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1 Introduction

The AdS/CFT correspondence has offered many insights into the structure of the Renor-

malization Group (RG). Soon after the original conjecture by Maldacena it was realized

that one can use supersymmetric gravitational domain wall solutions interpolating be-

tween AdS5 vacua of string theory to describe RG flows between strongly interacting four-

dimensional superconformal field theories (SCFTs) [1, 2]. Furthermore this vantage point

was used to obtain a holographic proof of the a-theorem. There have been numerous
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generalizations of these original results to SCFTs in other dimensions. Our goal here is to

build upon this body of work and study general constraints on supersymmetric holographic

RG flows. Rather than studying explicit top-down models in ten- or eleven-dimensional

string/M-theory, we will explore the space of AdS vacua and the flows connecting them

in general gauged supergravity. In this paper our main interest is in RG flows deforming

four-dimensional N = 2 SCFTs, hence we will work in half-maximal supergravity in five

dimensions (though we will also extend some of our results to other dimensions).

This “bottom-up” approach to studying general properties of SCFTs with holographic

duals by employing gauged supergravity has recently received some attention in the context

of understanding the space of exactly marginal couplings of SCFTs in various dimensions,

see [3–12] and references thereof. While these results present interesting holographic pre-

dictions for strongly interacting SCFTs it should be noted that some of the supergravity

results can also be shown more generally, without a reference to holography, using purely

algebraic techniques [13]. Questions about the structure of RG flows triggered by relevant

deformations on the other hand are less accessible with field theory tools and thus the su-

pergravity results derived here should teach us important general lessons for the structure

of supersymmetric RG flows.

To understand the general constraints for the existence of distinct supersymmetric

AdS5 vacua and the flow connecting them we present a detailed analysis of the supersym-

metry conditions in half-maximal gauged supergravity. The results depend on the number,

n, of vector multiplets in the theory and on the type of gauging performed. The existence

of at least one AdS5 vacuum with 16 supercharges implies that an U(1) × SU(2) × Hc

subgroup of the SO(5, n) global symmetry of the supergravity theory should be gauged [8].

The U(1) × SU(2) gauge field is dual to the R-symmetry of the four-dimensional N = 2

SCFT dual to this AdS5 while Hc represents the continuous flavor symmetry. If Hc is

trivial we find that there is a unique AdS5 vacuum with 16 supercharges in the supergrav-

ity theory.1 However when Hc is non-trivial then it must contain an SO(3) subgroup and

there can be another AdS5 vacuum in the supergravity theory with a different value of the

cosmological constant. Moreover these two distinct AdS5 vacua are connected by a regular

supersymmetric domain wall solution in the gauged supergravity theory which we construct

analytically. In addition we establish that the RG flow in the dual QFT should be triggered

by vacuum expectation values (vevs) for two scalar operators of dimension ∆ = 2 and the

ratio of these vevs has to be a fixed constant. One of the two scalar operators belongs to the

energy momentum multiplet of the SCFT and the other one sits in the SO(3) ⊆ Hc flavor

current multiplet. The different values of the cosmological constants of the two AdS5 vacua

translate into different values for the conformal anomalies of the dual UV and IR N = 2

SCFTs. We compute this ratio of central charges using our supergravity results and are

able to reproduce it by an anomaly calculation in the dual SCFT. The result is a universal

expression for the IR conformal anomalies in terms of the UV conformal anomalies as well

as the central charges of the SO(3) flavor current. We also find that these anomalies are

related to the constant that controls the relation between the scalar vevs triggering the flow.

1This result can also be established for AdS vacua with 16 supercharges in four-, six-, and seven-

dimensional half-maximal gauged supergravity.
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Having described the conditions for the existence of N = 4 AdS vacua in five-

dimensional gauged supergravity it is natural to ask whether there are other AdS vacua

which preserve less supersymmetry. To answer this we analyze the general conditions for

N = 2 AdS5 vacua and then we focus on theories that admit both an N = 4 and one or

more N = 2 vacua. Perhaps not surprisingly we find that as we increase the number of

vector multiplets in the supergravity theory we can have an increasing number of distinct

N = 2 AdS5 vacua. The details of this structure depend on the matter content and the

choice of gauging in the supergravity theory. To illustrate our general approach we focus on

two particular examples. We first establish a holographic analog of the QFT result in [14]

in which it was shown that every four-dimensional N = 2 SCFT with an exactly marginal

deformation admits an RG flow to an IR N = 1 SCFT. In addition it was shown in [14]

that the conformal anomalies of the IR and UV SCFTs obey a universal relation. This

type of RG flow was in fact first constructed and discussed in some particular holographic

examples, see [2, 15, 16], but here we offer a more general treatment. Our general setup

should capture the RG flow relating the N = 2 and N = 1 Maldacena-Núñez SCFTs [17]

arising from M5-branes wrapped on a Riemann surface. While it is widely believed that

this RG flow exists, and is of the class discussed in [14], its explicit holographic construc-

tion is still elusive. Our results should offer some insight into this problem. Moreover, if

our setup can be embedded in eleven-dimensional supergravity it can potentially capture

holographic RG flows connecting the N = 2 Maldacena-Núñez SCFT [17] and one of the

N = 1 SCFTs studied in [18, 19]. In addition to this we study a setup with one N = 4

and two distinct N = 2 AdS5 vacua and discuss the supersymmetric domain wall solutions

which interpolate between them. This may capture holographic RG flows which relate the

N = 2 Maldacena-Núñez SCFT and two of the N = 1 SCFTs of [18, 19].

Finally we would like to note that we do not study a specific embedding of the gauged

supergravity theories we work with in string or M-theory. Thus our results are universal

and apply to all supersymmetric AdS vacua which admit a lower-dimensional effective

description in terms of half-maximal supergravity. This universality is somewhat similar

in spirit to the results for holographic RG flows across dimensions discussed in [20].

We begin our presentation in the next section with a brief general introduction to five-

dimensional N = 4 gauged supergravity. In section 3 we identify under what conditions

there can be two distinct AdS vacua of such a supergravity theory which preserve all

16 supercharges and construct gravitational domain wall solutions interpolating between

these vacua. Whenever such a flow is possible it exhibits a universal relation between the

UV and IR central charges which we establish by field theory methods in section 4. We

continue in section 5 with a study of the conditions for the existence of AdS5 vacua with 8

supercharges and a discussion on domain wall solutions connecting such vacua. Section 6

is devoted to a short discussion on our results and their implications for holography. In

appendix A we present the extension of some of the results in section 3 to half-maximal

gauged supergravity in four, six and seven dimensions. In appendix B we give some more

details on the flow in section 5.
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2 Gauged half-maximal supergravity

In this section we review the basic properties of five-dimensional gauged N = 4 (half-

maximal) supergravity [21–24] that are relevant for our analysis, mainly following [24].

Ungauged N = 4 supergravity has USp(4) R-symmetry and consists of a gravity mul-

tiplet and n vector multiplets. The gravity multiplet contains the metric gµν , four gravitini

ψiµ, i = 1, . . . , 4 transforming in the 4 of USp(4), six vectors (dubbed the graviphotons)

A0
µ, A

m
µ , with Amµ , m = 1, . . . , 5 transforming in the 5 of USp(4) and A0

µ being neutral,

four spin-1/2 fermions χi in the 4 of USp(4), and one neutral real scalar Σ. We will label

the vector multiplets with the index a = 1, . . . , n. Each vector multiplet contains a vector

Aaµ, four spin-1/2 gaugini λai, and five real scalar fields. All together the scalar fields

parametrize the coset space

Mscal = SO(1, 1)× SO(5, n)

SO(5)× SO(n)
, (2.1)

where the first factor is spanned by Σ while the second factor is spanned by the scalars

in the vector multiplet, which we denote by φx, x = 1 . . . , 5n. We indicate the coset

representative of the second factor by V = (VMm,VMa), where M = 1, . . . , n+ 5 labels the

fundamental representation of SO(5, n). Being an element of SO(5, n) this obeys

ηMN = −VMmVNm + VMaVNa , (2.2)

where ηMN = diag(−1,−1,−1,−1,−1,+1, . . . ,+1) is the flat SO(5, n) metric, which is also

used to raise and lower the M,N indices (while the m,n and a, b indices are contracted

with the SO(5) and SO(n) Kronecker delta, respectively). Alternatively, the coset can be

represented by the positive definite scalar metric

MMN = VMmVNm + VMaVNa , (2.3)

which also plays the role of the gauge kinetic matrix for the (5 + n) vector fields AMµ =

(Amµ , A
a
µ). The metric on the scalar manifold, which determines the scalar kinetic terms, is

ds2(Mscal) = 3Σ−2dΣ2 − 1

8
dMMNdMMN . (2.4)

The isometry group of the scalar manifold, SO(1, 1)×SO(5, n), is the global symmetry

group of the ungauged supergravity action. In addition, the scalar field space admits a

local invariance under SO(5)× SO(n). The group SO(5) is promoted to Spin(5) ' USp(4)

when discussing the couplings to the fermions. It is then convenient to convert the SO(5)

index m of the scalar vielbeine VMm into USp(4) indices i, j via SO(5) gamma matrices,

VMij =
1

2
VMmΓijm . (2.5)

This satisfies VMij = VM [ij] and ΩijVMij = 0 and hence transforms in the 5 of USp(4).

