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1 Introduction

In the last two decades the tremendous progress in understanding of the structure of S-

matrix (amplitudes) in gauge theories in various dimensions has been achieved. The most

prominent examples of such progress are various results for the amplitudes in N = 4 SYM

theory. See for review [1, 2]. These results were near to impossible to obtain without

plethora of new ideas and approaches to the perturbative computations in gauge theories.

These new ideas and approaches mostly exploit analytical properties of amplitudes rather

then rely on standard textbook Feynman diagram technique.

It is important to note that these analyticity based approaches appear to be effective

not only for computations of the amplitudes but for form factors and correlation functions

of local and non-local operators in N = 4 SYM and other gauge theories as well [3–12]. So

for many important results for the amplitudes in N = 4 SYM their analogs for the form

factors and correlation functions were found [3, 4, 6, 8–20]. First of all, new variables such

as helicity spinors and momentum twistors appear also useful for the description of the
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form factors and correlation functions [3, 4, 10]. At tree level various recurrence relations

(BCFW, CSW e t.c.) were constructed for the form factors of some local [3, 4, 6, 7, 21] as

well as non-local [22] operators and various closed solutions for such recurrence relations

were obtained [3, 4, 6, 7, 10–12, 19, 20, 23]. Ultimately for the form factors of operators

from stress tensor supermultiplet [8] as well as for Wilson line operators [19] the repre-

sentation in terms of integral over Grassmannian was discovered.1 Also in the case of the

Wilson line operators such representation was generalized to the form factors with arbi-

trary number of Wilson line operator insertions as well as correlation functions [20]. Dual

description for such objects in terms of twistor string theories was investigated and in this

context different CHY like representations for form factors were obtained [14, 15, 24]. In

addition, unconventional (compared to standard textbooks) geometrical interpretation for

the correlation functions of stress tensor supermultiplet operators was conjectured [25] sim-

ilar to the “Amplituhedron” [26–30] for the amplitudes. At loop level various other results

were obtained for the form factors at high orders of perturbation theory and/or number

of external particles [3, 13, 16, 31–41] and connection between form factors and integrable

systems [8, 42] was discussed. Interesting results [43, 44] also should be mentioned.

The ultimate goal for such investigations, similar to the amplitude case, would be the

evaluation, in some closed form, of all factors and correlation functions off all possible

operators in N = 4 SYM at arbitrary value of coupling constant.

In this note we are going to continue to work in this direction and consider the possi-

bility of constructing recurrence relations for the loop integrands of the Wilson line form

factors in N = 4 SYM theory.

Wilson lines are non-local gauge invariant operators and are interesting objects not

only from pure theoretical but also from phenomenological point of view. They appear, for

example, in the description of reggeon amplitudes in the framework of Lipatov’s effective

QCD lagrangian2 [22, 46–56], within the context of kT or high-energy factorization [57–60]

as well as in the study of processes at multi-Regge kinematics. The Wilson line operators

play the role of sources for the reggeized gluons, while their form factors are directly related

to amplitudes with reggeized gluons in such framework. The results in this field to a large

extent originate from long lasting efforts of St.Peterburg and Novosibirsk groups in the

investigation of asymptotic behavior of QFT scattering amplitudes at high energies (Regge

limit), which can be tracked back in time to early works [61] of Gribov. These results, in

particular, include resummation of leading high energy logarithms (αs ln s)
n to all orders

in strong coupling constant (LLA resummation) in QCD, which eventually resulted in the

discovery of Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [62–66] governing the LLA

high energy asymptotic behavior of QCD scattering amplitudes. Today BFKL equation is

known at next-to-leading-logarithmic-approximation (NLLA) [67–69]. The current article

can be also considered as an effort in this direction, namely towards NNLLA BFKL in

the context of N = 4 SYM. More accurately, the results of this article can be considered

as a solution to the problem of the reduction of individual Feynman diagrams to a set of

1So in this sense these objects at tree level are known for arbitrary number of external legs.
2We also want to mention recent work [45], where Wilson lines arise in the process of off-shell analytic

continuation of light-front quantized Yang-Mills action.
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master integrals in BFKL computations. As in general amplitudes multiloop calculations,

in BFKL calculations there are basically two steps in getting the final result. The first one

is the reduction of contributing individual Feynman diagrams to a finite set of so called

master integrals and the second one is the evaluation of these master integrals themselves.

In this paper we discuss only the first part of this problem, which is the easiest one.

This article is organized as follows. In section 2 we remind the reader the definition of

the Wilson line form factors and correlation functions as well as give the definition of so

called gluing operator Âi−1i considered in our previous papers [24]. This operator allows

one to convert the on-shell amplitudes into the Wilson line form factors and will be heavily

used throughout the paper. In section 3 we discuss how the BCFW recurrence relations for

the Wilson line form factors are constructed with the use of helicity spinor variables used

to describe kinematical data. After that we show how the mentioned BCFW recursion

can be derived from the BCFW recursion for on-shell amplitudes by means of application

of the gluing operators. Section 4 contains the derivation of the gluing operator in the

case when kinematical data are encoded by momentum twistor variables. In section 5

we remind the reader the necessary facts about BCFW recursion for integrands of the

on-shell amplitudes in momentum twistor space. After that we show how applying the

gluing operator one can formulate similar recurrence relation for the Wilson line form

factor integrands as well. We also show how one can directly transform the integrands of

on-shell amplitudes into the integrands of the Wilson line form factors on the examples

of local on-shell integrands. After that we perform simple but interesting self consistency

check of our considerations. Namely starting from our results for tree and one loop level

Wilson line form factors we correctly reproduce LO BFKL kernel. Appendix A contains the

derivation of the Grassmannian integral representation for the reggeon amplitudes starting

from corresponding representation for the on-shell amplitudes.

2 Form factors of Wilson lines and gluing operation

2.1 Form factors of Wilson lines operators

To describe the form factors of Wilson line operators we will use the definition in [22]:

Wc
p(k) =

∫
d4xeix·kTr

{
1

πg
tc P exp

[
ig√
2

∫ ∞

−∞
ds p ·Ab(x+ sp)tb

]}
, (2.1)

where tc is SU(Nc) generator,
3 k (k2 6= 0) is the off-shell reggeized gluon momentum and

p is its direction or polarization vector, such that p2 = 0 and p · k = 0. The polarization

vector and momentum of the reggeized gluon are related to each other through the so called

kT -decomposition of the latter:

kµ = xpµ + kµT , x ∈ [0, 1] . (2.2)

3The color generators are normalized as Tr(tatb) = δab.
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It is convenient to parametrize such decomposition by an auxiliary light-cone four-vector

qµ, so that

kµT (q) = kµ − x(q)pµ with x(q) =
q · k
q · p and q2 = 0. (2.3)

Noting that the transverse momentum kµT is orthogonal to both pµ and qµ vectors, we may

write down the latter in the basis of two “polarization” vectors4 [46]:

kµT (q) = −κ

2

〈p|γµ|q]
[pq]

− κ∗

2

〈q|γµ|p]
〈qp〉 with κ =

〈q|/k|p]
〈qp〉 , κ∗ =

〈p|/k|q]
[pq]

. (2.4)

It is easy to check, that k2 = −κκ∗ and both κ and κ∗ variables are independent of auxiliary

four-vector qµ [46]. Also, it turns out convenient to use spinor helicity decomposition of the

light-cone four-vector q as q = |ξ〉[ξ|. Wc
p(k) is non-local gauge invariant operator and plays

the role of source for the reggeized gluon [22, 70], so the form factors of such operators, or

off-shell gauge invariant scattering amplitudes in our terminology, are closely related to the

reggeon scattering amplitudes, and we will use words off-shell gauge invariant scattering

amplitudes, reggeon amplitudes and Wilson line form factors hereafter as synonyms.

Both usual and color ordered reggeon amplitudes with n reggeized and m usual on-

shell gluons could be then written in terms of the form factors with multiple Wilson line

insertions as [22]:

A∗
m+n

(
1±, . . . ,m±, g∗m+1, . . . , g

∗
n+m

)
= 〈{ki, ǫi, ci}mi=1|

n∏

j=1

Wcm+j
pm+j (km+j)|0〉 . (2.5)

Here asterisk denotes an off-shell gluon and p, k, c are its direction, momentum and color

index. Next 〈{ki, ǫi, ci}mi=1| =
⊗m

i=1〈ki, εi, ci| and 〈ki, εi, ci| denotes an on-shell gluon state

with momentum ki, polarization vector ε−i or ε+i and color index ci, pj is the direction

of the j’th (j = 1, . . . , n) off-shell gluon and kj is its off-shell momentum. To simplify

things, here we are dealing with color ordered amplitudes only. The usual amplitudes are

then obtained using their color decomposition, see [19, 71]. For example, the color ordered

amplitude with one reggeon and two on-shell gluons with opposite helicity at tree level is

given by the following expression:

A∗
2+1(1

−, 2+, g∗3) =
δ4(λ1λ̃1 + λ2λ̃2 + k3)

κ∗3

〈p3 1〉4
〈p3 1〉〈1 2〉〈2 p3〉

. (2.6)

When dealing with N = 4 SYM we may also consider other on-shell states from N = 4

supermultiplet. The easiest way to do it is to consider color ordered superamplitudes

defined on N = 4 on-shell momentum superspace [72, 73]:

A∗
m+n

(
Ω1, . . . ,Ωm, g∗m+1, . . . , g

∗
n+m

)
= 〈Ω1 . . .Ωm|

n∏

j=1

Wpm+j
(km+j)|0〉, (2.7)

4Here we used the helicity spinor [1] decomposition of light-like four-vectors p and q. We will also

sometime abuse spinor helicity formalism notations and write 〈q|γµ|p]/2 ≡ |p]〈q|, λq ≡ 〈q| and λ̃q ≡ [p|.
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where 〈Ω1Ω2 . . .Ωm| ≡ ⊗m
i=1〈0|Ωi and Ωi (i = 1, . . . ,m) denotes an N = 4 on-shell chiral

superfield [73]:

Ω = g+ + η̃Aψ
A +

1

2!
η̃Aη̃Bφ

AB +
1

3!
η̃Aη̃B η̃Cǫ

ABCDψ̄D +
1

4!
η̃Aη̃B η̃C η̃Dǫ

ABCDg−. (2.8)

Here, g+, g− are creation/annihilation operators of gluons with +1 and −1 helicities, ψA,

ψ̄A stand for creation/annihilation operators of four Weyl spinors with negative helicity

−1/2 and four Weyl spinors with positive helicity correspondingly, while φAB denote cre-

ation/annihilation operators for six scalars (anti-symmetric in the SU(4)R R-symmetry

indices AB). The A∗
m+n

(
Ω1, . . . , g

∗
n+m

)
superamplitude is then the function of the follow-

ing kinematic5 and Grassmann variables

A∗
k,m+n

(
Ω1, . . . , g

∗
m+n

)
= A∗

k,m+n

(
{λi, λ̃i, η̃i}mi=1; {ki, λp,i, λ̃p,i}m+n

i=m+1

)
. (2.9)

and encodes in addition to the amplitudes with gluons also amplitudes with other on-shell

states similar to the case of usual on-shell superamplitudes [1]. Here, additional index6 k

in A∗
k,m+n denotes the total degree of A∗

k,m+n in Grassmann variables ηi, which is given by

4k−4n. For example the supersymmetrised (in on-shell states) version of (2.6) is given by:

A∗
2,2+1(Ω1,Ω2, g

∗
3) =

4∏

A=1

∂

∂η̃Ap3

[
δ4(λ1λ̃1 + λ2λ̃2 + k3)

κ∗3

δ8(λp3 η̃p3 + λ1η̃1 + λ2η̃2)

〈p3 1〉〈1 2〉〈2 p3〉

]

=
δ4(λ1λ̃1 + λ2λ̃2 + k3)

κ∗3

δ4 (η̃1〈p3 1〉+ η̃2〈p3 2〉)
〈p3 1〉〈1 2〉〈2 p3〉

. (2.10)

Here we have k = 2, m = 2 and n = 1. We also for simplicity will often drop ∂4/∂η̃4pi
projectors in further considerations.

2.2 Gluing operator: transforming on-shell amplitudes into Wilson line form

factors

In [24, 74] it was conjectured that one can compute the form factors of Wilson line operators

by means of the four dimensional ambitwistor string theory [75]. In an addition to the

standard vertex operators V and Ṽ , which describe Ωi on-shell states in N = 4 SYM field

theory, one can introduce, so called, generalised vertex operators Vgen. [24]:

Vgen.
j ∼

∫
A∗

2,2+1(Ωj ,Ωj+1, g
∗)

∏

i=j,j+1

Vi
d2λid

2λ̃i

Vol[GL(1)]
d4η̃i. (2.11)

Then it was conjectured that the following relation holds at least at tree level:

A∗
k,m+n

(
Ω1, . . . , g

∗
m+n

)
= 〈V1, . . .VmVgen.

m+1, . . . ,Vgen.
m+n〉worldsheet fields. (2.12)

Here 〈. . .〉 means average with respect to string worldsheet fields. This conjecture was

successfully verified at the level of Grassmannian integral representations for the whole

5We used helicity spinor decomposition of on-shell particles momenta.
6We hope there will be no confusion with momentum labels.
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tree level S-matrix [24, 74] and on several particular examples [24] with fixed number of

external states. Effectively the evaluation of the string theory correlation function in (2.12)

can be reduced to the action of some integral operator Â on the on-shell amplitudes. In

the case of one Wilson line operator insertion the relation between on-shell amplitude and

the Wilson line form factor looks like:

A∗
n+1 = Ân+1,n+2[An+2] , (2.13)

where An+2 is the usual on-shell superamplitude with n + 2 on-shell external states and

the gluing integral operator Ân+1,n+2 acts on the kinematical variables associated with the

states Ωn+1 and Ωn+2.

