
J
H
E
P
0
6
(
2
0
1
8
)
1
3
3

Published for SISSA by Springer

Received: May 8, 2018

Revised: June 14, 2018

Accepted: June 18, 2018

Published: June 25, 2018

Ghost-free theories with arbitrary higher-order time

derivatives

Hayato Motohashi,a,1 Teruaki Suyamab and Masahide Yamaguchib

aCenter for Gravitational Physics, Yukawa Institute for Theoretical Physics,

Kyoto University,

Kyoto 606-8502, Japan
bDepartment of Physics, Tokyo Institute of Technology,

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

E-mail: hayato.motohashi@yukawa.kyoto-u.ac.jp,

suyama@phys.titech.ac.jp, gucci@phys.titech.ac.jp

Abstract: We construct no-ghost theories of analytic mechanics involving arbitrary

higher-order derivatives in Lagrangian. It has been known that for theories involving

at most second-order time derivatives in the Lagrangian, eliminating linear dependence of

canonical momenta in the Hamiltonian is necessary and sufficient condition to eliminate

Ostrogradsky ghost. In the previous work we showed for the specific quadratic model

involving third-order derivatives that the condition is necessary but not sufficient, and

linear dependence of canonical coordinates corresponding to higher time-derivatives also

need to be removed appropriately. In this paper, we generalize the previous analysis and

establish how to eliminate all the ghost degrees of freedom for general theories involving

arbitrary higher-order derivatives in the Lagrangian. We clarify a set of degeneracy con-

ditions to eliminate all the ghost degrees of freedom, under which we also show that the

Euler-Lagrange equations are reducible to a second-order system.

Keywords: Black Holes, Classical Theories of Gravity

ArXiv ePrint: 1804.07990

1Corresponding author.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP06(2018)133

mailto:hayato.motohashi@yukawa.kyoto-u.ac.jp
mailto:suyama@phys.titech.ac.jp
mailto:gucci@phys.titech.ac.jp
https://arxiv.org/abs/1804.07990
https://doi.org/10.1007/JHEP06(2018)133


J
H
E
P
0
6
(
2
0
1
8
)
1
3
3

Contents

1 Introduction 1

2 Examples 3

3 Lagrangian with multiple third-order derivatives 6

3.1 Hamiltonian analysis 7

3.2 Euler-Lagrange equation 13

4 Lagrangian with arbitrary higher-order derivatives 14

4.1 Hamiltonian analysis 15

4.2 Euler-Lagrange equation 22

5 Conclusions and discussion 24

A Lagrangian with single third-order derivative 25

1 Introduction

The presence of inflation and the current accelerated expansion of the Universe is strongly

supported by observational results such as the cosmic microwave background radiation

anisotropies [1–4] and type Ia supernovae [5, 6]. One simple way to explain these two

regimes of accelerated expansion is to introduce additional degrees of freedom (DOFs) to

General Relativity and modify the law of gravitation. In general, if one adds higher-than-

first-order derivative terms to an action, it leads to ghost DOFs known as Ostrogradsky

ghost [7]. Of course, even if there is ghost DOF in a theory, it would not be problematic

as long as it appears above the scale one is interested in. However, in cosmology one

sometimes considers a situation, in which higher derivative terms play dominant roles in

the dynamics. In such a case, the effective theory view point would be invalidated and ghost

DOFs must be removed to guarantee healthiness and/or predictability of the theory. One

of such famous examples is Horndeski theory [8] (equivalent to generalized Galileon [9, 10]),

which is the most general single-field scalar-tensor theory whose Euler-Lagrange equations

of motion (EOMs) are up to second-order in derivatives, and thus free from additional

ghost DOFs.

It was recognized recently that the requirement of second-order Euler-Lagrange equa-

tions is too strong to avoid ghost DOFs [11–13]. This is because the highest orders of

derivatives in the Euler-Lagrange equations do not necessarily give a correct number of

initial conditions: even if Euler-Lagrange equations directly derived from an action a priori

include higher-order time-derivative terms, there is no ghost instability as long as they can
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be recast into second-order system without introducing extra variables. Ghost-free condi-

tion can be thus investigated in a more explicit way in the Hamiltonian picture. Under the

assumption that a Lagrangian involves multiple variables and all the variables have up to

n-th order derivatives (n ≥ 2), the Ostrogradsky theorem states that if the Lagrangian is

nondegenerate with respect to the highest order derivatives, the Hamiltonian is unbounded

due to the existence of ghost DOFs, which develops instabilities when the system couples

to normal systems [7].

One may then expect that the Ostrogradsky ghost can be removed by requiring the

degeneracy of Lagrangian with respect to the highest-order derivatives, which corresponds

to a removal of the highest 2n-th order derivatives in the Euler-Lagrange equation. How-

ever, evading the Ostrogradsky theorem is not sufficient to construct healthy models (i.e.

no ghosts) as it is just a statement of the sufficient condition for the existence of ghosts that

non-degeneracy with respect to the highest-order derivatives inevitably leads to ghosts. In

other words, degeneracy with respect to the highest-order derivatives does not guarantee

the absence of all ghost DOFs. In fact, it was demonstrated in [14] that there exists a class

of Lagrangians with up to n-th order derivatives that satisfies the degeneracy with respect

to the highest-order derivative but ends up with unbounded Hamiltonian due to the ghost

DOFs associated with (2n − 1)-th order derivatives in the Euler-Lagrange equation. Def-

initely, one needs more degeneracy conditions to eliminate all the ghost DOFs. Another

important point is that it is necessary for application to general theories of modified grav-

ity to go beyond the assumption that all the variables have the same order of derivatives

in Lagrangian, and to consider Lagrangian with several types of variables with different

orders of derivatives. With several types of variables of different orders of derivatives in

Lagrangian, degeneracy conditions are more nontrivial.

In [15], the degeneracy condition was clarified for a specific Lagrangian for the

quadratic-order model of degenerate higher-order scalar-tensor (DHOST) theories, which

involves “regular” variables with at most first-order derivative and single “special” variable

with at most second-order derivatives. The degeneracy condition for general Lagrangian

with multiple regular and special variables was developed in [16]. The degeneracy condition

derived in [16] applies to any model involving up to second-order derivative terms in time.

Indeed, to the best of our knowledge, all of theories of modified gravity discussed so far in-

clude only up to second-order derivative terms in time. Specifically, Horndeski derived the

most general second-order Euler-Lagrange equations for single-field scalar-tensor theory,

and then reconstructed the action starting from an action with arbitrary finite order deriva-

tive terms, but the obtained action includes only up to second-order derivatives [8]. Gao

proposed another extension, which involves arbitrary higher-order derivatives in space but

up to second-order derivatives in time [17]. Theories beyond Horndeski [12, 13] and degen-

erate higher-order scalar-tensor theories [15, 18] also involve up to second-order derivatives.

Thus, as far as we know, there is no explicit example in the context of field theory, which

includes third (or even higher) order derivatives in time but can avoid ghost instabilities.1

1It should be noted that some of infinite-order derivative (non-local) theories can avoid ghost instabilities

at least classically. For example, see refs. [19, 20] and references therein.
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In the previous work [21], we provided a specific model which is quadratic in variables

and involves third-order time derivatives in the Lagrangian. Our finding is that elimination

of the canonical momenta in the Hamiltonian by the constraints and degeneracy conditions

does not kill all the ghost DOFs associated with the higher derivatives and the ghost DOFs

still remain. Although the remaining ghost DOFs are hidden in a very nontrivial way in

the Hamiltonian, in the case of the quadratic model, canonical transformation makes those

ghost DOFs manifest themselves as linear terms of canonical coordinates [21]. Presence of

additional ghosts not in the form of the linear terms of the canonical momenta is a crucial

difference from theories involving at most second-order time derivatives. We derived in [21]

a set of degeneracy conditions for the quadratic model, and confirmed that the Hamiltonian

equations as well as the Euler-Lagrange equations are reducible to a system of second-order

differential equations when the degeneracy conditions are imposed.

In this paper, we further generalize the previous analysis for theories involving at most

second-order derivatives performed in [16] (see also [22] for a similar analysis, [23] for a case

including fermionic degree of freedom, and [15, 18, 24–27] for field theoretical extensions), as

well as the previous analysis for the specific theory involving third-order derivatives in [21].

Since the degeneracy conditions obtained in [21] only apply to the specific quadratic model

involving at most third-order derivatives, in the present paper, we first clarify a set of

degeneracy conditions for general Lagrangian involving third-order derivatives. We also

confirm that the Euler-Lagrange equations can be reduced into a second order differential

equations. Furthermore, we consider general Lagrangian involving arbitrary higher-order

derivatives, and derive a set of degeneracy conditions, under which we confirm that the

Euler-Lagrange equations are reducible into second-order system. Our result applies to

any form of Lagrangian involving any higher-order derivatives. Thus, it is an important

first step for construction of ghost-free theories of modified gravity with third- and even

higher-order derivatives.