Here Ωij is a 4× 4 real symplectic matrix.
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In gauged supergravity a subgroup of the global symmetry group SO(1, 1)×SO(5, n) is

promoted to a local gauge symmetry by introducing minimal couplings to the gauge fields

and their supersymmetric counterparts. In this way part of the global symmetry group is

broken. When some vector fields transform in non-trivial non-adjoint representations of

the gauge group, additional Stückelberg-like couplings to antisymmetric rank-two tensor

fields may be required in order to ensure closure of the gauge symmetry algebra. Such

vector fields can then be gauged away, leaving just massive tensor fields together with the

other vectors [21, 23, 24].

The possible gaugings are classified by the embedding tensor formalism [25–27]. This

introduces the gauge couplings via a spurionic object — the embedding tensor — and

also requires auxiliary fields that consist of a tensor field for each of the original vector

fields. In N = 4 supergravity, the embedding tensor splits into three different represen-

tations of SO(1, 1) × SO(5, n), denoted by ξM , ξMN = ξ[MN ] and fMNP = f[MNP ]. Their

transformation under SO(5, n) follows from the indicated index structure. With respect

to SO(1, 1), ξM and fMNP carry charge −1/2, while ξMN has charge 1. Supersymmetry

of the Lagrangian imposes a set of quadratic constraints on the embedding tensor, whose

possible solutions parametrize the different consistent gauged N = 4 supergravity theories.

In this paper we are interested in theories admitting at least one fully supersymmetric

AdS5 vacuum. In [6] it was shown that a necessary condition for this is ξM = 0. This

means that the SO(1, 1) part of the global symmetry is not involved in the gauging and

the gauge group is entirely contained in SO(5, n). We therefore take ξM = 0 from now on.

In this case, the quadratic constraints are simply given by

fR[MNfPQ]
R = 0 ,

ξM
QfQNP = 0 .

(2.6)

The fMNP correspond to structure constants for a (non-Abelian) subgroup of SO(5, n),

while the ξMN assign the charges under the U(1) gauge field A0
µ.

The embedding tensor determines the gauge covariant derivatives,

Dµ = ∇µ −AMµ fMNP tNP −A0
µ ξ

NP tNP , (2.7)

where tMN = t[MN ] generate so(5, n). It also determines the shift matrices that appear in

the fermion supersymmetry variations and specify the scalar potential.

In the following we abbreviate the contraction of the embedding tensor components

fMNP and ξMN with the coset representatives VMm and VMa by

f̂mnp = fMNPVMmVNnVP p , ξ̂mn = ξMNVMmVNn ,

f̂mna = fMNPVMmVNnVP a , ξ̂ma = ξMNVMmVNa ,

f̂mab = fMNPVMmVNaVP b , ξ̂ab = ξMNVMaVNb ,

f̂abc = fMNPVMaVNbVP c . (2.8)

These “dressed” embedding tensor components will always be denoted by a hat symbol.

Since they depend on the scalars, generically they vary along domain wall solutions. Also,

they appear in the conditions for supersymmetric AdS vacua.

– 5 –
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2.1 Supersymmetric domain walls

We will be interested in supersymmetric domain wall solutions. The metric is of the form

ds2 = e2A(r)ds2(R1,3) + dr2 , (2.9)

where A(r) is the warp factor which depends only on the radial coordinate r. The one-

and two-form supergravity fields vanish, while the scalars have a radial profile, Σ = Σ(r),

φx = φx(r). In particular, when the solution is AdS5, the scalars are constant and we have

A = r/`, where ` is the AdS radius. The latter is related to the cosmological constant,

which in our conventions is the same as the critical value of the scalar potential, V = −6/`2.

The supersymmetry conditions for solutions of this form (and with ξM = 0) read [28]

−A′γ5εi + iPi
jεj = 0 , (2.10)

ε′i + φx′ωx i
jεj −

i

2
Pi
jγ5εj = 0 , (2.11)

Σ′γ5εi + i Σ2∂ΣPi
jεj = 0 , (2.12)

iφx′va ijx γ5εj − 2P a ijεj = 0 , (2.13)

where εi are the supersymmetry parameters, satisfying the symplectic-Majorana condition

εi = ΩijC(ε̄ j)T . A prime means derivative with respect to r and vamx are the vielbeins on

the SO(5,n)
SO(5)×SO(n) scalar manifold, defined as

dφxvamx = −(V−1dV)am . (2.14)

Moreover we introduced the shift matrices

P ij = PmnΓmn
ij , with Pmn = − 1

6
√

2
Σ2 ξ̂mn +

1

36
Σ−1εmnpqrf̂pqr , (2.15)

where εmnpqr is the totally antisymmetric symbol, and

P aij =
1

2
√

2
Σ2 ξ̂amΓmij +

1

4
Σ−1f̂amnΓmn ij . (2.16)

The shift matrices also determine the scalar potential as

V =
1

2
P a ijPa ij +

3

8
Σ2 ∂ΣP

ij∂ΣPij −
3

2
P ijPij . (2.17)

The supersymmetry conditions above are obtained by setting to zero the fermion vari-

ations given in [24].2 Eqs. (2.10), (2.11) arise from the gravitino variation, (2.12) arises

from the variation of the spin 1/2 fermion in the N = 4 gravity multiplet, while (2.13)

2The fermionic shifts given in [24] are related to P ij and P a ij appearing here as Aij1 =
√

3
2
P ij , Aij2 =

−
√

3
8

Σ ∂ΣP
ij , Aa ij2 = 1√

2
P a ji. For the scalar manifold geometry and the Clifford algebra we use the

same conventions as in [28]. We have reabsorbed the gauge coupling constant g appearing in [24] into the

embedding tensor.
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comes from the gaugino variation. The derivation of (2.10), (2.11) assumes that the su-

persymmetry parameters depend on the coordinate r but are constant on R1,3; this means

that we are only describing the Poincaré supersymmetries. For generic domain walls these

are all the supersymmetries allowed, however in the special case of AdS solutions one also

has the conformal supersymmetries, which depend on the coordinates on R1,3. For this

reason, the case of AdS solutions will be analyzed separately in the next sections.

As we discuss in detail later, the domain wall supersymmetry conditions imply the

existence of a real superpotential function W constructed out of the shift matrix Pmn, which

drives the flow of the warp factor and the scalar fields. Introducing an index X = (0, x),

we can denote the scalars as φX = (Σ, φx) and the scalar kinetic matrix as

gXY =

(
3Σ−2 0

0 gxy

)
. (2.18)

Then the flow equations read

A′ = W , φX ′ = −3 gXY ∂YW . (2.19)

However, this is not the full information encoded into supersymmetry. Indeed, one also

finds a set of algebraic constraints restricting the scalar fields that can possibly flow. After

these constraints are satisfied, the scalar potential (2.17) can be expressed in terms of the

superpotential as

V =
9

2
gXY ∂XW∂YW − 6W 2 . (2.20)

This is sufficient to ensure that the Einstein and scalar equations of motion are satisfied [29,

30]. When in particular the superpotential is extremized, ∂XW = 0, we obtain an AdS

solution with radius `−1 = W .