The action of Ân+1,n+2 on any function f of variables {λi, λ̃i, η̃i}n+2
i=1 is formally given by

Ân+1,n+2[f ] ≡
∫ n+2∏

i=n+1

d2λid
2λ̃id

4η̃i
Vol[GL(1)]

A∗
2,2+1(g

∗,Ωn+1,Ωn+2)× f
(
{λi, λ̃i, η̃i}n+2

i=1

)
. (2.14)

This expression can be simplified. Performing integration over λ̃n+1, λ̃n+2, η̃n+1 and η̃n+2

variables [24] in (2.14) we get

Ân+1,n+2[f ] =
〈pn+1ξn+1〉

κ∗n+1

∫
dβ1
β1

∧ dβ2
β2

1

β2
1β2

f
(
{λi, λ̃i, η̃i}n+2

i=1

) ∣∣
∗
, (2.15)

where
∣∣
∗
denotes substitutions {λi, λ̃i, ηi}n+2

i=n+1 7→ {λi(β), λ̃i(β), η̃i(β)}n+2
i=n+1 with

λn+1(β)=λn+1+β2λn+2 , λ̃n+1(β)=β1λ̃n+1+
(1+β1)

β2
λ̃n+2 , η̃n+1(β)=−β1η̃n+1 ,

λn+2(β)=λn+2+
(1+β1)

β1β2
λn+1 , λ̃n+2(β)=−β1λ̃n+2−β1β2λ̃n+1 , η̃n+2(β)=β1β2η̃n+1 ,

(2.16)

and

λn+1 = λp, λ̃n+1 =
〈ξ|k
〈ξp〉 , η̃n = η̃p; λn+2 = λξ, λ̃n+2 =

〈p|k
〈ξp〉 , η̃n+2 = 0. (2.17)

All other variables left unshifted.

The integration with respect to β1,2 will be understood as a residue form [76] and will

be evaluated by means of the composite residue in points resβ2=0 ◦ resβ1=−1. For example,

one can obtain [24] the Wilson line form factor A∗
3,3+1(1

−, 2+, 3−, g∗4) from 5 point NMHV

on-shell amplitude A∗
3,5(1

−, 2+, 3−, 4−, 5+):

A∗
3,3+1(1

−, 2+, 3−, g∗4) = Â45[A
∗
3,5(1

−, 2+, 3−, 4−, 5+)], (2.18)

where [19, 46]

A∗
3,3+1(1

−, 2+, 3−, g∗4) = δ4

(
3∑

i=1

λiλ̃i + k4

)
1

κ4

[2p4]
4

[12][23][3p4][p41]
. (2.19)
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Several Wilson line operator insertions correspond to the consecutive action of several

gluing operators. For example A∗
3,0+3(g

∗
1, g

∗
2, g

∗
3) can be obtained [24] from 6 point NMHV

amplitude A3,6(1
−2+3−4+5−6+):

A∗
3,0+3(g

∗
1, g

∗
2, g

∗
3) = (Â12 ◦ Â34 ◦ Â56)[A3,6(1

−2+3−4+5−6+)], (2.20)

where A∗
3,0+3 is given by (P′ is the permutation operator which shifts all spinor and mo-

menta labels by +1 mod 3.):

A∗
3,0+3(g

∗
1, g

∗
2, g

∗
3) = δ4(k1 + k2 + k3)

(
1 + P′ + P′2

)
f,

f =
〈p1p2〉3[p2p3]3

κ3κ∗1〈p2|k1|p3]〈p1|k3|p2]〈p2|k1|p2]
. (2.21)

There is another way of representing the action of gluing operator. One can note

that (2.14) is in fact equivalent to the action of a pair of consecutive BCFW bridge opera-

tors, in terminology of [77], on the f function weighted with an inverse soft factor. Namely,

if one [77] defines [i, j〉 BCFW shift operator as Br(i, j) (see figure 1) which acts on the

function f of the arguments {λi, λ̃i, η̃i}n+2
i=1 , 1 ≤ i, j ≤ n+ 2 according to:

Br(i, i+ 1)
[
f
(
. . . , λi, λ̃iη̃i, . . . , λj , λ̃j , η̃j , . . .

)]
=

∫
dα

α
f
(
. . . , λi,

ˆ̃
λi, ˆ̃ηi, . . . , λ̂j , λ̃j , η̃j , . . .

)

=

∫
dα

α
f
(
. . . , λi, λ̃i − αλ̃j , η̃i − αη̃j , . . . , λj + αλi, λ̃j , η̃j , . . .

)
, (2.22)

then one can see that the following relation holds:

Ân+1,n+2[ f ] = Br(n+ 1, n+ 2) ◦Br(n+ 2, n+ 1)
[
S−1(1, n+ 2, n+ 1) f

]
, (2.23)

where

S(1, n+ 2, n+ 1) =
κ∗n+1〈1n+ 1〉

〈1n+ 2〉〈n+ 2n+ 1〉 , (2.24)

and function the f depends on {λi, λ̃i, η̃i}n+2
i=1 arguments.

Note also that since Br(i, j) operators act naturally on on-shell diagrams [77] one can

easily consider the action of Ân+1,n+2 operator on the top-cell diagram corresponding to

the Ak,n+2 tree level on-shell amplitude. The top-cell for Ak,n+2 in its turn can be repre-

sented as the integral over Grassmannian Lk
n+2 [77] (here let’s ignore integration contour

for a moment):

Lk
n+2 =

∫
dk×n+2C

Vol[GL(k)]

δk×2(C · λ̃)δk×4(C · η̃)δ(n+2−k)×2(C⊥ · λ)
(1 · · · k)(2 · · · k + 1) · · · (n+ 2 · · · k − 1)

. (2.25)

Then one can see that the following relation also holds:

Ân+1,n+2

[
Lk
n+2

]
= Ωk

n+1 , (2.26)

– 7 –
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i i + 1

i + 2i−1

Figure 1. The action of Br(i, i + 1) operator on the on-shell diagram. White blob is MHV3

amplitude, black one — MHV3.

where Ωk
n+2 is the Grassmannian integral representation for the off-shell amplitude A∗

k,n+1,

with the Wilson line insertion positioned after the on-shell state with number n [19], if the

appropriate integration contour is chosen for Ωk
n+2:

7

Ωk
n+2 =

∫
dk×(n+2)C ′

Vol[GL(k)]
Reg.

δk×2 (C ′ · λ̃) δk×4 (C ′ · η̃) δ(n+2−k)×2
(
C ′⊥ · λ

)

(1 · · · k) · · · (n+ 1 · · · k − 2)(n+ 2 1 · · · k − 1)
, (2.27)

with

Reg. =
〈ξn+1pn+1〉

κ∗n+1

(n+ 2 1 · · · k − 1)

(n+ 1 1 · · · k − 1)
, (2.28)

and

λi = λi, i = 1, . . . n, λn+1 = λpn+1
, λn+2 = ξn+1

λ̃i = λ̃i, i = 1, . . . n, λ̃n+1 =
〈ξn+1|kn+1

〈ξn+1 pn+1〉
, λ̃n+2 = − 〈pn+1|kn+1

〈ξn+1 pn+1〉
,

η̃i = η̃i, i = 1, . . . n, η̃n+1 = η̃pn+1
, η̃n+2 = 0. (2.29)

The action of several Âi,i+1 operators can be considered among the same lines and the

result reproduces Grassmannian representation of the form factors with multiple Wilson

line operator insertion obtained in [20].

At the end of this section let us make the following comment. Both on-shell and off-

shell amplitudes (Wilson line form factors) can be represented by means of the BCFW

recursion relations. But due to different analytical properties (Wilson line form factors

will have additional type of poles corresponding to the Wilson line propagators [46]) the

recursion for on-shell and off-shell amplitudes looks rather different. However, from the

examples similar to ones considered above (namely (2.18) and (2.18)) one can note that

7One can think of this as alternative derivation of the results of appendix A of [24]. See also appendix

of the current article for notation explanation.
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not only gluing operator maps on-shell amplitudes to off-shell ones but one can choose

representation for the on-shell amplitude in terms of the BCFW recursion in such a way

that each BCFW term from on-shell amplitude will be mapped one-to-one to the terms from

the BCFW recursion for the off-shell amplitudes. So a natural question to ask is whether it

is possible to derive the BCFW recursion for the Wilson line form factors from the BCFW

recursion for the on-shell amplitudes. We will address this question in the next section.

3 BCFW recursion for Wilson line form factors

3.1 Off-shell BCFW from analyticity

First let us remind the reader the main results of [46] and comment on supersymmetric

extension of the off-shell BCFW recursion. The off-shell BCFW recursion for the reggeon

amplitudes with an arbitrary number of off-shell reggeized gluons was worked out in [46].

Similar to the BCFW recursion [78, 79] for the on-shell amplitudes it is based on the

observation, that a contour integral of an analytical function f vanishing at infinity equals

to zero, that is

∮
dz

2πi

f(z)

z
= 0 (3.1)

and the integration contour expands to infinity. Taking the above integral by residues

we get

f(0) = −
∑

i

resif(z)

zi
, (3.2)

where the sum is over all poles of f and resif(z) is a residue of f at pole zi. Using this,

one can relate the off-shell amplitude to the sum over contributions of its factorisation

channels, which in turn can be represented as the off-shell amplitudes with smaller number

of external states. In the original on-shell BCFW recursion the z-dependence of scattering

amplitude is obtained by a z-dependent shift of particle’s momenta. Similarly, the off-shell

gluon BCFW recursion of [46] is formulated using a shift of momenta for two external

gluons i and j with a vector

eµ =
1

2
〈pi|γµ|pj ], pi · e = pj · e = e · e = 0, (3.3)

so that

k̂µi (z) ≡ kµi + zeµ = xi(pj)p
µ
i − κi − [pipj ]z

2

〈pi|γµ|pj ]
[pipj ]

− κ∗i
2

〈pj |γµ|pi]
〈pjpi〉

, (3.4)

k̂µj (z) ≡ kµj − zeµ = xj(pi)p
µ
j − κj

2

〈pj |γµ|pi]
[pjpi]

−
κ∗j + 〈pipj〉z

2

〈pi|γµ|pj ]
〈pipj〉

. (3.5)

This shift does not violate momentum conservation and we still have pi · k̂i(z) = 0 and

pj · k̂j(z) = 0. We would like to note, that the overall effect of shifting momenta is that the

values of κi and κ∗j shift, while κ∗i and κj stay unshifted. In the on-shell limit the above
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shift corresponds to the usual [i, j〉 BCFW shift. Note also, that we could have chosen

another shift vector eµ = 1
2〈pj |γµ|pi] and shift κ∗i and κj instead. The off-shell amplitudes

we consider in this paper do also have a correct large z (z → ∞) behavior [46], so that we

should not worry about boundary terms at infinity.

The sum over the poles (3.2) for z-dependent off-shell gluon scattering amplitude is

given by the following graphical representation8 [46]:

1 n

2 n− 1 =
n−2∑

i=2

∑

h

Ai,h +
n−1∑

i=2

Bi + C+ D, (3.6)

where

Ai,h =

1̂

i

h 1

k21,i

n̂

i+ 1

−h
Bi =

1̂

i− 1 i

1

2pi · ki,n
n̂

i+ 1i

C =
1

κ1

1̂ n̂

2 n− 1 D =
1

κ∗n

1̂ n̂

2 n− 1 (3.7)

kµi,j ≡ kµi + kµi+1 + · · · + kµj and h is an internal on-shell gluon helicity or a summation

index over all on-shell states in the Nair on-shell supermultiplet in the supersymmetric

case discussed later. Here and below we use the convention that double lines may stand

both for off-shell and on-shell gluons. The coil crossed with a line correspond to the off-shell

gluons (Wilson line operator insertion). The thick solid lines stand for on-shell particles.

The off-shell coil lines can be bent apart to form a single eikonal quark lines [22, 46].

According to this kµj in kµi,j can be either off-shell or on-shell depending on the context.

Let’s now discuss each type of the terms encountered in (3.6) in more details. The

Ai,h terms are usual on-shell BCFW terms, which correspond to the z-poles at which

denominator of internal gluon (and also fermion or scalar) propagator k̂21,i(z) vanishes:

k̂21,i(z) = 0. (3.8)

This is standard BCFW on-shell condition for physical states of N = 4 SYM super-

multiplet.

