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1 Introduction

The Heavy Quark Expansion (HQE) has paved the road to a QCD based calculation of

inclusive decays of heavy-flavour hadrons and thus has become an indispensable tool in

precision flavour physics [1]. In particular, the extraction of the CKM parameters from

inclusive semileptonic processes as well as the search for physics beyond the standard model

relies heavily on the HQE, which has been pushed to higher orders in the perturbative as

well as in the non-perturbative sector to achieve the highest possible accuracy, e.g. in the

extraction of Vcb [2].
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The HQE can be set up in slightly different ways. The “cleanest” way is to extract

the complete mass dependence from the matrix elements that define the HQE parameters.

This is achieved by expressing them in terms of static heavy quark fields defined in Heavy

Quark Effective Theory (HQET) and hadron states in the infinite mass limit, such that all

matrix elements become mass independent. However, the price to be paid is that non-local

matrix elements appear which contain the mass dependence of the states in full QCD [3].

This can be avoided by setting up the OPE with fields and states defined in full

QCD [4]. To this end, one removes the large part, i.e. the part related to the heavy-quark

mass m, of the heavy quark momentum by a phase factor multiplying the fields and by

taking matrix elements with states defined in full QCD. In this formulation, the HQE

is expressed in terms of local matrix elements only; however, these matrix elements still

depend on the heavy-quark mass and the systematics of the expansion in inverse powers

of m are less obvious. In particular, the consideration of higher orders requires a careful

analysis. Another disadvantage of this approach is that the HQE parameters will depend

of the quark mass making them non-universal.

Even when the HQE is defined in this second way, we have to introduce a time-like

vector v which has to be chosen in such a way that the “residual” momentum k = pQ−mv

of the heavy quark is a small quantity of order ΛQCD. Although the OPE leading to

the HQE is defined as an operator relation, the choice of v anticipates that we aim at

computing certain matrix elements; in the case of inclusive decays these will eventually be

the forward matrix elements of hadronic states with the hadron momentum pH ; hence a

“natural” choice for the velocity vector is v = pH/mH .

However, the choice of v is not unique and to a large extend arbitrary, and thus the

final result for physical quantities cannot depend on v. This Reparametrization Invariance

(RPI), i.e. the invariance of physical quantities under small changes of v, has been noticed

already long ago in [5] and has subsequently been exploited in [6–9]. Its relation to the

Lorentz invariance of full QCD has been investigated in detail in [10, 11].

RPI implies relations between different orders of the HQE. Truncating the HQE at

some order 1/mn leaves us thus with a violation of RPI of order 1/mn+1. This has been

studied in some detail for the Lagrangian and the coefficients of its 1/m expansion. In turn,

RPI fixes the coefficients of towers of operators with different dimensions, which has been

noticed in [7, 8] for the Lagrangian and for inclusive rates. While for inclusive total rates

one arrives at mainly the same conclusions as for the Lagrangian, RPI also constrains the

coefficients in the HQE for inclusive differential rates, which has been discussed in [7, 8]

for low orders in the 1/m expansion.

In this paper, we show that for the HQE for the total rates the RPI relations can be

used to explicitly perform a re-summation of the towers of operators, in such a way that the

result can be written in a fully RPI fashion. Such a re-summation has also been discussed

in [7, 8] by introducing specific fields which are RPI, in terms of which reparametrization

invariant operator combinations can be formed. In the present paper we proceed one step

further and make RPI manifest by expressing the result in terms of matrix elements of

operators and states defined in full QCD. This approach has the advantage that, for total

rates, the reduction of the number of independent parameters is made explicit. We note
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that the reduction of independent parameters happens only for total rates, or — more

precisely — for Lorentz invariant quantities. In case of differential rates, which are not

reparametrization invariant, the relations between different orders on the 1/mQ expansion

depend on the kinematics, and thus the number of independent parameters is not reduced.

In the next section we give our definition of the reparametrization transformations

and apply this in section 3 to a scalar toy model of QCD, discussing the total rates. In

section 4 we consider real QCD, i.e including the spin of the quarks, again focusing on the

total rates.

2 Reparametrization transformation

We start from the equation of motion for the heavy quark field Q, which is the Dirac

equation

(i /D −m)Q(x) = 0 (2.1)

where D = ∂ − igsA is the QCD covariant derivative with the gluon field A. In order to

set up the HQE, we introduce a time-like vector v, which we use to split the momentum

pQ of the heavy quark according to pQ = mv + k. This is achieved by a redefinition of the

heavy quark field Q according to

Q(x) = exp(−im(v · x))Qv(x) , (2.2)

which implies

(iDµ)Q(x) = exp(−im(v · x))(iDµ +mvµ)Qv(x) , (2.3)

corresponding to the decomposition of the heavy-quark momentum with k ∼ iD.

Note that the field Qv is still the field in full QCD; its equations of motion can be

derived from (2.1) and read

Qv = /vQv +
i /D

m
Qv (2.4)

(ivD)Qv = − 1

2m
(i /D)(i /D)Qv = − 1

2m
(iD)2Qv −

1

2m
(σ ·G)Qv (2.5)

where

(σ ·G) ≡ (−iσµν)(iD
µ)(iDν) , γµγν = gµν + (−iσµν) . (2.6)

The reparametrization (RP) transformation δRP corresponding to an infinitesimal change

vµ −→ vµ + δvµ is thus

δRP vµ = δvµ with v · δv = 0 (2.7)

δRP iDµ = −mδvµ (2.8)

δRPQv(x) = im(x · δv)Qv(x) in particular δRPQv(0) = 0 . (2.9)

Note that (2.8) actually follows from (2.9).

For the scalar quarks, which we discuss as a toy model, the equation of motion is

[

(iD)2 −m2
]

φ = 0 , (2.10)
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where φ is the field of the scalar quark. The redefinition of the field is analogous to (2.2)

φ(x) =
1√
2m

exp[−im(vx)]φv(x) , (2.11)

where we have introduced a normalization factor. Note that due to this factor, the field

φv has a different mass dimension compared to φ: dim[φv] = 3/2, while dim[φ] = 1. This

leads to

[

(iDµ +mvµ)
2 −m2

]

φv = 2m(ivD)φv + (iD)2φv = 0 or (ivD)φv = − 1

2m
(iD)2φv .

(2.12)

The additional factor
√
2m in (2.11) serves to have the proper normalization of the static

Lagrangian

L = φ†[(iD)2 −m2]φ = φ†
v(ivD)φv + · · · . (2.13)

In the scalar case the RP transformation δRP remains the same with the obvious

replacement Qv → φv.

3 Toy model: scalar quarks

Before considering full QCD, it is instructive to consider scalar quarks, which avoids the

unnecessary complications induced by the quark spin. To be explicit, we define a decay of

such a scalar quark into a lighter scalar quark and a particle without QCD interactions,

mimicking a semileptonic decay of a real heavy quark.

3.1 Reparametrization invariance

We consider the decay of the scalar quark into two lighter scalars ψ and ℓ where only one

of the two decay products (ψ) is a color triplet. Thus we consider an effective Hamiltonian

of the form

Heff = g(φ†ψ)ℓ . (3.1)

With this Hamiltonian we can write the total and the differential inclusive rates. We

start from the operator

R(q) =

∫

d4x eiqx T
[

(φ†(x)ψ(x)) (ψ†(0)φ(0))
]

, (3.2)

where q is the momentum transfer to the (color-neutral) ℓ particle. Clearly this expression

is independent of v and thus RPI.