The specific form of the superpotential and of the constraints depends on the amount

of supersymmetry being preserved and will be discussed in the next sections.

3 Holographic flows between N = 2 SCFTs

In this section, we first review the conditions for fully supersymmetric AdS5 vacua in half-

maximal gauged supergravity. Then we show that if there is one such vacuum and the gauge

group does not contain any compact part in addition to the U(1) × SU(2) R-symmetry of

the vacuum, then the latter is unique, up to moduli. If on the other hand there is one

N = 4 vacuum preserving an SO(3) in addition to the R-symmetry and a certain condition

on the gauge coupling constants is satisfied, then we show that there exists a second N = 4

AdS vacuum and we construct an explicit flow connecting the two.

3.1 Review of conditions for N = 4 AdS5 vacua

It was shown in [8] that the necessary and sufficient conditions for five-dimensional half-

maximal supergravity to admit a fully supersymmetric AdS5 solution amount to a simple
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set of constraints on the dressed components of the embedding tensor. In addition to the

aforementioned ξM = 0, these conditions read:

ξ̂[mnξ̂pq] = 0 , (3.1)

ξ̂ma = 0 , (3.2)

f̂mna = 0 , (3.3)

6
√

2 Σ3 ξ̂mn = − εmnpqrf̂pqr , (3.4)

where necessarily ξ̂mn and f̂mnp are not identically zero.3 The first condition arises from

the gravitino equation while (3.2)–(3.4) are equivalent to P a ij = ∂ΣP
ij = 0. The AdS

cosmological constant is read from the scalar potential (2.17) and is

V = −3

2
Σ4 ξ̂mnξ̂mn . (3.5)

The conditions above imply [8] that the theory has gauge group

G = U(1)×Hnc ×Hc ⊂ SO(5, n) , (3.6)

where Hc ⊂ SO(n) is a compact semi-simple subgroup, while Hnc is a generically non-

compact group admitting SO(3) as maximal compact subgroup. If Hnc is simple, it can

be either SO(3), SO(3, 1), or SL(3,R). When ξ̂ab = 0, the product of the U(1) factor in

G with the SO(3) subgroup of Hnc embeds block-diagonally as SO(2) × SO(3) in SO(5).

If ξ̂ab 6= 0, the U(1) factor is a diagonal subgroup of SO(2) ⊂ SO(5) and SO(2) ⊂ SO(n).

In the vacuum, the gauge vectors of U(1) and of SO(3) ⊂ Hnc are graviphotons, with

U(1) being always gauged by the vector A0, while the gauge vectors of Hc and of the non-

compact generators of Hnc belong to vector multiplets. The non-compact part of Hnc is

spontaneously broken and the corresponding gauge vectors are massive. Finally, the vectors

that are charged under the U(1) factor of the gauge group are eaten up by antisymmetric

rank-two tensor fields via the Stückelberg mechanism. In total, the AdS vacuum is invariant

under U(1) × SU(2) ×Hc. The U(1) × SU(2) corresponds to the R-symmetry of the dual

N = 2 SCFT, while Hc represents the flavor group of that SCFT.

These properties are most easily seen if we perform a global SO(1, 1)×SO(5, n) transfor-

mation sending the N = 4 critical point to the origin of the scalar manifold, so that Σ = 1

and (VMm,VMa) is the identity element of SO(5, n). By further making an SO(5)× SO(n)

transformation, we can choose

f123 = g , ξ45 = − 1√
2
g , (3.7)

and the only other non-vanishing components are of the form f1AB, f2AB, f3AB, fABC and

ξAB, where A,B,C = 6, 7, . . . , n + 5. Then f123 are SU(2) structure constants, while the

3Condition (3.4) differs by a factor of −2 from the one given in [8] because we are including a factor of

1/2 in the map (2.5) and when evaluating the shift matrices of [24] we are taking VPm = −ηPQVQm. See

footnote 5 in [8].
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non-vanishing ξ45 implies that the vectors A4
µ, A5

µ are eaten up by tensor fields. Moreover,

f1AB, f2AB, f3AB complete the SU(2) structure constants to those of Hnc, while fABC are

the Hc structure constants.

From (3.5) we find that the cosmological constant is

V = −3

2
g2 . (3.8)

The N = 4 vacuum may admit a set of moduli, namely flat directions of the scalar

potential along which full supersymmetry is preserved. These are deformations of VM 4 and

VM 5 such that ξ45 is invariant, i.e.

VM 4VN 5ξMN = ξ45 . (3.9)

It was proven in [8] that these moduli span the space SU(1,m)
U(1)×SU(m) for some m.

3.2 Uniqueness in the absence of flavor symmetries

In the absence of any flavor symmetries Hc we can prove that there cannot be two N = 4

AdS5 solutions with different values of the cosmological constant. We arrive at this result

by showing that in any two such solutions the contractions ξ̂mnξ̂
mn and f̂mnpf̂

mnp must

take the same value. From (3.4) we infer that the SO(1, 1) scalar Σ is also unchanged.

Then from (3.5) we conclude that the cosmological constant takes the same value in the

two solutions.

We first consider the ξMN components of the embedding tensor, in their dressed version

ξ̂ ≡ VT ξV =
(ξ̂mn ξ̂mb

ξ̂an ξ̂ab

)
. The supersymmetry conditions (3.2), (3.1) and the spectral theory

of real, antisymmetric matrices imply that by a local SO(5) × SO(n) transformation, ξ̂

evaluated on the solution can be put in the canonical block-diagonal form:

ξ̂ = diag ( 0, 0, 0, αε, β1ε, β2ε, . . . , βpε, 0, . . . , 0 ) , (3.10)

where ε =
(

0 1
−1 0

)
, while ± iα are the only non-vanishing eigenvalues of ξ̂mn and ± iβ1,

± iβ2, . . . ,± iβp are the non-vanishing eigenvalues of ξ̂ab. It is understood that when

ξ̂ab = 0 there are no β eigenvalues. Let us now assume there are two different field

configurations corresponding to N = 4 AdS5 solutions. The two corresponding vielbeins V
are related by an SO(5, n) transformation. However the latter cannot change the eigenvalues

of ξ̂, neither can it reshuffle the α eigenvalue with the β’s, because the former lives in the

timelike eigenspace while the latter live in the spacelike eigenspace. It follows that ξ̂ is the

same in the two vacua up to SO(5)× SO(n) transformations. In particular, ξ̂mnξ̂
mn = 2α2

is the same in the two vacua.

We now turn to the fMNP components of the embedding tensor. We can assume with

no loss of generality that one of the N = 4 AdS5 solutions sits at the origin of the scalar

manifold. In an SO(5) gauge such that (3.7) is true, the other N = 4 AdS vacuum must

admit an SU(2) ⊂ Hnc gauge group with structure constants f̂123 = VM 1VN 2VP 3fMNP .

The choice of an SU(2) subgroup inside Hnc is described by the coset Hnc/SU(2). Hence
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the first three components of the coset representative in the two vacua are related as

VM 1 = ΛM
NδN

1 ,

VM 2 = ΛM
NδN

2 ,

VM 3 = ΛM
NδN

3 ,

(3.11)

with Λ ∈ Hnc being given by

ΛM
N =

(
Λm

n Λm
b

Λa
n Λa

b

)
= exp

(
0 µcfcm

b

µcfca
n 0

)
, (3.12)

where (fc)m
b are the non-compact generators of Hnc and µc are free real parameters.

These transformations Λ have been identified in [6, 8] as the Goldstone bosons for the

spontaneous breaking Hnc → SU(2). Since the V’s in the two AdS5 vacua are related by a

gauge transformation, the structure constants f̂mnp should be preserved. This can easily

be seen at first order in µc recalling that (3.3) holds for the vacuum at the origin:

f̂123 = VM 1VN 2VP 3fMNP = ΛM
1ΛN

2ΛP
3fMNP

= f123 + 3µcfca
[1f23]a +O(µ2) = f123 +O(µ2) . (3.13)

In particular, f̂mnpf̂
mnp takes the same value in the two vacua. This concludes our proof.

