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1 Introduction

Entanglement entropy has been a powerful probe to detect properties of matter. For

example, entanglement entropy can probe different topological orders. In 2+1 dimensions,

the entanglement entropy of a topologically ordered quantum system, when the system is

divided into two regions A and B, takes the following generic form

S(A) = α
LA

ε
− γ, (1.1)

where LA is the length of the boundary of region A, ε the UV cutoff, and γ, the universal

term named “topological entanglement entropy” [1, 2]. It is known that when S(A) is

evaluated on the ground state of the system on a sphere,

γ = n lnD, (1.2)
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for some region A consisting of n disconnected disks, and D the total quantum dimension

of the topological order, defined as

D =

√∑
i

d2
i , (1.3)

and di are the quantum dimensions of the anyons ai of the topological order.

In the current paper, we shall inspect the entanglement entropy in a topologically

ordered system (to be called a topological order for simplicity unless otherwise stated)

with non-trivial boundary conditions.

To avoid any confusion, we shall refer to a boundary between two regions in a system

as an entanglement boundary (EB) and a physical, gapped boundary between the system

and vacuum a physical boundary (PB).

Non-chiral topological orders can admit gapped, or alternatively topological boundary

conditions. In 2+1 dimensions, each such boundary condition is related to an algebra

often called the “Lagrangian subalgebra” [3–6]. It is also characterized by a Frobenius

algebra [7] in the modular tensor category describing the topological order or by a Frobenius

algebra [8–10] in the unitary fusion category describing the fundamental degrees of freedom

of the topological order. These boundary conditions are also known to correspond to the

physics of “anyon condensation” [11–14]. Each such boundary is also associated to some

modular invariant [3, 7, 15]. We would like to inspect whether the entanglement entropy

can detect these boundary conditions, and if so, whether the resultant values correspond

to certain topological invariants.

We will inspect this problem in the context of the twisted quantum double (TQD) mod-

els of (2 + 1)d topological orders [16], which are a Hamiltonian extension of the Dijkgraaf-

Witten topological gauge theories [17]. The entanglement entropy of these models have

been computed before, notably in [18, 19] in the absence of physical boundaries. In the

case of Z2 toric code model, the case with PB was also briefly discussed in [20]. We will

revisit the problem, and introduce a streamlined method. It involves reducing the problem

systematically to one that is independent of system size. We also clarify the construction

of Schmidt decomposition by systematically choosing a convenient canonical set of basis.

As we will see, the modified discussion would enable an efficient and clear inspection of the

scenario when we have non-trivial boundary conditions.

2 TQD (Dijkgraaf-Witten) models

Dijkgraaf-Witten topological gauge theories were formulated initially as a way of defining

a path-integral of a discrete version of Chern-Simons theory. They were later adopted for

defining quantum Hamiltonians, whose ground states admit exotic properties, that we now

identify as the fixed-point wavefunction of topological orders. For a detailed discussion, we

refer the readers to [16, 21].

We only collect the necessary ingredients of the TQD models that would facilitate our

exposition in the following. We note that the model is defined on a lattice Γ. The lattice
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Figure 1. An illustration of the action of Av(g) and Bp(g).

does not have to be regular but without loss of generality, we shall consider a square lattice.

There is a Hilbert space Hl defined at each link l.

We first consider a special subset of the TQD models, where there is no twist. Such

models are called the Kitaev models or quantum double (QD) models. A QD model with

a finite gauge group G, dimHl = |G|, where one can choose a basis such that each basis

state can be labeled by a group element of the group G, has the Hamiltonian

H = −
∑
v

Av −
∑
p

Bp, Av =
1

|G|
∑
g

Av(g), Bp = Bp(e). (2.1)

The subscript v denotes vertices, and p denotes plaquettes. The action of Av(g) and Bp(g)

is illustrated in figure 1.

Since all the operators Av and Bp commute, the ground state can be generated by

|ψ〉 =
∏
v

Av|Ω〉, (2.2)

where |Ω〉 is some appropriate reference state satisfying Bp|Ω〉 = |Ω〉. When the (closed)

two dimensional space on which the state lives is a sphere, the reference state |Ω〉 is simply

given by all links taking the state corresponding to the identity element e of the group G,

namely

|Ω〉 =
⊗
l

|e〉l, (2.3)

where l runs over all links of the lattice Γ. This state |Ω〉 is of course a direct product

state. When the 2-dimensional space has non contractible cycles, there would be a ground

state degeneracy, and a basis of the degenerate ground states can be constructed by taking

a set of reference states with closed ribbon operators acting on non-contractible cycle in

the trivial reference state |Ω〉.
The analysis in the following for individual such states are all the same. We will discuss

general linear combinations of these basis in later sections when we encounter the geometry

of a cylinder.

– 3 –
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2.1 Gapped boundaries

The PB conditions of the QD models have been discussed in [22, 23] and subsequently

generalized to the TQD models [9, 24], to the Levin-Wen models [8, 10], and to higher

dimensions [25].

We will illustrate our methods mainly using the QD model. Each PB is characterized

by a subgroup K ⊂ G [23]. In fact, it is shown in [9] that even for a TQD model with a

gauge group G, a PB condition is fully characterized by a subgroup K ⊆ G.

The PB Hamiltonian is given by

HB = −
∑
vB

AvB −
∑
lB

BlB (2.4)

where AvB acts on the links connected to the vertex located at a PB given by AvB =
1
|K|
∑

k∈K AvB (k), and BlB is a projector on the PB links to the subgroup K.

A ground state is generated in a similar manner as in (2.2), except that for vertices on

the PB we replace a generic Av by AvB .

3 Revisiting the entanglement entropy of the QD models

In this section, we revisit the problem of computing the entanglement entropy in the QD

models. We shall lay out a procedure that is improved compared with the discussion

in [18, 19, 26]. The procedure would allow one to obtain the entanglement entropy in the

presence of PBs in a systematic and clear manner.

Now for simplicity, we consider again the case of an entangling region R taking the

shape of a disk on the sphere.

On the sphere, any topological order has unit ground state degeneracy. The ground

state on the sphere is generated as described above, in equation (2.2). It is known that the

operators Av acting on v away from the EB between the region R and its complement R̄

do not contribute to generating entanglement between the regions. It is also known that

the entanglement arises from operators Avb that act on the vertices vb along the EB and

hence affect both region R and R̄ at the same time. Hence, one can simply label some i-th

EB configuration by the set of vertex operators {Avb(gib)}.
Consequently, one can just focus on different EB configurations {Avb(gib)} in each

term in the ground-state wavefunction. As usual, there is a physical ambiguity over the

definition of entanglement entropy on a lattice gauge theory. But here, we have taken the

viewpoint explained for example in [27–31], and work with the extended Hilbert space,

which should agree with the electric center in terms of the choice of operator algebra in

the original gauge theory [32].

