single intermediate channel in both diagrams,

and state the corresponding equations. We will in fact only use the first eight of these,

where there is at most one field of weights (h, h) but we list them all for completeness.
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The eight we use are:

φ φ

φ̄φ̄

dφφ dφ̄φ̄ =
∑
α,β

Cαφφ̄C
β

φ̄φ
dαβ (3.96)

φ φ̄

φφ̄

∑
α,β

Cαφφ̄C
β

φφ̄
dαβ =

∑
α,β

Cαφ̄φC
β

φ̄φ
dαβ (3.97)

α φ̄

φφ

Cφ
αφ̄
Cφφφdφφ =

∑
β,γ

Cβ
φ̄φ
Cγφαdβγ (3.98)

α φ

φ̄φ

∑
βγ

CβαφC
γ

φ̄φ
dβγ =

∑
β,γ

Cβ
φφ̄
Cγφαdβγ (3.99)

α φ

φφ̄

∑
βγ

CβαφC
γ

φφ̄
dβγ = CφφφC

φ

φ̄α
dφφ (3.100)

α φ

φ̄φ̄

C φ̄αφC
φ̄

φ̄φ̄
dφ̄φ̄ =

∑
β,γ

Cβ
φφ̄
Cγ
φ̄α
dβγ (3.101)

α φ̄

φφ̄

∑
βγ

Cβ
αφ̄
Cγ
φφ̄
dβγ =

∑
β,γ

Cβ
φ̄φ
Cγ
φ̄α
dβγ (3.102)

α φ̄

φ̄φ

∑
βγ

Cβ
αφ̄
Cγ
φ̄φ
dβγ = C φ̄

φ̄φ̄
C φ̄φαdφ̄φ̄ (3.103)
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The remaining three which include two fields of type ϕα but still only have a single

intermediate channel are:

α β

φφ̄

∑
γε

CγαβC
ε
φφ̄dγε =

∑
γε

CγβφC
ε
φ̄αdγε (3.104)

α β

φ̄φ

∑
γε

CγαβC
ε
φ̄φdγε =

∑
γε

Cγ
βφ̄
Cεφαdγε (3.105)

α φ

βφ̄

∑
γε

CγαφC
ε
βφ̄dγε =

∑
γε

CγφβC
ε
φ̄αdγε (3.106)

3.7 Analysis of the sewing constraints

We need to use only the first eight relations. We consider these in turn:

• Equation (3.96)

Written out in full, this is

dφφdφ̄φ̄ = CLφφ̄C
L
φ̄φdLL + CLφφ̄C

R
φ̄φdLR + CRφφ̄C

L
φ̄φdRL + CRφφ̄C

R
φ̄φdRR . (3.107)

Using CL
φφ̄

= CR
φ̄φ

= κΓ and CR
φφ̄

= CL
φ̄φ

= κ−1Γ, together with dLR = dRL = γdϕϕ,

and dφφ = dφ̄φ̄, this becomes

d2
φφ

dϕϕ
= Γ2(2 + γκ2 + γκ−2) , (3.108)

or

Γ =

√
d2
φφ

dϕϕ (2 + γκ2 + γκ−2)
. (3.109)

• Equation (3.97)

This is

CLφφ̄C
L
φφ̄dLL + CLφφ̄C

R
φφ̄dLR + CRφφ̄C

L
φφ̄dRL + CRφφ̄C

R
φφ̄dRR

= CLφ̄φC
L
φ̄φdLL + CLφ̄φC

R
φ̄φdLR + CRφ̄φC

L
φ̄φdRL + CRφ̄φC

R
φ̄φdRR , (3.110)

which is satisfied identically.
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• Equation (3.98)

This leads to two equations: for α = L:

Cφ
Lφ̄
Cφφφdφφ = CLφ̄φC

L
φLdLL + CLφ̄φC

R
φLdLR + CRφ̄φC

L
φLdRL + CRφ̄φC

R
φLdRR , (3.111)

and for α = R:

Cφ
Rφ̄
Cφφφdφφ = CLφ̄φC

L
φRdLL + CLφ̄φC

R
φRdLR + CRφ̄φC

L
φRdRL + CRφ̄φC

R
φRdRR . (3.112)

The first equation becomes:

(γCLφφ̄ + CLφ̄φ)Cφφφ = CRφLC
L
φφ̄

(
1− γ2

)
, (3.113)

or

CRφL =
1 + κ2γ

κ2(1− γ2)
Cφφφ . (3.114)

The second equation implies

CLφR =
κ2 + γ

(1− γ2)
Cφφφ . (3.115)

• Equation (3.99)

These two equations imply

κ2 = ζ = exp(iπh) . (3.116)

(We will not need to fix the sign of κ as only κ2 appears in our final answers.)