We remark that a similar argument of uniqueness for fully supersymmetric AdS vacua

when Hc is trivial can be derived in N = 4 supergravity in dimensions four, six and seven.

We provide this in appendix A.

3.3 Two distinct N = 4 AdS5 vacua

Now let us assume that the Hc part of the gauge group is non-trivial. Since by definition

Hc ⊆ SO(n) and does not contain any U(1) factor, a non-trivial Hc must contain an SO(3)c
subgroup. As we are going to show, in this case one may have multiple fully supersymmetric

vacua by modifying the choice of the SO(3) subgroup corresponding to the SU(2) × U(1)

vacuum R-symmetry within the full gauge group G given in (3.6).

We will assume in the following that the first vacuum is set at the origin of the scalar

manifold and is invariant under Hc (hence the dual SCFT has Hc flavor symmetry). In

the second vacuum, the U(1) part of the R-symmetry must also be a diagonal subgroup

of SO(2) ⊂ SO(5) and SO(2) ⊂ SO(n). Since A0 is the gauge vector of that U(1) globally

over scalar field space, this can only be if VM 4 and VM 5 differ from their values in the

first vacuum by moduli, that is ξ̂45 = ξ45, as discussed in section 3.1. Therefore the two

vacua are only distinguished by the values of VMm for m = 1, 2, 3. The condition (3.3)

then means that in the second vacuum we find an SO(3)2 subgroup of G that is gauged

by Âm = AMVMm,m = 1, 2, 3. Most generally this subgroup can be a subgroup SO(3)2 ⊂
SO(3)1 × SO(3)c, where SO(3)1 is part of the R-symmetry in the original vacuum, while

SO(3)c ⊂ Hc. We can use SO(5, n) rotations to choose this SO(3)c group to be in the

M = 6, 7, 8 directions at the origin. We will denote the SO(3)c structure constants by

f678 = gλ−1 , (3.14)
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where λ is a real constant, while as before we will take

f123 = g , ξ45 = − 1√
2
g (3.15)

for the gauge coupling constant of SO(3)1 × U(1). The gauge fields of SO(3)1 are thus

A1,2,3, those of SO(3)c are A6,7,8, while A4,5 are eaten up by tensor fields since they are

charged under the U(1) gauged by A0.

As already seen before, the embedding tensor above leads to an N = 4 vacuum at

the origin of the scalar manifold, with cosmological constant V = −3
2g

2. We can also

assume that in the second vacuum the coset representative VMm has for m = 1, 2, 3 only

components in the M = m and M = m + 5 directions. We then parametrize the coset

representative as

V = e−2φ1t16−2φ2t27−2φ3t38 , (3.16)

where (tMN )P
Q = δQ[MηN ]P are the generators of so(5, n) in the fundamental representation.

More explicitly, its non-trivial part is

V =



coshφ1 0 0 0 0 − sinhφ1 0 0 . . .

0 coshφ2 0 0 0 0 − sinhφ2 0 . . .

0 0 coshφ3 0 0 0 0 − sinhφ3 . . .

0 0 0 1 0 0 0 0 . . .

0 0 0 0 1 0 0 0 . . .

− sinhφ1 0 0 0 0 coshφ1 0 0 . . .

0 − sinhφ2 0 0 0 0 coshφ2 0 . . .

0 0 − sinhφ3 0 0 0 0 coshφ3 . . .
...

...
...

...
...

...
...

...
. . .


. (3.17)

With the choice above for the embedding tensor and for the scalar fields, the only non-trivial

N = 4 condition on the scalars φm is given by (3.3), which leads to

tanhφm tanhφn = λ tanhφp , (3.18)

with (m,n, p) cyclic permutations of (1, 2, 3). Apart for the trivial solution φm = 0, these

equations have the solution φ1 = φ2 = φ3 = φ (or φ1 = −φ2 = −φ3 = φ, etc.), with

tanhφ = λ . (3.19)

This implies that a second vacuum can only exist for

|λ| < 1 . (3.20)

In that vacuum, we find that the coupling constant of SO(3)2 is

f̂123 = g
(
1− λ2

)−1/2
. (3.21)

Using this and the fact that ξ̂45 = ξ45 = − 1√
2
g, we find from (3.4) that the scalar Σ is

determined as

Σ =
(
1− λ2

)−1/6
. (3.22)
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Then (3.5) gives for the cosmological constant

V = − 3

2
g2
(
1− λ2

)−2/3
. (3.23)

In order to identify which gauge symmetries are spontaneously broken we study the

covariant derivative of the scalar fields around the second vacuum. Starting from (2.7),

one can see that in general the scalar covariant derivative reads

Dφam = dφam − ξ̂amA0 + f̂amnÂn − f̂ambÂb , (3.24)

where Ân = APVP n, Âa = APVP a are dressed vectors and we have defined dφam ≡ vamx dφx.

We expand the covariant derivative at first order in the field fluctuations around the

second vacuum. In particular the constants

f̂178 = f̂286 = f̂367 = −g
(
1− λ2

)−1/2
, (3.25)

are non-zero and lead to

D(φ17 − φ26) = d(φ17 − φ26) + 2f̂178Â8

= d(φ17 − φ26)− 2g
(
1− λ2

)−1 (
A8 − λA3

)
, (3.26)

while φ17+φ26 remains uncharged (here 6, 7, 8 denote the values taken by the a index). One

also has similar expressions for simultaneous cyclic permutations of the indices m = (123)

and a, b = (678). It follows that Âa =
(
1− λ2

)−1/2 (
Aa − λAa−5

)
, with a = 6, 7, 8, are all

massive, and the gauge group SO(3)1 × SO(3)c is indeed broken to the diagonal subgroup

SO(3)2 with structure constant (3.21), gauged by Âm = (1 − λ2)−1/2(Am − λA5+m), for

m = 1, 2, 3. If moreover SO(3)c is part of a larger gauge group Hc, and there are other

generators of Hc that do not commute with SO(3)c, then the constants fMNP ,M = 6, 7, 8

and N,P > 8 are non-zero. In the second vacuum this leads to non-vanishing structure

constants given by f̂mab = sinhφf (M=m+5)(a=N)(b=P ) that give a mass to the gauge vectors

corresponding to those symmetries. That means that SO(3)1×Hc is spontaneously broken

to the product of SO(3)2 with the maximal commutant of SO(3)c in Hc .

We emphasize that by the procedure above we find a possible second N = 4 vacuum

for every inequivalent embedding of SO(3)c into Hc such that the condition (3.20) holds.

In section 3.5 we present a domain wall solution between the two N = 4 vacua above

and discuss its holographic interpretation.

3.4 Conditions for flows with eight Poincaré supercharges

Domain wall solutions preserving eight of the sixteen supercharges were only partially

discussed in [28]. Here we provide their complete characterization (when ξM = 0), which

to the best of our knowledge has not appeared in the literature before.4

Starting from the gravitino shift matrix P defined in (2.15), we introduce the super-

potential

W =
√

2PmnPmn . (3.27)

4The analysis is also similar in spirit to the one performed in N = 2 supergravity in [31].

– 12 –



J
H
E
P
0
6
(
2
0
1
8
)
0
8
6

Then the supersymmetry conditions are equivalent to the flow equations

A′ = W , (3.28)

Σ′ = −Σ2∂ΣW , (3.29)

φx′ = −3 gxy∂yW , (3.30)

together with the constraints

P [mnP pq] = 0 , (3.31)

∂Σ

(
W−1Pmn

)
= 0 , (3.32)

f̂amnPmn = 0 , (3.33)

1

4
√

2
Σ3εmnpqrP

pq ξ̂ra = Pp
[mf̂n]pa . (3.34)

When these constraints are satisfied, the scalar potential (2.17) can be written in terms of

the superpotential as

V =
9

2
gxy∂xW∂yW +

3

2
Σ2(∂ΣW )2 − 6W 2 . (3.35)

Clearly, the flow equations and the form of the potential agree with (2.19), (2.20).