The Bi term is a new one and is unique to the BCFW recursion for the off-shell

amplitudes. It originates from the situation when the denominators of eikonal propagators

coming from Wilson line expansion vanish, that is

pi · k̂i,n(z) = 0 (3.9)

8We are considering the color ordered scattering amplitudes and without loss of generality may use shift

of two adjacent legs 1 and n.
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and pµi is the direction of the Wilson line associated with the off-shell gluon. It is important

to understand that condition pi · k̂i,n(z) = 0 fixes only the direction of momentum flowing

through the Wilson line k̂i,n. The off-shell momenta k̂L = ki−1 + . . . + k̂1 and k̂R =

ki + . . . + k̂n, which belongs to the off-shell amplitudes in eq. (3.7), term Bi, are different

(k̂L = −k̂R), but satisfy the same condition pi · k̂L/R = 0. We also want to stress that

this term is present only if i labels an off-shell external gluon. In addition, let us note

that κ∗i factors in the pair of off-shell amplitudes, which contribute to this term, are given

explicitly by the following expressions:

κ∗i,L =
〈pi|k̂1 + . . .+ ki−1|qi]

[piqi]
, κ∗i,R =

〈pi|k̂n + . . .+ ki+1|qi]
[piqi]

, (3.10)

where κ∗i,L and κ∗i,R belong to the off-shell amplitudes positioned to the left and to the right

in eq. (3.7) for the term Bi.

The C term is only present if the gluon number 1 is off-shell. It is also unique to the

BCFW recursion for the off-shell amplitudes. It appears due to vanishing of the external

momentum square

k̂21(z) = 0. (3.11)

Similarly, the D term is due to vanishing of the external momentum square k̂2n(z). It turns

out that both these contributions could be calculated in terms of the same BCFW term

with the off-shell gluons 1 or n exchanged for the on-shell ones. The helicity of the on-shell

gluons depends on the type of the term (C or D) and the shift vector eµ (12〈pi|γµ|pj ] or
1
2〈pj |γµ|pi]) used. We refer the reader to [46] for further details and examples.

The use of shifts involving only on-shell legs also allows one to perform the supersym-

metrization of the off-shell BCFW recursion introduced in [46]. Indeed, it is easy to see,

that the supersymmetric shifts of momenta and corresponding Grassmann variables are

given by the on-shell BCFW [i, j〉 super-shifts:9

|̂i] = |1] + z|j], |ĵ〉 = |j〉 − z|i〉, η̂iA = ηiA + zηjA. (3.12)

No other spinors or Grassmann variables shift.

3.2 Off-shell BCFW from gluing operation

The aim of this section is to derive the off-shell recursion relations described above from

the BCFW recursion for the on-shell amplitudes by means of the gluing operator. Before

proceeding with general derivation let us consider a simple example first: we will take

the BCFW recursion for the on-shell 6-point NMHV amplitude A3,6(1
−, 2+, 3−, 4+, 5−, 6+)

and transform it into the three point off-shell amplitude A∗
0+3(g

∗
1, g

∗
2, g

∗
3) considered in [46].

This off-shell amplitude in its turn also can be obtained from the off-shell BCFW recursion,

when external momenta 1 and 3 are shifted. Contributions corresponding to this shift are

given in figure 2, and the sum of these three terms is given by (2.21).

9These shifts respect both momentum and supermomentum conservation.
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Figure 2. The off-shell BCFW contributions representing A∗
0+3(g

∗
1 , g

∗
2 , g

∗
3) for shift of the k1 and k3

external momenta. The first and the third terms labeled A) and C) are type C and D contributions,

while the second, labeled B), term is type B contribution of the off-shell BCFW recursion (3.6).

Figure 3. The action of the gluing operators Âii+1 (represented by wavy line) on [1−, 6+〉 BCFW
representation of A3,6(1

−, 2+, 3−, 4+, 5−, 6+) amplitude.

So let’s consider A3,6(1
−, 2+, 3−, 4+, 5−, 6+) amplitude represented via the standard

BCFW shift [1−, 6+〉. The amplitude is then given, once again, by three terms (see figure 3)

A3,6(1
−, 2+, 3−, 4+, 5−, 6+) = A+B + C, (3.13)

where

A = A2,5(3
−, 4+, 5−, 6̂+, P̂+)

1

q21,2
A2,3(1̂

−, 2+,−P̂−), (3.14)

B = A2,4(4
+, 5−, 6̂+, P̂−)

1

q21,3
A2,4(1̂

−, 2+, 3−,−P̂+), (3.15)

C = A1,3(5
−, 6̂+, P̂+)

1

q25,6
A3,5(1̂

−, 2+, 3−, 4+,−P̂−). (3.16)

Here qa,b =
∑b

i=a qi and qi denote on-shell particle momenta.

Now we are going to consider the action of our gluing operators on A3,6 on-shell

amplitude, which will convert all pairs of i−, (i + 1)+ gluons into Wilson line operator

insertions (reggeized gluons). As we have discussed in previous sections to do this we have

to take into account the action of the following combination of the gluing operations on A3,6:

A0+3(g
∗
1, g

∗
2, g

∗
3) = Â12 ◦ Â34 ◦ Â56[A3,6(1

−, 2+, 3−, 4+, 5−, 6+)]. (3.17)

Let’s consider each contribution in details.
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We will start with A contribution first:

Â12 ◦ Â34 ◦ Â56[A] = Â34 ◦ Â56[A2,5(6̂
+, 5−, 4+, 3−, P̂−)]Â12

[
1

p21,2
A2,3(1̂

−, 2+,−P̂+)

]
.

(3.18)

It turns out, that both the value of the BCFW shift parameter z as well as shifted spinors

are regular after we made
∣∣
∗
substitutions (see (2.15) and (2.2)) corresponding to gluing

operations and took limits β2 → 0, β1 → −1. Let us introduce the following notation for

the spinors entering kT -decomposition of momenta of three reggeized gluons, each spinor

will be labeled by corresponding gluing operator:

Â12 7→ |p1〉, |ξ1〉; Â34 7→ |p2〉, |ξ2〉; Â56 7→ |p3〉, |ξ3〉. (3.19)

The original value of the on-shell z parameter (z = [21]
[62]) transformed after the action of

Â12 into

z =
[21]

[62]
7→ κ1〈ξ3 p3〉

κ∗3 [p3 p1]
(3.20)

and helicity spinor decomposition of momentum P̂ is given now by

|P̂ 〉 = x(p3)|p1〉 −
κ∗1

〈p3 p1〉
|p3〉 , |P̂ ] = |p1] , (3.21)

where we used kT -decomposition of the first reggeized gluon g∗1 momentum k1:

k1 = x(p3)p1 −
κ1

[p1 p3]
|p1〉[p3| −

κ∗1
〈p3 p1〉

|p3〉[p1| . (3.22)

Then, it is easy to see that

Â34 ◦ Â56[A2,5(3
−, 4+, 5−, 6̂+, P̂+)] = A∗

1+2(g
∗
2, ĝ

∗
3, P̂

+), (3.23)

where ĝ∗3 denotes reggeized gluon g∗3 with momentum shifted as

k̂3 = k3 +
κ1

[p1 p3]
|p1〉[p3|. (3.24)

For the term

Â12

[
1

q21,2
A2,3(1̂

−, 2+,−P̂−)

]
(3.25)

we have

Â12

[
1

q21,2
A2,3(1̂

−, 2+,−P̂−)

]
= resβ1=−1 ◦ resβ2=0[ωA], (3.26)
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where

ωA = −〈p1 ξ1〉
κ∗1

(
1

k21

〈1P̂ 〉3
〈12〉〈2P̂ 〉

)∣∣∣
∗

1

β2
1β2

dβ1 ∧ dβ2
β1β2

=
1

κ1

1

(1 + β1)

dβ1 ∧ dβ2
β1β2

+ less singular terms. (3.27)

Taking residues and combining everything together we finally get for A term

Â12 ◦ Â34 ◦ Â56[A] =
1

κ1
A∗

1+2(ĝ
∗
3, g

∗
2, P̂

+), (3.28)

which is precisely the C term from the off-shell BCFW recursion [46] for A∗
0+3(g

∗
1, g

∗
2, g

∗
3)

reggeon amplitude (see (3.6)). The C term can be analysed similarly. In this case we get

Â12 ◦ Â34 ◦ Â56[C] =
1

κ3
A∗

1+2(ĝ
∗
1, g

∗
2, P̂

−) , (3.29)

where helicity decomposition of momentum P̂ is given by

|P̂ ] =

(
x(p1)|p3]−

κ1
[p3 p1]

|p1]
)
, |P̂ 〉 = |p3〉. (3.30)

This is precisely the D term from the off-shell BCFW recursion [46] for A∗
0+3(g

∗
1, g

∗
2, g

∗
3)

amplitude.

Now let us turn to B contribution to A3,6 (see figure 2). The value of z parameter in

this case transforms under the action of the gluing operator as

z =
q21,3

〈1|q2 + q3|6]
7→ 〈p2|k1 + k2|p2]

〈p1 p2〉 [p2 p3]
. (3.31)

Here it is convenient to consider first the action of Â34. In this case the value of P̂

momentum is given by

P̂ = q̂1 + q2 +
(1 + β1)

β2
κ∗2

|p2〉[p2|
〈ξ2 p2〉

+ less singular terms, (3.32)

before residues evaluation. So for the whole B term after Â34 action we have

Â34[B] = Â34

[
A2,4(4

+, 5−, 6̂+, P̂−)
1

q21,3
A2,4(1̂

−, 2+, 3−,−P̂+)

]

= resβ1=−1 ◦ resβ2=0[ωB] (3.33)

where

ωB =
〈p2 ξ2〉
κ∗2

(
〈5 P̂ 〉4

〈4 5〉〈5 6̂〉〈6̂ P̂ 〉〈P̂ 4〉
1

q21,3

〈1̂ 3〉4
〈1̂ 2〉〈2 3〉〈3 P̂ 〉〈P̂ 1〉

)∣∣∣
∗

1

β2
1β2

dβ1 ∧ dβ2
β1β2

. (3.34)

Evaluating corresponding residues we get

Â34[B] =
1

κ̂∗2,L

〈5p2〉4
〈6̂5〉〈5p2〉〈p26̂〉

× 1

〈p2|k1 + k2|p2]
× 1

κ̂∗2,R

〈1p2〉4
〈12〉〈2p2〉〈p21〉

, (3.35)
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where

κ̂∗2,L =
〈p2|q5 + q̂6|ξ]

[p2ξ]
, κ̂∗2,R =

〈p2|q2 + q̂1|ξ]
[p2ξ]

. (3.36)

The action of Â12 ◦ Â56 can be evaluated in similar fashion and finally we arrive at

Â12 ◦ Â56 ◦ Â34[B] = A∗
0+2(g

∗
2, ĝ

∗
3)

1

〈p2|k1|p2]
A∗

0+2(ĝ
∗
1, g

∗
2), (3.37)

which is exactly B term in the off-shell BCFW recursion [46] for A∗
0+3(g

∗
1, g

∗
2, g

∗
3) amplitude.

So we see the pattern here: the contributions C and D from the off-shell BCFW

recursion for A∗
0+3(g

∗
1, g

∗
2, g

∗
3) amplitude are reproduced from the on-shell BCFW recursion

for A3,6(1
−, 2+, 3−, 4+, 5−, 6+) when gluing operator is acting on three point MHV3 or

MHV3 sub-amplitudes (with degenerate kinematics), while B contribution is reproduced

by the action of gluing operator on both sides of the BCFW bridge, see figure 3.

These observations can be immediately generalized to the situation with arbitrary

on-shell amplitude. One can obtain the off-shell BCFW recursion for A∗
0+n(g

∗
1, . . . , g

∗
n)

with the shift of the off-shell momenta k1 and kn from the BCFW recursion for

An,2n(1
−, 2+, . . . , (2n)+) on-shell amplitude represented by [1−, (2n)+〉 shift. Indeed, the

terms C and D are reproduced when gluing operator acts on MHV3 or MHV3 on-shell

amplitudes. Repeating the steps identical to the previous discussion (see (3.28)) we get:

Â2n−1 2n ◦ . . . ◦ Â12

[
An−1,2n−1

(
3−, . . . , (̂2n)

+
, P̂+

) 1

q21,2
A2,3(1̂

−, 2+,−P̂−)

]

=
1

κ1
A∗

1+(n−1)(g
∗
2, . . . , ĝ

∗
n, P̂

+), (3.38)

where

|P̂ 〉 =
(
x(pn)|p1〉 −

κ∗1
〈pnp1〉

|pn〉
)
, |P̂ ] = |p1]. (3.39)

Similarly for MHV3 we have:

Â2n−1 2n ◦ . . . ◦ Â12

[
A1,3

(
(2n− 1)−, (̂2n)

+
,−P̂+

) 1

q22n−1,2n

An,2n−1(1̂
−, . . . , P̂−)

]

=
1

κ∗n
A∗

1+(n−1)(ĝ
∗
1, . . . , g

∗
n−1, P̂

−), (3.40)

with

|P̂ ] =

(
x(p1)|pn]−

κ1
[pnp1]

|p1]
)
, |P̂ 〉 = |pn〉. (3.41)

When gluing operator Âii+1 acts on legs separated by the BCFW bridge the B type

contribution is reproduced. In this case the on-shell BCFW shift z is replaced by

z =
〈pi|k1 + . . .+ ki|pi]

〈p1 pi〉[pi pn]
, (3.42)
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Figure 4. The action of the gluing operators Âii+1 on the individual BCFW terms of the on-

shell [1−, n+〉 recurcion in general case. A) diagrams will give A type terms of the off-shell BCFW

recurcion, B) type diagrams will give B type terms, while C) diagrams will give C and D type terms

of the off-shell BCFW recurcion.

and the factor 1/q21,i is replaced by

1

〈pi|k1 + . . .+ ki|pi]
(3.43)

times βi factors. The explicit proof that such contribution in general case gives us the

B term can be done by induction and can be sketched as follows: one can decompose

each Aki,ni
on-shell amplitude in individual BCFW terms via on-shell diagram representa-

tion [77] into combination of MHV3 and MHV3 vertexes (on-shell diagrams). The action

of the gluing operator on such on-shell diagrams was considered in the previous section.