Inserting the rescaling (2.11) we obtain

R(S) =

∫

d4x
1

2m
e−im(S·x) T

[

(φ†
v(x)ψ(x)) (ψ

†(0)φv(0))
]

, (3.3)

where

S = v − q

m
. (3.4)
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This relation is the starting point of an OPE, leading to a series in inverse powers of m.

This OPE takes the form

R(S) =
∑

n,i

C
(n)
i (S)O(n)

i , (3.5)

where the O(n)
i are local operators of dimension n+ 3 and the coefficients C

(n)
i depend on

S and are of order 1/mn+3, assuming dimensionless R. At tree level, the operators O(n)
i

can be written in terms of the fields φv and a chain of covariant derivatives. We get

R(S) =
∞
∑

n=0

C
(n)
µ1···µn

(S) φ†
v(iD

µ1 · · · iDµn)φv , (3.6)

with φv = φv(0). Note that the rate is obtained by taking the discontinuity of R; since

the rate has to be real, the operators appearing in the OPE have to be hermitian, so the

forward matrix elements are real. This has consequences for the coefficients C
(n)
µ1···µn

(S)

which we will exploit later on.

The relation (3.5) is RPI as long as the full sum is taken into account. The key

observation is that the RP transformation relates subsequent orders in the 1/m expansion.

In fact, we have

0 = δRPR(S) (3.7)

=
∞
∑

n=0

[

δRPC
(n)
µ1···µn

]

φ†
v(iD

µ1 · · · iDµn)φv +
∞
∑

n=0

C
(n)
µ1···µn

[

δRPφ
†
v(iD

µ1 · · · iDµn)φv

]

=
∞
∑

n=0

[

δRPC
(n)
µ1···µn

]

φ†
v(iD

µ1 · · · iDµn)φv

−m

∞
∑

n=0

C
(n)
µ1···µn

[

δvµ1 φ†
v(iD

µ2) · · · (iDµn)φv + δvµ2 φ†
v(iD

µ1)(iDµ3) · · · (iDµn)φv

· · ·+ δvµn φ†
v(iD

µ1) · · · (iDµn−1)φv

]

.

In order to achieve the cancellation between the different orders in the OPE, the

coefficients have to satisfy the relation

δRPC
(n)
µ1···µn

(S) = mδvα
(

C
(n+1)
αµ1···µn

(S) + C
(n+1)
µ1αµ2···µn

(S) + · · ·+ C
(n+1)
µ1···µnα(S)

)

, (3.8)

where we have δRPS = δv from (3.4) and thus

∂

∂Sα
C

(n)
µ1···µn

(S) = m
(

C
(n+1)
αµ1···µn

(S) + C
(n+1)
µ1αµ2···µn

(S) + · · ·+ C
(n+1)
µ1···µnα(S)

)

. (3.9)

This is a remarkable relation, relating subsequent orders in the 1/m expansion. It is

universal for any differential rate and is valid (with obvious small modifications) also when

perturbative radiative corrections are included, we discuss this in more detail below. We

note that this relation is a generalization of the relation given in [8] for the differential rates.
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In fact, using the tensor decomposition of the first few terms

C(0)(S) = a(0)(S2) (3.10)

C(1)
µ (S) = a(1)(S2)Sµ (3.11)

C(2)
µν (S) = a(2)(S2)gµν + b(2)(S2)SµSν (3.12)

yields the RPI relations

∂

∂Sα
C(0)(S)=

∂

∂Sα
a(0)=2(a(0))′Sα=mC(1)

α (S)=ma(1)Sα (3.13)

∂

∂Sα
C(1)
µ (S)= 2(a(1))′SαSµ+a(1)gµα=m(C(2)

µα+C(2)
αµ )= 2m(b(2)SµSα+a(2)gµα) . (3.14)

3.2 Total rate

Upon integration over the particle ℓ we get the OPE for the total rate;

R =
∞
∑

n=0

c
(n)
µ1···µn

(v) φ†
v(iD

µ1 · · · iDµn)φv , (3.15)

where the coefficients c(n) now depend only on v. The tensor decomposition for the c(n) has

the same structure as (3.10)–(3.12); however now we have to replace S by v. Since v2 = 1,

the coefficients a(i) are in this case just numbers, and hence all the derivatives appearing

in (3.13) vanish.

We shall explicitly consider terms up to fourth order, which read

R = c(0)φ†
vφv + c(1)µ φ†

v(iD
µ)φv + c(2)µν φ†

v(iD
µ)(iDν)φv

+ c(3)µαν φ
†
v(iD

µ)(iDα)(iDν)φv + c
(4)
µαβν φ

†
v(iD

µ)(iDα)(iDβ)(iDν)φv + · · · (3.16)

and discuss, how this finally generalizes to arbitrary order.

Decomposing the c(n) into linear combinations with all possible tensor structures, and

taking into account that only hermitian operators can appear, gives

c(0)(v) = a(0) (3.17)

c(1)µ (v) = a(1)vµ (3.18)

c(2)µν (v) = a(2)gµν + b(2)vµvν (3.19)

c(3)µαν(v) = x
(3)
1 vαgµν + x

(3)
2 [vνgµα + vµgνα] + x

(3)
3 vµvαvν (3.20)

c
(4)
µαβν(v) = y

(4)
1 gµνgαβ + y

(4)
2 gµαgνβ + y

(4)
3 gµβgνα

+ z
(4)
1 vαvβgµν + z

(4)
2 vµvνgαβ

+ z
(4)
3 [vµvαgβν + vνvβgµα] + z

(4)
4 [vµvβgαν + vνvαgβµ]

+ w(4)vµvαvβvν (3.21)

Each of the coefficients a(0) · · ·w(4) corresponds to a linearly independent operator, and

RPI will imply relations between the coefficients a(0) · · ·w(4).

The corresponding total rate is then obtained via the optical theorem by taking a

forward matrix element of R with the initial state |H(pH)〉

2mHΓ = 〈R〉 ≡ 〈H(pH)|R|H(pH)〉 . (3.22)
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3.2.1 The leading order term

Applying the RP transformation to the leading term gives

δRPc
(0)(v) = 0 (3.23)

which leads to the RPI result for the leading term

Γ =
1

2mH

〈R〉 = a(0)
1

2mH

〈φ†
vφv〉 , (3.24)

in terms of a single matrix element. As we show in the appendix, it is given by

〈φ†
vφv〉 = 2mHµ3 = 2mH

(

1− µ2
π

2m2

)

,

where the last relation is exact to any order in 1/m for our definition of µ2
π.

Before continuing to higher orders, we note that the above result in fact depends on

m in a nontrivial way. The parameter µ3 as well as the parameter µπ both depend on m;

however, in the limit m → ∞ we obtain µ3 = 1 as expected. As we shall see below, the

higher-order terms are such that the result is RPI, which becomes manifest by expressing

the leading order result in terms of operators and matrix elements in full QCD, i.e. with no

reference to the arbitrary velocity vector v. We claim, that this constitutes an improvement

of the HQE, since the corresponding higher-order terms that will appear in the HQE are

now implicitly re-summed in the parameter µ3. We shall return to this when we have

discussed the higher orders of the HQE.