One can show that if the constraints (3.31)–(3.34) are satisfied and the superpotential

W is extremized, then the N = 4 AdS conditions of section 3.1 are recovered. In other

words, the fixed points of flows preserving eight supercharges are N = 4 AdS solutions.

The converse implication is of course also true, as an N = 4 AdS5 solution can be seen as

a domain wall preserving eight Poincaré supercharges and having constant scalars.

Proof. Let us prove the supersymmetric flow equations above. We start from the grav-

itino equation (2.10). Multiplying by P we obtain

PmnP pq(Γmnpq)i
jεj =

[
2PmnP

mn −
(
A′
)2]

εi . (3.36)

In order to solve this equation while preserving eight degrees of freedom in the supersym-

metry parameter εi, we need the two sides to vanish separately [28]. In this way we obtain

the constraint (3.31) and the evolution equation (3.28) for the warp factor, where W is

defined as in (3.27). Since now

Pi
kPk

j = −W 2 δi
j , (3.37)

we can write

P = WI , (3.38)

so that I2 = −1 is an almost complex structure. Then the gravitino equation (2.10) takes

the form of the projector

Ii
jεj + i γ5εi = 0 , (3.39)

which precisely reduces the number of independent components in εi by half.
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Using the relations just obtained, the differential equation (2.11) for the spinor is

solved by

εi = eA/2ε̂i , (3.40)

where ε̂i is a covariantly constant spinor on R1,3 (with the covariant derivative including

the USp(4) connection).

We now pass to the supersymmetry condition (2.12). Since it has to hold for any

spinor satisfying the projector (3.39), it must be that(
Σ′γ5δi

j + i Σ2∂ΣPi
j
) (
γ5δj

k + i Ij
k
)

= 0 , (3.41)

which is equivalent to

Σ′δi
k − Σ2∂ΣPi

jIj
k = 0 (3.42)

because the terms linear in γ5 cannot compensate the others and thus have to vanish

separately. Using (3.38) and noting that I2 = −1 implies Tr(I∂ΣI) = 0, gives the flow

equation (3.29) for Σ, together with constraint (3.32).

It remains to discuss the supersymmetry equation (2.13). The same argument used to

manipulate equation (2.12) allows to infer that (2.13) together with the projection (3.39)

is equivalent to

φx′va ijx = 2P a ikIk
j . (3.43)

Separating the terms transforming in different irreducible representations of USp(4), we get

P a ijIij = 0 ,

P a(i
kIj)k = 0 ,

1

2
vay ijP

a ikIk
j = gyxφ

x′ , (3.44)

where to obtain the last equation we used va ijx vay ij = 4gxy. Recalling the definition of

the gaugino shift matrix (2.16), the first and the second are easily seen to correspond to

constraints (3.33) and (3.34), respectively. The third instead gives the flow equation (3.30),

because
1

2
vay ijP

a ikIk
j = −3 ∂yW . (3.45)

This can be seen by an explicit computation: evaluating the derivative of (3.27) one finds

− 3 ∂yW = vamy

(√
2 Σ2ξ̂anInm +

1

2
Σ−1εmnpqrI

npf̂ qra
)
, (3.46)

where we used DxVMm = −VMavamx . Exactly the same expression is obtained by

evaluating 1
2v

a
y ijP

a ikIk
j . This concludes our proof.

3.5 Flow between two N = 4 AdS5 vacua and its holographic dual

We now construct a flow connecting the two N = 4 AdS5 vacua discussed in section 3.3.

This should correspond to a holographic RG flow connecting two N = 2 four-dimensional
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SCFTs. We preserve all the eight Poincaré supersymmetries along this flow and these get

enhanced to sixteen at the AdS fixed points by the eight additional conformal supercharges.

We again use the local symmetry on the scalar manifold to choose the relevant com-

ponents of the embedding tensor as in (3.14), (3.15). We see from the solution for the

second N = 4 vacuum that besides Σ the only flowing scalars should be φ1, φ2, φ3 in the

parametrization (3.17) of the coset representative. Since we do not want to break the

diagonal SO(3)2 symmetry along the flow, we set the three scalars equal to each other,

φ1 = φ2 = φ3 = φ. We can then construct the shift matrix (2.15) and the superpoten-

tial (3.27). We obtain:

Pmn = Wδ
[m
4 δ

n]
5 , (3.47)

with the superpotential being

W =
1

6
gΣ2 +

1

3
gΣ−1

(
cosh3 φ− λ−1 sinh3 φ

)
, (3.48)

where we are assuming g > 0 for simplicity.5 It is easy to check that the constraints (3.31)–

(3.34) are satisfied with no further assumptions.

The metric on the subspace spanned by the two scalars is computed from (2.4) and

reads

ds2 = 3 Σ−2dΣ2 + 3 dφ2 . (3.49)

The scalar potential is

V =
1

2
g2Σ−2

[
cosh4 φ (cosh(2φ)− 2)− 4λ−1 cosh3 φ sinh3 φ+ λ−2 sinh4 φ (cosh(2φ) + 2)

]
− g2Σ

(
cosh3 φ− λ−1 sinh3 φ

)
. (3.50)

The superpotential and the scalar potential are related as in (2.20), namely

V =
3

2
Σ2(∂ΣW )2 +

3

2
(∂φW )2 − 6W 2 . (3.51)

Imposing extremization of the superpotential, ∂φW = ∂ΣW = 0, one recovers the two

fully supersymmetric AdS vacua, that is the one at the origin,

Σ = 1 , φ = 0 , W =
g

2
, V = −3

2
g2 , (3.52)

and the one at non-trivial values of the scalar fields,

Σ = Σ∗ =
(
1− λ2

)−1/6
, φ = φ∗ =

1

2
log

1 + λ

1− λ
, W =

g

2
Σ2
∗ , V = −3

2
g2Σ4

∗ .

(3.53)

We recall that we should impose λ < 1 in order to have a well-defined vacuum.

It is easy to compute the masses of the scalar fields at these two vacua. They are given

by the eigenvalues of the matrix gXY ∂X∂Y V where gXY is the inverse of the scalar metric.

5Strictly speaking, formula (3.27) for the superpotential yields the absolute value of the right hand side

of (3.48). However assuming g > 0 we see that both in the first vacuum (Σ = 1, φ = 0) and in the second

vacuum the right hand side of (3.48) is positive; we can thus remove the absolute value.
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It is useful to compute the dimensionless scalar mass, i.e. the combination m2`2 where ` is

the scale of AdS. At the UV vacuum one finds

m2
Σ`

2 = m2
φ`

2 = −4 . (3.54)

At the IR vacuum one has

m2
Σ`

2 = −4 , m2
φ`

2 = 12 . (3.55)

We can now employ the holographic identity m2`2 = ∆(∆−4) to extract the conformal

dimensions of the operators dual to the two scalars at the UV and IR AdS vacua. At the

UV vacuum we find that both scalars are dual to operators of dimension ∆ = 2. In the IR

vacuum Σ is still dual to an operator of dimension ∆Σ = 2 and is thus relevant, however

the operator dual to φ is irrelevant and has dimension ∆φ = 6.

Notice that in an N = 2 SCFT the energy-momentum multiplet contains the SU(2)×
U(1) R-current as well as a real operator of dimension 2 (see for example page 18 in [32]).

We thus find that the conformal dimensions computed in (3.54) and (3.55) are consistent

with identifying the scalar Σ as the gravitational dual to the operator of dimension 2 in the

energy-momentum multiplet. This is also consistent with the supergravity analysis since Σ

sits in the gravity multiplet of five-dimensional half-maximal supergravity. Through similar

reasoning one finds that the operator dual to the scalar φ is the bottom component in the

UV SO(3) flavor current multiplet. This operator is sometimes referred to as momentum

map operator. It transforms as a triplet of both the R-symmetry and the flavor SO(3)’s

and we are giving a vev to the component invariant under the diagonal SO(3) subgroup.

The value of the cosmological constants at the two AdS vacua in (3.54) and (3.55)

determines the ratio of the central charges of the dual SCFTs, see for example [2]. We find

cIR

cUV
=

(
VIR

VUV

)−3/2

= 1− λ2 . (3.56)

Since λ2 < 1 this result is compatible with the a-theorem. Notice that this is also the same

ratio as (gIR/g)−2, where gIR is the gauge coupling of the IR R-symmetry, given in (3.21).