The game is to obtain a Schimidt decomposition to recover the reduced density ma-

trix. Given that only Avb are responsible for the entanglement between R and R̄, a naive

Schimidt decomposition is obtained as

|Ψ〉 =
1

|G|L

|G|L∑
i=1

[
|Ri〉 ⊗ |R̄i〉

]
, (3.1)

– 4 –
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where

|Ri〉 ⊗ |R̄i〉 =

L∏
b=1

Avb(gib)

 ∑
{Avr}

∏
vr∈R

Avr |0〉R ⊗
∑
{Av′r

}

∏
vr′∈R̄

Avr′ |0〉R̄

 , (3.2)

for some i-th EB configuration {Avb(gib)}, where L is the length, i.e., the number of links,

along the EB. We note that the r.h.s. above is indeed a direct product state in R and R̄,

agreeing with the expression on the lhs, since
∏

b=1Avb(gib) is a tensor product of operators

acting on R and R̄ respectively. Had each EB configuration
∏

bAvb(gb) always led to a pair

of orthogonal internal states |Ri〉 and |R̄i〉, the Schidmit decomposition would have been

completed. This is however not the case. Indeed, two different sets {Avb(gi,jb)}i,j generating

states |Ri,j〉 and similarly |R̄i,j〉 for different pairs of i, j are generically not linearly indepen-

dent. That is, our naive labelling of the internal states based on the EB configuration of Avb

does not in general lead to |G|L orthogonal |Ri〉 and |R̄i〉 separately. There is a complica-

tion, namely that many of the |Ri〉 (|R̄i〉) for different i correspond to the same state. This

is because the global action of the internal Av∈R (R̄) in each connected component of R (R̄)

(excluding Avb) could mimic the effect of the global action of Avb within links in the compo-

nent. (See the detailed exposition in section 4.7 on the bath of ribbons generated by Av. )

As we are going to see, more generically when the region R or R̄ has topologies more

non-trivial than a disk, or when the system is placed on surfaces beyond a sphere, the

ground state is still generated by in an analogous manner as in 2.2 with the reference

state |Ω〉 potentially dressed by ribbon operators (the discussion of these dressed states are

postponed until section 4.6). The paremetrization adopted in 3.1 and 3.2 can still work

quite generally. Generically, we would be met with a new complication. That is, whenever

we transform a state by Av(g) at all v within region R, including the entanglement boundary

vb at the same time, we would keep |Ri〉 invariant, while taking |R̄i〉 to another state |R̄j〉.
The EB configuration after such a transformation has been shifted {Avb(gb)} → {Avb(gbg)}
however. This implies that some of the |Ri,j〉 with i 6= j may in fact be the same but they

do connect to different |R̄i,j〉, leading to entanglement pattern in the wavefunction of the

form |Ri〉 ⊗ (|R̄i〉+ |R̄j〉+ · · · ).
In the classic literature on the subject [18], further analysis is based on defining a

huge group G corresponding to the action of Av(g) on the entire lattice, and attempting

to obtain the quotient group GR,R̄, where we quotient by the action of the corresponding

groups GR and GR̄, where GX includes action of Av on vertices v within X, excluding the

EB. This is of course Mathematically correct but the analysis on complicated situations

where there are PBs can be confusing at times.

3.1 A modified analysis

The improvement proposed in the current paper is to consider explicitly a division of the

collection of |G|L EB configurations
∏

bAvb(gb) into distinct sets. The choice of such a

division is such that each group would contribute to identical blocks in the reduced density

matrix. i.e. The complications that arise due to global applications of Av(g) within R or

R̄ described above could generate off-diagonal elements only within each block.

– 5 –
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Avb

Figure 2. Region R is enclosed by the dashed line. It has the topology of a disk.

These independent blocks are obtained as follows. Let us begin with the simplest

scenario, where the model is defined on a 2-sphere. Region R is a disk with circumference

L on the sphere. That is, the EB between R and R̄ consists of L links. This is illustrated

in figure 2.

Then there are |G|L−1 sets. Each set is obtained in this way: take a configuration along

the EB as a reference, which is a result of acting the vertex operators Πi∈EBAvi(gi), then

multiply each gi with one and the same group element g ∈ G to reach another configuration

in the set, and repeat this for all element of G. This is the G1-orbit of configurations along

the EB and contains precisely |G| configurations referred to above. Each configuration in

a G-orbit is clearly labeled by certain group element g ∈ G. According to the discussion

above therefore, we write

|ψ〉1 block =
1

|G|

|G|∑
i

|R(gi)〉 ⊗ |R̄(gi)〉, (3.3)

where gi labels the global shift along vb over a reference representative EB configuration

in a G-orbit.

Now in this case, the entanglement boundary is contractible both within R, and in R̄.

We note that each extra global action of gi at Avb is to create a pair of gi shifts that form

a closed loop in both R and R̄ simultaneously, and they are contractible since the EB is

contractible. This immediately suggests that |R (R̄) (gi)〉 = |R (R̄) (gj)〉 for all i, j, due

to the separate action of
∏

vr∈R (R̄)Avr within the regions.

– 6 –
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We thus conclude that the wavefunction within this G-orbit can be simplified to

|ψ〉1 block = |R(g1〉)⊗ |R̄(g1〉), (3.4)

which is a direct product state within the block. Therefore each block contributes to a 1

dimensional projector to the reduced density matrix.

The entanglement entropy thus reads

S(R) = ln |G|L−1 = ln |G|L − ln |G|, (3.5)

which is just the log of the number of blocks and recovers the well-known result.

Now, consider an EB of N disconnected components, each component contractible

in both R and R̄. For any given configuration of
∏N

i

∏
bi
Avb(gbi) on the EB, where bi

distinguishes the different disconnected components of the EB, we collect all configurations

related to the reference configuration by
∏N

i

∏
bi
Avb(gbigi) into a set. i.e. we collect EB

configurations related to each other by at most a global shift by some element gi on each

individual EB. There are thus |G|N members in a set, which is a disjoint union of N G-

orbits. There are |G|L−N separate GN -orbits that would not interfere with each other as we

mod out actions of global transformations in various regions. The reduced density matrix

would be reduced to a block diagonal form with |G|L−N blocks, each being identical.