The organization of the rest of the paper is as follows. In section 2 we provide an

explicit example which includes arbitrary higher-order derivatives in a Lagrangian but does

not have Ostrogradsky ghosts. In section 3, we investigate general Lagrangian involving

three set of multiple variables with at most first-, second-, and third-order derivatives,

respectively. We derive a set of conditions to avoid Ostrogradsky ghosts. We show that

with these conditions the Euler-Lagrange equations are reducible to second-order system.

Some of them are satisfied identically for single variable case, which is supplemented in the

appendix. Finally in section 4 we extend our analysis to general Lagrangian with arbitrary

finite higher-order derivatives. Section 5 is devoted to conclusions and discussion.

2 Examples

The specific example of ghost-free theory of quadratic model involving third-order deriva-

tives is presented in [21]. In this section we provide an example of ghost-free theory

involving arbitrary finite higher-order derivatives in Lagrangian. We show that the Euler-

Lagrange equations are rearrangeable to second-order system, and that through the Hamil-

tonian analysis the system does not possess the Ostrogradsky ghosts.
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We consider the following Lagrangian

L =
1

2

q̇2

1 + φ(d+1)
+

1

2
φ̇2, (2.1)

where q = q(t), φ = φ(t), and φ(d+1) represents the (d+1)-th derivative of φ(t) with d ≥ 1

being an integer. This model is a generalization of the toy model considered in section 7.1

of [28], which corresponds to d = 1 case. The Euler-Lagrange equations for q and φ are

given by

d

dt

(

q̇

1 + φ(d+1)

)

= 0, (2.2)

φ̈+ (−1)d+1 1

2

dd+1

dtd+1

(

q̇2

(1 + φ(d+1))2

)

= 0. (2.3)

Despite the appearance of higher derivative terms, we can see this system of equations is

actually second-order system as follows. From the first equation we note that q̇

1+φ(d+1) =

const. Plugging it to the second equation, we obtain φ̈ = 0, with which the first equation

reduces to q̈ = 0. Therefore the system is equivalent to

q̈ = φ̈ = 0, (2.4)

which is clearly a second-order system for 2 variables q, φ and requires 4 initial conditions

for {q, q̇, φ, φ̇}. It is straightforward to consider a generalization of the model where the

Lagrangian is given by a sum of (2.1) for multiple q, φ variables with different orders of

derivatives.

Let us check the number of DOFs and the absence of Ostrogradsky ghost for the

system (2.1) by Hamiltonian analysis. By introducing auxiliary variables Qi and Lagrange

multipliers λi, we rewrite the Lagrangian L in (2.1) to an equivalent form

Leq = L(q̇, Q̇d, Q1) +
d−1
∑

i=0

λi(Q̇
i −Qi+1),

L(q̇, Q̇d, Q1) =
1

2

q̇2

1 + Q̇d
+

1

2
(Q1)2 , (2.5)

where we define Q0 ≡ φ. This Lagrangian yields at most second-order EOMs for 2(d +

1) variables, {q,Qd, Qi, λi} with i = 0, · · · , d − 1. Thus, a priori this system requires

4(d+ 1) initial conditions. The form of Leq allows us to define the canonical momenta for

{q,Qd, Qi, λi} in the standard way:

p = Lq̇ =
q̇

1 + Q̇d
, Pd = LQ̇d = −

1

2

(

q̇

1 + Q̇d

)2

, Pi = λi, ρi = 0. (2.6)

The last two equations are primary constraints associated with the introduction of auxiliary

variables. In addition to them, we note that there is an additional primary constraint

Pd = F (p) ≡ −p2/2. In total, the primary constraints are

Φi ≡ Pi − λi ≈ 0, Φ̄i ≡ ρi ≈ 0, Ψ ≡ Pd − F ≈ 0. (2.7)
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Time evolution of the canonical variables is governed by the total Hamiltonian, which is

given by

HT = H + µiΦi + µ̄iΦ̄i + νΨ,

H = H0 +
d−1
∑

i=0

PiQ
i+1

H0 = Q̇dPd + q̇p− L, (2.8)

where µi, µ̄i, ν are Lagrange multipliers. The linear terms
∑

PiQ
i+1 correspond to the

Ostrogradsky ghosts, by which the Hamiltonian is unbounded.

Since the primary constraints need to be satisfied through time evolution, we require

time derivative of the primary constraints remain vanishing as consistency condition. From

the consistency condition ˙̄Φi ≈ 0 and Φ̇i ≈ 0, we respectively obtain

µi ≈ 0, µ̄i ≈ {Φi, H}+ ν{Φi,Ψ}. (2.9)

The consistency condition for Ψ is given by

0 ≈ Ψ̇ = {Ψ, H}+ ν{Ψ,Ψ}. (2.10)

Needless to say, the last term vanishes identically, but we kept it for later convenience.

Actually, the fact that this term identically vanishes means that this system satisfies the

second degeneracy condition [see (3.20)]. From (2.10) we obtain a secondary constraint

− {Ψ, H} = Pd−1 ≈ 0. (2.11)

We then check the consistency condition 0 = Ṗd−1 = {Pd−1, H} + ν{Pd−1,Ψ} and obtain

a tertiary constraint Pd−2 = 0. Actually, it is clear from the linear terms
∑

PiQ
i+1 in the

Hamiltonian that we successively obtain the constraints

Pd−1 ≈ 0, Pd−2 ≈ 0, , · · · , P1 ≈ 0. (2.12)

Finally the consistency condition for P1 = 0 gives

0 ≈ Ṗ1 = P0 −Q1, (2.13)

which is the last constraint as its consistency condition is identically satisfied. Clearly, the

constraints remove linear terms in the Hamiltonian, and thus eliminate the Ostrogradsky

ghosts.

Hence we expect the system possesses only healthy 2 DOFs. To count the number

of DOFs, we classify all the constraints obtained above to first class and second class by

checking the Poisson brackets between them, which form the Dirac matrix. The Dirac
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matrix is given by

Φj Φ̄j Ψ Pd−1 · · · P1 P0 −Q1

Φi 0 −1

Φ̄i 1 0

Ψ

Pd−1
...

P1 0 1

P0 −Q1 −1 0

(2.14)

where 1 is the unit matrix and blank arguments are zeros. Hence we end up with

2d + 2 second class constraints Φi, Φ̄i, P1, P0 − Q1, and d − 1 first class constraints

Ψ, Pd−1, Pd−2, · · · , P2. Starting the primary first class constraint Ψ, we can check the Dirac

test is satisfied: since the chain of the Poisson brackets exhausts all first class constraints

as {H,Ψ} = Pd−1, {H,Pd−1} = Pd−2, · · · , {H,P3} = P2, all the first class constraints are

generator of gauge transformations. Therefore, the number of DOFs for the system is given

by [4(d+1)−(2d+2)−2(d−1)]/2 = 2, which is consistent with the Euler-Lagrange picture.

3 Lagrangian with multiple third-order derivatives

The example in section 2 shows that it is indeed possible to involve arbitrary higher-

order derivatives in Lagrangian and construct no-ghost theory. In this case, some part

of degeneracy conditions could be identically satisfied due to the particular form of the

Lagrangian. For more general Lagrangians, we need to impose a certain set of degeneracy

conditions, for which it is worthwhile to remind the lesson obtained in [21]. In [21], we

investigated the quadratic model involving third-order derivatives and clarified that it is

necessary to impose a sufficient number of degeneracy conditions to eliminate all ghost

DOFs. In particular, fixing linear terms in conjugate momenta in the Hamiltonian is not

sufficient as linear terms in canonical coordinates themselves lurk in the Hamiltonian in a

nontrivial way. We need to impose degeneracy conditions and continue the Dirac algorithm

until we are left with healthy DOFs whose number matches that of variables. The final goal

of the present paper is to generalize this process for general Lagrangian involving arbitrary

higher-order derivatives (see section 4).

In this section, we consider Lagrangian involving multiple variables ψn(t) with third-

order derivatives and multiple regular variables qi(t):

L(
...
ψ

n
, ψ̈n, ψ̇n, ψn; φ̈a, φ̇a, φa; q̇i, qi), (3.1)

where n, a, i run from 1 to N ,A, I, respectively. In order to cover a wide class of La-

grangians up to the third-order time derivatives, we also include the variables φa that

enter the Lagrangian up to their second-order time derivatives. We investigate the Hamil-

tonian analysis in section 3.1 to derive degeneracy conditions, and the Euler-Lagrange

equations in section 3.2 to show the reduction to second-order system. For the special case

N = 1 and A = 0, some part of degeneracy conditions are identically satisfied, for which
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we provide a brief explanation in appendix A. Instead of dealing with the Lagrangian (3.1),

for the practical purpose, we consider an equivalent Lagrangian given by

Leq ≡ L(Q̇n, Qn, Rn, ψn; Q̇N+a, QN+a, φa; q̇i, qi)

+ ξn(ψ̇
n −Rn) + λn(Ṙ

n −Qn) + λN+a(φ̇
a −QN+a), (3.2)

and denote QI = (Qn, QN+a).