The flow equations generated by the superpotential (3.48) via (3.28)–(3.30) read

Σ′ = − 1

3
gΣ3 +

1

3
g
(
cosh3 φ− λ−1 sinh3 φ

)
,

φ′ = −gΣ−1 sinhφ coshφ
(
coshφ− λ−1 sinhφ

)
,

A′ = W . (3.57)

It is possible to solve analytically for Σ and A as a function of φ. After a short calculation

one finds that the solution for Σ is

Σ(φ) =

(
coshφ− λ−1 sinhφ

)1/3
(cosh(2φ) + c1 sinh(2φ))1/3

, (3.58)
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Figure 1. Left : numerical solutions for φ(r) (red solid line) and Σ(r) (blue solid line). The dashed

red/blue lines are the values for the scalars at the IR vacuum in (3.53). We have fixed g = 1 and

λ−1 = 1.1. Right : numerical solution for A(r) for the same values of g and λ. The IR/UV is at

large negative/positive values of r. The function A(r) is linear in these regions and the scalars

attain their fixed point values as expected from (3.52) and (3.53).

where c1 is an integration constant. In order for the solution to reach the IR AdS vacuum

in (3.53) we should fix c1 = −1
2

(
λ+ λ−1

)
. In a similar way one can find the following

solution for the warp factor,

A(φ) =
1

6
log

[
(sinhφ− λ−1 coshφ)(coshφ− λ−1 sinhφ)3

sinh3(2φ)

]
+ c2 , (3.59)

where c2 is a trivial integration constant that can be set to any desired value by shifting

the radial coordinate r. The asymptotic behavior of A close to the two AdS vacua is

AUV ≈ −
1

2
log φ , AIR ≈

1

2
log(φ− φ∗) . (3.60)

This is the expected divergent behavior of the metric function close to the two AdS vacua.

One can plug the analytic solution for Σ(φ) back into the second equation in (3.57) and

solve for the function φ(r) in quadratures. Then one can use this solutions to find also the

functions Σ(r) and A(r). We were not able to solve for φ(r) analytically, however a typical

numerical plot for the scalars and metric function is not hard to generate, see figure 1.

It is also instructive to analyze the flow close to the UV AdS vacuum in order to

understand what drives it. We can linearize the flow equations in (3.57) around the vacuum

in (3.52) to find

φ′ ≈ −gφ , Σ′ ≈ −g(Σ− 1) , A′ ≈ g

2
. (3.61)

Using that the AdS scale is ` = 2/g we find the approximate solution

φ ≈ vφ e−2r/` , Σ ≈ 1 + vΣ e−2r/` , A ≈ r

`
. (3.62)

Since the scalars φ and Σ are dual to operators of dimension 2 in the SCFT we can conclude

that the RG flow is driven by vacuum expectation values for these two operators. If there

were explicit sources for the operators the approximate UV solution should have had an

re−2r/` term in the asymptotic expansion. This is clearly absent in our setup.
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Expanding the explicit analytic solution in (3.58) around the UV AdS vacuum at φ ≈ 0

we find

Σ ≈ 1 +
λ

3
φ+ . . . . (3.63)

We thus conclude that the constants vΣ and vφ in (3.62) are related by

vΣ =
λ

3
vφ . (3.64)

It would be interesting to understand field-theoretically the corresponding relation between

the operator vevs.

4 Field theory derivation of ratio between central charges

We pause here our supergravity analysis and present a field theory explanation for the ratio

of UV and IR central charges of N = 2 SCFT’s found holographically in (3.56).

4.1 Anomalies in four-dimensional N = 2 SCFTs

The R-symmetry of four-dimensional N = 1 SCFTs is U(1)RN=1
. The cubic and linear

’t Hooft anomalies are6

Tr(R3
N=1) and Tr(RN=1) . (4.1)

Via N = 1 supersymmetric Ward identities these anomalies are related to the conformal

anomalies by the well-known relations [33]

a =
9

32
Tr(R3

N=1)− 3

32
Tr(RN=1) , c =

9

32
Tr(R3

N=1)− 5

32
Tr(RN=1) . (4.2)

For four-dimensional N = 2 SCFTs the R-symmetry is SU(2)R ×U(1)RN=2
. The gen-

erators of SU(2)R are denoted by Ia, a = 1, 2, 3.7 There is a unique N = 1 superconformal

subalgebra of the N = 2 superconformal algebra. This fixes how the U(1)RN=1
is embedded

into the Cartan of the SU(2)R ×U(1)RN=2
R-symmetry, see for example [14, 34],

RN=1 =
1

3
RN=2 +

4

3
I3 , (4.3)

and it is this RN=1 that is used to compute the conformal anomalies via (4.2). Continuous

flavor symmetries in four-dimensional N = 2 SCFTs are characterized by a flavor central

charge kF given by the ’t Hooft anomaly (see eq. (2.6) of [34])

kF δab = −2Tr(RN=2TaTb) , (4.4)

where Ta are the generators of the flavor group.

6The Tr symbol in all equations below should be understood formally. In the presence of a Lagrangian

it indicates a trace over the charges of the chiral fermions in the theory.
7The indices a, b used in the present field theory section are unrelated to the SO(n) indices used in the

rest of the paper.
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4.2 RG flow between N = 2 SCFTs

We are interested in an RG flow which connects two distinct four-dimensional N = 2

SCFTs. In parallel with the supergravity setup, assume that the UV SCFT has SU(2)R ×
U(1)RN=2

and an SU(2)F flavor symmetry.8 The generators of the flavor symmetry algebra

in the UV will be denoted by Ta. In the IR SCFT the symmetry is S̃U(2)R × U(1)RN=2

where S̃U(2)R is the diagonal subgroup of SU(2)R×SU(2)F . The UV conformal anomalies

are computed by (4.2) using the generator

RUV
N=1 =

1

3
RN=2 +

4

3
I3 , (4.5)

while for the IR conformal anomalies we use the generator

RIR
N=1 =

1

3
RN=2 +

4

3
(I3 + T3) , (4.6)

where we are assuming that the SU(2)R and SU(2)F generators are normalized in the

same way, so that the respective structure constants are the same. We now note that the

following identities are true due the properties of the generators of SU(2)R and SU(2)F

Tr(R2
N=2Ta) = Tr(T3T3T3) = Tr(Ia) = Tr(Ta) = 0 . (4.7)

With this at hand it is easy to show that

Tr[(RIR
N=1)3) = Tr[(RUV

N=1)3]− 8

9
kF , Tr(RIR

N=1) = Tr(RUV
N=1) . (4.8)

Using these identities we arrive at the following simple relations between the UV and IR

conformal anomalies

aIR = aUV −
1

4
kF , cIR = cUV −

1

4
kF . (4.9)

In unitary SCFTs one can show that kF > 0 so the result above is in harmony with the

a-theorem.9

For theories with a = c, such as the large N theories described by our holographic

setup, the result (4.9) can be written as

cIR

cUV
= 1− 8

9

kF

Tr[(RUV
N=1)3]

= 1 +
Tr(RN=2T3T3)

1
48Tr(R3

N=2) + Tr(RN=2I3I3)
. (4.10)

Now we can use the AdS/CFT dictionary to compare this expression with our super-

gravity results. The relation between the SCFT symmetry generators and the supergravity

vectors gauging that symmetry is

RN=2 → sA0 , I3 →
1

g
A3 , T3 →

λ

g
A8 , (4.11)

8This analysis can be generalized to a more general flavor symmetry group. In that case the discussion

below applies to an SU(2) subgroup of the flavor group.
9Notice that there are stronger unitarity bounds on the flavor central charge given in Equations (4.16)

and (4.17) of [35].
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where the 1/g and λ/g rescalings are introduced because in the conventions of section 3.3

the supergravity vectors A1,2,3 and A6,7,8 are gauging the SO(3)1 and SO(3)c groups with

gauge couplings g and g/λ, respectively, while we have assumed that Ia and Ta have the

same structure constants. Moreover, s is a real constant that is taking care of any potential

rescaling of the A0 gauge field in order to match CFT and supergravity conventions. It

turns out that the specific value of this constant is not important for our analysis.