Individual member within a GN -orbit can thus be labelled by an N -tuple: (g1, · · · gN ).

Using the same reasoning, for N disconnected EBs, we have |G|L−N blocks, while each

block is again equivalent to a single direct product state. We thus obtain

S(RN ) = ln |G|L−N = ln |G|L −N ln |G| (3.6)

which is indeed the well known result for the entanglement entropy.

This method can also be readily applied to compute entanglement entropy in the pres-

ence of anyon excitations. We will for illustrative purpose demonstrate these applications

in the appendix.

To summarize, this method systematically reduces a problem of treating a huge density

matrix that scales as |G|L for an entanglement boundary of size L, to one whose dimension

only scales at most with |G|N , where N is the number of disconnected components of the

entanglement boundary, allowing a clear analysis even in complicated situations.

We will now apply this set of methods to the case where there are PBs and where the

analysis can get substantially more complicated and the advantage of the method more

pronounced.

4 Entanglement entropy for different PBs

In this section, we would like to apply our trick of entanglement entropy computation to

the case where there are PBs. The choice of the PB condition would modify the final

results of the entanglement entropy. As to be seen, the topological entanglement entropy

has a subtle dependence on the PBs.

– 7 –
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Region R

Region ഥR

Figure 3. A disk away from the PB of a disk.

4.1 Case I: region R is a disk away from the PB of a disk

Consider a disk whose PB is characterized by a subgroup K ⊆ G. Then consider a region

R that is also a disk away from the PB. This is illustrated in figure 3 for R consisting of a

single connected component.

In this case, we have one EB, so we divide the EB configurations into |G|L−1 G-orbits,

each G-orbit has |G| members labeled by (g). Now, for precisely the same reason as in the

previous analysis of a region with a disk topology, all |R(gi)〉 = |R(gj)〉 for all i, j. This

immediately implies that within each G-orbit we have a direct product state.

The entanglement entropy is thus still given by counting the number of individual

blocks, and recovers the result

S(R) = ln |G|L−N . (4.1)

We have generalized the result directly to the case where R contains N disconnected disks.

The result is insensitive to the presence of the non-trivial gapped boundaries.

We note however, that a new ingredient has crept in in the current situation. Although

it did not change the entanglement spectrum, it would make a difference in later analysis.

The new ingredient is that the EB may not be contractible in R̄. Therefore, not all |R̄(gi)〉
are the same. It is interesting to check which of the |R̄(gi)〉 are in fact orthogonal. We

note that a global action of Av∈R̄(k), k ∈ K can generate a closed loop of k shifts along

the links connecting to the EB. This means that

|R̄(gi)〉 = |R̄(gik)〉 (4.2)

for all k ∈ K. i.e. All |R̄(gi)〉 for gi belonging to the same left coset of K corresponds to

the same state. For completeness, we thus have

|ψ〉1 block = |R(gi)〉 ⊗
|K|
|G|

|G|/|K|∑
i

|R̄(ci)〉

 . (4.3)

where ci is a representative of a left coset. There are |G|/|K| left cosets.

– 8 –
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Region R

Region ഥR

Figure 4. Region R touching the PB of a disk.

4.2 Case II: region R touching the PB of a disk

Here we continue to keep the state on a disk with a PB characterized by K ∈ G. The region

R however, touches the PB. The EB is thus a line that begins and ends at the physical

boundary. This is illustrated in figure 4.

In this case, if the EB contains L vertices, then two of them sits at the PB, while the rest

are located in the bulk. Therefore, the total number of configurations of possible Av sitting

at the EB is given by |G|L−2|K|2. Naively we would like to divide these configurations into

G-orbits. Nevertheless, we are not able to do so here because AvB (g) located at the PB

are restricted to g ∈ K. Instead, we can divide these configurations into K orbits, with

|K| members in the orbit, each labeled by (k). There are thus |G|L−2|K| distinct orbits.

In this case, the EB is not contractible in either R or R̄.

From the analysis of the previous section, we note however that not all the internal

|R(gi)〉 or |R̄(gi)〉 are independent. They again satisfy

|R (R̄) (ki)〉 = |R (R̄) (kik)〉 (4.4)

for all k ∈ K, and thus all |R (R̄) (ki)〉 = |R (R̄) (kj)〉 for all i, j.

One therefore concludes that the orbit is contributing to one direct product state.

|ψ〉1 block = (|R(k1)〉 ⊗ |R̄(k1)〉). (4.5)

The entanglement entropy is then given by

S(R) = ln(|G|L−2|K|) = ln(|K|2|G|L−2)− ln |K|, (4.6)

where the first term is grouped together and taken as the area term, and the second term

a topological term resulting from a change in the global constraints. We see the first

indication that the topological entanglement entropy is indeed sensitive to the physical

boundary conditions.

– 9 –
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Region R

Region ഥR

Figure 5. A vertical slit on a cylinder.

4.3 Case III: region R being a vertical slit on a cylinder with two PBs

Now consider a state on a cylinder with two PBs characterized by two subgroups K1 and

K2 of G respectively (see figure 5).

Now on a cylinder with a non-contractible cycle, generically there would be degenerate

ground states and the entanglement entropy would depend on the precise linear combina-

tion of ground states.

It is known that one can construct a set of basis states in the degenerate ground-state

subspace using ribbon operators. This is obtained by wrapping ribbon operators around

non-contractible cycles. In the case where there are PBs, one can also construct basis

by attaching ribbon operators that stretch between the upper and lower PBs. Not all

ribbon operators can end at the PB without leading to boundary excitations, except those

corresponding to condensed anyons at the PB.

We first take the simplest basis state, corresponding to no ribbon, in which the state

is still describable by equation (2.2). We will postpone the discussion of generic ground

states to section 4.6.

The first scenario we consider is a region R that corresponds to a strip that connects

the upper PB K1 and the lower PB K2. In this case, there are two disconnected EBs too.

There are altogether |G|L−4|K1|2|K2|2 different EB configurations. For similar reasons as

in the previous subsection, we are not able to divide these EBs into G2 orbits because

of the restriction of the physical boundary vertex. We are however allowed to divide the

EB into K2-orbit, where K is the intersection of K1 and K2, which is itself a subgroup

of G. Each member in the orbit is now labeled by (k1, k2). In this case, each connected

component of the EB is not contractible, either in R or R̄.