After that one have to reassemble A∗
2,2+1, MHV3 and MHV3 amplitudes together. As the

result one can obtain that:

. . . ◦ Âii+1 ◦ . . .
[
Ak1,n1

(
(i+ 1)+, . . . , (̂2n)

+
, P̂−

) 1

q21,i
Ak2,n2

(1̂−, . . . , i−,−P̂+)

]

= A∗
0+i(ĝ

∗
1, . . . , g

∗
i )

1

〈pi|k1 + . . .+ ki|pi]
A∗

0+(n−i)(g
∗
i , . . . , ĝ

∗
n). (3.44)

Also, presented above relation is implicitly guaranteed by the Grassmannian integral rep-

resentation of the on-shell and off-shell amplitudes. It was shown [24, 74] that the latter

could be easily related with each other by means of the same gluing operations (see (2.26)

and appendix A) which imply similar relation for the individual residues of the top-forms.

We see that the gluing operator transforms ordinary 1/P 2 propagator type poles of the

on-shell amplitudes into eikonal ones, when external legs, on which the gluing operator

acts, are separated by the BCFW bridge (see figure 4 B). The value of the BCFW shift

parameter z is adjusted accordingly to match the off-shell BCFW recursion term B.

All other contributions (see figure 4) reproduce A type terms from [46], which also

can be shown by induction. Indeed it is easy to see that the pole factor remains of the

same 1/P 2 type in this case, which corresponds to the propogators of the on-shell states

of N = 4 SYM, and the value of z is adjusted to match A term of the off-shell BCFW.

The fact that one can transform each individual term in the BCFW recursion for the

on-shell amplitudes into terms of the BCFW recursion for the Wilson line form factors using

gluing operators Âi,i+1 in fact is not (very)surprising and in some sense trivial. Indeed, as

was mentioned before, if the relation (2.26) holds on the level of the Grassmannian integrals
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(top-cell diagrams) then it likely will hold for the individual residues (boundaries of top-

cells) as well.10 And it is also natural, that in the case of Ωk
n+2, and its generalisations to

multiple Wilson line insertions, the residues of Ωk
n+2 can be identified with the individual

BCFW terms of recursion for the off-shell amplitudes in full analogy with the on-shell case.

However observation that one can transform the BCFW recursion for the on-shell

amplitudes into the BCFW recursion for the Wilson line form factors at tree level opens

up exiting possibility. It is known that one can formulate the BCFW recursion not only

for the tree level on-shell amplitudes in N = 4 SYM theory but for the loop integrands as

well [77, 80]. If we can transform on-shell BCFW recursion into off-shell one at tree level,

then what about recursion for the loop integrands ?

The next sections will be dedicated to discussion of this question. Namely we will

investigate what will happen if we apply the analog of the gluing operators to the BCFW

recursion for N = 4 SYM loop integrands of the on-shell amplitudes. Our ultimate goal

is to present arguments that using the gluing operator one can transform the integrands

of the on-shell amplitudes into the integrands of the Wilson line form factors at any given

number of loops and external states.

4 Gluing operation in momentum twistor space

The integrands of the on-shell amplitudes in the planar limit are naturally formulated using

momentum super twistors variables, in particular this is the case for theis BCFW recursion

representation [80]. So, to proceed with our main goal we need to fprmulate our gluing

operation in momentum twistor variables as well.

To do this, let us recall how the momentum twistor variables are introduced. We start

with so called zone super variables or dual super coordinates yi and ϑi which are related

with on-shell momenta and its supersymmetric counterpart as [1, 81]:

qi = λiλ̃i = yi+1 − yi, λiηi = ϑi+1 − ϑi. (4.1)

The introduction of dual super coordinates helps to trivialize the conservation of super

momentum [1, 81] and figure 5 shows the momentum conservation geometrically for the

case of n = 4 on-shell and one off-shell momenta as an example. There we have a contour

in the dual space formed by on-shell particles momenta together with two auxiliary on-shell

momenta 5 and 6 used to describe off-shell momentum.

The momentum super twistor variables Zi = (λi, µi, ηi) [81] are then defined through

the following incidence relations

µi = λiyi = λiyi+1, η̃i = λiϑi = λiϑi+1. (4.2)

10This can be explicitly seen for some particular case considering integration contours for tree level

amplitudes L3
n+2 and Ω3

n+2, and probably can be easily generalised for the case of arbitrary number of

Wilson line insertions and arbitrary value of k [24]. Here however we avoided considerations of integration

contours completely.
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Figure 5. Momenta and dual coordinates in the case of the amplitude with one off-shell and n = 4

on-shell legs. In contrast to the case of the on-shell amplitudes, the n on-shell momenta do not

add up to zero but to the off-shell gluon momentum k: q1 + . . .+ q4 = k, which in its turn can be

decomposed as a pair of auxiliary on-shell momenta k = q5 + q6.

The bosonic part of Zi will be labeled as Zi = (λi, µi). Inverting presented above relations

we get

λ̃ = µ ·Q , η̃ = η ·Q , Qij =
δi−1 j〈i i+ 1〉+ δij〈i+ 1 i− 1〉+ δi+1 j〈i− 1 i〉

〈i− 1 i〉〈i i+ 1〉 . (4.3)

Here λ̃ ≡ (λ̃1 · · · λ̃n), η̃ ≡ (η̃1 · · · η̃n) and it is assumed that
∑n

i=1 qi = 0. The transition

from momentum twistors to helicity spinors could be performed with a formula like:11

µ = Q̃ · λ̃ , η = Q̃ · η̃ , Q̃ij =

{
〈j i〉 if 1 < j < i

0 otherwise
(4.4)

Note, that momentum super twistors trivialize both on-shell condition q2i = 0 and men-

tioned above conservation of super momentum.

To construct the gluing operator acting in momentum twistor space let us recall that

the initial gluing operator in helicity spinor variables can be represented as an action of

two consecutive BCFW bridges times some regulator12 factor (2.23). The BCFW bridge

operators can also be defined in momentum twistor space using special version of the on-

shell diagrams [84]. The action of [i, i+ 1〉 the BCFW shift bridge operator br(̂i, i+ 1) in

momentum twistor representation on the function Y of {Zi}ni=1 variables is given by [80, 84]:

Y ′(Z1, . . . ,Zn) = br(̂i, i+ 1) [Y (Z1, . . . ,Zn)] ≡
∫

dc

c
Y (Z1, . . . , Ẑi, . . .Zn), (4.5)

where Y , Y ′ are both functions of n momentum super twistors variables and Ẑi = Zi +

cZi+1. We also do not require Y and Y ′ to be Yangian invariants.

11The matrix Q̃ij is a formal inverse of singular map Qij , see [82, 83] for details.
12We call inverse soft factor (2.24) regulator because it makes soft holomorphic limit with respect to one

of the auxiliary on-shell momenta, which encodes off-shell one, regular [19, 46].
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As new on-shell diagrams in momentum twistor space are no longer built from ordinary

MHV3 and MHV3 vertexes (amplitudes), then in the definition of the gluing operator we

will have, in principle, to change the form of regulator factor. So, to construct the gluing

operator in momentum twistors we will consider the following ansatz:

Âm.twistor
i−1,i [. . .] = N br(̂i, i+ 1) ◦ br(î+ 1, i) [M . . .] (4.6)

with two unknown rational functions of helicity spinors λi (first components of momen-

tum twistors) — measure M and normalization coefficient N . To fix N , M functions we

require that

Âm.twistor
n+1,n+2

[
Lk
n+2

]
= ωk

n+2 , (4.7)

where (k is N(k−2)MHV degree and the use of an appropriate integration contour is as-

sumed):

ωk
n+2 =

∫
d(k−2)×(n+2)D

Vol[GL(k − 2)]
Reg.

δ4(k−2)|4(k−2)(D · Z)

(1 . . . k − 2) . . . (n+ 2 . . . k − 3)
,

Reg. =
1

1 + 〈pn+1 ξn+1〉
〈pn+1 1〉

(n+2 2 ... k−2)
(1 ... k−2)

, (4.8)

is the momentum twistor Grassmannian integral representation for the ratio of amplitudes

with one Wilson line operator insertion A∗
k,n+1/A

∗
2,n+1 and Lk

n+2 is the Grassmannian

representation for Ak,n+2/Ak=2,n+2 on-shell amplitude ratio:

Lk
n+2 =

∫
d(k−2)×(n+2)D

Vol[GL(k − 2)]

δ4(k−2)|4(k−2)(D · Z)

(1 . . . k − 2) . . . (n+ 2 . . . k − 3)
. (4.9)

That is our gluing operation should transform the Grassmannian integral representation

of on-the shell amplitudes into corresponding Grassmannian integral representation for the

off-shell amplitudes. From this requirement we get

M = N−1 = S(i+ 1, i, i− 1) , (4.10)

where S is the usual soft factor

S(i+ 1, i, i− 1) =
κ∗i−1〈i− 1 i+ 1〉
〈i i+ 1〉〈i− 1 i〉 . (4.11)

Computation details can be found in appendix A.

So, finally, we have the following expression for the gluing operation in momentum

twistor space

Âm.twistor
i−1,i [. . .] = S(i+ 1, i, i− 1)−1 br(̂i, i+ 1) ◦ br(î+ 1, i) [S(i+ 1, i, i− 1) . . .] . (4.12)

It may be, at first glance, surprising that here in momentum twistor space we used [i, i+1〉
BCFW shift and not [i − 1, i〉 as for the gluing operation in the helicity spinors represen-

tation. In fact, mentioned before the two BCFW shifts are equivalent, see, for example,
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discussion in [1]. It is also assumed that in the construction of dual variables (dual contour)

we decompose any off-shell momentum ki that we encounter in a pair of (complex) on-shell

momenta as [8, 19]:

ki = |pi〉
〈ξi|ki
〈piξi〉

+ |ξi〉
〈pi|ki
〈piξi〉

. (4.13)

So we will have a pair of axillary momentum twistor variables Zi and Zi+1 which encode

information about off-shell momenta ki (see figure 5 as example). The same is also true

for supersymmetric counterparts of ki momenta [19].

Now, when we have an explicit definition of the gluing operator Âii+1 in momentum

twistor space, let us proceed with particular applications of it. Hereafter we will drop

m.twistor subscript to simplify the notations and hope that it will not lead to any confusion.

First, consider the ratio

P4(k−2)
n+2 (Z1, . . . ,Zn+2) = Ak,n+2/A2,n+2. (4.14)

Applying to it the gluing operation Âi−1,i we will have (see figure 6):

Âi−1,i

[
P4(k−2)
n+2

]
=S(i+1, i, i−1)−1

∫
dα1

α1

dα2

α2

〈i−1 i+1〉+α1〈i−1 i〉+α1α2〈i−1 i+1〉
〈i i+1〉(〈i−1 i〉+α2〈i−1 i+1〉)

×P4(k−2)
n+2 (. . . ,Zi+α2Zi+1,Zi+1+α1Zi+α1α2Zi+1 . . .). (4.15)

Taking the residues at α1 = 0, α2 = − 〈i−1 i〉
〈i−1 i+1〉 we finally get

Âi−1,i

[
P4(k−2)
n+2

]
= P4(k−2)

n+2

(
. . . ,Zi −

〈i− 1 i〉
〈i− 1 i+ 1〉Zi+1,Zi+1, . . .

)
, (4.16)

which should be proportional to A∗
k,n+1 i.e.

A∗
k,n+1

A∗
2,n+1

= Âi−1,i

[
P4(k−2)
n+2

]
, (4.17)

where the Wilson line operator insertion is positioned between the on-shell states with

numbers i− 2 and i+1. If one has to consider several Wilson line operator insertions then

one should apply the gluing operation several times similar to the examples considered in

section 3.2. We see that application of the gluing operation in momentum twistor space

significantly simplifies compared to the helicity spinor case (2.15) and amounts to just a

shift of i-th momentum super twistor:

Z∗
i = Zi −

〈i− 1 i〉
〈i− 1 i+ 1〉Zi+1, (4.18)

which is similar to the BCFW shift. This shift, as expected, transforms ordinary 1/P 2
k,j

propagators, which in momentum twistor space are proportional to 1/〈k − 1kj − 1j〉, into
eikonal ones (up to 〈ij〉 factors) if i belongs to (k − 1, k, j − 1, j) set. As an example,

let’s consider the NMHV 6-point amplitude considered in the previous section. The term

B in figure 3 before gluing contained propagator pole which in dual variables is given by
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1 n + 2

n + 1

2

1

2

Figure 6. Double BCFW bridge br(1, n̂+ 2) ◦ br(n+ 2, 1̂).