3.2.2 First and second order terms

The first order terms already give insights into the structure of the HQE. Applying the RP

transformation (3.9) to c(1) we get a relation between the first and second order terms

δRPc
(1)
µ (v) = a(1)δvµ = mδvα (c(2)αµ + c(2)µα) = 2mδvµa

(2) , (3.25)

which implies a(1) = 2ma(2), while the coefficient b(2) remains unconstrained. Inserting

this relation into (3.6) yields

a(1) φ†
v(ivD)φv + a(1)

1

2m
φ†
v(iD)2φv = a(1) φ†

v

(

(ivD) +
1

2m
(iD)2

)

φv . (3.26)

Note that this particular combination is invariant under reparametrization:

δRP

(

(ivD) +
1

2m
(iD)2

)

= 0 ; (3.27)

furthermore, its contribution vanishes when acting on the field φv by the equation of motion.

In the case at hand it means that we may drop the (ivD) terms as soon as this operator

acts directly on the field φv, since RPI ensures that at the next order a corresponding term

with the proper coefficient will appear, which will combine with this term to an exactly

vanishing result. Below we show explicitly that this cancellation also appears for higher-

order terms.

In addition, we re-derive the well-known result that there is no term of linear order

in 1/m in the HQE; this holds true also for the higher-order terms hidden in µ3, since

according to (A.7) the first correction to µ3 is O(1/m2).
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3.2.3 Second and third order terms

At second order, we obtain

δRPc
(2)
µν (v) = b(2)(δvµ vν + vµ δvν) (3.28)

= mδvα
(

c(3)µνα + c(3)µαν + c(3)αµν

)

= m(x
(3)
1 + 2x

(3)
2 )[δvµ vν + δvν vµ]

which implies

m(x
(3)
1 + 2x

(3)
2 ) = b(2) . (3.29)

The parameterization in (3.21) of c(3) into the various tensor structures corresponds to a

choice of the operator basis, such that

R(3) = x
(3)
1 φ†

v(iD
µ)(ivD)(iDµ)φv + x

(3)
2 φ†

v

{

(iD)2 , (ivD)
}

φv + x
(3)
3 φ†

v(ivD)3φv . (3.30)

We may solve (3.29) for x
(3)
2 and insert this into (3.30) to obtain

R(3) =
x
(3)
1

2
φ†
v [(iDµ) , [(ivD) , (iDµ)]]φv +

b

2m
φ†
v

{

(iD)2 , (ivD)
}

φv + x
(3)
3 φ†

v(ivD)3φv .

This relation suggests a change of the operator basis. The first operator generates the well-

known Darwin term ρD and does not relate back to the lower orders in 1/m. RPI fixes the

coefficient of the second operator; as discussed in the last section this term combines with

the terms of the second order into

b(2)
(

φ†
v(ivD)2φv +

1

2m
φ†
v

{

(ivD) , (iD)2
}

φv

)

(3.31)

= b(2) φ†
v

(

(ivD) +
1

2m
(iD)2

)2

φv +O(1/m2) ,

where the higher-order term is also generated properly, as we show below. The coeffi-

cient c(4) of this term can also be related directly to c(2) via the second-order transfor-

mation (δRP)
2.

Thus we find that there is no new term generated at order 1/m2. The expected 1/m2

kinetic energy parameter µ2
π is contained in the leading order term µ3. It is well known,

that RPI relates the coefficients of the leading term with the one of µ2
π; here we suggest to

consider this as the RPI completion of the leading order, now written in terms of µ3. As

we shall see below, µ3 will absorb terms at higher orders in the same way as µπ.

At order 1/m3, we find only a single new term which generates the Darwin term

with a coefficient that is not constrained by RPI; likewise, the coefficient x
(3)
3 remains

unconstrained. However, we shall see below that RPI will again ensure that this term gets

completed such that the equation of motion can be applied to make it vanish.

– 8 –
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3.2.4 Third and fourth order terms

Applying the RPI relation (3.9) to c(3) yields the relation

δRPc
(3)
µαν(v) = x

(3)
1 δvαgµν + x

(3)
2 [δvνgµα + δvµgνα] + x

(3)
3 [δvµ vαvν + δvα vµvν + δvν vαvµ]

= 2m
(

y
(4)
1 + y

(4)
3

)

δvαgµν +m
(

2y
(4)
2 + y

(4)
1 + y

(4)
3

)

[δvµgαν + δvνgαµ]

+ 2m
(

z
(4)
2 + z

(4)
4

)

δvα vµvν +m
(

2z
(4)
3 + z

(4)
1 + z

(4)
4

)

vα [δvµ vν + δvν vµ] .

(3.32)

Comparing the different tensor structures we obtain the relations

x
(3)
1 = 2m

(

y
(4)
1 + y

(4)
3

)

, (3.33)

x
(3)
2 =

b(2)

2m
− x

(3)
1

2
= m

(

2y
(4)
2 + y

(4)
1 + y

(4)
3

)

, (3.34)

x
(3)
3 = 2m

(

z
(4)
2 + z

(4)
4

)

= m
(

2z
(4)
3 + z

(4)
1 + z

(4)
4

)

. (3.35)

There are two contributions to R(4) which are given by

R
(4)
1 = y

(1)
1 O

(4)
1 + y

(1)
2 O

(4)
2 + y

(1)
3 O

(4)
3 (3.36)

R
(4)
2 = z

(4)
1 P

(4)
1 + z

(4)
2 P

(4)
2 + z

(4)
3 P

(4)
3 + z

(4)
4 P

(4)
4 (3.37)

with the basis operators

O
(4)
1 = y

(1)
1 φ†

v(iDµ)(iD)2(iDµ)φv

O
(4)
2 = φ†

v((iD)2)2φv

O
(1)
3 = φ†

v(iDµ)(iDν)(iD
µ)(iDν)φv

P
(4)
1 = φ†

v(iDµ)(ivD)2(iDµ)φv

P
(4)
2 = φ†

v(ivD)(iD)2(ivD)φv

P
(4)
3 = φ†

v

{

(ivD)2 , (iD)2
}

φv

P
(4)
4 = φ†

v [(ivD)(iDµ)(ivD)(iDµ) + (iDµ)(ivD)(iDµ)(ivD)]φv

Solving the relations (3.33), (3.34) for y
(4)
1 and y

(4)
2 and inserting this into R

(4)
1 yields

R
(4)
1 =

b(2)

4m2
O

(4)
2 +

x
(3)
1

4m
φ†
v

[

(iDµ) ,
[

(iD)2 , (iDµ)
]]

φv

+
y
(4)
3

2
φ†
v[iDµ , iDν ][iD

µ , iDν ]φv . (3.38)

The first term is the expected completion of the (ivD)2 in (3.31), while the second term is

the RPI completion of the Darwin term,

φ†
v [(iDµ) , [(ivD) , (iDµ)]]φv → φ†

v

[

(iDµ) ,

[(

ivD +
1

2m
(iD)2

)

, (iDµ)

]]

φv . (3.39)
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Finally, only the coefficient of the third term remains unconstrained leading to a genuinely

new contribution to R
(4)
1 .