As in the previous examples, we now systematically proceed in two steps. First we

deterimine which of the |R (R̄) (k1, k2)〉 are identified. Then we inspect global actions in

each connected component of R or R̄ to look for potential off-diagonal terms in the Schimdt

decomposition.

– 10 –
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Region R

Region ഥR

Figure 6. A horizontal strip wrapping the cylinder.

From similar analysis of non-contractible EB in the previous subsection, we conclude

that

|R (R̄) (k1, k2)〉 = |R (R̄) (k1k, k2k)〉, (4.7)

where K are group elements shared by K1 and K2.

Then we look for global actions allowed within R or R̄ that keep the respective re-

gion invariant. Again that is restricted to elements k in K, which also happens to take

|R (R̄) (k1, k2)〉 → |R (R̄) (k1k, k2k)〉. As a result, following our procedure in the previ-

ous examples, we conclude that each K2-orbit breaks up into |K| entangled states. The

entanglement entropy takes the form

S(R) = ln

(
|G|L−4|K1|2|K2|2

|K|2
|K|
)

= ln(|G|L−4|K1||K2|)− ln |K|. (4.8)

For region R made up of N such strips connecting the top PB to the bottom PB,

there are 2N disconnected EBs. Repeating exactly the same analysis, we find that the

entanglement entropy would take the general form

S(R) = ln(|G|L−4N |K1|2N |K2|2N )−N ln |K|. (4.9)

4.4 Case IV: region R being a horizontal strip wrapping the cylinder

Now we consider another interesting case. The state is still defined on a cylinder whose

PBs are characterized by groups K1 and K2 respectively.

However the region R is now taken as a strip wrapping the non-contractible cycle of

the cylinder, separated from both PBs.

Again, we will begin with an analysis based on the state (2.2). It turns out that this

case is one that is the most interesting we have encountered so far.

The EB is made up of two disconnected components each non-contractible in either

R and R̄. As before, we first divide all the EB configurations into G2-orbits with each

member labelled by (g1, g2), where g1 corresponds to the upper EB and g2 corresponds to

the lower EB. The total number of EB configurations is |G|L, where L is the number of

vertices on the EB, so there are |G|L−2 G2-orbits and each G2-orbit has |G|2 members.

– 11 –
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Again, our first step is to determine which of the |R (R̄) (g1, g2)〉 are dependent. From

action within R one can generate a pair of g ribbons with Av(g) near the upper and

lower entanglement boundary simultaneously. Similarly Av in region R̄ can generate a

ribbon k ∈ K1 in the upper entanglement boundary and k ∈ K2 in the lower entanglement

boundary. Therefore we have

|R(g1, g2)〉 = |R(g1g, g2g)〉, |R̄(g1, g2)〉 = |R̄(g1k1, g2k2)〉. (4.10)

Then we would like to analyze how these independent basis states of R and R̄ are

entangled. As in the previous analysis, global actions in R together with the EB vertices

preserve R but shift R̄. It takes the EB configuration from (g1, g2)→ (g1g, g2g), thus taking

the states |R̄(g1, g2)〉 → |R̄(g1g, g2g)〉. This means that |R(g1, g2)〉 is paired with both

|R̄(g1, g2)〉 and also |R̄(g1g, g2g)〉. These global actions form a group G. Similarly, a global

action in R̄ and EB preserves R̄ while taking the EB configuration (g1, g2)→ (g1k1, g2k2),

and thus taking |R(g1, g2)〉 → |R(g1k1, g2k2)〉. These global actions form a group K1⊗K2.

To recover a Schimdt decomposition and subsequently the reduced density matrix,

we need to count the number of times each independent |R(g1, g2)〉 gets paired with an

independent |R̄(g′1, g
′
2)〉 after taking into account the redundancy (4.10). To that end, we

further divide these |G|2 EB configurations (g1, g2) into sets of |G|. i.e. The members in

each G2-orbit is further divided into |G| different G-orbits. Members in the G-orbit can

be related by (g1, g2) = (g′1g, g
′
2g). The EB configurations (g1, g2) and (1, g2g

−1
1 ) are in

the same G-orbit. Therefore we can take (1, r) where r runs through the group G as the

representative of a G-orbit in each G2-orbit. Other members of the G-orbit containing the

representative (1, r) can be parametrized by (g, rg).

From (4.10), it implies that all members in a given G orbit are attached to the same

|R(g1, g2)〉 state.

Next, we would like to analyze the effect of those global actions K1⊗K2 that preserve

R̄ on the EB configurations. Under these actions, members in each G-orbit are allocated to

the other G-orbits. For simplicity, consider the G-orbit represented by (1, 1). The members

in that G-orbit are denoted by (g, g). For a specific choice of k1 and k2, (g, g) is mapped to

(gk1, gk2). This is in the G-orbit represented by (1, gk2k
−1
1 g−1). ie. There exists a g̃ such

that

(gk1g̃, gk2g̃) = (1, gk2k
−1
1 g−1). (4.11)

That is to say, under the action of k1 and k2, members in the G-orbit (1, 1) are mapped into

G-orbits labelled by the elements in the conjugacy class of k2k
−1
1 . The number of members

mapped into each G-orbit is equal to the order of the centralizer of k2k
−1
1 : |Z(k2k

−1
1 )|.

Since K1 ⊗K2 are actions that preserve R̄, it implies that |R(1, 1)〉 and |R(1, gk2k
−1
1 g−1)〉

are paired with the same state |R̄(1, 1)〉. The analysis can be carried out for other G-orbits

by the replacement (1, 1) → (1, r). For another pair (k
′
1, k

′
2) in the group K1 ⊗K2 satis-

fying k
′
2k
′−1
1 = k2k

−1
1 , the re-distribution of members of a G-orbit would be identical to

that resulting from the action of (k1, k2). If k
′
2k
′−1
1 and k2k

−1
1 belong to different conju-

gacy classes, (k
′
1, k

′
2) will map the members in the G-orbit (1, 1) into G-orbits labelled by

elements in a different conjugacy class other than the conjugacy class of k2k
−1
1 .
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Consider also the case where k
′
2k
′−1
1 = g̃k2k

−1
1 g̃−1 for some g̃ ∈ G. From the analysis

above, it implies that members of a G-orbit would get mapped to the same destination

G-orbits under the actions of (k′1, k
′
2) and (k1, k2). What is of note is that while these

actions share the same destination G-orbit, the actual collection of destination members

for the two actions have no overlap. That is, if the set K2K1 — generated by all pairs

k2k
−1
1 for ki ∈ Ki — contains N elements belonging to the conjugacy class C, the number

of members in the G-orbit (1, 1) mapped into the G-orbit labelled by an element of that

conjugacy class would be N · |ZC |, where ZC denote the centralizer of a representative

element in the conjugacy class C.