Using (4.11), the ’t Hoof anomalies translate into coefficients of supergravity topolog-

ical terms as

Tr(R3
N=2)→ s3d000 , Tr(RN=2I3I3)→ s

g2
d033 , Tr(RN=2T3T3)→ sλ2

g2
d088 ,

(4.12)

where we are omitting a possible overall factor that will not play any role in our calculation.

Therefore in supergravity language the expression in (4.10) reads(
VIR

VUV

)−3/2

= 1 + λ2 d088

s2g2

48 d000 + d033

. (4.13)

In five-dimensional half-maximal supergravity, the coefficients d000, d033, d088 are compo-

nents of a symmetric tensor dMNP , with M,N ,P = {0,M} = 0, 1, . . . 5 + n, that controls

the topological term. In particular, the gauge variation of the topological term contains

dMNPHM∧HN∧δAP , whereHM are covariant field strengths [24]. Crucially, the only non-

zero components of the dMNP tensor are d0MN = dM0N = dMN0 = ηMN . Plugging d000 =

0 and d088 = −d033 into (4.13) we obtain precisely the relation (3.56) we found in supergrav-

ity. Thus we find that the ratio of central charges of the UV and IR N = 2 SCFTs which we

found in supergravity is precisely reproduced by the anomaly matching calculation above.

The discussion above also provides a field theory counterpart of the constant λ entering

in the supergravity embedding tensor and controlling the relation between the vevs of the

operators triggering the flow. Comparing (3.56) with (4.9), we obtain

λ2 =
kF

4cUV
. (4.14)

The existence of the holographic RG flow imposes that 0 < λ2 < 1 and it is important to

understand whether this constraint can be understood from the dual large N field theory.

Unitarity of the SCFT immediately implies that λ2 > 0, however we are not aware of

any field theory argument for why one should find λ2 < 1. It will be most interesting to

understand better this condition and for which N = 2 SCFT it is obeyed.

5 Holographic flows from N = 2 to N = 1 SCFTs

In this section we study holographic flows between an N = 4 AdS5 vacuum and an N = 2

AdS5 vacuum with a different cosmological constant. First we will provide the conditions

for the existence of N = 2 AdS vacua, independently of whether there is also an N = 4

vacuum. Then we consider specific models allowing for an N = 4 AdS vacuum and study

the existence of N = 2 AdS vacua. Finally, we construct domain wall solutions between

such AdS vacua and discuss their holographic interpretation.
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5.1 Conditions for N = 2 AdS5 vacua

We start by providing general conditions for AdS5 solutions of half-maximal gauged super-

gravity preserving eight supercharges, which have not been discussed in the literature so

far. The only assumption we make is ξM = 0.

The supersymmetries of an N = 2 AdS5 solution transform as a doublet of SU(2) '
USp(2), hence we need to identify the relevant USp(4) → SU(2) breaking of the R-

symmetry of half-maximal supergravity. This was already discussed in [28] and we sum-

marize it here. The gravitino shift matrix (2.15) defines the SO(5) vector

X̃m = εmnpqrPnpPqr , (5.1)

with norm

|X̃| ≡
√
X̃mX̃m =

√
8 (PmnPmn)2 − 16PmnPnpP pqPqm . (5.2)

Let us focus on the generic case where this does not vanish (we will comment on the special

case X̃ = 0 at the end of this section). Then we can introduce a normalized vector

Xm = X̃m / |X̃| , (5.3)

which specifies an SO(4) subgroup of SO(5). On the spinors, this defines a reduction

USp(4) → SU(2)+× SU(2)−, where the plus and minus refer to the ±1 eigenvalues of

Xi
j = XmΓmi

j . The supersymmetry preserved by our N = 2 AdS vacuum transforms

under either one of these SU(2) factors. Without loss of generality we can choose SU(2)+,

meaning that the supersymmetry parameters satisfy the projection

Xi
jεj = εi . (5.4)

Having identified the USp(4) → SU(2) breaking by means of the vector Xm, we find

that the conditions for an N = 2 AdS5 vacuum are:

ξ̂mnXn = 0 , (5.5)

∂ΣP
mn − 1

2
εmnpqr∂ΣPpqXr = 0 , (5.6)

Σ3ξ̂ma −
√

2f̂mnaXn = 0 , (5.7)

(δmp −XmXp)(δ
n
q −XnXq)f̂

pqa − 1

2
εmnpqrf̂

pqaXr = 0 . (5.8)

The proof is given below. We observe that (5.6) and (5.8) are self-duality conditions on

the four-dimensional space orthogonal to Xm.10 The AdS radius is fixed by

`−1 = W , (5.9)

10We can derive some other, non-independent, relations. Contracting (5.6) with Xn and using (5.5) we

obtain f̂ [mnpXq] = 0, while contracting (5.7) with Xm we find ξ̂anXn = 0.
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where

W =

√
2PmnPmn − |X̃|

=

√
2PmnPmn −

√
8 (PmnPmn)2 − 16PmnPnpP pqPqm . (5.10)

As we will discuss in the next section, this expression for W defines the superpotential

driving supersymmetric flows of the scalar fields. This is extremized at the AdS point.

It would be interesting to study the moduli space of the conditions above. This would

most easily be done by exploiting the symmetry of the scalar manifold to set the undeformed

vacuum at the origin and the unit vector Xm to point in a chosen direction. However, this

analysis goes beyond the scope of the present paper and we leave it for future work.

We can also discuss the spontaneous breaking of the gauge group in the N = 2 vacuum

by looking at the scalar covariant derivative (3.24). Working at leading order in the field

fluctuations around the vacuum, separating the term along the vector Xm from those

transverse to it and using the supersymmetry conditions above, we get

XmDφ
am = Xmdφam +

1√
2

Σ3 ξ̂amΠn
mÂn +Xmf̂

mabÂb ,

Πm
n Dφ

an = Πm
n dφan −Πm

n f̂
anpΠq

pÂq + Πm
n f̂

nabÂb − ξ̂am
(
A0 +

1√
2

Σ3XnÂ
n

)
, (5.11)

where Πn
m = δnm −XnXm projects on the subspace transverse to Xm. The terms contain-

ing the Âa gauge vectors signal that all non-compact generators of the gauge group are

spontaneously broken in the N = 2 vacuum and their gauge bosons acquire a mass via the

Stückelberg mechanism. This is analogous to what happens in N = 4 AdS5 vacua. The

remaining terms give generically mass to some of the vectors of the form Πm
n A

n and to the

combination A0 + 1√
2
Σ3XmÂ

m. The U(1) generated by the transformation

A0 → A0 +
1√
2

Σ3dλ , Am → Am −Xmdλ , (5.12)

is unbroken and corresponds to the R-symmetry of the N = 2 vacuum. This also corre-

sponds to the R-symmetry of the dual N = 1 SCFT.

Proof. Let us derive the N = 2 supersymmetry conditions given above. Using the AdS

conditions A′ = 1
` and Σ′ = φx′ = 0, the supersymmetry equations (2.10)–(2.13) reduce to

iPi
jεj =

1

`
γ5εi , (5.13)

ε′i =
1

2`
εi , (5.14)

∂ΣP
ijεj = 0 , (5.15)

P a ijεj = 0 . (5.16)
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Using (5.13) twice, we obtain

− X̃i
jεj =

[
1

`2
− 2PmnP

mn

]
εi , (5.17)

and one can easily see that, as long as X̃ does not vanish, and after making a harm-

less sign choice, this is equivalent to the USp(4) → SU(2) projection (5.4) together with

eqs. (5.9), (5.10) [28].

Eq. (5.14) is trivially solved in terms of a constant spinor ε̂i as εi = e
r
2` ε̂i. However we

must recall that (5.13), (5.14) were derived from the gravitino variation assuming that the

supersymmetry parameter εi does not depend on the R1,3 domain wall coordinates, there-

fore they only capture the Poincaré supersymmetry of AdS. When the conformal supersym-

metries are also taken into account, one finds that the gravitino equation does not constrain

the degrees of freedom in εi further than (5.4). For this reason, the analysis from now on

differs from the one in [28], where only the Poincaré supersymmetries were considered.