For R
(4)
2 , we solve the relations (3.35) for z

(4)
2 and z

(4)
3 and change to a more convenient

base. We find

R
(4)
2 =

x
(3)
3

2m

[

P
(4)
2 + P

(4)
3

]

− z
(4)
1 φ†

v [(ivD) , (iDµ)] [(ivD) , (iDµ)]φv (3.40)

− u(4)

2
φ†
v

{

(ivD) , [(iDµ) , [(iDµ) , (ivD)]]
}

φv ,

with u(4) = z
(4)
1 + z

(4)
4 . The first term is part of the RPI completion of the (ivD)3 term

appearing in the third order. The remaining terms are not constrained by RPI, the second

term can be interpreted as the square of the chromo-electric field, while the last term will

vanish by the equations of motion.

In summary, we find that at tree-level, the total rate for scalar-quark QCD up to the

order 1/m4 can be written in terms of four parameters only. We define these parameters as

〈φ†
vφv〉 = 2mH µ3 (3.41)

1

2

〈

φ†
v

[

(iDµ) ,

[(

ivD +
1

2m
(iD)2

)

, (iDµ)

]]

φv

〉

= 2mH ρ3D (3.42)

〈φ†
v[iDµ , iDν ][iD

µ , iDν ]φv〉 = 2mH r4G (3.43)

〈φ†
v [(ivD) , (iDµ)] [(ivD) , (iDµ)]φv〉 = 2mH r4E (3.44)

In particular, we note the absence of operators such as [(iD)2]2. This can be under-

stood as a consequence of Lorentz invariance. The argument becomes particularly simple,

if we ignore the presence of gluons and evaluate the forward matrix element of R be-

tween free quark states. This matrix element will be a Lorentz invariant quantity and

hence will depend on the square of the quark momentum p. Inserting p = mv + k yields

p2 = m2 + 2m(vk) + k2, and by the equation of motion we find 2m(vk) + k2 = 0 ensuring

that p2 = m2. Hence all terms but the leading one vanish by the equation of motion, i.e.

all operators involving k2 and (vk) will appear only in the particular combination dictated

by the equation of motion.

At this point it is also convenient to compare the above formulation with the one where

the covariant derivative is split into a spatial and a time derivative, according to

iDµ = vµ(ivD) +D⊥
µ . (3.45)

While this splitting is very useful in different contexts, it is not useful for the present

investigation. In fact, rewriting the HQE in terms of operators involving (ivD) and iD⊥

will again re-arrange the terms, without giving additional insights.

3.2.5 Re-summation and relation to full QCD: scalar toy model

The parameters we found up to order 1/m4 depend on the mass of the heavy quark in a

nontrivial way and imply a re-summation of higher orders of the HQE in such a way that
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the final result is actually RPI. This fact can be made manifest by rewriting the matrix

elements in terms of QCD states and operators.

While the states are already the ones of full QCD, we still need to un-do the phase

redefinition of the quark fields. For the leading term µ3 this obvious, since we have

〈φ†
vφv〉 = 2m 〈φ†φ〉 ,

and thus µ3 is a matrix element defined in full QCD.

The next term is the Darwin term ρD, for which we use the relation

e−imvx

(

ivD +
1

2m
(iD)2

)

=
1

2m
((iD)2 −m2)e−imvx . (3.46)

Since the mass term does not contribute in the commutator, we find

φ†
v

[

(iDµ) ,

[(

ivD +
1

2m
(iD)2

)

, (iDµ)

]]

φv = φ†
[

(iDµ) ,
[

(iD)2 , (iDµ)
]]

φ . (3.47)

In fact, the Darwin term is related to the chromo-electric field E ∼ [iDµ , ivD] which is a

quantity defined in a specific frame. RPI ensures that

φ†
v . . . [iDµ , ivD] . . . φv → φ†

v . . .

[

iDµ ,

(

ivD +
1

2m
(iD)2

)]

. . . φv, (3.48)

where the ellipses denote any combination of derivatives or other operators involving the

light degrees of freedom. Replacing the field φv by φ yields

φ†
v . . .

[

iDµ ,

(

ivD +
1

2m
(iD)2

)]

. . . φv (3.49)

= φ† . . .
[

iDµ , (iD)2
]

. . . φ = φ† . . . {iDα , [iDµ , iD
α]} . . . φ .

Taking a matrix element of this operator with momentum eigenstates shows that this

indeed becomes the chromo-electric field in the rest frame of the this state.

In a similar way the remaining terms can be re-expressed in terms of full QCD and

become

〈φ†
v[iDµ, iDν ][iD

µ, iDν ]φv〉 = 2m〈φ†[iDµ, iDν ][iD
µ, iDν ]φ〉 , (3.50)

〈φ†
v [(ivD), (iDµ)] [(ivD), (iDµ)]φv〉 = 2m〈φ†

[

(iD)2, (iDµ)
] [

(iD)2, (iDµ)
]

φ〉. (3.51)

Note that the power counting is now much less obvious, since the power in 1/m is no

longer simply related to the number of derivatives appearing in the operators. Nevertheless,

the leading term in a 1/m expansion of the matrix elements always reproduces the proper

static limit, and the higher order terms are arranged such that the final result is RPI.

We may compare our approach to the approach using RPI covariant fields as discussed

in [7, 11]. In contrast to the approach in [7, 11], we propose to write the results in terms of

matrix elements of full QCD operators with states defined in full QCD. As stated above,

this renders the power counting more complicated: it can be seen from e.g. the Darwin

term (3.47) that the dimension of the operator is no longer related to the power in 1/m.
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Note that the framework of HQE allows us to fully map this to QCD operators, which we

consider advantageous. However, in a theory, where the matching to QCD is less trivial

(such as various effective theories used in the context of chiral effective theories in hadron

and nuclear physics) RPI will also yield constraints, since the underlying theory has to be

Lorentz invariant.

3.2.6 Generalization to arbitrary orders

From the above arguments it becomes clear that one may systematically access higher

orders by an iterative process. Starting from a suitable tensor decomposition of the coeffi-

cients c(n) and c(n+1) one makes use of (3.9) to obtain relations between the coefficients of

the tensor decomposition of c(n) and c(n+1). Taking into account the information obtained

from lower orders m, m ≤ n one can determine the elements of the operator basis which are

constrained by RPI and the ones which emerge as new parameters. However, genuinely new

matrix elements are only the ones where no (ivD) factor appears next to the field φv, since

such a contribution will vanish exactly once it is properly combined with higher orders.

Finally, in order to make the invariance under reparametrization manifest, one always

can rewrite the operators and covariant derivatives in terms of full QCD operators, which

are without any reference to the velocity vector.

4 Real quarks

Taking into account the quark spin does not change the general idea, the discussion becomes

only a bit more tedious. We start with eq. (3.5) in real QCD

R(S) =

∞
∑

n=0

C
(n)
µ1···µn

(S)⊗ Q̄v(iDµ1
· · · iDµn

)Qv . (4.1)

Here ⊗ is a short hand for the Dirac structure:

R(S) =
∞
∑

n=0

[

C
(n)
µ1···µn

(S)
]

αβ
Q̄v,α(iDµ1

· · · iDµn
)Qv,β (4.2)

=
∞
∑

n=0

∑

Γ

C
(n,Γ)
µ1···µn

Q̄v(iDµ1
· · · iDµn

)ΓQv ,

where the sum over Γ runs over the basis of the 16 Dirac matrices 1, γµ, σµν , γ5, iγµγ5 and

C
(n,Γ)
µ1···µn

=
1

4
Tr[ΓC

(n)
µ1···µn

] .