1/x214 with x214 ∼ 〈6134〉. So under the action of Â34 we get 〈6134〉 7→ 〈6134∗〉, which in its

turn can be transformed as:

〈6134∗〉 = 〈6134〉+ 〈34〉
〈35〉〈6135〉 =

〈34〉
〈35〉〈3|(q1 + q2 + q3)q4|5〉 ∼ 〈p2|q1 + q2|p2], (4.19)

where we used explicit expressions for q3 and q4 (k = q3 + q4):

q3 = |p2〉
〈ξ|k
〈p2ξ〉

, q4 = |ξ〉 〈p2|k〈p2ξ〉
, k|p2〉 = κ∗|p2]. (4.20)

Comparing this expression to (3.35) we see that 1/〈6134∗〉 is given exactly by the eikonal

propagator. This observation can be easily generalized to the arbitrary k, n case. So the

whole analysis of section 3.2 can be performed in the momentum twistor space with the

identical result, which is accumulated in (4.17), (4.16) relations. We will not repeat it here

and will restrain ourselves to the consideration of some particular examples.

Namely, let’s reproduce the results for A∗
3,4+1/A

∗
2,4+1 and A∗

3,2+2/A
∗
2,2+2 off-shell am-

plitudes using the gluing operator. To do this we start with the ratio P4
6 = A3,6/A2,6 of

the on-shell amplitudes

P4
6 = [12345] + [13456] + [12356] , (4.21)

where as usual five-bracket is given by [1]:

[i j k l m] =
δ4(〈i j k l〉ηm + cyclic permutation)

〈i j k l〉〈j k l m〉〈k l m i〉〈l m i j〉〈m i j k〉 (4.22)

with four-brackets defined as

〈i j k l〉 = εABCDZ
A
i Z

B
j ZC

k ZD
l . (4.23)
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Then we have13

Â5,6

[
P4
6

]
=

1

1 + 〈p5ξ5〉
〈p51〉

〈1345〉
〈3456〉

[13456] +
1

1 + 〈p5ξ5〉
〈p51〉

〈1235〉
〈2356〉

[12356] + [12345],

Â5,6

[
P4
6

]
=

A∗
3,4+1

A∗
2,4+1

(Ω1, . . . ,Ω4, g
∗
5) , (4.24)

and14

Â3,4 ◦ Â5,6

[
P4
6

]
= c35[12345] + c36[12356] + c46[13456],

Â3,4 ◦ Â5,6

[
P4
6

]
=

A∗
3,2+2

A∗
2,2+2

(Ω1,Ω2, g
∗
3, g

∗
4) , (4.25)

with

c35 =
1

1 + 〈p3ξ3〉〈1235〉
〈p3p4〉〈1234〉

, c36 =
1

1 + 〈p4ξ4〉
〈p41〉

〈1235〉
〈2356〉

, c46 =
1

1 + 〈p3ξ3〉
〈p3p4〉

〈1356〉
〈1346〉

1

1 + 〈p4ξ4〉
〈p41〉

〈1345〉
〈3456〉

.

(4.26)

These results are in complete agreement with previously obtained results from the off-shell

BCFW [46] and Grassmannian integral representation [19, 20].

In general the on-shell ratio function Pk,n+2 = P4(k−2)
n+2 (Z1, . . . ,Zn+2) can be found

for fixed n and k via the solution of the on-shell BCFW recursion in momentum twistor

space [80]:

Pk,n(Z1, . . . ,Zn) = Pk,n−1(Z1, . . . ,Zn−1) (4.27)

+

n−2∑

j=2

[j − 1, j, n− 1, n, 1]Pk1,n+2−j(ZIj ,Zj ,Zj+1, . . . , Ẑnj
)Pk2,j(ZIj ,Z1,Z2, . . . ,Zj−1) ,

where15 Znj
= (n− 1, n)∩ (1, j − 1, j), ẐIj = (j − 1, j) ∩ (1, n− 1, n), k1 + k2 + 1 = k. We

will make more comments about the structure of this recursion relation in the next section.

From practical point of view the easiest way to compute Wilson line form factor with f

on-shell states and m Wilson line operator insertions is to solve (4.27) for n = f +2m and

then apply m gluing operators via (4.16) rule.

Now, when we have the definition of the gluing operator Âii+1 in momentum twistor

space and some practice with the tree level answers we are ready to consider loop integrands.

5 Loop integrands

The natural way to define planar loop integrands unambiguously is to use momentum

twistors or dual coordinates. The loop integrand ILk,n for on-shell L-loop amplitude AL
k,n

13It is assumed that the momentum super twistors Z5 and Z6 are sent to corresponding off-shell kinematics

related to off-shell momenta of g∗5 reggeized gluon.
14We again assume corresponding off-shell kinematics for momentum super twistors Z3-Z6 describing

reggeized gluons g∗3 and g∗4 .
15(i, j) ∩ (k, p,m) ≡ Zi〈jkpm〉+ Zj〈ikpm〉.
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in this language is defined as16

A
(L)
k,n/A

(0)
2,n =

∫

reg

L∏

m=1

d4lmI
(L)
k,n (Z1, . . . ,Zn; l1, . . . , lL) , (5.1)

where momentum super twistors Z1, . . . ,Zn describe kinematics of external particles and

reg stands for regularization needed by loop integrals. Here Ik,n is a rational function of

both loop integration and external kinematical variables. Moreover, Ik,n is cyclic in ex-

ternal momentum super twistors. It is also assumed that loop integrand is completely

symmetrized in loop variables l1, . . . , lL. Rewriting the latter in terms of bi-twistors

(lm ≡ (AmBm) ≡ (AB)m) the loop integration measure takes the form [80]:

d4l = 〈ABd2A〉〈ABd2B〉 = d4ZAd
4ZB

Vol[GL(2)]
, (5.2)

where we dropped out factors 〈λA λB〉 = 〈ZAZBI∞〉 as the integrands in N = 4 SYM

are always dual conformal invariant. Here I∞ denotes infinity bi-twistor [81]. The inte-

gral over the line (AB) is given by the integrals over the points ZA, ZB modulo GL(2)

transformations leaving them on the same line.

5.1 BCFW for integrands of Wilson lines form factors and correlation

functions

Now let us see what modifications occur to the on-shell integrand BCFW recursion in the

off-shell case. The loop-level BCFW for on-shell amplitudes in N = 4 SYM was worked

out in detail in [80] (see also [85, 86] for situation with less SUSY) and the result for

Ẑn = Zn + wZn−1 shift reads

I
(L)
k,n = I

(L)
k,n−1(Z1, . . . ,Zn−1) (5.3)

+
n−2∑

j=2

[j−1, j,n−1,n,1]I
(L1)
k1,n+2−j(ZIj ,Zj ,Zj+1, . . . , Ẑnj

)I
(L2)
k2,j

(ZIj ,Z1,Z2, . . . ,Zj−1)

+

∫
d4|4ZAd

4|4ZB

Vol[GL(2)]

∫

GL(2)
[A,B,n−1,n,1]I

(L−1)
k+1,n+2(Z1,Z2, . . . , ẐnAB

,ZA,ZB) ,

where Ẑnj
= (n−1, n)∩(1, j−1, j), ZIj = (j−1, j)∩(1, n−1, n), ẐnAB

= (n−1, n)∩(A,B, 1)

and k1+k2+1 = k. The
∫
GL(2) integral is defined as follows. First we set ZA → ZA+αZB ≡

Z ′
A and ZB → ZB + βZA ≡ Z ′

B, which is equivalent to moving points ZA and ZB without

changing the line they span. Then we calculate composite residue in α, β such that

〈A′, 1, n− 1, n〉 → 0 and 〈B′, 1, n− 1, n〉 → 0, what is equivalent to taking points A′, B′ to

lie on the plane 〈1, n− 1, n〉:
∫

GL(2)
≡

∫

〈A′,1,n−1,n〉→0
dα

∫

〈B′,1,n−1,n〉→0
dβ (1− αβ)2 . (5.4)

Taking the residue as above is equivalent to setting Z ′
A,Z ′

B to (A,B) ∩ (1, n − 1, n) and

the Jacobian factor (1− αβ)2 makes poles in α, β simple.

16Here by dividing on MHV amplitude we mean that we are factoring out 〈12〉 . . . 〈n1〉 product and

dropping momentum conservation delta function.
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A) B)

Figure 7. Different possible types of pole contributions to loop BCFW recursion. Here we depicted

scalar integrals for two loop n = 4 example. Red arrows indicate propagators which we are cutting

when evaluating residues. Term C) is actually absent in N = 4 SYM case as well as A).

Next, let us make some comments about the origin of different terms in (5.3). The

first two terms, namely

I
(L)
k,n−1(Z1, . . . ,Zn−1) +

n−2∑

j=2

[j − 1, j, n− 1, n, 1]I
(L1)
k1,n+2−j(ZIj , . . . , Ẑnj

)I
(L2)
k2,j

(ZIj , . . . ,Zj−1)

(5.5)

originate from the poles in the BCFW shift parameter w coming from propagators which

does not contain loop momentum dependence:

〈i− 1in− 1n̂(w)〉 = 0. (5.6)

that is from propagators connecting loop integrals, see figure 7 A. These contributions are

identical both at tree and loop level. The term containing GL(2) integration

∫

GL(2)
[A,B, n− 1, n, 1]I

(L−1)
k+1,n+2(Z1,Z2, . . . , ẐnAB

,ZA,ZB) (5.7)

is present only at the loop level. It originates from the poles in the BCFW shift parameter

w coming from propagators containing loop momenta [80], see figure 7 B. At L loop level for

n point amplitude the residue at such pole corresponds to the so called forward limit of L−1

loop n + 2 point amplitude. Indeed, if we consider L loop integrand17 of some amplitude

I
(L)
n ({p1, . . . , pn}, l1, . . . , lL), where {p1, . . . , pn} are external momenta and consider residue

at the pole 1/l2L corresponding to L’th loop integration we will get (see figure 8)

Resl2L=0 I(L)n ∼ I
(L−1)
n+2 ({p1, . . . , pn,−lL, lL}, l1, . . . , lL−1). (5.8)

In momentum twistor space residue can be evaluated as follows. For simplicity let’s con-

sider L = 1 example to make formulas more readable. The generalization for general

L is trivial. The n-point amplitude integrand is the function of the following variables

17Here we assume some specific “appropriate” choice of loop momenta. The corresponding ambiguity in

the choice of loop momenta can be removed [80] if one considers dual (or momentum twistor) variables and

planar limit, which we are interested in.
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=

l l 2 = 0
−ll

A L−1
A L−1

1 n 1 n

Figure 8. Evaluation of residue at the pole of loop propagator (cut) resulting in the forward limit.

Red arrow indicates which propagator we are cutting.

Figure 9. Evaluation of residue in the pole (cut) of eikonla loop propagator. Red arrow indicates

which propagator we are cutting.

I
(1)
n ({Z1 . . . ,Zn},ZA,ZB). The residue at the point (we consider Ẑn = Zn + wZn−1 shift

and take residue with respect to w parameter)

〈AB1n̂(w)〉 = 0 (5.9)

is given by:

Res〈AB1n̂〉=0 I(1)n ∼ Atree
n+2(Z1, . . . , Ẑn, ẐB, ẐB), (5.10)

where

Ẑn = (n− 1, n) ∩ (A,B, 1),

ẐB = (A,B) ∩ (n− 1, n, 1). (5.11)

This is analog of (5.8) in momentum twistor space, see also figure 9 and 10. The first ex-

pression for Ẑn solves 〈AB1n̂〉 = 0. The second expression for ẐB is the consequence of the

first one and the forward limit. See [1] for detailed derivation and discussion. The expres-

sion (5.10) in this limit could be obtained from the expression for Atree
n+2(Z1, . . . , Ẑn,ZA, ẐB)

at general kinematics18 by introducing GL(2) integration with [A,B, n−1, n, 1] weight (5.7).

Now let’s see how similar to (5.3) the recurrence relation for Wilson line form factors

can be constructed. Let’s consider integrand I
∗(L)
k,n+1 of A

∗(L)
k,n+1(Ω

∗
1, . . . ,Ωn, g

∗
n+1) Wilson line

18General in a sense that there are no collinear twistors in contrast to (5.10).
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form factor. As one will try to reconstruct it via Ẑi = Zi+wZi−1 shift he/she will encounter

two types of contributions. The first type will be given by the residues with respect to

propagators which does not contain loop momentum dependence. These can be considered

along the same lines as in sections 3 and 4. The second type of contribution is the residues

with respect to propagator poles with loop momentum dependence. Now in contrast to the

case of on-shell amplitudes we have two types of propagator poles. Ordinary 1/l2 poles and

eikonal ones 1/〈p|l|p]. To simplify discussion let’s consider one-loop case. Generalization

to higher loops can be easily done by induction. The residue evaluation with respect to

1/l2 poles is identical to the on-shell amplitudes case and is given by forward limit of tree

level Wilson line form factor with n + 2 on-shell legs (k as usual is off-shell momentum

with direction p and {q1, . . . , qn} are on-shell momenta):

Resl2L=0 I
∗(L=1)
n+1 ∼ A

∗(tree)
(n+2)+1({q1, . . . , qn,−lL, lL}, {p, k}). (5.12)

The terms which include eikonal propagator pole residue are a little more complicated.