In the following, we would like to prove this assertion. Suppose {ci} are the elements

of a conjugacy class C of the group G. Denote the centralizer of each ci by Z(ci). For

every pair of ci and cj , choose a specific qi,j ∈ G such that ci = qi,jcjq
−1
i,j and qi,j = q−1

j,i .

Specifically, let qi,i = 1. Then for each ci, the elements in the set qj,iZ(ci) would map it to cj .

Therefore, we only need to show that for all the different i, the sets qj,iZ(ci) have no overlap.

We observe that Z(ci) = qi,jZ(cj)q
−1
i,j . So the set qj,iZ(ci) can be written as Z(cj)q

−1
i,j .

For different i the sets Z(cj)q
−1
i,j are the right cosets of Z(cj), so the sets Z(cj)q

−1
i,j form a

partition of the group G, completing the proof.

We note that there is a redundancy in k when K2∩K1 contains more than the identity

element. Collecting the observations above, we are ready to write down the reduced density

matrix of region R. Suppose the set K2K1 contains N elements belonging to the conjugacy

class C, then N · |ZC | members of the G-orbit (1, 1) are mapped into each G-orbit labelled

by the elements in the conjugacy class C.

The block of the reduced density matrix is

(ρR)1 block = trR̄
∑

g,g′,r,r′∈G
|R̄(g, rg)〉|R(g, rg)〉〈R(g′, r′g′)|〈R̄(g′, r′g′)|

=
∑

g,g′,r,r′∈G
〈R̄(g′, r′g′)|R̄(g, rg)〉|R(1, r)〉〈R(1, r′)|.

(4.12)

Thus the coefficient of the term |R(1, r)〉〈R(1, r′)| is
∑

g,g′∈G〈R̄(g′, r′g′)|R̄(g, rg)〉. From

the analysis above, the summation
∑

g,g′∈G〈R̄(g′, r′g′)|R̄(g, rg)〉 should equal to N · |ZC |
multiplied by the dimension of the set K1 ∩K2. Since every entry of the reduced density

matrix has a factor of the dimension of the set K1∩K2, it will disappear after normalization

and doesn’t affect the final value of the entanglement entropy. Therefore, the procedure of

writing down the reduced density matrix can be summarised as following. We only need to

count the number of elements of K2K1 belonging to each conjugacy class of G. Then for

each conjugacy class C we just put the number N · |ZC | on the proper places in the first line

in the block of the reduced density matrix. The analysis for other G-orbits is similar and

thus we can write down the block of the reduced density matrix line by line. Other lines

are just some permutations of the first line. Recall that the full reduced density matirx is

obtained by |G|L−2 such blocks, we can calculate all of its eigenvalues within the G2-orbit.
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4.4.1 Abelian groups

For Abelian groups, the g appearing in the r.h.s. of (4.11) clearly cancels. Hence, the entire

G-orbit (g, g) is mapped to one and the same G-orbit labeled by (1, k2k
−1
1 ). This implies

that the wavefunction takes the following form:

|ψ〉1 block =
1

|G|2

|G|/|K1K2|∑
i

|K1K2|∑
p

|R(1, kpri)〉

⊗
 |G|∑

s

|R̄(gs, gsri)〉

 , (4.13)

The group element k however runs over the group generated by group multiplications of

the elements of K1 and K2. If K1 ⊆ K2 then this gives K2. Otherwise it is denoted more

generally by K1K2 already introduced in the discussion above. (We note that while in a

non-Abelian group G, K1K2 does not generically form a group, it does in the current case

of an Abelian group G. ). The product kri as k varies over K sweeps through the right

coset of K in G. Thus the sum over ri only runs from i = 1 → |G|/|K1K2|, picking a

representative of each distinct coset of |K1K2|.
We thus conclude that for the case of Abelian groups, the entanglement entropy of this

region reads

S(R) = ln(|G|L−2 × |G|/|K1K2|) = ln |G|L − ln(|G||K1K2|). (4.14)

4.4.2 A non-Abelian example: G = S3

To illustrate the above procedure of computing the entanglement entropy, let’s consider an

example with G = S3 = 〈x, y|x3 = 1, y2 = 1, xyxy = 1〉. Let K1 = {1, y},K2 = {1}. For

k1 = y, k2 = 1, we have k2k
−1
1 = y. The conjugacy class of y is {y, xy, x2y}, and the order

of the centralizer of y is 2. So under the action of k1 = y and k2 = 1, the members in

the G-orbit (1, 1) are mapped into the G-orbits (1, y), (1, xy),and (1, x2y), and the number

of members mapped into each of them is 2. So the reduced density matrix of R is (up to

overall normalization) that ensures trρR = 1)

ρR =



6 0 0 2 2 2

0 6 0 2 2 2

0 0 6 2 2 2

2 2 2 6 0 0

2 2 2 0 6 0

2 2 2 0 0 6


. (4.15)

The block repeats for 6L−2 times, and the eigenvalues of the above matrix is 12, 6, 6, 6, 6,

0. So the entanglement entropy is

S = −6L−2 ·
(

12

12 · 6L−2 + 4 · 6 · 6L−2
ln

12

12 · 6L−2 + 4 · 6 · 6L−2

+ 4 · 6

12 · 6L−2 + 4 · 6 · 6L−2
ln

6

12 · 6L−2 + 4 · 6 · 6L−2

)
= (L− 1) ln 6− 1

3
ln 2.

(4.16)

We note that for non-abelian gauge groups, we do not have a closed formula for the entan-

glement entropy.
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Region R

K1 K2 K3

Figure 7. Multiple PBs.

4.5 Case V: multiple PBs

If there are multiple PBs, the computation of entanglement entropy will be more compli-

cated. Here we introduce how to compute the entanglement entropy in the case of three

PBs. Suppose the PBs are characterized by subgroups K1,K2,K3 ⊆ G, and suppose the

region R is chosen as in figure 7. Thus the EB has three disconnected components We di-

vide the EB configurations into G3-orbits with each member labelled by (g1, g2, g3). Global

shifts in R̄ take (g1, g2, g3) into (g1k1, g2k2, g3k3) and global shifts in R take (g1, g2, g3) into

(g1g, g2g, g3g).