Applying the RP transformation (2.7), (2.8), (2.9), we arrive at the RPI relation

δRPC
(n)
µ1···µn

= mδvα
(

C
(n+1)
αµ1···µn

+ C
(n+1)
µ1αµ2···µn

+ · · ·+ C
(n+1)
µ1···µnα

)

n = 0, 1, 2, . . . (4.3)

The difference with (3.9) is that the coefficients are now Dirac-matrix valued.
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4.1 Total rate for real quarks

For the total rate, the coefficients still depend only on the velocity v, where now we have

to take into account the spinor structure of the coefficients. The first few terms read

R = Q̄vC
(0)(v)Qv + Q̄vC

(1)
µ (v)(iDµ)Qv + Q̄vC

(2)
µν (v)(iD

µ)(iDν)Qv + · · · (4.4)

The coefficients up to 1/m2 are

C(0)(v)= a0+â0/v , (4.5)

C(1)
µ (v)= vµ

(

a1+â1/v
)

+γµ

(

b1+b̂1/v
)

, (4.6)

C(2)
µν (v)= vµvν

(

a2+â2/v
)

+gµν

(

b2+b̂2/v
)

+(vµγν+vνγµ)
(

d2+d̂2/v
)

+g2(−iσµν) (4.7)

where the coefficients a1 . . . g2 are only functions of the quark masses and of the strong

coupling αs and we only consider hermitian operators. We have dropped all parity-odd

contributions, since we only discuss ground-state mesons.

4.1.1 The leading order

Employing now relation (4.3) to the leading coefficient we get

δRPC
(0) = â0 δvαγα

RPI

= mδvαC(1)
α = mδvαγα

(

b1 + b̂1/v
)

. (4.8)

Comparing the Dirac and the tensor structure, we obtain the relations

b1 =
1

m
â0 and b̂1 = 0 , (4.9)

while a1 and â1 remain unconstrained. Gathering the leading and the first order term yields

R = (a0 + â0)Q̄vQv + a1Q̄v(ivD)Qv + â1Q̄v(ivD)/vQv , (4.10)

where the two leading coefficients a0 and â0 are related by the equation of motion (2.4).

As we shall see, this feature will also be present in higher orders.

The leading term is given by the matrix element µ3 defined in the appendix. Further-

more, RPI enforces that the contribution proportional to â0 involving /v is related to the

term with γα proportional to b1. As we shall see below, this will eventually allow us to

replace /v → 1, i.e. there will be no contribution with a single γα matrix.

4.1.2 First and second order terms

In the next step we apply (4.3) to the first order term to obtain

δRPC
(1)
µ = δvµ

(

a1 + â1/v
)

+
(

â1vµ + b̂1γµ

)

δ/v (4.11)

RPI

= mδvα
(

C(2)
µα + C(2)

αµ

)

(4.12)

= mδvα
[

2gµα

(

b2 + b̂2/v
)

+ 2γαvµ

(

d2 + d̂2/v
)]

from which we obtain the relations

b2 =
1

2m
a1 b̂2 =

1

2m
â1 d2 =

1

2m
â1 d̂2 = 0 . (4.13)
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Collecting all the (non-zero) terms of up to order 1/m2 we get

R = (a0 + â0)Q̄vQv + a1Q̄v

(

(ivD) +
1

2m
(iD)2

)

Qv

+ â1Q̄v

{(

(ivD) +
1

2m
(iD)2

)

,

(

/v +
1

m
(i /D)

)}

Qv

+ g2Q̄v(σ ·G)Qv + · · · , (4.14)

where the ellipses denote terms of higher order and terms that are total derivatives; the

latter do not contribute to the relevant forward matrix elements.

Similar to what happened in the leading order, the terms with /v combine with the

corresponding terms at the next order to yield the equation of motion. Eventually this

means that these terms may be lumped into the contributions with the unit Dirac matrix.

To this end, the Dirac decomposition of the coefficients C(n) can be reduced to the terms

with 1 and σµν .

Furthermore, the equation of motion (2.5) now yields

(

(ivD) +
1

2m
(iD)2

)

Qv = − 1

2m
(σ ·G)Qv , (4.15)

where the left and the right hand side are both RPI. Finally,

R = (a0 + â0) Q̄vQv +

(

g2 −
a1 + â1
2m

)

Q̄v(σ ·G)Qv +O(1/m3) . (4.16)

This expression is a re-derivation of the known result, that the HQE does not have

1/m contributions. Furthermore, up to order 1/m2 the HQE contains two non-perturbative

parameters µ3 and µG (or equivalently µπ and µG) which we have defined in the appendix.

4.1.3 Second and third order terms

Dropping all terms with /v and single γ matrices, we only consider

C(2)
µν (v) = vµvνa2 + gµνb2 + g2(−iσµν) (4.17)

C(3)
µαν(v) = x

(3)
1 vαgµν + x

(3)
2 (vνgµα + vµgνα) + x

(3)
3 vµvαvν

+ ξ
(3)
1 vα(−iσµν) + ξ

(3)
2 (vν(−iσµα) + vµ(−iσαν)) . (4.18)

The spin independent terms (i.e. the ones without a σ matrix) yield the same result

as for the scalar case. However, the first term in C(2) will generate a term with (ivD)2

which will combine in the same way as in the scalar case to the RPI combination in (4.15),

which now generates a contribution of 1/(4m2)(σ · G)2. These terms will appear in the

fourth order.

The spin-dependent (denoted by the superscript σ) terms yield

δRPC
(2,σ)
µν = 0 = mδvα

(

C(3,σ)
µνα + C(3,σ)

µαν + C(3,σ)
αµν

)

= mξ
(3)
1 δvα(σµαvν + σανvµ) . (4.19)
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From this we conclude that ξ
(3)
1 = 0 and thus we find that in total rates the usual spin-

orbit term ρLS is absent; this has been noticed already in previous papers [12, 13]. This

is related to the definition of µG in (A.18) in terms of the full covariant derivative instead

of the spatial components only. Using the definition of µG with spatial components only

yields an expression which is not RPI, rather it is related by reparametrization to ρLS
and hence the corresponding combination can be treated as a single parameter, i.e. by our

definition of µG.

The remaining term in C(3) contains an (ivD) which acts on Qv. This term will be

completed in a reparametrization-invariant way at higher orders, rendering a fourth-order

contribution.

Thus we find at order 1/m3 only one “genuine” contribution, which will generate the

Darwin term ρD with the operator structure

Q̄v [(iDµ) , [(ivD) , (iDµ)]]Qv .