Surprisingly, here similar to the on-shell case we also have forward like limit. For example,

consider Wilson line form factor at one loop level I
∗(1)
n ({q1, . . . , qn}, {k, p}, l). Here once

again {q1, . . . , qn} are on-shell momenta and k is off-shell momentum with direction p.

Using decomposition (4.13) we can decompose our off-shell momentum into pair of on-

shell momenta k′ = |p〉k|ξ〉/〈pξ〉, k′′ = |ξ〉k|p〉/〈ξp〉 and formally write this integrand as

I
∗(1)
n ({q1, . . . , qn, k′′, k′}, l). Considering residue for the pole 1/〈p|l|p] we enforce on loop

momentum l condition 〈p|l|p] = 0, l2 6= 0 (see also (3.9) and discussion there). This results

in (see figure 9)

Res〈p|l|p]=0 I
∗(1)
n+1 ∼ A∗

n+2({q1, . . . , qn, k′′, k′, l′, l′′}), (5.13)

where l′ = |p〉l|ξ′〉/〈ξ′p〉, l′′ = |ξ′〉l|p〉/〈ξ′p〉. Now using the freedom in the choice of |ξ′〉 one
can set l′ and k′ collinear to each other:

(l′)µ = −(k′)µ/〈ξ′p〉 (5.14)

up to scalar factor 〈ξ′p〉. This resembles the on-shell forward limit kinematics of (5.8)

for n+ 4 point off-shell amplitude. So presumably the residue with respect to Wilson line

propagators can, in principle, be evaluated in momentum twistor space along the same lines

as (5.10) and (5.11). Consideration of this eikonal residue type, however, can be avoided

entirely if one will choose BCFW shift in such a way that w parameter will not appear in

eikonal propagators at all.

To see this let’s consider once again one-loop case, that is we take the solution of (5.3)

for n external particles I
(L=1)
k,n and apply gluing operator Ân−1n to it

I
∗(L=1)
k,(n−2)+1 = Ân−1n

[
I
(L=1)
k,n

]
. (5.15)

We will assume that the tree level form factors and on-shell amplitudes are related as

Ân−1n[Ak,n(Ω1 . . . ,Ωn)] = A∗
k,(n−2)+1(Ω1 . . . ,Ωn−2, g

∗
n−1). (5.16)
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x
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Figure 10. Forward limit in momentum and momentum twistor space. In momentum space we are

gluing xn+1 with x1 while keeping xn fixed in such a way that x2
1n = 0. In momentum twistor space

this equivalent to gluing Zn+1 and Zn+2 with ẐB . The same is also true for their supersymmetric

counterparts.

What we are going to show now is that I
∗(L=1)
k,(n−2)+1 will have appropriate factorization

properties19 for one loopWilson line form factor and that it can be obtained from recurrence

relation similar to (5.3), where only poles of (5.12) type will contribute. I.e. there always

will be possibility to choose the BCFW shift in such a way that only 1/P 2 type poles will

contribute to recursion.

To show this let us consider all possible BCFW shifts in I
∗(L=1)
k,(n−2)+1. But first let us

note that in the case under consideration the pair of axillary momentum twistor vari-

ables Zn and Zn−1 is used to encode information about off-shell momentum k according

to (4.13). So, the only possible propagators which contain loop momentum and which

will be affected by gluing operator Ân−1n are given by 〈ABn − 1n〉 and 〈ABn1〉. More

accurately, only 〈ABn−1n〉 will be transformed into eikonal propagator 〈ABn−1n∗〉 since
〈ABn∗1〉 = 〈ABn1〉. Equivalently one can note that due to the cyclical symmetry the only

possible eikonal propagator with loop momentum dependence in A
∗(L=1)
k,(n−2)+1 will depend on

ZA, ZB, Zn−1, Zn, Z1 momentum twistors.

Now let’s return to the shifts. If we shift Zi as Ẑi = Zi + wZi−1 for i = 1, . . . , n − 2,

then the shift parameter w will not affect the eikonal propagator and the corresponding

residues with respect to w can be evaluated according to (5.12), so that the result will be

given by the forward limit of the tree level Wilson line form factor with n on-shell states.

These is precisely the desired factorization property. For this form factor we also know

that the relation (5.16) holds. So we see that in such cases the gluing operation indeed

transforms solutions of (5.3) into Wilson line form factors similar to tree level.

As for the shifts involving Zn−1 and Zn, we can always choose to shift Ẑn = Zn +

wZn−1, so that the w parameter drops out of 〈ABn− 1n∗〉 bracket and will remain only in

〈ABn̂1〉 bracket, which is again not affected by the action of Ân−1n gluing operator. This

gives us

Res〈ABn̂1〉=0 Ân−1n[I
(1)
n ] ∼ Ân−1n[A

tree
n+2] = A∗

(n)+1(Z1, . . . ,Zn−1, Ẑ∗
n, ẐB, ẐB), (5.17)

19That is the corresponding residue will be given by forward limit of tree level Wilson line form factor

with n+ 2 on-shell states.
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where

Ẑ∗
n = (n− 1, n∗) ∩ (A,B, 1),

ẐB = (A,B) ∩ (n− 1, n, 1),

Z∗
n = Zn +

〈pξ〉
〈p1〉Z1. (5.18)

Here we see that Ẑ∗
n solves 〈ABn̂∗1〉 = 〈ABn̂1〉 = 0 — the same condition as in the case

of the on-shell amplitudes. So once again we have appropriate factorization properties and

we also see that the gluing operation indeed transforms solutions of (5.3) into the Wilson

line form factors.

Equivalently using the same arguments as above one can show that in A
∗(L=1)
k,(n−2)+1 in

pair Zn−1,Zn one can always choose to shift Ẑn = Zn + wZn−1 so that w will drop

out from eikonal propagator. That is for all Ẑi, which describe both on-shell and off-

shell momenta, one can choose such shifts that will not affect eikonal propagators with

loop momentum dependance and the corresponding recurrence relations will contain only

contribution of (5.5) and (5.12) type.

This considerations can be easily generalized by induction to arbitrary loop level and

to arbitrary number of gluing operators applied. So we may conclude that application of

Âi−1i to (5.3) will likely result in a valid recursion relation for loop integrands of Wilson line

form factors (off-shell amplitudes) similar to tree level case. For example if we chose i = n,

to match our previous considerations, we will get recurrence relation for the integrand

I
∗(L)
k,(n−2)+1 of Wilson line form factor when operator is inserted after on-shell state with

number n− 2:

I
∗(L)
k,(n−2)+1 = I

(L)
k,n−1(Z1, . . . ,Zn−1) (5.19)

+

n−2∑

j=2

[j − 1, j, n− 1, n∗, 1]I
(L1)
k1,n+2−j(ZIj ,Zj ,Zj+1, . . . , Ẑ∗

nj
)I

(L2)
k2,j

(ZIj ,Z1,Z2, . . . ,Zj−1)

+

∫
d4|4ZAd

4|4ZB

Vol[GL(2)]

∫

GL(2)
[A,B, n− 1, n∗, 1]I

(L−1)
k+1,n+2(Z1,Z2, . . . , Ẑ∗

nAB
,ZA,ZB) ,

where Ẑnj
= (n− 1, n∗) ∩ (1, j − 1, j), ZIj = (j − 1, j) ∩ (1, n− 1, n), ẐnAB

= (n− 1, n∗) ∩
(A,B, 1) and k1+k2+1 = k. Z∗

n is given by (5.18). As before, to encode off-shell momenta

we use twistor variables with numbers n− 1 and n. p and ξ are light-cone vectors entering

kT -decomposition of this off-shell momentum k. Spinors |p〉 and |ξ〉 are obtained from

corresponding vectors.

One can also skip the solution of this new recursion and apply Âi−1i directly to the

solutions of on-shell recursion relation (5.3), that is to the on-shell integrands, similar to

the tree level case (4.16). In the next section we will consider such action using local form

of integrands instead of non-local form produced directly by BCFW recursion.

At the end of this section we want to make the following note: in general forward limits

may not be well defined [80], because on the level of integrands one may encounter contri-

butions from tadpoles and bubble type integrals on external on-shell legs (see figure 7 C as
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an example). However, such contributions are absent in N = 4 SYM on-shell amplitudes

due to the enhanced SUSY cancellations [1, 80]. Their analogs are also absent for the

Wilson line form factors (off-shell reggeon amplitudes) — there are no tadpoles diagrams

involving closed Wilson line propagators and bubbles on external Wilson line are also equal

to 0 on integrand level (see Feynman rules in [46]).

5.2 Gluing operation and local integrands

Now, following our discussion in the previous subsection we conclude that the integrands

for the planar off-shell L-loop amplitudes could be obtained from the corresponding on-

shell integrands by means of the same gluing procedure as was used by us at tree level.

Namely, for reggeon amplitude with n reggeized gluons (Wilson line operator insertions)

and no on-shell states I
∗(L)
k,0+n(g

∗
1, . . . , g

∗
n) we should have:

I
∗(L)
k,0+n = Â2n−1 2n ◦ . . . ◦ Â12

[
Ik,2n

]

= I
(L)
k,2n

(
Z1,Z2 −

〈1 2〉
〈1 3〉Z3, . . . ,Z2n−1,Z2n − 〈2n− 1 2n〉

〈2n− 11〉 Z1

)
. (5.20)

Here it is assumed that I
∗(L)
k,0+n is normalized by A

∗(0)
2,0+n similar to the definition of on-

shell integrands (5.1). The loop integrands for reggeon amplitudes (Wilson line form fac-

tors) with on-shell states can be obtained from (5.20) by removing necessary number of

Âi−1i operators.

The loop integrands produced by the BCFW recursion are non-local in general [80].

However, it is still possible to rewrite the integrands in a manifestly local form.20 Moreover,

one may choose as a basis the set of chiral integrals with unit leading singularities [80, 87].

The leading singularities are generally defined as the residues of a complex, multidimen-

sional integrals of integrands in question over C4L, where L is the loop order. The com-

putation of residues for the integrands expressed in momentum twistors is then ultimately

related to the classic Schubert problem in the enumerative geometry of CP3 [87]. When

the residues of integral associated to at least one of its Schubert problems are not the same

then the integral is called chiral. In the case when the integral has at most one non-zero

residue for the solutions to each Schubert problem then the integral is called completely

chiral. If all non-vanishing residues are the same up to a sign then it is possible to normal-

ize them, so that all residues are ±1 or 0. The integrals with this property are called pure

integrals or integrals with unit leading singularities.

The application of the gluing operation to the on-shell integrands written in the local

form follows the general rule (5.20). Let’s see some particular examples. At one-loop for

MHV n-point integrand we have21 [80, 87]:

I
(1)
2,n =

∑

i<j

〈AB(i− 1 i i+ 1) ∩ (j − 1 j j + 1)〉〈Xij〉
〈ABX〉〈AB i− 1 i〉〈AB i i+ 1〉〈AB j − 1 j〉〈AB j j + 1〉 . (5.21)

20This procedure spoils the Yangian-invariance of each term in the on-shell case however.
21(i−1 i i+1)∩(j−1 j j+1) ≡ Zi−1Zi〈i+1j−1jj+1〉+ZiZi+1〈i−1j−1jj+1〉+Zi−1Zi+1〈ij−1jj+1〉.
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Figure 11. Integrals for A
∗(1)
2,(n−2)+1(Ω1, . . . ,Ωn−2, g

∗
n−1) and A

∗(2)
2,2+1(Ω1,Ω2, g

∗
3). Green lines cor-

responds to eikonal propagators with shifted twistor. Wavy line corresponds to numerator of the

form 〈AB(ij)W 〉, where (ij)W = (i− 1 i i+ 1) ∩ (j − 1 j j + 1).

This expressions is cyclic invariant and sum in the above expression is independent from

X, but contains spurious poles 〈ABX〉 term by term. If we choose X = (k k + 1) then all

poles are manifestly physical but cyclic invariance will be lost. To obtain corresponding

expression I
∗(1)
2,(n−2)+1 for the amplitude with one off-shell leg in place of two last on-shell

legs A
∗(1)
2,(n−2)+1(Ω1, . . . ,Ωn−2, g

∗
n−1) we just shift momentum super twistor Zn. Also it is

convenient to choose X = (n− 1n):

I
∗(1)
2,(n−2)+1 =

∑

i<j

〈AB(i− 1 i i+ 1) ∩ (j − 1 j j + 1)〉〈n− 1n∗ij〉
〈AB n− 1n∗〉〈AB i− 1 i〉〈AB i i+ 1〉〈AB j − 1 j〉〈AB j j + 1〉 , (5.22)

where Z∗
n is given by:

Z∗
n = Zn − 〈pξ〉

〈p1〉Z1. (5.23)

See figure 11 A. Legs n−1 and n describe off-shell momentum, so that p and ξ are light-cone

vectors entering kT -decomposition of this momentum k.