• Equation (3.100)

These equations imply (for α = L)

CRφL =
1 + κ2γ

ζ(1− γ2)
Cφφφ , (3.117)

and (for α = R)

CLφR =
ζ2

κ

γ + κ2

(1− γ2)
Cφφφ , (3.118)

which are consistent with the results so far.

• Equation (3.101)

These two equations lead to (α = L):

CRφ̄L =
γ + κ2

1− γ2
Cφφφ , (3.119)

and (with α = R)

CLφ̄R =
1 + γκ2

κ2(1− γ2)
Cφφφ . (3.120)
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Together, these imply

CRφ̄L = CLφR and CLφ̄R = CRφL . (3.121)

This completes the derivation of the defect structure constants which in each case

have been found in terms of the bulk and boundary CFT data without reference to

the particular values in the minimal models, relying only on the form of the OPEs,

the fusion rules and the restriction of the crossing relations to four-point functions

for which there is a single intermediate channel for which F = 1.

These constants have already been worked out in the case of the Lee-Yang model

in [14] and we agree with those found previously (apart from a typo in [14], where it should

ρ = exp(iπ/10)).

The remaining crossing relations (3.104)–(3.106) are not needed for the derivation of

the structure constants but we have checked that they hold.

4 The integrals

We want to calculate the leading term in the expansion (2.10), that is

I =
1

4
λ2λ̄2

∫
dx dx′ dy dy′〈 T (iY )T (iY )φ(x)φ(x′)φ̄(y)φ̄(y′) 〉 . (4.1)

The correlation function has the same functional form whatever the order of the fields,

but a different constant depending on the order of the insertions. We can restrict to x < x′

and y < y′ to get

I = (λλ̄)2

〈
T (i)T̄ (i)

∫
x<x′ , y<y′

dx dx′ dy dy′ φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
Dr2

. (4.2)

This correlation function is〈
T (i) T̄ (i)φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
= ∆h2 (x′ − x)2−2h (y′ − y)2−2h

(i− x)2(i− x′)2(i+ y)2(i+ y′)2
, (4.3)

where the constant ∆ depends on the order of the field insertions as in table 2.

The values ∆i are

∆1 = dφφ dφ̄φ̄ = (dφφ)2 , (4.4)

∆2 = dαβ C
α
φφ̄C

β

φφ̄
= (dφφ)2 2γ + κ2 + κ−2

2 + γκ2 + γκ−2
= (dφφ)2 γ + cos(πh)

1 + γ cos(πh)
. (4.5)

We only need to evaluate three of these integrations, the other three being given

by complex conjugation. Furthermore, we only need the leading order term in y in the

correlation function,

〈
T (i)T̄ (i)φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
Dr2

=
∆

(i− x)2(i− x′)2(i+ y)2(i+ y′)2
+O(y) . (4.6)
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Integration region Order of fields Value of ∆

x < x′ < y < y′ φφφ̄φ̄ ∆1

x < y < x′ < y′ φφ̄φφ̄ ∆2

x < y < y′ < x′ φφ̄φ̄φ ∆1

y < x < x′ < y′ φ̄φφφ̄ ∆1

y < x < y′ < x′ φ̄φφ̄φ ∆2

y < y′ < x < x′ φ̄φ̄φφ ∆1

Table 2. The coefficient in the four-point function (4.3).

Integration region Order of fields Value of the integral

x < x′ < y < y′ φφφ̄φ̄ −3πi
16 ∆1

x < y < x′ < y′ φφ̄φφ̄ −π2+3πi
8 ∆2

x < y < y′ < x′ φφ̄φ̄φ π2

8 ∆1

y < x < x′ < y′ φ̄φφφ̄ π2

8 ∆1

y < x < y′ < x′ φ̄φφ̄φ −π2−3πi
8 ∆2

y < y′ < x < x′ φ̄φ̄φφ 3πi
16 ∆1

Table 3. The integrals.

The results are given in table 3. Adding all six together, we get

I = (λλ̄)2

∫ ∞
−∞

dx dx′ dy dy′
〈
T (i)T̄ (i)φ(x)φ(x′)φ̄(y)φ̄(y′)

〉
Dr2

= (λλ̄)2

[
π2

4
(∆1 −∆2) +O(y)

]
= (λλ̄)2

[
π2(dφφ)2

2

(1− γ) sin2(πh/2)

1 + γ cos(πh)
+O(y)

]
. (4.7)

5 The value of the reflection coefficient for the defect C

We now put the various terms together to find the value of R at the fixed point (λ∗, λ∗),

R =
〈T 1T 1 + T 2T 2〉

〈(T 1 + T 2)(T 1 + T 2)〉
. (5.1)

The leading term in the numerator is 2I and leading term in the denominator is c/16, so

that at the fixed point (λ∗, λ̄∗),

R∗ =
16π2(dφφ)2

c

(1− γ) sin(hπ/2)2

1 + γ cos(hπ)
(λ∗λ̄∗)2 +O(y5) . (5.2)
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So far, this result only depends on the form of the operator product algebra of the boundary

and bulk fields and on the operator content of fields on the defect, and to that extent is

not specific to the minimal models. We can now use the values of h (3.1), the combination

(Cφφφ)2/dφφ (3.5), and the value of γ (3.27) to obtain the result for the minimal model

defects of type (r, 2) perturbed by the field φ13.