4.2 Third and fourth order terms

At the fourth order we obtain the same results as in the scalar case. For the additional

spin-dependent terms, we find

C
(4σg)
µαβν = α

(4)
1 (−iσµν)gαβ + α

(4)
2 (−iσαβ)gµν (4.20)

+ α
(4)
3 [(−iσµα)gβν + (−iσβν)gµα] + α

(4)
4 [(−iσµβ)gαν + (−iσαν)gµβ ] ,

corresponding to a linear combination of four hermitian operators:

R
(4,σ)
1 = α

(4)
1 S

(4)
1 + α

(4)
2 S

(4)
2 + α

(4)
3 S

(4)
3 + α

(4)
4 S

(4)
4 , (4.21)

with

S
(4)
1 = Q̄v(iDµ)(iD)2(iDν)(−iσµν)Qv , (4.22)

S
(4)
2 = Q̄v(iDα)(σ ·G)(iDα)Qv , (4.23)

S
(4)
3 = Q̄v

{

(iD)2 , (σ ·G)
}

Qv , (4.24)

S
(4)
4 = Q̄v [(iDµ)(iDα)(iD

µ)(iDβ) + (iDα)(iD
µ)(iDβ)(iDµ)] (−iσαβ)Qv . (4.25)

The reparametrization (4.3) relates these terms to the spin-dependent ones in C(3):

δRPC
(3,σ)
µαν (v)= ξ

(3)
2 (δvν(−iσµα)+δvµ(−iσαν)) (4.26)

=2m
(

α
(4)
1 +α

(4)
4

)

(−iσµν)δvα+m
(

2α
(4)
3 +α

(4)
2 +α

(4)
4

)

[δvν(−iσµα)+δvµ(−iσαν)]

+m(α
(4)
1 +α

(4)
4 )δvβ [(−iσµβ)gαν+(−iσβν)gµα]Qv .

From this relation we obtain the equations

m(2α
(4)
3 + α

(4)
2 + α

(4)
4 ) = ξ

(3)
2 , (4.27)

α
(4)
1 + α

(4)
4 = 0 . (4.28)
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Solving these equations for α
(4)
3 and inserting this into R

(4,σ)
1 yields

R
(4,σ)
1 =

ξ
(3)
2

2m
S
(4)
3 +α

(4)
1

[

S
(4)
1 +S

(4)
2 −S

(4)
4 +

(

S
(4)
3

2
−S

(4)
2

)]

−α
(4)
2

2

[

S
(4)
3 −2S

(4)
2

]

(4.29)

The first term is the expected completion of terms appearing in the third order

Q̄v {(ivD) , (σ ·G)}Qv → Q̄v

{(

ivD +
1

2m
(iD)2

)

, (σ ·G)

}

Qv ,

while the remaining terms remain unconstrained and have a simple physical interpretation

in terms of the operators

S
(4)
1 + S

(4)
2 − S

(4)
4 = Q̄v [(iDµ) , (iDα)] [(iDβ) , (iD

µ)] (−iσαβ)Qv , (4.30)

S
(4)
3 − 2S

(4)
2 = Q̄v [(iDµ) , [(iDµ) , (σ ·G)]]Qv . (4.31)

The matrix element of the first operator is related to σ · (G×G), while the second operator

is related to D2(σ · G), where D is the covariant derivative in the adjoint representation,

acting on G.

The second contribution can be parametrized as

C
(4σvv)
µαβν = β

(4)
1 (−iσµν)vαvβ + β

(4)
2 (−iσαβ)vµvν (4.32)

+ β
(4)
3 [(−iσµα)vνvβ + (−iσνβ)vµvα] + β

(4)
4 [(−iσνα)vµvβ + (−iσµβ)vνvα] ,

corresponding to the linear combination of operators

R
(4,σ)
2 = β

(4)
1 U

(4)
1 + β

(4)
2 U

(4)
2 + β

(4)
3 U

(4)
3 + β

(4)
4 U

(4)
4 , (4.33)

with

U
(4)
1 = Q̄v(iDµ)(ivD)2(iDν)(−iσµν)Qv , (4.34)

U
(4)
2 = Q̄v(ivD)(σ ·G)(ivD)Qv , (4.35)

U
(4)
3 = Q̄v

{

(ivD)2 , (σ ·G)
}

Qv , (4.36)

U
(4)
4 = Q̄v [(ivD)(iDα)(ivD)(iDβ) + (iDα)(ivD)(iDβ)(ivD)] (−iσαβ)Qv . (4.37)

Using the reparametrization relation (4.3) we find no terms of this form in δRPC
(3) and thus

0 = m(β
(4)
1 + β

(4)
4 )δvβ [vµvα(−iσνβ) + vνvα(−iσβν)] , (4.38)

from which we conclude

β
(4)
1 = −β

(4)
4 , (4.39)

while all other operator coefficients remain unconstrained. Inserting this into R
(4,σ)
2 ,

we write

R
(4,σ)
2 = (β

(4)
2 − β

(4)
2 )U

(4)
2 + β

(4)
3 U

(4)
3 + β

(4)
1

[

U
(4)
1 + U

(4)
2 − U

(4)
4

]

. (4.40)
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The operators U
(4)
2 and U

(4)
3 have (ivD) factors acting directly on Qv and thus will con-

tribute only to higher orders, while the only non-vanishing contribution at order 1/m4 is

U
(4)
1 + U

(4)
2 − U

(4)
4 = Q̄v [Dµ , ivD] [ivD , iDν ] (−iσµν)Qv . (4.41)

The matrix element of this operator corresponds to the product σ · ( ~E× ~E) where ~E is the

chromo-electric field.

4.3 Re-summation and relation to full QCD: real quarks

Up to order 1/m4, we find in total eight independent parameters at tree level, defined by

the matrix elements

〈Q̄vQv〉 = 2mHµ3 , (4.42)

〈Q̄v(iDα)(iDβ)(−iσαβ)Qv〉 = 2mHdHµ2
G , (4.43)

1

2
〈Q̄v

[

(iDµ) ,

[(

ivD +
1

2m
(iD)2

)

, (iDµ)

]]

Qv〉 = 2mHρ3D , (4.44)

〈Q̄v [(iDµ) , (iDν)] [(iD
µ) , (iDν)]Qv〉 = 2mHr4G , (4.45)

〈Q̄v [(ivD) , (iDµ)] [(ivD) , (iDµ)]Qv〉 = 2mHr4E , (4.46)

〈Q̄v [(iDµ) , (iDα)] [(iD
µ) , (iDβ)] (−iσαβ)Qv〉 = 2mHdHs4B , (4.47)

〈Q̄v [(ivD) , (iDα)] [(ivD) , (iDβ)] (−iσαβ)Qv〉 = 2mHdHs4E , (4.48)

〈Q̄v [iDµ , [iD
µ , [iDα , iDβ]]] (−iσαβ)Qv〉 = 2mHdHs4qB , (4.49)

where dH = 1 for pseudo scalar mesons, dH = −1/3 for vector mesons and dH = 0 for

baryons. We note that these operators contain higher orders of 1/m in such a way that

the result is RPI to all orders. The proper power counting can still be performed, since

the contributions appearing at order 1/mn do not contain any pieces of powers 1/mk with

k ≤ n. Thus the result is correct to order 1/mn, but is fully RPI.

We have chosen these operators in such a way that they have a clear physical inter-

pretation. We have

µ2
G ∼ 〈Q̄v(~σ · ~B)Qv〉 (4.50)

ρ3D ∼ 〈Q̄v(Div ~E)Qv〉 (4.51)

r4G ∼ 〈Q̄v( ~E
2 − ~B2)Qv〉 (4.52)

r4E ∼ 〈Q̄v
~E2Qv〉 (4.53)

s4B ∼ 〈Q̄v( ~B × ~B) · ~σQv〉 (4.54)

s4E ∼ 〈Q̄v( ~E × ~E) · ~σQv〉 (4.55)

s4qB ∼ 〈Q̄v(�~σ · ~B)Qv〉 (4.56)
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We note that all these operators involve at least one gluon field; in the formal limit gs → 0

all higher dimensional operators vanish and only the leading Q̄vQv remains.