3.1 Hamiltonian analysis

The canonical momenta for QI , qi, Rn, ψn, φa, ξn, λI are respectively given by

PQI = LI , pi = Li, PRn = λn, πψn = ξn, πφa = λN+a, ρξn = 0, ρλI
= 0, (3.3)

where LI ≡ ∂L/∂Q̇I and Li ≡ ∂L/∂q̇i. Below we simply write PQI → PI when we

denote all I = (n, a) components, whereas we retain the notation PQn for n components

to distinguish it from PRn . The number of canonical variables are a priori 10N +6A+2I.

From the latter six equations, we obtain 4N + 2A primary constraints

Φn ≡ PRn − λn ≈ 0, ΦN+a ≡ πφa − λN+a ≈ 0, ΦN+A+n ≡ πψn − ξn ≈ 0,

Φ̄n ≡ ρλn
≈ 0, Φ̄N+a ≡ ρλN+a

≈ 0, Φ̄N+A+n ≡ ρξn ≈ 0. (3.4)

At this moment, it is nontrivial whether the first two equations in (3.3) provide further

constraints or not. However, if they do not provide constraints, the system has DOF more

than the number of variables, and we end up with Ostrogradsky ghost. We thus assume

the existence of an additional primary constraint in the following way. Let us consider the

infinitesimal changes of PI , pi, which are related as
(

δPI − LIxδx

δpi − Lixδx

)

= K

(

δQ̇J

δq̇j

)

, (3.5)

where the kinetic matrix K is given by

K ≡

(

LIJ LIj

LiJ Lij

)

, (3.6)

and x = (QI , Rn, ψn, φa, qi), and summation for overlapping x is implicit. If detK 6= 0, one

can locally express Q̇I , q̇i in terms of canonical variables, meaning that there is no further

primary constraint. Therefore, we require detK = 0. More precisely, we require the

maximal degeneracy of the part of K corresponding to the higher derivatives to eliminate

ghost DOFs. On the other hand, to avoid eliminating DOFs coming from qi, we assume

det k 6= 0, (3.7)

where kij is a sub-kinetic matrix defined by kij ≡ Lij . Under this assumption, K can be

rewritten as

K = R

(

LIJ − LIik
ijLjJ 0

0 k

)

S, (3.8)
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where kij is the inverse matrix of kij and

R ≡

(

1 AT

0 1

)

, S ≡

(

1 0

A 1

)

, Ai
I ≡ kijLjI . (3.9)

Now it is clear that the maximal degeneracy of the part of K corresponding to the higher

derivatives implies

LIJ − LIiL
ijLjJ = 0, (3.10)

which is the first degeneracy condition we impose. Under this condition, (3.8) reads (see

also appendix B.3 of [16])

K = R

(

0 0

0 k

)

S. (3.11)

Plugging (3.11) to (3.5) we obtain

δPI − LIiL
ijδpj = (LIx − LIiL

ijLjx)δx,

LijLIjδQ̇
I + δq̇i = Lij(δpj − Ljxδx). (3.12)

We thus obtain additional primary constraints

ΨI ≡ PI − FI(pi, x) ≈ 0, (3.13)

with

FIpi = LijLIj , FIx = LIx − FIpiLix. (3.14)

The total Hamiltonian is given by

HT = H + µαΦα + µ̄αΦ̄α + νIΨI ,

H = H0 + PRnQn + πψnRn + πφaQN+a,

H0 = Q̇IPI + q̇ipi − L(Q̇n, Qn, Rn, ψ; Q̇N+a, QN+a, φa; q̇i, qi), (3.15)

where Φα = (Φn,ΦN+a,ΦN+A+n) with α = 1, · · · , 2N +A and so does Φ̄α, and µα, µ̄α, νI
are the Lagrange multipliers associated with the primary constraints Φα, Φ̄α,ΨI , respec-

tively. The momenta PRn , πψn , πφa show up in the Hamiltonian only through the linear

terms, which lead to the Ostrogradsky instability. We shall see that the secondary con-

straints fix PRn , πφa , and the tertiary constraints fix πψn .

To guarantee that the primary constraints Φα, Φ̄α,ΨI are satisfied through time evolu-

tion, the consistency conditions Φ̇α ≈ 0, ˙̄Φα ≈ 0, Ψ̇I ≈ 0 should be satisfied. From Φ̇α ≈ 0,

we obtain equations for µ̄α as

µ̄α ≈ {Φα, H}+ νI{Φα,ΨI}, (3.16)

which read

µ̄n ≈ −πψn + LRn + νI{Φn,ΨI},

µ̄N+a ≈ Lφa + νI{ΦN+a,ΨI},

µ̄N+A+n ≈ Lψn + νI{ΦN+A+n,ΨI}. (3.17)
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On the other hand, ˙̄Φα ≈ 0 fixes µα as

µα ≈ 0. (3.18)

Therefore the consistency conditions for the primary constraints Φα, Φ̄α determine La-

grange multipliers µ̄α, µα, respectively, and do not generate secondary constraints. The

remaining consistency conditions for the primary constraints ΨI are

0 ≈ Ψ̇I = {ΨI , H}+ νJ{ΨI ,ΨJ}, (3.19)

where we substituted (3.18). As shown in [14], the appearance of the matrix {ΨI ,ΨJ}

is the nature of the multi-variable system, and if {ΨI ,ΨJ} is nondegenerate, this system

suffers from ghost DOFs. We thus need further constraints to eliminate them. To make

all the equations give secondary constraints, we impose the second degeneracy conditions

{ΨI ,ΨJ} = FJQI − FIQJ + FIqiFJpi − FIpiFJqi = 0. (3.20)

Under the second degeneracy conditions (3.20) we obtain secondary constraints

ΥI ≡ −{ΨI , H} ≈ 0, (3.21)

which read

Υn = PRn − LQn + FnpiLqi + ẋFnx ≡ PRn −Gn,

ΥN+a = πφa − LQN+a + FN+a,piLqi + ẋFN+a,x ≡ πφa −GN+a, (3.22)

which fix PRn , πφa , eliminating Ostrogradsky instability coming from terms linear in them

in the Hamiltonian (3.15).

Note that, for the case N = 1 and A = 0, the Poisson bracket is {ΨI ,ΨJ} → {Ψ,Ψ}

which identically vanishes. Hence, as mentioned earlier, the degeneracy conditions cor-

responding to (3.20) are identically satisfied, and one obtains the secondary constraints

corresponding to (3.22) automatically.

We can show that GI = GI(pi, x) as follows. By using the second equation of (3.12),

we can show that δQ̇I and δq̇i terms of the variation of Lx − XIpiLqi + ẏXIy for general

XI = XI(pi, x) can be given by

δ(Lx −XIpiLqi − ẏXIy) ⊃ (FJx −XIQJ +XIqiFJpi −XIpiFJqi)δQ̇
J . (3.23)

Applying this relation to GI = LQI − FIpiLqi − ẋFIx, we obtain

δGI ⊃ (FJQI − FIQJ + FJpiFIqi − FIpiFJqi)δQ̇
J . (3.24)

We see that the coefficient precisely coincides with the second degeneracy conditions (3.20).

We thus conclude GI = GI(pi, x). For the case N = 1,A = 0, one can show the right hand

side of (3.24) identically vanishes.

The consistency conditions for the secondary constraints are given by

0 ≈ Υ̇I = {ΥI , H}+ νJ{ΥI ,ΨJ}. (3.25)
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As mentioned earlier, among ΥI = (Υn,ΥN+a), the latter part are constraints eliminating

Ostrogradsky ghost associated with πφa . We thus would like to stop the reduction of φ

sector, while we still need further constraints to eliminate Ostrogradsky ghost in ψ sector.