We will now give directly the expansion in y = 1− h of the various constants in (5.2)

together with the result for R∗: with t = 1− y/2, we have

h = 2t− 1 = 1− y , c = 13− 6t− 6/t = 1− 3y2

2
+O(y3) ,

γ = 2 cos(2πt)− 1 = 1 +O(y2) ,
(Cφφφ)2

dφφ
=

8

3
+O(y) , λ∗ = λ̄∗ =

y

Cφφφ
, (5.3)

and so, at the fixed point,

R∗ =
9π2y4

8
+O(y5) . (5.4)

6 Comparison with known results

There are very few known exact results for non-topological non-factorising defects in min-

imal models with which we can compare our formula (5.4).

The simplest model is the Ising model, the (A3, A4) model with c = 1/2, h = 1/2,

y = 1.2, and which is very far from the perturbative regime. For this model, the end point

of the perturbation (2.2) is known exactly [2]. There is a 1 parameter family of flows with

λ = µ cos(α) and λ̄ = µ sin(α), and for each value of α the end point of the flow is a known

conformal defect with

R = sin2(2α) . (6.1)

If the perturbation is calculated in a scheme in which the fixed point is at µ = µ∗ then this

result can also be written

R = 4
(λ∗λ̄∗)2

(µ∗)4
. (6.2)

Although this looks very much like (5.4), they cannot be compared directly since the three-

point coupling Cφφφ is identically zero in the Ising model and our calculation is not valid in

this model.

The only other minimal model for which exact results are known is the tri-critical Ising

model. Non-topological non-factorising defects were constructed for this model in [7]. The

defects found in [7] are still rather special, and are likely to be sums of more fundamental

non-topological non-factorising defects of the same value of R.

This model has h = 3/5, y = 2/5 and is again far from the perturbative regime but we

can at least compare the perturbative calculation with the values of R found in [7]. We

can also calculate the value of the defect entropy, g, of the perturbative defect and of the

exact defects as a guide to how reliable the perturbative calculation is this far from the

small y regime. Let us consider just the perturbations of the defect D1,2, as in [6]. The

calculation of g of the perturbed defect is given in [6] (with the choice dφφ = 1) as

log(g(λ, λ̄)) = log(g1,2)− π2y(λ2 + λ̄2) +
4
√

2π2

3
√

3
(λ3 + λ̄3) +O(y4) . (6.3)
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As shown in [6], the perturbative calculation of the change in the defect entropy agrees

exactly with the perturbative expansions of the entropy at the UV and IR fixed points for

the case of the flow between topological defects D1,2 → D2,1 which is the perturbative fixed

point at (y
√

3/8, 0). The exact value for the defects D1,2 and D2,1 are

g1,2 = −2 cos(πt) , log(g1,2) = log(2)− π2y2

8
+O(y4) ,

g2,1 = −2 cos(π/t) , log(g1,2) = log(2)− π2y2

8
− π2y3

8
+O(y4) , (6.4)

and so

log(g2,1)− log(g1,2) = log cos(π/t)− log cos(πt) = −π
2y3

8
+O(y4) , (6.5)

in perfect agreement with (6.3) at the fixed point (y
√

3/8, 0). When we look at the

numerical values for the tri-critical Ising model with y = 2/5, however, the agreement is

not so good. The exact values are

g1,2 =
1 +
√

5

2
, log(g1,2) = 0.48121 . . . , g2,1 =

√
2 , log(g2,1) = 0.34657 . . . , (6.6)

log(g2,1)− log(g1,2) = −0.13464 . . . , (6.7)

whereas the perturbation theory calculation of log(g2,1) to third order, (6.5), gives

log(g2,1)3rd order − log(g1,2) = −π
2y3

8
= −0.78956 . . . . (6.8)

The g value correctly decreases under the flow but the leading order term in the change,

−π2y3/8, only contributes 60% of the full change in log g.