First we divide a G3-orbit into |G|2 subsets according to the global shifts in R. Then

each member in a subset can be labelled by (g, rig, sjg), where ri and sj run through

the group G. The action of k1, k2, k3 takes (g, rig, sjg) into (gk1, rigk2, sjgk3). Right

multiplying the three terms by k−1
1 g−1, we get (1, rigk2k

−1
1 g−1, sjgk3k

−1
1 g−1). As g runs

through the group G, gk2k
−1
1 g−1 and gk3k

−1
1 g−1 run through the conjugacy class of k2k

−1
1

and k3k
−1
1 . Due to the lack of a general relation between the centralizers of k2k

−1
1 and

k3k
−1
1 , we can’t deduce a general procedure to write down the reduced density matrix. But

for a specific group G, one can still write down the reduced density matrix and compute

the entanglement entropy.

4.6 More generic basis states with non-trivial wrapping ribbons

In the above analysis, we have considered only the entanglement entropy of a specific

reference ground state (2.2), (2.3). On a manifold with non-contractible cycles, or open

boundaries where ribbons could end, the ground state becomes degenerate. In the case of

a cylinder, we can construct a complete basis of the ground states by wrapping magnetic

ribbons around the non-contractible cycles, in addition to magnetic ribbons in the axial

direction connecting the top and bottom physical boundary on the trivial state |Ω〉 in (2.3).

The ribbon operators are discussed in the appendix figure 11. In the case of pure magnetic

ribbons, we simply sum overall g in the projector with equal weights. The end result is
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simply that we give up the projection. Since we are acting the ribbon on the reference

state (2.3), it amounts to a shift of a set of links by some group element h. Such a ribbon

can wrap the non-contractible cycle, in which case h ∈ G. When the ribbon is one that

connects the upper and lower boundaries of the cylinder, h ∈ K1 ∩K2. We can of course

have independent ribbons wrapping the non-contractible cycle and extending in the axial

direction. We can thus label a reference state by a pair of group elements (he, ka), where he
denotes a ribbon wrapping around the non-contractible cycle, while ka extends along the

axial direction. In the presence of both, we have further restrictions of he and ka. Namely,

he and ka should commute.

A generic ground state basis state is thus obtained by

|ψ(he, ka)〉 =
∏
v

Av|Ω(he, ka)〉, (4.17)

where |Ω(he, ka)〉 corresponds to a reference state obtained by action of the corresponding

ribbons on the trivial reference state (2.3). There is one extra complication in the presence

of physical boundaries. These states are not all independent. In the presence of physical

boundaries, as we have seen, a global action of
∏
vBAvB (h) essentially generates a non-

contractible ribbon corresponding to the group element h. Therefore, in the presence of

these projectors in (4.17), we have

|ψ(he, ka)〉 = |ψ(k1hek
−1
2 , ka)〉, (4.18)

for ki ∈ Ki, where K1 is the subgroup characterizing the top physical boundary, and K2

the bottom physical boundary. These redundancy has already been discussed in [14] which

analyzes the number of degenerate ground states in the presence of physical boundaries.

To compute entanglement entropy, we note immediately that the result for each indi-

vidual reference state is completely independent of the particular choice of these basis state.

A generic linear combination of these states, however, merits extra analysis. Since the

situation in section 4.4 is the most interesting one, we will take it as an illustration.

To simplify the discussion further, we will restrict our explicit examples to Abelian

groups. For given G and K1,2, we first construct the ground states. The set generated by

K1 and K2 was denoted K1K2 in the previous section. Here, we will call it K1K2 = K

which is also a subgroup of Abelian G. The intersection is denoted X ≡ K1 ∩ K2. The

ground state subspace is thus |G|/|K|·|X| dimensions. From the discussion above, a generic

state is given by

|Ψ〉 =
∑
r,x

cr,x|ψ(r, x)〉 =
∑
r,x

cr,x
∏
v

Av|Ω(r, x)〉, (4.19)

where r are group elements of the quotient group G/K, which can be treated as a repre-

sentative of the coset of K. The second label x denotes axial ribbon and x ∈ X.

Ribbon x cuts through all the regions involved, while ribbon r can lie in any of the

regions. The initial position of r does not matter, since the product of projectors Av serves

to deform it in all possible topologically trivial way. Therefore, without loss of generality,

we can directly choose to pick the reference state with r residing within region R.
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For each individual basis, we first analyze it exactly as we did in the previous sections,

dividing each |Ψ(r, x)〉 into linear combinations of G2 orbits, and organize our states into

the form as in (4.13)

|ψ(r, x)〉1 block =
1

|G|2

|G|/|K|∑
i

 |K|∑
p

|R(1, kpri)〉(r,x)

⊗
 |G|∑

s

|R̄(gs, gsri)〉(r,x)

 , (4.20)

where we keep track of (r, x) in the subscript of the states. The most important ingredient in

the remaining analysis is that these states |R (R̄) (g1, g2)〉(r,x) may not be independent for

different (r, x). There is a set of simple relations between them. There is a correspondence

of states between states in a given G2 orbit. Since we have used the ansatz where the

ribbon r resides in region R in the reference state, it implies the following relation

|R(1, kpri)〉(r1r2,x) = |R(1, kprir1)〉(r2,x), |R̄(g, gri)〉(r1,x) = |R̄(g, gri)〉(r2,x), (4.21)

for all ri ∈ K. Note that states in different x sectors are immediately different and orthog-

onal, following from topological reasons — that the axial ribbon x always penetrates each

region an even number of times i.e. whatever goes in comes out.

Then we would like to obtain the reduced density matrix. Tracing out R̄, it gives

ρR =
∑

x,ra,rb

(cra,xc
∗
rb,x

)trR̄|ψ(ra, x)〉〈ψ(rb, x)|. (4.22)

As we already anticipated above, the reduced density matrix is diagonal in x.