Hence, we require det{ΥN+a,ΨN+b} 6= 0 by which νN+a are fixed. To remove ghost DOFs

from ψ sector under the condition det{ΥN+a,ΨN+b} 6= 0, one may be tempted to impose

the third degeneracy conditions as

{Υn,Ψm} − {Υn,ΨN+a}{ΥN+b,ΨN+a}
−1{ΥN+b,Ψm} = 0, (3.26)

so that {ΥI ,ΨJ} can be decomposed as

{ΥI ,ΨJ} = R′

(

0 0

0 {ΥN+a,ΨN+b}

)

S′, (3.27)

with some nontrivial R′, S′, in parallel to (3.10) and (3.11). This time, for simplicity, we

impose

{Υn,ΨI} = FIRn −GnQI +GnqiFIpi −GnpiFIqi = 0, (3.28)

as the third degeneracy conditions to ensure the structure

{ΥI ,ΨJ} =

(

0 0

{ΥN+a,Ψm} {ΥN+a,ΨN+b}

)

, (3.29)

where det{ΥN+a,ΨN+b} 6= 0. Plugging (3.29) into (3.25), the first row yields the tertiary

constraints given by

0 ≈ Λn ≡ −{Υn, H} = πψn − LRn +GnpiLqi + ẋGnx ≡ πψn − In(pi, x), (3.30)

where we have again used (3.23) to show that In = In(pi, x). Thus, the tertiary constraints

fix πψn . On the other hand, the remaining A components of (3.25) give A equations for

{ΥN+a,ΨJ}νJ ≈ −Lφa +GN+a,piLqi + ẋGN+a,x. (3.31)

Since det{ΥN+a,ΨN+b} 6= 0, this equation fix νN+a as expected. We shall see in (3.57)

that the right hand side is vanishing by virtue of EOM for φa. For the case N = 1,A = 0,

the Poisson bracket is {ΥI ,ΨJ} → {Υ,Ψ} and one simply needs to impose {Υ,Ψ} = 0 as

the degeneracy condition.

Therefore, we have fixed all the linear momentum terms PRn , πψn , πφa in the Hamilto-

nian (3.15). However, as demonstrated in [21] for the quadratic model, the salient feature

that the Ostrogradsky ghosts are not completely eliminated even after all the linear terms

in momenta have been removed by the constraints is expected to be generic in the higher

derivative theories with more than second time-derivatives in the Lagrangian. This is be-

cause the canonical variables Qn correspond to the second time derivatives of ψn and could

become the source of the Ostrogradsky ghosts.

In the present case with general Lagrangian, an explicit redefinition of variables that

reveals the hidden ghost is not trivial. Instead, we use the counting of the number of phase
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space variables. All the phase space variables of the current system (3.2) are

QI qi Rn ψn φa ξn λI

PQI pi PRn πψn πφa ρξn ρλI

, (3.32)

where the boxed variables are fixed in terms of other variables via constraints obtained so

far. Therefore, we currently have 3N +2A+2I free variables in phase space. The original

Lagrangian (3.1) depends on ψn, φa, qi and we would like to have a theory such that these

variables behave as if they are “ordinary” variables corresponding to 2(N + A + I) free

variables in phase space. Therefore, from (3.32) the current system has N extra phase

space variables, and we assume that they are the hidden Ostrogradsky ghosts, which do

not appear in the Hamiltonian as linear momentum terms. Generalizing the result obtained

in [21], we expect that for some simple cases it is possible to find out an explicit redefinition

of variables to reveal the hidden ghost as a term linear in Qn in the Hamiltonian.

Based on these considerations, to eliminate the hidden Ostrogradsky ghosts, we require

that the consistency conditions for the tertiary constraints (3.30)

0 ≈ Λ̇n = {Λn, HT } = {Λn, H}+ νJ{Λn,ΨJ}, (3.33)

does not determine any Lagrange multipliers, and hence generate the quaternary con-

straints. Along the same line as the third degeneracy condition (3.28), as the simplest

case, although not the most general, we require

{Λn,ΨI} = FIψn − InQI + InqiFIpi − InpiFIqi = 0, (3.34)

as the fourth degeneracy conditions. Then, the consistency conditions (3.33) for Λn yield

the following quaternary constraints,

0 ≈ Ωn ≡ −{Λn, H} = −Lψn + InpiLqi + ẋInx, (3.35)

which fix the N phase space variables, precisely matching the number of Qn, as expected.

Again, using (3.23) we can show that Ωn = −Jn(pi, x).

For the case N = 1,A = 0, one can show {Λ,Ψ} = 0 identically holds (see appendix A

for the proof), and the quaternary constraint is automatically obtained. This makes sense

since the absence of such constraint would lead to the equations of motion containing

third time-derivative of a single variable only, which is incompatible with the nature of

Euler-Lagrange equations.

The consistency conditions for Ωn yield

{Ωn,ΨI}νI ≈ JnpiLqi + ẋJnx, (3.36)

whose right hand side shall be shown to be vanishing in (3.59) by virtue of time derivative

of EOM for ψn. Thus, (3.31) and (3.36) form a system of N +A equations for νI . Since

we have reduced the number of the unconstrained canonical variables to 2(N +A+ I), we

do not impose further constraints. In other words, we require all the Lagrange multipliers

νI are determined by (3.31) and (3.36). Denoting

Ω̂I ≡ (Ωn,ΥN+a), (3.37)
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and

ZIJ ≡ {Ω̂I ,ΨJ}, (3.38)

we require each submatrix of ZIJ is nondegenerate:

detZab 6= 0, detZnm 6= 0. (3.39)

Under this condition we obtain

νI ≈ 0. (3.40)

The number of constraints is

Φα, Φ̄α : 4N + 2A,

ΨI : N +A,

Ω̂I : N +A,

Υn : N ,

Λn : N , (3.41)

and the total number is thus 8N +4A. Using the definition ΥI = −{ΨI , H} and the Jacobi

identity we can show

{ΥI ,Υn} = {Λn,ΨI}+ {{Υn,ΨI}, H} = 0,

{ΥI ,Λn} = {Ωn,ΨI}+ {{Λn,ΨI}, H} = ZnI ,

Zan = {ΥN+a,Ψn} = {Υn,ΨN+a} = 0. (3.42)

With this in mind, the Dirac matrix is given by

Φβ Φ̄β ΨJ Ω̂J Υm Λm

Φα 0 −1 ∗ ∗ ∗ ∗

Φ̄α 1 0 0 0 0 0

ΨI ∗ 0 0 −ZJI 0 0

Ω̂I ∗ 0 ZIJ ∗ ∗ ∗

Υn ∗ 0 0 ∗ 0 Zmn

Λn ∗ 0 0 ∗ −Znm ∗

(3.43)

and the determinant of the Dirac matrix is given by

(detZab)
2(detZnm)4, (3.44)

which does not vanish by virtue of (3.39). Therefore, since all the 8N +4A constraints are

second class, the number of DOF is

1

2
[10N + 6A+ 2I − (8N + 4A)] = N +A+ I. (3.45)
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3.2 Euler-Lagrange equation

The Euler-Lagrange equation for (3.2) is given by

L̇i − Lqi = 0, (3.46)

L̇I − LQI + λI = 0, (3.47)

LRn − ξn − λ̇n = 0, (3.48)

Lψn − ξ̇n = 0, (3.49)

Lφa − λ̇N+a = 0, (3.50)

Qn − Ṙn = 0, (3.51)

Rn − ψ̇n = 0, (3.52)

QN+a − φ̇a = 0. (3.53)

To obtain EOM for ψn, φa, qi we successively take time derivative of the Lagrange multi-

pliers λI , ξn.

First, we begin with λI . From (3.47), a priori λI depends on Q̈I which we would

like to avoid. Using the first degeneracy condition (3.10) or the additional primary con-

straints (3.13), LI = FI(Li, x) with the relations (3.14), we can show (3.46) and (3.47) can

be transformed as

λI = LQI − FIpiLqi − ẋFIx, (3.54)

Ei ≡ q̈i + FIpiQ̈
I − Lij(Lqj − ẋLjx) = 0. (3.55)

The first equation (3.54) corresponds to the secondary constraints (3.22).

Second, we take time derivative of (3.54) to obtain ξn from (3.48), and EOM for φa

from (3.50). Again, to avoid for them to depend on Q̈I , we impose λI = GI(Li, x). Indeed,

in (3.24) we showed it holds by virtue of the second degeneracy condition (3.20). Thus ξn
and EOM for φa does not depend on Q̈I . In fact, from (3.48) we obtain

ξn = LRn −GnpiLqi − ẋGnx (3.56)

which corresponds to the tertiary constraints (3.30). Also, from (3.50) we obtain EOM

for φa

Ea ≡ Lφa −GN+a,piLqi − ẋGN+a,x = 0, (3.57)

which corresponds to the right hand side of (3.31).

Third, we take time derivative of (3.56) to obtain EOM for ψn from (3.49). Again, to

avoid its Q̈I dependency, we impose ξn = In(Li, x), which has been actually shown in the

previous subsection by using the third degeneracy condition (3.28). From (3.49) we obtain

EOM for ψn

En ≡ Lψn − InpiLqi − ẋInx = 0, (3.58)

which corresponds to the quaternary constraints (3.35).