Next, taking the expression for the integrand of 2-loop 4-point MHV on-shell ampli-

tude [80, 87]:

I
(2)
2,4 =

〈2341〉〈3412〉〈4123〉
〈AB41〉〈AB12〉〈AB23〉〈CD23〉〈CD34〉〈CD41〉〈ABCD〉+cyclic, no repeat (5.24)

and applying Â3,4 gluing operation we get for the integrand of A
∗(2)
2,2+1(Ω1,Ω2, g

∗
3) (See

figure 11 B and C)

I
∗(2)
2,2+1 =

〈2341〉〈3412〉〈4123〉
〈AB41〉〈AB12〉〈AB23〉〈CD23〉〈CD34∗〉〈CD41〉〈ABCD〉

+
〈3412〉〈4123〉〈1234〉

〈AB12〉〈AB23〉〈AB34∗〉〈CD34∗〉〈CD41〉〈CD12〉〈ABCD〉 , (5.25)
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Figure 12. Unitarity cuts for A
∗(2)
2,2+1(Ω1,Ω2, g

∗
3) where only 1/l2 propagators have been cut.

Vertical red line represents cuts of corresponding propagators. Grey blobs are on-shell amplitudes

with k = 2, 3. Dark grey blobs are Wilson line form factors with k = 2, 3.

where Z∗
4 is given by:

Z∗
4 = Z4 −

〈pξ〉
〈p1〉Z1. (5.26)

As always we assume off-shell kinematics for legs 3 and 4, so that p and ξ are light-cone

vectors entering kT -decomposition of the off-shell gluon momentum k. Note also that this

result is consistent with two and three particle unitarity cuts. See figure 12.

The introduced gluing operation also allows us easily obtained expressions for inte-

grands of off-shell remainder functions starting from their on-shell counterparts. Indeed,

starting from integrand for 1-loop on-shell remainder function

R(1)
k,n = I

(1)
k,n − P4(k−2)

n I
(1)
2,n (5.27)

and applying gluing operation Ân−1,n we may obtain the expression for off-shell remainder

function with one off-shell leg in place of two last on-shell legs

R∗(1)
k,(n−2)+1 = I

∗(1)
k,(n−2)+1 − Ân−1,n

[
P4(k−2)
n

]
I
∗(1)
2,(n−2)+1 . (5.28)

That is, for example taking integrand for R∗(1)
3,6 on-shell remainder function written in terms

of chiral octagons [87]:

R∗(1)
3,6 =

1

2
([1,2,3,4,5]+[1,2,3,5,6∗]+[1,2,3,6∗,4])I8(1,3,4,6

∗)+
1

6
[1,2,3,4,6∗]Iodd8 (1,3,4,6∗)

− 1

6
([1,3,4,5,6∗]−[1,2,3,4,5])Iodd8 (1,3,4,5)+

1

6
([1,2,4,5,6∗]+[1,3,4,5,6∗])Iodd8 (1,4,5,6∗) ,

(5.29)

where

Iodd8 (i, j, k, l) ≡ I8(i, j, k, l)− I8(j, k, l, i) (5.30)

and (see figure 13)

I8(i, j, k, l) =
〈ABij〉〈AB(j − 1 j j + 1) ∩ (k − 1 k k + 1)〉

〈ABi− 1 i〉〈ABi i+ 1〉〈ABj − 1 j〉〈ABj j + 1〉

× 〈ABkl〉〈AB(l − 1 l l + 1) ∩ (i− 1 i i+ 1)〉
〈ABk − 1 k〉〈ABk k + 1〉〈ABl − 1 l〉〈ABll + 1〉 . (5.31)
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jk

i

Figure 13. Chiral octagons integral. Dashed line connecting i and j external legs represents

numerator of the form 〈ABij〉.

As before Z∗
6 is defined as

Z∗
6 = Z6 −

〈pξ〉
〈p1〉Z1 , (5.32)

and we again assume off-shell kinematics for legs 5 and 6 with p and ξ denoting light-cone

vectors entering kT -decomposition of reggeized gluon momentum.

Now we would like to show one simple but interesting test both for our tree and loop

level constructions (4.16), (5.20) and obtain the expression for LO BFKL kernel with gluing

operation.

5.3 LO BFKL and gluing operation

Within BFKL approach [62–66] amplitudes of scattering of some quantum states A+B →
A′ + B′, which can be partons in hadron, hadrons themselves, high energy electrons etc.,

at large center of mass energy
√
s and fixed momentum transfer

√−t, s ≫ |t| can be

represented as

AA′B′

AB = 〈ΦA′A|eαsN ln(s/s0) KBFKL |ΦB′B〉 , (5.33)

where the so called impact factors 〈ΦA′A| and |ΦB′B〉 are process dependent functions and

describe the transitions A → A′ and B → B′. This scattering, in the mentioned above

regime, can be described via interaction with special quasiparticles — so called reggeized

gluons. BFKL kernel KBFKL describes the self interaction of these reggeized gluons. s0 is

some process related energy scale. See for example [70] for detailed discussion.

Let us now calculate the LO kernel of BFKL equation in N = 4 SYM with the use of

our gluing operation. At LO order it is given by two contribution so called real and virtual

one. Consider virtual contribution first (also see figure 14 A).

5.3.1 Virtual part of LO BFKL

To compute virtual contribution to the LO BFKL we need the Regge trajectory. The latter

could be conveniently extracted from the one-loop correlation function of two Wilson lines

playing the role of sources for reggeized gluons [70]. Namely, we have to compute the
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following off-shell amplitude:

〈0|Wp1(k)Wp2(−k)|0〉 = A∗
2,0+2(g

∗
1, g

∗
2) = Â12 ◦ Â34

[
A2,4(1

−, 2+, 3−, 4+)
]
. (5.34)

At tree level we have22

A
∗(0)
2,0+2 =

〈p1 ξ1〉
κ∗1

〈p2 ξ2〉
κ∗2

( 〈1 3〉4
〈1 2〉〈2 3〉〈3 4〉〈4 1〉

) ∣∣∣∣∣
∗

2∏

i=1

1

β2
1,(i)β2,(i)

dβ1,(i) ∧ dβ2,(i)

β1,(i) β2,(i)
, (5.35)

where β1,(1), β2,(1) parameters correspond to Â12 gluing operation and those with (2) sub-

scripts to Â34. Evaluating
∣∣∣
∗
substitutions and taking composite residues at β1,(i) = −1,

β2,(i) = 0 we get

A
∗(0)
2,0+2 = −〈p1 p2〉2

κ∗1κ
∗
2

. (5.36)

Now we should recall that the Wilson lines were used here to describe scattering of two fast

moving particles at high energy.23 This restricts further our kinematics, so that p1 ·p2 = s/2

(s is the usual Mandelstam variable) and momentum transfer between two particles is

restricted by two orthogonality conditions k · p1 = k · p2 = 0. The latter two conditions

allow us to write down transverse momentum transfer as

k = c1λp1 λ̃p2 + c2λp2 λ̃p1 , (5.37)

so that t ≡ k2 = c1c2s and24

κ∗1κ
∗
2 =

c2〈p1 p2〉 [p1 p2]
[p1 p2]

c1〈p2 p1〉 [p2 p1]
[p2 p1]

= −c1c2〈p1 p2〉2 = − t

s
〈p1 p2〉2. (5.38)

Then for A
∗(0)
2,0+2 amplitude we have

A
∗(0)
2,0+2 =

s

t
. (5.39)

Now let us turn to the integrand of the corresponding one-loop amplitude. The latter is

given for n = 4 by (5.21):

I
∗(1)
2,0+2 =

〈1234〉2
〈12∗AB〉〈23AB〉〈34∗AB〉〈41AB〉 , (5.40)

with

Z∗
2 = Z2 −

〈p1ξ1〉
〈p1p2〉

Z3, Z∗
4 = Z4 −

〈p2ξ2〉
〈p2p1〉

Z1. (5.41)

This expression can be rewritten in spinor helicity variables as:

I
∗(1)
2,0+2 =

t2〈p1 p2〉2
4κ∗1κ

∗
2

1

l2(l + k)2 l · p1 l · p2
=

st

4

1

l2(l + k)2 l · p1 l · p2
. (5.42)

22The gluing details are similar to those considered in sections 2 and 3.
23For the introduction to corresponding description see [70].
24It is convenient here to chose ξ1 = p2 and ξ2 = p1.
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The same result can also be obtained within helicity spinor picture

I
∗(1)
2,0+2 = Â12 ◦ Â34

[
I
(1)
2,4 (1

−, 2+, 3−, 4+)
]
, (5.43)

where we arrange loop momenta as:

I
(1)
2,4 (1

−, 2+, 3−, 4+) =
(q1 + q2)

2(q2 + q3)
2

l2(l + q2)2(l + q1 + q2)2(l − q3)2
. (5.44)

In the expression above qi, (i = 1, . . . , 4) are momenta of external gluons and l is loop

momentum.

In LO BFKL regime we are interested in leading logarithmic approximation (LLA) to

high-energy scattering amplitude. The latter could be obtained using Sudakov decomposi-

tion of loop integration momentum and retaining only logarithmic in Mandelstam invariant

s contribution. That is

l = αp1 + βp2 + l⊥, pi · l⊥ = 0, k · pi = 0, (5.45)

dDl =
s

2
dα dβ dD−2l⊥, (5.46)

and we are interested in the following regime (here m is some problem related mass scale):

1 ≫ α ≫ β ∼ m2

s
≪ 1. (5.47)

Then

p2 · l = αs/2 + p1 · l⊥ = αs/2 (5.48)

p1 · l = βs/2 + p2 · l⊥ = βs/2 (5.49)

l2 = αβs/2− l2⊥ (5.50)

(l + k)2 = αβs/2− (l⊥ + k⊥)
2. (5.51)

Now taking residue in β at 0 and integrating over α from m2/s to 1 we get

∫
d4l

(2π)4
1

l2(l + k)2(p1l)(p2l)
=

s

2(2π)4

∫
dα

αs/2

dβ

βs/2

dD−2l⊥
[αβs/2− l2⊥][αβs/2− (l⊥ + k⊥)2]

=
1

4π3s
log

( s

m2

)∫
d2l⊥

l2⊥(l⊥ + k⊥)2
. (5.52)

So finally we get

A
∗(0+1)
2,0+2 = A

∗(0)
2,0+2

{
1− g2

16π3
log

( s

m2

)∫
k2⊥d

2l⊥
l2⊥(l⊥ + k⊥)2

}
. (5.53)

This expression tells us that in LLA approximation25 with account for color factor (CA = N

for SU(N) gauge group) for reggeized gluon propagator we get

〈0|Wp1(k)Wp2(−k)|0〉
∣∣∣
LLA

∼ 1

k2⊥

( s

m2

)ω(k2
⊥
)
, (5.54)

25We should resum logarithmic terms, which exponentiate.
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where26 (αs = g2/(4π), t = −k2⊥):

ω(t) = −αsN

∫
d2+εl⊥
(2π)2+ε

k2⊥
l2⊥(l⊥ + k⊥)2

= −Nαs

4π

2(k2⊥)
ε/2

ε
(5.55)

is the famous LO BFKL Regge trajectory, which at LO is the same in QCD and N = 4

SYM. See for example [88–90]. Using this result for virtual part of BFKL kernel we can

write [70]:

− αsN KV
BFKL = −1

2
δ(2)(k − k′) (ω(k⊥) + ω(k⊥ − r⊥)) . (5.56)

Here r is the momentum transfer for A → A′ scattering r = pA′ − pA.

In conclusion we would like also to note the following interesting fact. In N = 4

SYM the four point on-shell amplitude A2,4 has a remarkable property27 of being Regge

exact, i.e. the contribution of the gluon Regge trajectory to the amplitude (c(t) is the gluon

impact factor)

A2,4(s, t) = c(t)2
(

s

−t

)ω(t)

+ subleading terms in
|t|
s
, (5.57)

coincides with the exact expression for A2,4(s, t) as a function of arbitrary s and t.