It only remains to analyze each term for x fixed. Using (4.20), we then have

|Ψ〉1 block

∣∣∣∣
fixed x

=
|K|
|G|

∑
r,ri

cr,x|R(1, rir)〉(1,x) ⊗ |R̄(ri)〉

=
|K|
|G|

∑
ri

(∑
r

cr,x|R(1, rir)〉(1,x)

)
⊗ |R̄(ri)〉

(4.23)

where we have used (4.21), and simplified notation by replacing

1

|G|

|G|∑
s

|R̄(gs, gsri)〉(r,x) ≡ |R̄(ri)〉,
1

|K|

|K|∑
p

|R(1, kpri)〉(r,x) ≡ |R(1, ri)〉r,x. (4.24)

Here, ri used to denote a representative in the coset of K in (4.20) and it is now simply

denoting a group element of the quotient group G/K. One can immediately see that the

state with maximal entanglement would be the one where cr1 = 1 while all other crj = 0.

Each of the |G|/|K| state would contribute to entanglement, and we recover our previous

result (4.14). The minimally entangled state would correspond to having all cri equal.

Then within the G2 orbit we have a direct product state. In which case the entanglement

entropy is given by

S(R) = ln |G|L−2. (4.25)
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As discussed in [20] this is a generic method of recovering the “anyon line” eigen-basis.

We note that there is now non-trivial dependence on the boundary conditions for the

maximally entangled state. The result gets more complicated without a clean closed form

expression in the case of non-Abelian theories, although the minimally entangled shares

exactly the same entanglement as in (4.25).

A complete understanding of the physical interpretation of these numbers would require

new examples involving more general topological orders beyond lattice gauge theories.

4.7 A physical interpretation

In the above, we explained how to recover the Schmidt decomposition by dividing EB

configurations of Av into distinct orbits or sets, and with members of each set labeled by

group elements g. We would like to comment on the meaning of these labelling. Within

the same set, different configurations are related to each other by an overall action of Av(g)

for any g ∈ G along each given connected entanglement boundary component. The action

of Av(g) on a closed loop is equivalent to creating a pair of closed (magnetic) ribbons of

type g, one inside region R and the other in region R̄. Therefore each member in the set

really is a set of entangled state, for a single connected EB∑
gi

∏
vbi

Avbi
(gi)|Ω〉 =

∑
gi∈G
|R(gi)〉 ⊗ |R̄(gi)〉, (4.26)

where |Ω〉 is some reference state, the subscript i denotes the particular connected compo-

nent among all components of the EB, and |Ω〉 is some reference state (in this case it is

the ground state). These states |gi〉 are to denote the creation of extra magnetic ribbon in

region R on top of the reference state. Now, had these |gi〉 been orthogonal to each other,

the above expression is a Schmidt decomposition. The entire analysis discussed in the cur-

rent paper is about deciding which of these |R(R̄) (gi)〉 are in fact orthogonal to each other

given that the reference state is a ground state generated by all possible linear combina-

tions of Av covered on top of the direct product state. In the case of non-trivial topologies

we have to include ground state basis states built from (magnetic) ribbons wrapping non-

contractible cycles which are then buried under all possible Av showered on top. But the

bottom line is that the summation of Av makes some of these |gi〉R(R̄) linearly dependent.

The key piece of physics is that for all other Av acting on the interior of R or R̄, they

necessarily create ribbons that are contractible and hence topologically trivial. Therefore

creation of gi in R(R̄) can generically be undone by Av from within the respective region

if the gi ribbon (and thus the particular component of the entanglement boundary) is

topologically trivial. This is the gist of the physics of the topological entanglement entropy.

It is determined by the Gauss constraint which can be reformulated as having a bath of

magnetic ribbons rendering these gi states linearly dependent.

What is interesting in the analysis above, where there are PBs, is that the content of

this bath of magnetic ribbons get modified. By restricting to a subgroup K sitting at the

PB, it is physically equivalent to allowing some ribbons to be created and destroyed at the

boundary. This is of course a manifestation of anyon condensation at the boundary [14, 22].

This changes the bath of ribbons in R(R̄) depending on their orientation in relation to
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Av(k)
a b

c

= ϕ(k, a)ϕ(k, b)−1 ka kb

kc

.

Figure 8. An illustration of the action of Av operators on the physical boundary.

the physical boundary, ultimately modifying the topological entanglement entropy. The

interplay of leaking of ribbons at the boundary and the bulk bath of ribbon is clearly visible

in the analysis. It appears that the interplay displays an interesting and complicated

pattern when it comes to a generic non-Abelian group with multiple disconnected PBs

and EBs. This issue has been pointed out before in [14], where they built ground state

basis in the presence of multiple boundaries characterized by different anyons condensation

connected by a bulk. Then, the treatment was by no means systematic, and it was dealt

with in a case-by-case manner, based on the precise mutual statistics of the condensed

anyons and their fusion properties. The results in the current paper may shed new light

to this problem, leading to a complete understanding.

4.8 Comments on the twisted boundaries

Next consider the case that the lattice has a physical boundary with non-trivial cocycles ϕ :

K ×K → U(1). It satisfies the 2-cocycle condition:ϕ(kl,m)ϕ(k, l) = ϕ(k, lm)ϕ(l,m) [23].

The result is the same and it can be shown that the cocycles doesn’t affect the computation.

First consider two vertexes 1, 2. Suppose the Av operators on these two vertexes are A1(a),

A2(b), originally. Then the values on the edges are a, ab−1, b−1, c correspondingly, and we

have a phase factor ϕ(a, b−1)−1. Next we replace the A1(a), A2(b) operators by A1(ag),

A2(bg) as above, where g is an element of the subgroup K. We apply A2(bg) first and then

A1(ag). This is illustrated in figure 9. The values on the edges become ag, ab−1, g−1b−1,

and the phase factor becomes ϕ(ag, g−1b−1)−1. We have

ϕ(a, g)ϕ(ag, g−1b−1) = ϕ(a, b−1)ϕ(g, g−1b−1). (4.27)

We also have

ϕ(g, g−1b−1)ϕ(g−1, b−1) = ϕ(1, b−1)ϕ(g, g−1) = 1, (4.28)

so
ϕ(a, b−1)

ϕ(ag, g−1b−1)
=
ϕ(b, g)

ϕ(a, g)
. (4.29)

The new phase factor differs from the original one by a factor ϕ(b, g)/ϕ(a, g). If we do

the above for all the vertices on the physical boundary of region A, most terms will cancel

and only two terms which are independent of the vertices inside region A are left. So

we can still use the same method to compute the entanglement entropy as if there’s no

non-trivial cocycle on the boundary. It is observed in [24] that the boundary conditions

are completely specified by the subgroup, and boundaries twisted by different cocycles for
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a

a

ab−1

b−1

b−1

A1(a) A2(b)

ag

ag

ab−1

g−1b−1

g−1b−1

A1(ag) A2(bg)

Figure 9. An illustration of the action of Av located at the physical boundary before and after

they are shifted by a common group element g.

given subgroup can be adiabatically connected. Our results are further evidence in support

of the observation in [24].