We thus obtain EOM for qi, φa, ψn as (3.55), (3.57), (3.58), but they still contain higher

derivatives. Below we construct a set of EOMs with derivatives up to second-order.
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We derive another independent EOM by taking time derivative of (3.58). To avoid its

Q̈I dependency, we impose En = Jn(Li, x) which holds by virtue of the fourth degeneracy

condition (3.34). Therefore,

0 = J̇n = JnpiLqi + ẋJnx, (3.59)

which coincides with the right hand side of (3.36). Generalizing the derivation of eq. (24)

from eq. (23) in [21], we expect that in general the condition (3.39) guarantees that we can

solve (3.57)–(3.59) for Q̇n, Qn, Q̇N+a and obtain

Q̇n = Q̇n(q̇i, QN+a, Rn, ψn, φa, qi), (3.60)

Qn = Qn(q̇i, QN+a, Rn, ψn, φa, qi), (3.61)

Q̇N+a = Q̇N+a(q̇i, QN+a, Rn, ψn, φa, qi). (3.62)

The equations (3.61), (3.62) are EOMs containing at most ψ̈n = Qn, φ̈a = Q̇N+a, respec-

tively. Taking time derivative of (3.60) and (3.62), and using these equations we obtain

Q̈I = Q̈I(q̈i, q̇i, QN+a, Rn, ψn, φa, qi). (3.63)

By substituting (3.60)–(3.63) to (3.55), we obtain EOM containing at most q̈i. Combining

it with (3.61), (3.62), we thus obtain a system of N +A + I EOMs that contain at most

ψ̈n, φ̈a, q̈i.

4 Lagrangian with arbitrary higher-order derivatives

Finally we extend the analyses in section 3 for the Lagrangian with third-order deriva-

tives to that with arbitrary higher order derivatives. We explore the following Lagrangian

involving arbitrary higher (d+ 1)-th order derivatives:

L = L(φi0 , φ̇i0 ;φi1 , φ̇i1 , φ̈i1 ;φi2 , φ̇i2 , φ̈i2 ,
...
φ
i2 ; · · · ;φid , φ̇id , · · · , φid(d+1)). (4.1)

Here, the index ik counts the number of φ(t) variables and runs

i0 = 1, · · · , n0,

i1 = n0 + 1, · · · , n0 + n1,

...

id =
d−1
∑

k=0

nk + 1, · · · ,
d

∑

k=0

nk, (4.2)

and φik(t) receives (k + 1)-th order derivative. Note that the numbering and the order of

time derivative are off by 1 for later convenience. We introduce the notation

Qi0
00 ≡ φi0 , Qi1

10 ≡ φi1 , · · · Qid
d0 ≡ φid , (4.3)
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and the auxiliary variables to rewrite the Lagrangian as

Leq = L(Qi0
00, Q̇

i0
00;Q

i1
10, Q

i1
11, Q̇

i1
11;Q

i2
20, Q

i2
21, Q

i2
22, Q̇

i2
22; · · · ;Q

id
d0, Q

id
d1, · · · , Q

id
dd, Q̇

id
dd)

+ λi1
10(Q̇

i1
10 −Qi1

11)

+ λi2
20(Q̇

i2
20 −Qi2

21) + λi2
21(Q̇

i2
21 −Qi2

22)

+ · · ·

+ λid
d0(Q̇

id
d0 −Qid

d1) + λid
d1(Q̇

id
d1 −Qid

d2) + · · ·+ λid
d,d−1(Q̇

id
d,d−1 −Qid

dd). (4.4)

Therefore, we have {Q, λ} and their canonical momenta {P, ρ} which we classify as

qi ≡ (Qi0
00), pi ≡ (P i0

00),

Q̃
(0)
I1

≡ (Qi1
11, Q

i2
22, · · · , Q

id
dd), P̃

(0)
I1

≡ (P i1
11, P

i2
22, · · · , P

id
dd),

Q ≡













Qi1
10

Qi2
20 Qi2

21
...

. . .

Qid
d0 Qid

d1 · · · Qid
d,d−1













, P ≡













P i1
10

P i2
20 P i2

21
...

. . .

P id
d0 P id

d1 · · · P id
d,d−1













,

λ ≡













λi1
10

λi2
20 λi2

21
...

. . .

λid
d0 λid

d1 · · · λid
d,d−1













, ρ ≡













ρi110
ρi220 ρi221
...

. . .

ρidd0 ρidd1 · · · ρidd,d−1













, (4.5)

where I1 = (i1, i2, · · · , id). The total number of the canonical variables is thus a priori

Ncan = 2
d

∑

k=0

(k + 1)nk + 2
d

∑

k=1

knk

= 2
d

∑

k=0

nk + 4
d

∑

k=1

knk. (4.6)

Below we consider how to remove 4
∑d

k=1 knk by constraints.

4.1 Hamiltonian analysis

The canonical momenta are defined as

pi = Li, P̃
(0)
I1

= LI1 , P = λ, ρ = 0, (4.7)

where LI1 ≡ ∂L/∂ ˙̃Q
(0)
I1

. First, from the latter two equations we obtain the primary con-

straints

Φ ≡ P − λ ≈ 0, Φ̄ ≡ ρ ≈ 0. (4.8)

As we shall see, they are second class constraints and thus constrain only λ and ρ. Next

we focus on the former two equations. The qi and QI sectors are parallel to those in the

previous section. Thus we assume detLij 6= 0, and impose the first degeneracy condition

LI1J1 − LI1iL
ijLjJ1 = 0, (4.9)

– 15 –



J
H
E
P
0
6
(
2
0
1
8
)
1
3
3

which is equivalent to the additional primary constraints

Ψ̃
(0)
I1

≡ P̃
(0)
I1

− F̃
(0)
I1

(pi, x) ≈ 0, (4.10)

where

Ψ̃
(0)
I1

= (Ψi1
11,Ψ

i2
22, · · · ,Ψ

id
dd), (4.11)

and x = (qi, Q̃
(0)
I1

,Q).

To write down the total Hamiltonian in a simpler form we introduce the notation in

addition to Q̃
(0)
I1

≡ (Qi1
11, Q

i2
22, · · · , Q

id
dd)

Q̃
(1)
I1

≡ (Qi1
10, Q

i2
21, Q

i3
32, · · · , Q

id
d,d−1),

Q̃
(2)
I2

≡ (Qi2
20, Q

i3
31, · · · , Q

id
d,d−2),

...

Q̃
(d−1)
Id−1

≡ (Q
id−1

d−1,0, Q
id
d1),

Q̃
(d)
Id

≡ (Qid
d0), (4.12)

which decompose the matrix Q into d vectors, picking up the arguments from left top to

right down. Here Ik = (ik, · · · , id), and thus we can decompose

Q̃
(k)
Ik

= (Qik
k0, Q̃

(k)
Ik+1

), Q̃
(k)
Ik+1

= (Q
ik+1

k+1,1, Q
ik+2

k+2,2, · · · , Q
id
d,d−k), (4.13)

which we exploit below to isolate the first argument. We also define P̃
(k)
Ik

in the same way:

P̃
(k)
Ik

≡ (P ik
k0, P

ik+1

k+1,1, · · · , P
id
d,d−k). (4.14)

With this notation, the Lagrangian (4.4) simplifies as

Leq = L(qi, q̇i; Q̃
(0)
I1

, ˙̃Q
(0)
I1

; Q̃
(1)
I1

, Q̃
(2)
I2

, · · · , Q̃
(d)
Id

) +
d

∑

k=1

λ̃
(k)
Ik

( ˙̃Q
(k)
Ik

− Q̃
(k−1)
Ik

). (4.15)

The total Hamiltonian is then given by

HT = H + µαΦα + µ̄αΦ̄α + ν̃
(0)
I1

Ψ̃
(0)
I1

,

H = H0 + Q̃
(0)
I1

P̃
(1)
I1

+ Q̃
(1)
I2

P̃
(2)
I2

+ · · ·+ Q̃
(d−1)
Id

P̃
(d)
Id

,

H0 =
˙̃Q
(0)
I1

P̃
(0)
I1

+ q̇ipi − L, (4.16)

where Φα = (Φi1
10,Φ

i2
20,Φ

i2
21, · · · ,Φ

id
d0, · · · ,Φ

id
d,d−1) denotes the

∑d
k=1 knk constraints, and so

does Φ̄α. Clearly, the linear terms Q̃
(k−1)
Ik

P̃
(k)
Ik

cause Ostrogradsky instabilities. Below we

show how to remove them by imposing constraints to P̃
(k)
Ik

.