Let’s now consider the perturbative predictions for the defect C in the tri-critical Ising

model which is believed to be at the fixed point (λ∗, λ∗). The predictions of (6.3) and (5.4)

for gC and R− C are

log(gpert
C ) = log(g1,2)− 2

π2y3

8
= 0.3233 . . . (6.9)

gpert
C = 1.3817 . . . (6.10)

Rpert
C =

9π2y4

8
= 0.2842 . . . (6.11)

This can be compared with the two distinct values of R for non-topological non-factorised

defects found in [7], which are

R1 =

√
3− 1

2
= 0.366 . . . and R2 =

3−
√

3

2
= 0.633 . . . . (6.12)

Given the known size of the error in the perturbative calculation of g, it is completely

plausible that the value of R for the defect C is indeed R1 = (
√

3− 1)/2, but it is harder

to say anything stronger than that.

We know that none of the defects found in [7] can be equal to C since they all have g

greater than 2. If there is a direct relation, then the most likely explanation is that the de-

fects in [7] are composite defects formed of two [or more] defects with the same values of R.
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The tri-critical Ising model defects constructed in [7] are given through the action of

interface operators on defects in a supersymmetric theory. The action of the interfaces is

to double the g value of the defect. The g values of the supersymmetric defects are given in

table 4.3 of [7], and there are only two non-topological non-factorising supersymmetric de-

fects with g <
√

2, which are constructed from boundary states ||(1, 3)NS〉〉 and ||(1, 3)
ÑS
〉〉

with g value

gSUSY = (15)−1/4

(
(3 +

√
3)(
√

5− 1)

2(
√

3− 1)

)1/2

= 1.0156 . . . (6.13)

The action of the interface operators will then give defects in the tri-critical Ising model with

gTCIM = 2gSUSY. the conjecture would be that these defects are themselves composite de-

fects of fundamental non-topological non-factorising defects with g value half that of gTCIM,

that is gSUSY. The upshot is that we could conjecture the existence of non-topological non-

factorising defects in the tri-critical Ising model, related to the supersymmetric defects

found in [7], and with

gconjectured
TCIM = 1.0156 . . . (6.14)

It is certainly possible that this is the same as gC but the perturbative calculation of

gC (6.10) is again not accurate enough to say anything definite about this identification.

To summarise, the perturbative calculations of the g value ofR value of the defect C are

gpert
C = 1.3817 . . . , Rpert

C = 0.2842 . . . . (6.15)

The most likely candidate so far for an exact description of this defect is a conjectured

component of a defect found in [7] with

gconjectured
TCIM = 1.0156 . . . , R1 = 0.366 . . . , (6.16)

but the calculations are not accurate enough to say anything more than that is a plausible

conjecture and certainly not ruled out.

7 Conclusions

We have calculated the leading term in the perturbative expansion of the reflection coef-

ficient for the defect of type (r, 2) in a minimal model. It is believed that a non-trivial

conformal defect can be found as a perturbative fixed point of the renormalisation group

equations, where the expansion parameter is the usual y = 2(1 − t) which for a unitary

minimal model Mp,p+1 is y = 2/(1 + p).

We have recently found new non-trivial conformal defects in the tri-critical Ising

model [7] and it is possible that these are related to the conformal defects found by per-

turbation theory but the value of y = 2/5 is large and so the perturbative calculations are

not expected to be very accurate. We have checked, and the values of g and R are close

enough not to rule this out. It would of course be good to extend the calculation of R to

next-to-leading order where there are UV divergences to be regulated, but so far we have

not yet managed this.

– 23 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
3

We have also calculated defect structure constants for various fields on defects of type

(r, 2) extending the results of [14]. These results are not complete — they do not include

all fields — but it would be good to check that these constants in fact agree with the

general results of [12] where the same constants were constructed using topological field

theory methods.

The methods and results here are not specific to the Virasoro minimal model (r, 2)

defect as they only rely on the properties of the field content and fusion rules. While

we think the (r, 2) defects are the only Virasoro defects to which these calculations are

applicable, they could in principle have wider applicability.

We would like to thank I. Runkel, C. Schmidt-Colinet and E. Brehm for discussions on

defects and their properties and for comments on the manuscript and the referee for very

useful comments and suggestions.

A The Virasoro minimal models

The Virasoro minimal models occur for c ≡ c(p, q) where p, q are coprime positive integers

greater than 1. It is useful to define t = p/q. c is given by

c(p, q) = 13− 6t− 6/t . (A.1)

There are (p−1)(q−1)/2 minimal representations labelled by integers (r, s) with 1 ≤ r < p,

1 ≤ s < q with conformal weights

hr,s =
(rq − sp)2 − (p− q)2

4pq
=
r2 − 1

4t
+
s2 − 1

4
t− rs− 1

2
. (A.2)

The modular S-matrix is

S(r,s),(r′,s′) = (−1)1+rs′+r′s

√
8

pq
sin(πrr′/t) sin(πss′t) . (A.3)
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