5 Conclusion

In this paper, we propose a slightly modified version of the calculation of entanglement

entropy on lattice gauge theories, based on an observation locating a block diagonal struc-

ture of the reduced density matrix. This method explicitly reproduces the known results

of the entanglement entropy of lattice gauge theories on closed surfaces.

We then apply the method to compute entanglement entropy when there are non-

trivial gapped PBs. We show that the entanglement entropy has very subtle dependence

on the group structure. As explained, the physics is intimately related to the interplay of

condensed anyons at different boundaries. In the case of Abelian theories, the result has a

simple closed form, but not so much so for more generic non-Abelian theories. It would be

interesting to explore the physical implications of these results, particularly their connection

to the structure of Frobenius algebra that underlies anyon condensation, and also modular

invariants that they correspond to. We note that the analysis discussed in the current paper

is applicable also for the TQD. The U(1) 3 cocycles would cancel in a very similar manner

observed in section 4.8 where boundary 2-cocycles were canceled. It would be important to

explore more general topological orders in this light beyond those describable by Dijkgraaf-

Witten models. We note that some results on entanglement entropy in the presence of

topological defects/interfaces have been explored in the context of Chern-Simons theories

in the literature [33–35]. Topological boundaries can be considered as special topological

defects/interfaces. How our results are related to existing observations should be explored

in greater depth in a future publication.

Our next step would be to push these computations to higher dimensions. It is yet an

open problem to have a complete classification of all possible topological boundary condi-

tions in topological theories above 2+1 dimensions, let alone a unifying physical picture of

these boundaries tantamount to the picture of anyon condensation. An understanding from

the point of view of entanglement entropy should give new insights to solving the problem.

We also note that entanglement entropy can be used as a probe of higher form sym-

metries [36]. Our results might find fresh physical interpretations in terms of a connection

to anomalies — or absence thereof — at the physical boundary.

We will leave these interesting and exciting questions to a forth-coming publication.
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F h,g x1 x2 x3

y1 y2 y3

= δg,y1y2y3 hx1 y−1
1 hy1x2 (y1y2)−1h(y1y2)x3

y1 y2 y3

.

Figure 10. Ribbon operator.

Note. We were notified of [37], which appeared in January when our paper were in prepa-

ration then, after posting our paper. In [37], it also explores the effect on the entanglement

entropy in the presence of physical boundaries. In fact various situations considered in sec-

tion 4 in the current paper have also been considered there, albeit following a different set of

perspectives. In section 4.3-5 we considered the most general situations where the boundary

conditions on the two (or more) boundaries of a manifold to be different. To our knowledge,

this is the first instance it is considered in the literature. There are also some related results

computing maximal/minimal entangled state on a cylinder in [38] mainly considering the Z2

toric code. We hope that our methods would supply a useful alternative to the literuature.
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A Open ribbon operators and entanglement

Ribbon operators are defined in figure 10.

Let the ribbon operator F h,g act on the ground state. We choose a connected region

containing one end of the ribbon as region R and the complementary region as R̄ as shown

in figure 11. We then compute the entanglement entropy between R and R̄.

We would like to compute the entanglement in the presence of these open ribbon

operators, with one end lying in region R, and the other in R̄. We note that this has been

considered before in [39], although the perspective and method adopted here is simpler.

After the action of the ribbon operator F h,g, a fixed EB configuration
∏
Avi(gi) does

not correspond to a direct product state. Suppose on the two ends of the ribbon the

Av operators are Av1(g1) and Av2(g2). Then after the action of F h,g g1, g2 must satisfy
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Av1(g1) Av2(g2)

F h,g

Figure 11. Acting the ribbon operator Fh,g on the ground state.

g1g
−1
2 = g. So we have g2 = g−1g1. We can use g1 to label the state of region R and use g2

to label R̄. Then for a fixed EB configuration, the state of the system can be written as

|ψ〉 =
∑
g1∈G

|g1〉 ⊗ |g−1g1〉. (A.1)

As in the previous cases, the EB configurations can be divided into G-orbits. So the

entanglement entropy is

S = ln |G|L = L ln |G|. (A.2)

Further, we can consider ribbon operators in the anyon basis. Those ribbon operators

has the form [40]

FRC;uv =
∑
n∈NC

Γ̄jj′

R (n)F c−1
i ,qinq

−1
i′ . (A.3)

Here C stands for the conjugacy class, R stands for the irreducible representation of a

representative element rC in the conjugacy class C, and NC is the centralizer of rC . u

and v are two sets of integer parameters: (i, i′) and (j, j′). {ci} are the elements of the

conjugacy class C. For each ci we fix a qi such that ci = qirCq
−1
i . Γjj′

R is the matrix element

of representation R.

Suppose the Av operator on the end of the ribbon is Av1(m). The the Av operator on

the other end is Av2(qi′n
−1q−1

i m). Using m and qi′n
−1q−1

i m to label the state of R and R̄

as previous, for a fixed EB configuration, we have

|ψ〉 =
∑
m∈G

∑
n∈NC

Γjj′(n−1)|m〉 ⊗ |qi′n−1q−1
i m〉. (A.4)

We can observe that∑
m∈qiNCq−1

i

∑
n∈NC

Γjj′(n−1)|m〉 ⊗ |qi′n−1q−1
i m〉

=
∑

m∈qiNCq−1
i

∑
n∈NC

Γjj′(n−1q−1
i mqi · q−1

i m−1qi)|m〉 ⊗ |qi′n−1q−1
i m〉

=

dim(Γ)∑
k=1

( ∑
n∈NC

Γjk(n−1)|qi′n−1q−1
i 〉 ⊗

∑
m∈qiNCq−1

i

Γkj′(q−1
i m−1qi)|m〉

)
.

(A.5)
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Because of the orthogonality relation in the group representation theory, the above fomu-

lation is a Schmidt decomposition. And we can still divide the EB configurations into

G-orbits. So the entanglement entropy is

S = ln

[
|G|L−1 · |G|

|NC |
· dim(Γ)

]
= L ln |G| − ln |G|+ ln di,

(A.6)

where di = |C| · dim(Γ) is the quantum dimension of the anyon type that corresponds to

the ribbon operator FRC;uv. It matches with the result in [41].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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