The consistency conditions ˙̄Φα ≈ 0 and Φ̇α ≈ 0 respectively give

µα ≈ 0, µ̄α ≈ {Φα, H}+ ν̃
(0)
I1

{Φα, Ψ̃
(0)
I1

}, (4.17)
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which determine µα and µ̄α once ν̃
(0)
I1

are fixed. Since the consistency condition for Ψ̃
(0)
I1

is

given by

0 ≈ ˙̃Ψ
(0)
I1

= {Ψ̃
(0)
I1

, H}+ ν̃
(0)
J1

{Ψ̃
(0)
I1

, Ψ̃
(0)
J1

}, (4.18)

we impose the second degeneracy condition as

{Ψ̃
(0)
I1

, Ψ̃
(0)
J1

} = 0, (4.19)

and we obtain secondary constraints

Υ̃
(1)
I1

≡ −{Ψ̃
(0)
I1

, H} = P̃
(1)
I1

−G
(1)
I1

(pi, x) ≈ 0, (4.20)

where

Υ̃
(1)
I1

≡ (Υi1
10,Υ

i2
21, · · · ,Υ

id
d,d−1). (4.21)

Recalling that this notation allows us to isolate the first argument as Υ̃
(1)
I1

= (Υi1
10, Υ̃

(1)
I2

),

the consistency condition for Υ̃
(1)
I1

≈ 0 is given by

0 ≈ Υ̇i1
10 = {Υi1

10, H}+ ν̃
(0)
J1

{Υi1
10, Ψ̃

(0)
J1

},

0 ≈ ˙̃Υ
(1)
I2

= {Υ̃
(1)
I2

, H}+ ν̃
(0)
J1

{Υ̃
(1)
I2

, Ψ̃
(0)
J1

}. (4.22)

Since Υi1
10 fixes P i1

10 or the lowest problematic momentum for φi1 sector, we would like

to avoid generating further constraints from Υ̇i1
10 ≈ 0. In other words, we do not need

further constraint as the Hamiltonian does not contain linear term such as Qi1
10P with

some momentum P . Therefore the first equation of (4.22) gives n1 equations between ν̃
(0)
J1

.

In contrast, we would like to have further constraints from ˙̃Υ
(1)
I2

≈ 0 to eliminate remaining

linear terms coming from φik sectors with k ≥ 2. We thus impose the third degeneracy

condition

{Υ̃
(1)
I2

, Ψ̃
(0)
J1

} = 0. (4.23)

As we have discussed in (3.28), this is not the most general condition for (4.22) to determine

only n1 component of ν̃
(0)
I1

. Analysis in more general case is definitely interesting, but

becomes highly complicated and is beyond the scope of this paper. Thus, we impose (4.23).

Then, the second equation of (4.22) yields the tertiary constraints

Υ̃
(2)
I2

≡ −{Υ̃
(1)
I2

, H} = P̃
(2)
I2

− G̃
(2)
I2

(pi, x) ≈ 0. (4.24)

By induction, for the constraints

Υ̃
(k)
Ik

≡ −{Υ̃
(k−1)
Ik

, H} = P̃
(k)
Ik

− G̃
(k)
Ik

(pi, x) ≈ 0, (4.25)

we decompose the consistency conditions as

0 ≈ Υ̇ik
k0 = {Υik

k0, H}+ ν̃
(0)
J1

{Υik
k0, Ψ̃

(0)
J1

},

0 ≈ ˙̃Υ
(k)
Ik+1

= {Υ̃
(k)
Ik+1

, H}+ ν̃
(0)
J1

{Υ̃
(k)
Ik+1

, Ψ̃
(0)
J1

}, (4.26)
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and impose the degeneracy conditions

{Υ̃
(k)
Ik+1

, Ψ̃
(0)
J1

} = 0, (4.27)

to obtain the constraints

Υ̃
(k+1)
Ik+1

≡ −{Υ̃
(k)
Ik+1

, H} = P̃
(k+1)
Ik+1

− G̃
(k+1)
Ik+1

(pi, x) ≈ 0, (4.28)

for k = 2, · · · , d− 1.

The constraints (4.20), (4.24), (4.25), (4.28) form a matrix

Υ ≡ P −G ≈ 0 (4.29)

where

Υ ≡













Υi1
10

Υi2
20 Υi2

21
...

. . .

Υid
d0 Υid

d1 · · · Υid
d,d−1













, G ≡













Gi1
10

Gi2
20 Gi2

21
...

. . .

Gid
d0 Gid

d1 · · · Gid
d,d−1













. (4.30)

We then arrive at the consistency condition for the last constraint Υ̃
(d)
Id

= Υid
d0

0 ≈ Υ̇id
d0 = {Υid

d0, H}+ ν̃
(0)
J1

{Υid
d0, Ψ̃

(0)
J1

}. (4.31)

After the above procedure, the constraints (4.29) fix the linear momentum terms in

the Hamiltonian (4.16), and we are left with the consistency conditions

{Υik
k0, H}+ ν̃

(0)
I1

{Υik
k0, Ψ̃

(0)
I1

} ≈ 0, (k = 1, · · · , d). (4.32)

Therefore, if this set of equations determine the Lagrange multipliers ν̃
(0)
I1

, we complete the

Dirac algorithm.

In parallel to (3.32), we can list all the phase space variables of the current sys-

tem (4.4) as

Q̃
(0)
I1

qi Q λ

P̃
(0)
I1

pi P ρ
, (4.33)

where the boxed variables are fixed in terms of other variables via constraints obtained so

far. Nevertheless, as a natural generalization of the results obtained in section 3, we are

interested in the case where the number of degrees of freedom matches the number of vari-

ables by removing all the ghosts associated with the canonical variables which correspond

to the higher-than-first time derivatives of the original variables, and all the constraints

are second class. Such canonical variables come from Q̃
(0)
I1

≡ (Qi1
11, Q

i2
22, · · · , Q

id
dd) and Q.

We can combine Q̃
(0)
I1

and Q, and list up them as a larger matrix

















Qi1
10 Qi1

11

Qi2
20 Qi2

21 Qi2
22

Qi3
30 Qi3

31 Qi3
32 Qi3

33
...

. . .

Qid
d0 Qid

d1 Qid
d2 · · · Qid

d,d−1 Qid
dd

















. (4.34)
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The first two columns are the original variables and their first-order time derivatives, and

the remaining part

Q′ ≡

















0

Qi2
22 0

Qi3
32 Qi3

33 0
...

. . .
. . .

Qid
d2 Qid

d3 · · · Qid
dd 0

















, (4.35)

is the variables that we would like to fix by invoking additional constraints. Here, we keep

a row and a column of zeros in the definition of Q′ and make its dimension as the same as

the other matrices denoted by the bold font.

We thus require an additional degeneracy condition

{Υik
k0, Ψ̃

(0)
I1

} = 0, (k = 2, · · · , d), (4.36)

with which (4.32) yields additional constraints

Ωik
k0 ≡ −{Υik

k0, H} ≈ 0, (k = 2, · · · , d). (4.37)

Note that, analogous to section 3, we do not impose the degeneracy condition for i1 compo-

nent. The number of the constraints is n2 + · · ·nd, which is the same as the number of the

nonvanishing components of the first column of Q′ in (4.35). The consistency conditions

for Ωik
k0 are given by

{Ωik
k0, H}+ ν̃

(0)
I1

{Ωik
k0, Ψ̃

(0)
I1

} ≈ 0, (k = 2, · · · , d). (4.38)

To obtain a sufficient number of constraints, we further impose degeneracy conditions

for k = 3, · · · , d

{Ωik
k0, Ψ̃

(0)
I1

} = 0, (k = 3, · · · , d), (4.39)

and we obtain constraints

Ωik
k1 ≡ −{Ωik

k0, H} ≈ 0, (k = 3, · · · , d), (4.40)

whose consistency conditions are given by

{Ωik
k1, H}+ ν̃

(0)
I1

{Ωik
k1, Ψ̃

(0)
I1

} ≈ 0, (k = 3, · · · , d). (4.41)

We continue the process k − 2 times and impose

{Ωiℓ
ℓk, Ψ̃

(0)
I1

} = 0, (k = 3, · · · , d− 3; ℓ = k + 1, · · · , d), (4.42)

until we obtain a set of constraints

Ω ≡

















0

Ωi2
20 0

Ωi3
30 Ωi3

31 0
...

. . .
. . .