5.3.2 Real part of LO BFKL

Now let’s consider real contribution. This contribution is given by the integrated product of

two, so called, Lipatov’s Lµ RRP vertexes [70], see figure 14 B. To compute this contribution

we may note, that Lipatov’s RRP Lµ vertex (tree level reggeon-reggeon-particle amplitude)

is related to reggeon amplitudes A∗
2,2+1(g

∗
1, g

∗
2, 3

+) and A∗
3,2+1(g

∗
1, g

∗
2, 3

−) as

Lµ(k, k
′) = (k′ + k)µ + n−

µ

(
k2

k′−
− k+

)
+ n+

µ

(
k′2

k+
− k′−

)
, (5.58)

A∗
2,2+1(g

∗
1, g

∗
2, 3

+) = δ4(k − k′ − q3)A
∗
2,2+1(k,−k′,−q3) = δ4(k − k′ − q3)

ǫµ,+3 Lµ(k, k
′)

k2k′2
,

A∗
3,2+1(g

∗
1, g

∗
2, 3

−) = δ4(k − k′ − q3)A
∗
3,2+1(k,−k′,−q3) = δ4(k − k′ − q3)

ǫµ,−3 Lµ(k, k
′)

k2k′2
,

(5.59)

which in their turns could be obtained with two our gluing operations applied to 5-point on-

shell amplitude A2,5. Here k, k
′ are reggeized gluons g∗1 and g∗1 momenta with k−k′−q3 = 0

and n± are normalized light like directions for reggeized gluons

n− =
2p1√
s
, n+ =

2p2√
s
, (n−n+) = 2, (kn±) ≡ k±, (5.60)

and ǫ±3 are polarization vectors of on-shell gluon with momentum −q3. It is assumed that

in the definitions of A∗
2,2+1(g

∗
1, g

∗
2, 3

+) and A∗
3,2+1(g

∗
1, g

∗
2, 3

−) amplitudes one has to take in

26Here we introduced dimensional regularization of otherwise divergent integral.
27See the discussion in [91].
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A A’ A A’

B B’ B B’

A) B)

Figure 14. Typical Feynman diagrams contributing to (5.33) i.e. to the BFKL kernel at LO in

N = 4 SYM. At large center of mass energy
√
s and fixed momentum transfer

√−t the asymp-

totical behaviour of an amplitude is given by its imaginary part [50, 70]: AA′B′

AB |s≫1 ∼ Im[AA′B′

AB ].

Grey squares represents impact factors, wavy lines represents gluon propagators, vertical red line

represents cuts of corresponding propagators and impact factors. Diagrams of type A) gives con-

tribution to KV
BFKL and their total sum is equivalent to evaluation of (5.53). Diagrams of type B)

give contribution to KR
BFKL and their total sum is equivalent to evaluation of (5.62).

kT decomposition of k and k′ momenta direction vectors as p1 = n− and p2 = n+. We

have also defined functions A∗
2,2+1 and A∗

3,2+1 which are given by corresponding Wilson

line form factors stripped from momentum conservation delta functions:

A∗
2,2+1(k1, k2, q3) =

1

κ∗1κ
∗
2

〈n−n+〉3
〈3n+〉〈n−3〉 ,

A∗
3,2+1(k1, k2, q3) =

1

κ1κ2

[n−n+]3

[3n+][n−3]
. (5.61)

Performing Sudakov decomposition28 of reggeized gluon momentum the contribution

of real radiation to BFKL kernel takes the form [70]:

KR
BFKL(k⊥, k

′
⊥, r) ln

s

m2
=

s

2

∫
dαkdβk′L

µ(k, k′)Lµ(r − k, r − k′)
δ(αkβk′s+ (k⊥ − k′⊥)

2)

k
′2
⊥(r⊥ − k′⊥)

2
.

(5.62)

Note that factor Lµ(k, k′)Lµ(r − k, r − k′) = gµνL
µ(k, k′)Lν(r − k, r − k′) can be rewrit-

ten purely in terms of Wilson line form factors. Namely using gauge invariance of

A∗
2,2+1(g

∗
1, g

∗
2, 3

+) and A∗
3,2+1(g

∗
1, g

∗
2, 3

−) we can replace

gµν 7→
∑

i=±

ǫ(i)µ ǫ(i)ν , (5.63)

28See for example [70] for details.
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so that (r − k ≡ m and r − k′ ≡ m′)

Lµ(k, k′)Lµ(m,m′)

k2k′2m2m′2
= A∗

2,2+1(k,−k′,−q3)A
∗
2,2+1(m,−m′,−q3)

+A∗
3,2+1(k,−k′,−q3)A

∗
3,2+1(m,−m′,−q3). (5.64)

Also note that in this case no other particles besides gluons fromN = 4 SYM supermultiplet

give contribution to real radiation. This happens due to the R-charge conservation.

The integral over βk′ is taken with the help of δ-function, while the integration over

αk is performed over the interval [m
2

s , 1]. This way we get

KR
BFKL(k⊥, k

′
⊥, r) = − r2⊥

k
′2
⊥(r⊥ − k′⊥)

2
+

k2⊥
k

′2
⊥(k⊥ − k′⊥)

2
+

(r⊥ − k⊥)
2

(r⊥ − k′⊥)
2(k⊥ − k′⊥)

2
. (5.65)

Altogether with account for the Regge trajectories contributions we recover LO expression

for BFKL kernel KBFKL = KR
BFKL +KV

BFKL [70]:

KBFKL(k⊥,k
′
⊥, r)=− r2⊥

k
′2
⊥(r⊥−k′⊥)

2
+

k2⊥
k

′2
⊥(k⊥−k′⊥)

2
+

(r⊥−k⊥)
2

(r⊥−k′⊥)
2(k⊥−k′⊥)

2

− 1

2
δ(2)(k−k′)

∫
d2l⊥
4π2

{
k2⊥

l2⊥(k⊥−l⊥)2
+

(k⊥−r⊥)
2

(l⊥−r⊥)2(k⊥−l⊥)2

}
. (5.66)

6 Conclusion

In this paper we considered the derivation of the BCFW recurrence relation for the Wilson

line form factors and correlation functions (off-shell reggeon amplitudes) both at tree and

at integrand level. We have shown that starting from the BCFW recursion for on-shell

amplitudes and using so called “gluing operator” one can obtain recursion relations for the

Wilson line form factors. The latter is true both at tree and integrand level in helicity

spinor and momentum twistor representations. The gluing operation also allows one easily

convert known local integrands of the on-shell amplitudes into integrands of the Wilson

line form factors. These results are condensed in formulas (4.16), (4.17) and (5.19), (5.20)

for tree and loop level correspondingly. We have verified our considerations by reproducing

LO BFKL kernel. We also made some predictions regarding the structure of the integrands

of Wilson line form factors at higher loops/large number of external states.

As far as we can understand our construction is not limited to the Wilson line operators

only. Indeed, using [24] similar gluing operator the form factors of stress tensor operator

supermultiplet could be constructed. Also, presumably, analogs of gluing operator for all

other type of local operators in N = 4 SYM theory should exist. The only real obstacle

in this direction is that at the level of integrands for local single trace operators we should

account for nonplanar contributions. So the notion of “integrand” in this case is somewhat

obscure at first sight. Nevertheless we think that one can still introduce integrands in setup

similar to considerations in [92], where nonplanar contributions to the on-shell amplitudes

were considered in momentum twistor variables.

We hope that the presented results will be interesting and useful for people both from

N = 4 SYM “amplitudology” and BFKL/reggeon physics communities.
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A Gluing operation and Grassmannians

Let’s see how the use of the gluing operation in momentum twistors could easily reproduce

known Grassmannian integral representations for the tree-level off-shell amplitudes [19, 20].

We start with the Grassmannian integral representation for the on-shell amplitudes in

momentum twistors:

Lk,n+2 =
Ak,n+2

A2,n+2
=

∫
d(k−2)×(n+2)D

Vol[GL(k − 2)]

δ4(k−2)|4(k−2)(D · Z)

(1 . . . k − 2) . . . (n+ 2 . . . k − 3)
, (A.1)

here (also similar notations are used in (2.26))

δ4(k−2)|4(k−2)(D · Z) =
k−2∏

a=1

δ4|4

(
n+2∑

i=1

DaiZi

)
, (A.2)

and (i1, . . . , ik−2) is minor constructed from columns ofD matrix with numbers i1, . . . , ik−2.

Applying to this expression the gluing operation Ân+1,n+2 amounts to the following shifts

of momentum super twistors:

Z1 → (1 + α1α2)Z1 + α1Zn+2 ≡ Z ′
1 , (A.3)

Zn+2 → Zn+2 + α2Z1 ≡ Z ′
n+2 , (A.4)

so that

D · Z → D′ · Z , (A.5)

where

D′
1 = (1 + α1α2)D1 + α2Dn+2 , (A.6)

D′
n+2 = α1D1 +Dn+2 (A.7)

All other momentum super twistors are unshifted and we have D′
i = Di. The inverse

transformation from D’s to D′’s is then given by

D1 = D′
1 − α2D

′
n+2 , (A.8)

Dn+2 = −α1D
′
1 + (1 + α1α2)D

′
n+2 . (A.9)

With these transformations it is easy to write down transformation rules for minors. For

example, we have

(1 . . .k−2)→ (1 . . .k−2)′−α2(n+22 . . .k−2)′ (A.10)

(n−k+5 . . .n+2)→−α1(n−k+5 . . .n+11)′+(1+α1α2)(n−k+5 . . .n+2)′ (A.11)
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Finally performing transition in the Grassmannian integral from D’s to D′’s and taking

residues at α1 = 0 and α2 = − 〈n+1n+2〉
〈n+11〉 = − 〈pn+1 ξn+1〉

〈pn+1 1〉
we get

A∗
k,n+1

A∗
2,n+1

=

∫

Γ

d(k−2)×(n+2)D′

Vol[GL(k−2)]

1

1+ 〈pn+1 ξn+1〉
〈pn+1 1〉

(n+22 ... k−2)′

(1 ... k−2)′

δ4(k−2)|4(k−2)(D′ ·Z)

(1 . . . k−2)′ . . . (n+2 . . . k−3)′
,

(A.12)

Similarly applying several gluing operations we recover formula [20].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[86] R.H. Boels and H. Lüo, On-shell recursion relations for generic integrands,

arXiv:1610.05283 [INSPIRE].

[87] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar

Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

[88] A.V. Kotikov and L.N. Lipatov, NLO corrections to the BFKL equation in QCD and in

supersymmetric gauge theories, Nucl. Phys. B 582 (2000) 19 [hep-ph/0004008] [INSPIRE].

[89] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL evolution equations in the N = 4

supersymmetric gauge theory, in 35th Annual Winter School on Nuclear and Particle

Physics, Repino, Russia, February 19–25, 2001 [hep-ph/0112346] [INSPIRE].

[90] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric

gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. B 685 (2004) 405]

[hep-ph/0208220] [INSPIRE].

[91] J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon

planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243]

[INSPIRE].

[92] P. Du, G. Chen and Y.-K.E. Cheung, Permutation relations of generalized Yangian

Invariants, unitarity cuts and scattering amplitudes, JHEP 09 (2014) 115

[arXiv:1401.6610] [INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevLett.113.081602
https://arxiv.org/abs/1404.6219
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,113,081602%22
https://doi.org/10.1007/JHEP03(2010)020
https://arxiv.org/abs/0907.5418
https://inspirehep.net/search?p=find+J+%22JHEP,1003,020%22
https://doi.org/10.1016/j.nuclphysb.2005.02.030
https://arxiv.org/abs/hep-th/0412308
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B715,499%22
https://doi.org/10.1103/PhysRevLett.94.181602
https://arxiv.org/abs/hep-th/0501052
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,94,181602%22
https://doi.org/10.1007/JHEP01(2011)041
https://arxiv.org/abs/1008.2958
https://inspirehep.net/search?p=find+J+%22JHEP,1101,041%22
https://doi.org/10.1007/JHEP05(2013)135
https://arxiv.org/abs/0905.1473
https://inspirehep.net/search?p=find+J+%22JHEP,1305,135%22
https://doi.org/10.1007/JHEP01(2011)108
https://arxiv.org/abs/0912.3249
https://inspirehep.net/search?p=find+J+%22JHEP,1101,108%22
https://arxiv.org/abs/1011.2447
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2447
https://doi.org/10.1007/JHEP02(2015)065
https://arxiv.org/abs/1408.2459
https://inspirehep.net/search?p=find+J+%22JHEP,1502,065%22
https://doi.org/10.1007/JHEP11(2010)113
https://arxiv.org/abs/1008.3101
https://inspirehep.net/search?p=find+J+%22JHEP,1011,113%22
https://arxiv.org/abs/1610.05283
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.05283
https://doi.org/10.1007/JHEP06(2012)125
https://arxiv.org/abs/1012.6032
https://inspirehep.net/search?p=find+J+%22JHEP,1206,125%22
https://doi.org/10.1016/S0550-3213(00)00329-1
https://arxiv.org/abs/hep-ph/0004008
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B582,19%22
https://arxiv.org/abs/hep-ph/0112346
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0112346
https://doi.org/10.1016/S0550-3213(03)00264-5
https://arxiv.org/abs/hep-ph/0208220
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B661,19%22
https://doi.org/10.1016/j.nuclphysb.2007.11.041
https://arxiv.org/abs/0707.0243
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B795,385%22
https://doi.org/10.1007/JHEP09(2014)115
https://arxiv.org/abs/1401.6610
https://inspirehep.net/search?p=find+J+%22JHEP,1409,115%22

	Introduction
	Form factors of Wilson lines and gluing operation
	Form factors of Wilson lines operators
	Gluing operator: transforming on-shell amplitudes into Wilson line form factors

	BCFW recursion for Wilson line form factors
	Off-shell BCFW from analyticity
	Off-shell BCFW from gluing operation

	Gluing operation in momentum twistor space
	Loop integrands
	BCFW for integrands of Wilson lines form factors and correlation functions
	Gluing operation and local integrands
	LO BFKL and gluing operation
	Virtual part of LO BFKL
	Real part of LO BFKL


	Conclusion
	Gluing operation and Grassmannians