Comparing our results with those in e.g. [12] we notice that the RPI approach yields a

smaller number of parameters. This is due to the fact that reparametrization strictly links

coefficients of some of the parameters listed in [12] and hence these parameters are not

independent. In the RPI approach advertised here these terms are combined in a single

parameter.

Finally, to make RPI manifest, we may as well express these operators in terms of

full QCD operators. As we have shown explicitly for the case of the Darwin term, any

appearance of (ivD) will become completed by a higher-order term in an RPI fashion. In

terms of full QCD fields and the corresponding derivatives this means that

ivDQv → 1

2m
((iD)2 −m2)Q

and hence we can write our operators and matrix elements as

〈Q̄Q〉 = 2mHµ3 , (4.57)

〈Q̄(iDα)(iDβ)(−iσαβ)Q〉 = 2mHdHµ2
G , (4.58)

1

4m
〈Q̄
[

(iDµ) ,
[

(iD)2 , (iDµ)
]]

Q〉 = 2mHρ3D , (4.59)

〈Q̄ [(iDµ) , (iDν)] [(iD
µ) , (iDν)]Q〉 = 2mHr4G , (4.60)

1

4m2
〈Q̄
[

(iD)2 , (iDµ)
] [

(iD)2 , (iDµ)
]

Q〉 = 2mHr4E , (4.61)

〈Q̄ [(iDµ) , (iDα)] [(iD
µ) , (iDβ)] (−iσαβ)Q〉 = 2mHdHs4B , (4.62)

1

4m2
〈Q̄
[

(iD)2 , (iDα)
] [

(iD)2 , (iDβ)
]

(−iσαβ)Q〉 = 2mHdHs4E , (4.63)

〈Q̄ [iDµ , [iD
µ , [iDα , iDβ]]] (−iσαβ)Q〉 = 2mHdHs4qB . (4.64)

Note that the power counting becomes now more complicated, since the dimension of the

operator (i.e. the number of derivatives in the operator) no longer corresponds to the order

in the 1/m expansion.

5 Beyond tree level

Most of the relations derived in this paper also hold beyond tree level, since RPI must

hold also beyond tree level. However, the OPE (4.1) must be generalized to include all

possible operators with the relevant dimension at each order. These operators are built

from quark fields (light and heavy) and gluon fields as well as from derivatives acting

on these fields. We define that all light quark and gluon fields as well as the derivatives

acting on these fields are invariant under reparametrization and thus the behavior of any

operator under reparametrization is defined. Since the total sum of the OPE is again RPI,

the generalization of (4.3) is obvious.
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The operators which appear up to order 1/m4 have been written down e.g. in [12] and

their RG mixing has been discussed. Up to order 1/m2 the full OPE does not have any

additional operators beyond the ones we have defined at tree level, which means that our

conclusions remain true to all orders in αs. At order 1/m3 new operators appear, which

are four quark operator of the form

(Q̄vΓQv)(q̄Γq) and (Q̄vΓT
aQv)(q̄T

aΓq) (5.1)

where T a are the generators of color SU(3) and Γ is a (v independent) Dirac matrix.

These operators are RPI, therefore their coefficients may not be related by RPI to any

other coefficient. Likewise, one can directly write these operators in full QCD by simply

dropping the subscript v in (5.1).

In some applications it may happen, that the four-quark operators depend on v by a

v dependence of Γ (e.g. Γ = /v). In such a case (4.3) will relate this operator to a term

appearing at higher order, a relation that holds at any order in αs.

Finally, we have to consider the radiative corrections to the color-octet operators. We

consider as an illustration r4E in (4.46). Writing the chromo-electric field in its components

Ea
µT

a = [(ivD) , (iDµ)] , (5.2)

we see that r4E only contains the (tree level) combination

[(ivD) , (iDµ)][(ivD) , (iDµ)] = −Ea
µE

µ,b 1

2

{

T a, T b
}

, (5.3)

where
{

T a, T b
}

= dabcT c +
1

3
δab (5.4)

and dabc = dbac the SU(3) symmetric symbol. It has been shown that these two contri-

butions receive different radiative corrections [9, 14]. Therefore, beyond tree level, r4E will

generate two independent parameters.

6 Alternative normalization

The normalization of the leading term µ3 is derived from the conservation of the heavy

flavour current in full QCD (see appendix A). However, it is worthwhile to point out that

there is also an alternative normalization possible which will relate Q̄Q to the hadron mass.

We start from the energy momentum Θµν tensor of QCD, including the heavy quark.

Energy and momentum conservation implies

∂µΘµν = 0 , (6.1)

which gives the normalization

〈H(p)|Θµν |H(p)〉 = 〈Θµν〉 = 2pµpν . (6.2)
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Using the expression from QCD for the energy momentum tensor and taking the trace,

we get

Θµ
µ = mQ̄Q+

β(αs)

4π
Ga

µνG
µν, a (6.3)

where we have added the well-known contribution of the trace anomaly. Taking the forward

matrix element gives

〈Θµ
µ〉 = 2m2

H = m〈Q̄Q〉+ β(αs)

4π
〈Ga

µνG
µν, a〉 , (6.4)

and hence we obtain

mµ3 = mH − 1

2mH

β(αs)

4π
〈Ga

µνG
µν, a〉 . (6.5)

We note that inserting (A.19) yields an exact expression for the hadron mass

mH = m− 1

2m
(µ2

π − µ2
G) +

1

2mH

β(αs)

4π
〈Ga

µνG
µν, a〉 . (6.6)

This can be compared to the 1/m expansion for the pseudoscalar meson ground state:

mH = m+ Λ̄ +
1

2m

(

lim
m→∞

µ2
π − lim

m→∞
µ2
G

)

+O(1/m3) , (6.7)

from which we conclude that

lim
m→∞

1

2mH

β(αs)

4π
〈Ga

µνG
µν, a〉 = Λ̄ = lim

m→∞
(mH −m) , (6.8)

leading to

lim
m→∞

µ3 = 1 (6.9)

as expected.

However, we may use the RPI formulation to write for a weak decay of a heavy hadron

H the relation

Γ ∝ G2
Fm

5µ3 = G2
Fm

4

(

mH − 1

2mH

β(αs)

4π
〈Ga

µνG
µν, a〉

)

(6.10)

corresponding to the leading order result in the reparametrization-invariant formulation.

7 Conclusion

We have made use of the fact that RPI relates different orders in the HQE to perform

partial re-summations. Computing up to a specific order in 1/m, we combine terms of

higher order in such a way that the result becomes RPI. This can be made manifest by

writing the resulting matrix elements for the non-perturbative input as matrix elements of

operators and states defined in full QCD, which do not have any reference to the velocity

vector needed to set up the HQE.