Ωid
d0 Ωid

d1 · · · Ωid
d,d−2 0

















, (4.43)
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which precisely corresponds to Q′ in (4.35). The remaining consistency conditions corre-

sponding to the diagonal zero components of (4.43) are given by

{Ω̂
(1)
I1

, H}+ ν̃
(0)
I1

{Ω̂
(1)
I1

, Ψ̃
(0)
I1

} ≈ 0, (4.44)

where we defined

Ω̂
(1)
I1

≡ (Υi1
10, Ω̃

(2)
I2

), (4.45)

and

Ω̃
(2)
I2

≡ (Ωi2
20,Ω

i3
31, · · · ,Ω

id
d,d−2). (4.46)

All the degeneracy conditions we imposed above are (4.9), (4.19), (4.23), (4.27), (4.36),

(4.39), (4.42), which are summarized as

LI1J1 − LI1iL
ijLjJ1 = 0,

{Ψ̃
(0)
I1

, Ψ̃
(0)
J1

} = 0,

{Υ, Ψ̃
(0)
J1

} = 0 except Υi1
10,

{Ω, Ψ̃
(0)
J1

} = 0 except Ω̃
(2)
I2

. (4.47)

Now we require (4.44) determines all the Lagrange multipliers ν̃
(0)
I1

, and complete the Dirac

algorithm. As a generalization of (3.39), we define a matrix

ZI1J1 ≡ {Ω̂
(1)
I1

, Ψ̃
(0)
J1

}. (4.48)

One can show that Zik,jℓ = 0 for k < ℓ [see also (4.56) below]. Thus, the necessary

and sufficient condition for (4.44) to determine all ν̃
(0)
I1

is that each (ik, jk) submatrix is

nondegenerate

detZikjk 6= 0. (4.49)

With the degeneracy conditions (4.47), we obtain the constraints (Φ, Φ̄, Ψ̃
(0)
I1

,Υ,Ω) which

are given in (4.8), (4.10), (4.29), (4.43). The correspondence between the canonical vari-

ables and the constraints that fix them are

λ : Φ, ρ : Φ̄, P̃
(0)
I1

: Ψ̃
(0)
I1

, P : Υ, Q′ : Ω. (4.50)

While we do not show that the constraintsΩ fixes the variablesQ′ explicitly, the correspon-

dence is reasonable as the Q′ amounts to higher derivatives and the number of constraints

and variables precisely match. The number of constraints are respectively

Φ :

d
∑

k=1

knk, Φ̄ :

d
∑

k=1

knk, Ψ̃
(0)
I1

:

d
∑

k=1

nk, Υ :

d
∑

k=1

knk, Ω :

d
∑

k=1

(k − 1)nk. (4.51)

To count the number of degrees of freedom we shall classify them into first class and second

class constraints.

While the correspondence to canonical variables is transparent for the combination

(Φ, Φ̄, Ψ̃
(0)
I1

,Υ,Ω), it is not the best combination for counting the number of degrees of
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freedom as the Dirac matrix is not simple. Let us focus on (Ψ̃
(0)
I1

,Υ,Ω) and consider a

more useful basis. These constraints are connected each other by chains of Poisson brackets.

Let us list them as

Ψi1
11 Υi1

10

Ψi2
22 Υi2

21 Υi2
20 Ωi2

20

Ψi3
33 Υi3

32 Υi3
31 Υi3

30 Ωi3
30 Ωi3

31

Ψi4
44 Υi4

43 Υi4
42 Υi4

41 Υi4
40 Ωi4

40 Ωi4
41 Ωi4

42
...

...
...

...
...

. . .

Ψid
dd Υid

d,d−1 · · · Υid
d1 Υid

d0 Ωid
d0 · · · Ωid

d,d−2

(4.52)

Each row is connected by a chain of Poisson brackets. Starting from the most left compo-

nent of Ψ̃
(0)
I1

, the next right component is defined by taking a Poisson bracket with −H,

and we continue to proceed to the right component until we arrive at the most right com-

ponent of Ω̂
(1)
I1

ending with nonvanishing Poisson bracket with corresponding component

of Ψ̃
(0)
I1

. Taking the bottom row of (4.52) as an example, we have Υid
d,d−1 = −{Ψid

dd, H},

Υid
d,d−2 = −{Υid

d,d−1, H}, · · · , Ωid
d,d−2 = −{Ωid

d,d−3, H}, and det{Ωid
d,d−2,Ψ

id
dd} 6= 0. To make

use of the structure of Poisson brackets, it is more useful to divide the constraints by the

vertical line shown in (4.52) rather than distinguishing them by Υ,Ω notation. We thus

reclassify and relabel them as

Ψi1
11 Υi1

10

Ψi2
22 Ai2

1 Bi2
1 Ωi2

20

Ψi3
33 Ai3

1 Ai3
2 Bi3

2 Bi3
1 Ωi3

31

Ψi4
44 Ai4

1 Ai4
2 Ai4

3 Bi4
3 Bi4

2 Bi4
1 Ωi4

42
...

...
...

...
...

. . .
. . .

Ψid
dd Aid

1 · · · Aid
d−1 Bid

d−1 Bid
d−2 · · · Bid

1 Ωid
d,d−2

(4.53)

The chains of Poisson brackets are then rewritten as

Υi1
10 = −{Ψi1

11, H},

Aik
1 = −{Ψik

kk, H}, (k = 2, · · · , d),

Aik
a+1 = −{Aik

a , H}, (k = 3, · · · , d; a = 1, · · · , k − 2),

Bik
k−1 = −{Aik

k−1, H}, (k = 2, · · · , d),

Bik
a = −{Bik

a+1, H}, (k = 3, · · · , d; a = 1, · · · , k − 2),

Ωik
k,k−2 = −{Bik

1 , H}, (k = 2, · · · , d). (4.54)

Note that the last two degeneracy conditions of (4.47) read

{Aik
a , Ψ̃

(0)
I1

} = {Bik
a , Ψ̃

(0)
I1

} = 0, (a = 1, · · · , k − 1). (4.55)

From these relations and the Jacobi identity, one can show that

{Aik
a , Bjk

a } = (−1)a+1Zjkik ,

{Aik
a , Bjℓ

b } = 0, (a < b or 2ℓ− b < 2k − a),

{Aik
a , Ajℓ

b } = 0. (4.56)
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With the above basis, the Dirac matrix is given by

Φ Φ̄ Ψ̃ Ω̂ Aj2
1 Bj2

1 · · · Ajd
d−1 Bjd

d−1

Φ 0 −1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Φ̄ 1 0 0 0 0 0 0 0 0

Ψ̃ ∗ 0 0 −ZT 0 0 0 0 0

Ω̂ ∗ 0 Z ∗ ∗ ∗ ∗ ∗ ∗

Ai2
1 ∗ 0 0 ∗ 0 Zj2i2 0 0 0

Bi2
1 ∗ 0 0 ∗ −Zi2j2 ∗ ∗ ∗ ∗

... ∗ 0 0 ∗ 0 ∗
. . .

...
...

Aid
d−1 ∗ 0 0 ∗ 0 ∗ · · · 0 (−1)dZjdid

Bid
d−1 ∗ 0 0 ∗ 0 ∗ · · · (−1)d+1Zidjd ∗

(4.57)

The determinant of the Dirac matrix is thus given by

(detZi1j1)
2

d
∏

k=2

(detZikjk)
4, (4.58)

which is nonvanishing by virtue of (4.49). Hence, all the constraints are second class, whose

total number is given by summing up (4.51)

N2nd = 4
d

∑

k=0

knk. (4.59)

Using (4.6), the number of degrees of freedom is

NDOF =
1

2
(Ncan −N2nd) =

d
∑

k=0

nk. (4.60)

4.2 Euler-Lagrange equation

The Euler-Lagrange equation for the Lagrangian (4.15) can be written as

L̇i − Lqi = 0, (4.61)

L̇I1 − L
Q̃

(0)
I1

+ λ̃
(1)
I1

= 0, (4.62)

L
Q̃

(k)
Ik+1

− λ̃
(k+1)
Ik+1

− ˙̃
λ
(k)
Ik+1

= 0, (k = 1, · · · , d− 1), (4.63)

L
Q

ik
k0

− λ̇ik
k0 = 0, (k = 1, · · · , d), (4.64)

Q̃
(k)
Ik+1

− ˙̃Q
(k+1)
Ik+1

= 0, (k = 0, · · · , d− 1), (4.65)

Qik
k1 − Q̇ik

k0 = 0, (k = 1, · · · , d), (4.66)

where we recall that Li ≡ Lq̇i and LI1 ≡ L ˙̃
Q

(0)
I1

. The above equations (4.61)–(4.66) have the

same structure as the equations (3.46)–(3.53), though the numbers of two sets of equations
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are different: (4.61), (4.62), (4.63), (4.65) correspond to (3.46), (3.47), (3.48), (3.51), respec-

tively, whereas (4.64) corresponds to (3.49) and (3.50), and (4.66) corresponds to (3.52)

and (3.53). We shall show below that their reduction to a second-order system is a natural

generalization of the analysis in section 3.2.

Following section 3.2, first we focus on λ̃
(1)
I1

in (4.62). While a priori (4.62) implies that

λ̃
(1)
I1

depends on ¨̃Q
(0)
I1

, with the first degeneracy condition (4.9) or the additional primary

constraints (4.10), we can show that (4.61) and (4.62) read

λ̃
(1)
I1

= L
Q̃

(0)
I1

− F̃
(0)
I1pi

Lqi − ẋF̃
(0)
I1x

, (4.67)

Ei ≡ q̈i + FI1pi
¨̃Q
(0)
I1

− Lij(Lqj − ẋLjx) = 0, (4.68)

the former of which corresponds to the secondary constraints (4.20).

Next we focus on (4.63) and (4.64) with k = 1. We take a time derivative of (4.67),

I2 component of which gives λ̃
(2)
I2

from (4.63) with k = 1, and i1 component of which gives

EOM for Qi1
10 from (4.64) with k = 1. Again, while they a priori depend on ¨̃Q

(0)
I1

, with the

second degeneracy condition (4.19), (4.67) implies λ̃
(1)
I1

= G̃
(1)
I1

(Li, x) and
¨̃Q
(0)
I1

dependences

identically vanish. From (4.63) with k = 1 we obtain

λ̃
(2)
I2

= L
Q̃

(1)
I2

− G̃
(1)
I2pi

Lqi − ẋG̃
(1)
I2x

, (4.69)

which corresponds to the tertiary constraints λ̃
(2)
I2

= G
(2)
I2

(Li, x) in (4.24). Also, from (4.64)

with k = 1 we obtain EOM for Qi1
10 as

0 = E i1
10 ≡ L

Q
i1
10
−Gi1

10,pi
Lqi − ẋGi1

10,x = −{Υi1
10, H}, (4.70)

which, recalling the notation (4.3), is the EOM for φi1 , and shows that the first term of

the most right hand side of the first equation of (4.22) vanishes.

Inductively, for k = 2, · · · d − 1, by using a time derivative of λ̃
(k)
Ik

= G̃
(k)
Ik

(Li, x) and

the degeneracy conditions (4.23) and (4.27), we can reduce (4.63) and (4.64) and obtain

λ̃
(k+1)
Ik+1

= L
Q̃

(k)
Ik+1

− G̃
(k)
Ik+1pi

Lqi − ẋG̃
(k)
Ik+1x

≡ G̃
(k+1)
Ik+1

(Li, x), (4.71)

0 = E ik
k0 ≡ L

Q
ik
k0

−Gik
k0,pi

Lqi − ẋGik
k0,x = −{Υik

k0, H}, (4.72)

the latter of which is the EOM for φik and related to (4.26). Finally, plugging a time

derivative of (4.71) into (4.64) with k = d and using the degeneracy condition (4.27) with

k = d− 1, we obtain EOM for Qid
d0 = φid as

0 = E id
d0 ≡ L

Q
id
d0

−Gid
d0,pi

Lqi − ẋGid
d0,x = −{Υid

d0, H}, (4.73)

which is related to (4.31).

We thus obtain EOMs for qi, φi1 , · · · , φid as (4.68), (4.72), (4.73), but they still contain

higher derivatives. We can construct a set of EOMs with derivatives up to second-order as

follows. By virtue of the degeneracy condition (4.36), E ik
k0 for k = 2, · · · , d are functions of
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(Li, x) and thus a time derivative of EOMs E ik
k1 ≡ Ė ik

k0 for k = 2, · · · , d does not contain ¨̃Q
(0)
I1

.

We continue this procedure with the degeneracy conditions (4.39) and (4.42) to obtain a

set of EOMs

0 = E ≡













E i1
10

E i2
20 E i2

21
...

. . .

E id
d0 E id

d1 · · · E id
d,d−1













. (4.74)

Generalizing the logic for (3.60)–(3.62), we expect that in general the condition (4.49)

guarantees that we can solve (4.74) and express

˙̃Q
(0)
I1

= F̃
(0)
I1

(q̇i, qi, Qik
k0, Q

ik
k1), (4.75)

Q′ = F ′(q̇i, qi, Qik
k0, Q

ik
k1), (4.76)

where F ′ is a matrix with nonvanishing arguments corresponding to Q′ defined in (4.35).

These equations are a generalization of (3.60)–(3.62). From these equations, Q̇i1
11 = φ̈i1 and

Qik
k2 = φ̈ik for k = 2, · · · , d can be written down in terms of derivatives up to first order.

Taking a time derivative of (4.75) and plugging (4.75) and (4.76) we obtain

¨̃Q
(0)
I1

= F̃
(0)
I1

(q̈i, q̇i, qi, Qik
k0, Q

ik
k1). (4.77)

By substituting (4.75)–(4.77) to (4.68) we obtain EOM containing at most q̈i. We thus

obtain a system of
∑d

k=0 nk EOMs that contain at most second-order derivatives.

5 Conclusions and discussion

In this paper, we have clarified how to construct no-ghost theory for general Lagrangians for

point particle system involving arbitrary higher-order time derivatives. The first no-ghost

theory involving third-order derivative was the quadratic model studied in [21]. In section 2,

we provided the specific no-ghost theory that involves arbitrary higher-order derivative.

Then, in section 3, we have derived the conditions for general Lagrangian involving third-

order derivatives to possess only healthy DOFs. As shown in [21], in sharp contrast to

theories with up to the second-order time derivatives in the Lagrangian, eliminating linear

dependence of canonical momenta in the Hamiltonian is not sufficient for those with higher-

than-second-order derivatives, and that canonical coordinates corresponding to the higher

time-derivatives also need to be removed appropriately. In [21], this process was confirmed

for the quadratic model, and in section 3 we confirmed it for any Lagrangian involving third-

order derivatives. We have also shown that, as long as these conditions are satisfied, the

Euler-Lagrange equations can be reduced to a system of second-order differential equations,

which is consistent with the absence of ghost DOFs. Finally, in section 4 we have extended

these analyses to general theories involving arbitrary higher-order derivatives. The caveat

is that we have concentrated on the cases, in which all of the constraints are second class.

If some of them are first class, the analyses would be much more complicated and case-by-

case analysis would be necessary though such analyses are indispensable for gauge theories.
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Nevertheless, by introducing adequate gauge fixing terms, first class constraints turn into

second class ones, to which the analysis in the present paper would apply. We leave this

kind of analysis as future work.

While our analysis is confined to the analytic mechanics for a system of point particles

as the first step, it clarifies the essence of the construction of degenerate theories, and it is

quite robust as they apply to any Lagrangian involving arbitrary higher-order derivatives.

Furthermore, the analysis for field theory can be reduced into the one for the analytic

mechanics by exploiting ADM decomposition with a choice of direction of time. After

that, the result of the present paper will guide us how to construct ghost-free field theories

with arbitrary higher-order derivatives. Actually, the extension of our analysis to field

theories with arbitrary higher-order derivatives is quite interesting, for example, scalar (and

vector) fields in the Minkowski background, scalar-tensor theories, vector-tensor theories,

scalar-vector-tensor (TeVeS) theories, and even a theory with fermionic degrees of freedom.

Especially, it is challenging to find a healthy theory with higher-order derivative terms,

which cannot be transformed to a theory with only up to first order derivatives by invertible

transformation [29]. We also leave all of these topics as future work.
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A Lagrangian with single third-order derivative

In this appendix, we consider the special case of the Lagrangian considered in section 3

with N = 1,A = 0. In this case some part of degeneracy conditions are identically

satisfied. While it is obvious that the equation corresponding to the second degeneracy

conditions (3.20) is identically satisfied as {Ψ,Ψ} = 0, it is more subtle to see the another

equation {Λ,Ψ} = 0 corresponding to the fourth degeneracy condition (3.34) is identically

satisfied. Below we provide the proof of this equation.

The consistency condition for the tertiary constraint corresponding to (3.33) reads

0 ≈ Λ̇ = {Λ, H}+ ν{Λ,Ψ}. (A.1)

To obtain the quaternary constraint, we need

{Λ,Ψ} = Fψ − IR + IqiFpi − IpiFqi = 0, (A.2)

corresponding to the fourth degeneracy condition (3.34). Actually, we can show that (A.2)
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identically holds by using Jacobi identity repeatedly:

{Λ,Ψ} = {−I, PQ − F} − {π, F}

= {{G,H0 + πR+ PRQ}, PQ − F} − {{PR, H0}, PQ − F} − {π, F}

= −{{H0 + πR+ PRQ,PQ − F}, G} − {{PQ − F,G}, H0 + πR+ PRQ}

− {{PR, H0}, PQ − F} − {π, F}

= −{−G+ PR, G} − {{PR, F}, H0 + πR+ PRQ} − {{PR, H0}, PQ − F} − {π, F}

= {G,PR} − {{PR, F}, H0 + πR+ PRQ} − {{PR, H0}, PQ − F} − {π, F}

= {{PQ, H0}, PR} − {{F,H0}, PR} − {{F, π}R,PR} − {{F, PR}Q,PR}

− {{PR, F}, H0} − {{PR, F}, πR} − {{PR, F}, PRQ}

− {{PR, H0}, PQ}+ {{PR, H0}, F} − {π, F}

= −{F, π} − {{F, π}, PR}R− {{PR, F}, π}R− {π, F}

= 0. (A.3)

We thus have the quaternary constraint

0 ≈ Ω ≡ −{Λ, H} = −Lψ + IpiLqi + ẋIx, (A.4)

corresponding to (3.35).
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