Clearly the RPI improved results calculated to a certain order contain arbitrarily high

orders in 1/m; however, they are still correct only up to the order one has actually calcu-

lated, since at each order new terms appear, which are not related by reparametrization
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to terms appearing at lower order. In turn, our approach re-sums all the terms which may

be related back to lower-order terms, and thus we expect an improvement.

In this paper, we have confined our discussion to total rates. In this case, a side effect

of RPI is that the number of independent parameters in the HQE is reduced compared to

earlier analyses. While the relations implied by RPI have been found some time ago, this

has never been used to explicitly reduce the number of independent parameters atO(1/m4).

The “genuine” terms at higher orders, which do not relate back to lower orders by

reparametrization, are all due to the presence of gluons or additional light quarks. The

matching calculation to compute the OPE coefficients for the total rate is conveniently

done using free quark and gluon states. In our approach the leading operator Q̄Q is the

only contribution which appears in the matching using only the two quarks and no gluons;

all higher-order terms require at least one gluon in the matching calculation. Therefore, all

the matrix elements which have a zero-gluon matrix element are contained in the matrix

element of Q̄Q.

The relations obtained from RPI have been formulated for the general case, i.e. also

for differential rates. However, for differential rates the RPI relation imply differential

equations for the coefficients of the HQE; a detailed analysis for the differential case is

beyond the scope of this work and will be exploited in future work.
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A Matrix elements

A.1 Normalization for the scalar case

Here we collect the expression for the relevant forward matrix elements for the scalar case.

The leading matrix element is

〈φ†
vφv〉 = 〈H(p)|φ†

vφv|H(p)〉 = 2m〈φ†φ〉 (A.1)

where |H(p)〉 is the hadronic state of full (scalar) QCD. We note that we may re-insert

the full QCD operators and define

〈φ†φ〉 = 4m2
Hµ3 (A.2)

with a hadronic parameter µ3.

By a similar argument as for real quarks we can show that µ3 = 1 up to terms of order

1/m2: we note that the equation of motion (2.10) for φ has a conserved current of the form

Jµ = φ†(i
↔

Dµ)φ = −i
(

(Dµφ)
†φ− φ†(Dµφ)

)

. (A.3)
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Inserting the rescaled field we get (replacing φ by φv)

Jµ = vµφ
†
vφv +

1

2m
φ†
vi

↔

Dµ φv

Taking the forward matrix element of this operator yields

〈Jµ〉 = 2pµ = 2mHvµ = vµ〈φ†
vφv〉+

1

m
〈φ†

viDµφv〉 (A.4)

where we have made a choice for the velocity v to be v = pH/mH . Contracting with vµ

we get

2mH = 〈φ†
vφv〉+

1

m
〈φ†

v(ivD)φv〉 = 〈φ†
vφv〉 −

1

2m2
〈φ†

v(iD)2φv〉 (A.5)

Defining the kinetic- energy parameter µπ as

〈φ†
v(iD)2φv〉 = −2mHµ2

π (A.6)

we finally get

µ3 = 1− µ2
π

2m2
(A.7)

As discussed in the text, there is no matrix element at order 1/m2 in the total rates, beyond

µ2
π which only appears in the expression for µ3.

A.2 Real QCD

From the equation of motion (2.4), we find for a Dirac matrix Γ

Q̄v(iDµ1
) . . .(iDµn

)ΓQv = Q̄v(iDµ1
) . . .(iDµn

)Γ/vQv+
1

m
Q̄v(iDµ1

) . . .(iDµn
)Γ(i /D)Qv (A.8)

Q̄v(iDµ1
) . . .(iDµn

)ΓQv = Q̄v(iDµ1
) . . .(iDµn

)/vΓQv+
1

m
Q̄v(i /D)(iDµ1

) . . .(iDµn
)ΓQv

+total derivative (A.9)

where the total derivative will vanish when a forward matrix element is taken.

We obtain

〈Q̄v(iDµ1
) . . . (iDµn

)ΓQv〉 =
1

2
〈Q̄v(iDµ1

) . . . (iDµn
) {Γ , /v}Qv〉

+
1

2m
〈Q̄v {(i /D) , (iDµ1

) . . . (iDµn
)Γ}Qv , 〉 (A.10)

which yields for Γ = 1

〈Q̄v(iDµ1
) . . . (iDµn

)Qv〉 = 〈Q̄v(iDµ1
) . . . (iDµn

)/vQv〉

+
1

2m
〈Q̄v {(i /D) , (iDµ1

) . . . (iDµn
)}Qv〉 , (A.11)

and for Γ = γα

〈Q̄v(iDµ1
) . . . (iDµn

)γαQv〉 = vα〈Q̄v(iDµ1
) . . . (iDµn

)Qv〉

+
1

2m
〈Q̄v {(i /D) , γα(iDµ1

) . . . (iDµn
)}Qv〉 . (A.12)

These relations show that all the contributions with a single γα can be dropped.
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The leading order matrix element is defined as in the scalar case

〈Q̄vQv〉 = 2mHµ3 . (A.13)

Using the relation (A.12) for n = 0 we get

〈Q̄vγαQv〉 = vα〈Q̄vQv〉+
1

m
〈Q̄v(iDα)Qv〉 . (A.14)

Contracting with vα we obtain

〈Q̄v/vQv〉 = 〈Q̄vQv〉+
1

m
〈Q̄v(ivD)Qv〉 = 〈Q̄/vQ〉 = 2mH , (A.15)

where we used the conservation of the b quark current in QCD. Furthermore, we may

use (2.5) to obtain

〈Q̄vQv〉 = 2mH +
1

2m2
〈Q̄v(i /D)(i /D)Qv〉 . (A.16)

Finally, using the definitions

〈Q̄v(iD)2Qv〉 = −2mHµ2
π , (A.17)

〈Q̄v(σ ·G)Qv〉 = 2mHdHµ2
G , (A.18)

where dH = 1 for pseudo scalar mesons, dH = −1/3 for vector mesons and dH = 0 for

baryons. We find

µ3 = 1− 1

2m2
(µ2

π − dHµ2
G) . (A.19)

B Example: tree level B → Xsγ

As an example, we compute the radiative b → sγ decay at tree level but with higher-order

1/m corrections. For illustration, we consider only the contribution from the operator O7

λ

2
s̄σµν(1 + γ5)bF

µν with λ =
em

16π2
|C7(m)VtsV

∗
tb| . (B.1)

We find, considering massless s quarks,

T = −2λ2 b̄v

[

σµαq
α

(

1

/S + i /D

)

σνβq
βgµν

1

q2

]

bv , (B.2)

where S = p − q, and q is the photon momentum. From the expansion of the s quark

propagator, we obtain

1

/S + i /D
=

1

/S
− 1

/S
i /D

1

/S
+

1

/S
i /D

1

/S
i /D

1

/S
+ · · · (B.3)

=
1

S2
/S −

(

1

S2

)2

/Si /D/S +

(

1

S2

)3

/Si /D/Si /D/S + · · · .

Performing the loop integration and taking the imaginary part yields for the total rate;

Γbsg =
λ2m3

4π

[

µ3 −
2

m2
µ2
G − 10ρ3D

3m3
− 1

3m4

(

4r4G + 4r4E +
1

4
s4qB − 2s4E

)]

, (B.4)

where we indeed see the expected reduction to independent matrix elements. Note that

the contribution of s4B is absent in this relation which is accidental.
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