The remaining two equations, namely (5.15) and (5.16), constrain the embedding ten-

sor and lead to the actual conditions for N = 2 vacua. Since they must hold on any spinor

satisfying the projection (5.4), we infer that

∂ΣP
ik
(
δk
j +Xk

j
)

= 0 ,

P a ik
(
δk
j +Xk

j
)

= 0 . (5.18)

Recalling the definition of the shift matrices (2.15), (2.16) and displaying the SO(5) gamma

matrices, these equations can be rewritten as

∂ΣP
mn(Γmn)ik

(
δk
j +Xp(Γ

p)k
j
)

= 0 , (5.19)(√
2 Σ3 ξ̂am(Γm)ik + f̂amn(Γmn)ik

) (
δk
j +Xp(Γ

p)k
j
)

= 0 . (5.20)

Working out the contractions of the USp(4) indices, (5.19) is equivalent to

∂ΣP
mnXn = 0 ,

∂ΣP
mn − 1

2
εmnpqr∂ΣPpqXr = 0 . (5.21)

The first can be combined with the identity PmnXn = 0 (following from the definition of

Xn and the fact that Pm[nP pqP rs] trivially vanishes in five dimensions) to give (5.5), while

the second is already the same as (5.6). Separating the different USp(4) representations, it

is straightforward to see that (5.20) is equivalent to (5.7), (5.8). This concludes our proof.

The derivation above assumed that X̃ does not vanish. When X̃ = 0 the solution may

preserve eight Poincaré supercharges, which is the situation considered in section 3. How-

ever, it may still be possible to have N = 2 AdS5 vacua with vanishing X̃. This still requires

the existence of a unit vector X, however now unrelated to the X̃ defined in (5.1), project-

ing out half of the spinor degrees of freedom as in (5.4). For this to be compatible with the

gravitino equation we also need that Xi
j and Pi

j commute, which is equivalent to demand-

ing PmnXn = 0. The rest of the analysis of the supersymmetry equations is unchanged,

hence conditions (5.5)–(5.8) still hold and the AdS radius is given by `−1 =
√

2PmnPmn.
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5.2 Review of conditions for minimally supersymmetric flows

After having identified models admitting both N = 4 and N = 2 AdS5 vacua, we will be

interested in describing supersymmetric domain walls connecting them. Away from the

fixed points, the domain wall should preserve just four Poincaré supercharges, namely the

minimal amount of supersymmetry on R1,3. The necessary and sufficient conditions for such

domain walls in half-maximal supergravity were given in [28].11 Here we summarize them.

The conditions use the same vector X and the same superpotential W defined in

section 5.1, however now the scalars are non-constant and depend on the radial coordinate.

In addition to solving the flow equations

A′ = W , (5.22)

Σ′ = −Σ2∂ΣW , (5.23)

φx ′ = −3 gxy ∂yW , (5.24)

one has to impose the following constraints along the flow:

∂ΣX
m = 0 , (5.25)

∂Σ

(
W−1Pmn+

)
= 0 , (5.26)

ξ̂amXm = 0 , (5.27)

f̂mna+ − 4

W 2
P+pqf̂

pqa
+ Pmn+ = 0 , (5.28)

where we have introduced

Pmn+ =
1

2

(
Pmn − 1

2
εmnpqrPpqXr

)
(5.29)

and

f̂mna+ = (δmp −XmXp)(δ
n
q −XnXq)f̂

pqa − 1

2
εmnpqrf̂

pqaXr , (5.30)

both living in the four-dimensional space orthogonal to X and being anti-self-dual.12

The superpotential (5.10) can also be written as W = 2
√
Pmn+ P+mn. One can then

use (5.26) to show that ∂ΣP+ is proportional to P+, and is therefore analogous to (5.28).

We are interested in constructing domain wall solutions interpolating between an

N = 4 and an N = 2 AdS5 vacuum. Thus one of the fixed points has to satisfy the

restrictive N = 4 conditions (3.1)–(3.4).13 The other fixed point instead has to satisfy the

N = 2 conditions (5.5)–(5.8). One can see that the latter are in fact equivalent to the con-

straints (5.25)–(5.28), together with the condition that the superpotential is extremized.We

now proceed to discuss two explicit examples which display all these features.

11The analysis of [28] was restricted to an embedding tensor satisfying ξM = 0. Recall that we are also

assuming this condition here as it is necessary for a fully supersymmetric AdS5 vacuum. Also note that

in [28] two superpotentials W± were constructed, depending on the preserved supersymmetry; without loss

of generality here we choose W = W+.
12The “+” subscript comes from the original definitions in [28]. Although expressed in a slightly different

form, these constraints are equivalent to eqs. (3.29), (3.31), (3.32) in [28].
13Notice that the vector X̃m has to vanish there, so that the four Poincaré supersymmetries preserved

along the flow can be enhanced to eight (plus the conformal supersymmetries).
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5.3 A model with one N = 2 vacuum

An example of a supersymmetric domain wall solution connecting a maximally supersym-

metric AdS5 vacuum to an N = 2 AdS5 vacuum is the well-known Freedman-Gubser-

Pilch-Warner (FGPW) flow [2]. This was originally constructed in the SO(6) maximal

supergravity, where the UV vacuum is the standard SO(6) invariant critical point, while

the IR N = 2 vacuum is the one first found in [36]. As discussed in [2] this domain wall

solution can also be described in half-maximal gauged supergravity by a model with two

N = 4 vector multiplets and a gauging determined by the truncation of SO(6) maximal

supergravity. Here we extend the FGPW model allowing for a more general gauging. We

could also allow for an arbitrary number of vector multiplets as done in section 3 when

studying flows between two N = 4 vacua (see [15] for such an extension of the FGPW

model), however all essential features of the flow are already captured by a model with two

multiplets, so we restrict to that.

We choose the embedding tensor as

f123 = g , ξ45 = − g√
2
, ξ67 = −

√
2 gρ−1 , (5.31)

where g and ρ are parameters. The vectors A1, A2, A3 gauge SU(2), A0 gauges U(1), while

A4, A5, A6, A7 are eaten up by tensor fields.

The FGPW model obtained by truncating SO(6) maximal supergravity has ρ = 2,

so that ξ67 = ξ45. In this case the fully superymmetric vacuum has a complex modulus,

parameterizing the space SU(1, 1)/U(1). Since the conditions of section 3.1 are satisfied,

we have a fully supersymmetric solution at the origin of the scalar manifold for any value

of ρ. In order to obtain an N = 2 vacuum at some other point of the scalar manifold, we

break the SO(3) rotations in the 1, 2, 3 directions by mixing the 1, 2 and 6, 7 directions on

the scalar manifold. We thus parameterize the SO(5,2)
SO(5)×SO(2) coset representative as14

V = e−2φ t16−2φ t27 =



coshφ 0 0 0 0 − sinhφ 0

0 coshφ 0 0 0 0 − sinhφ

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

− sinhφ 0 0 0 0 coshφ 0

0 − sinhφ 0 0 0 0 coshφ


. (5.32)

The dressed embedding tensor (2.8) then reads:

ξ̂12 = −
√

2gρ−1 sinh2 φ , f̂123 = g cosh2 φ ,

ξ̂45 = − g√
2
, f̂137 = −f̂236 = g sinhφ coshφ ,

ξ̂17 = −ξ̂26 =
√

2gρ−1 sinhφ coshφ , f̂367 = g sinh2 φ ,

ξ̂67 = −
√

2gρ−1 cosh2 φ ,

(5.33)

14We could introduce two different scalars but the N = 2 vacuum conditions would set them equal.
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where by 6,7 we are denoting the values taken by the a index. For the unit vector defining

the USp(4)→ SU(2) projection of the supersymmetries we find Xm = sign(ρ)δm3 .

The metric on the space spanned by the scalars Σ, φ in this case is

ds2 = 3 Σ−2dΣ2 + 2 dφ2 , (5.34)

while the scalar potential is

V = g2 cosh2 φ

[
Σ4ρ−2 sinh2 φ− Σ +

1

4
Σ−2 (cosh(2φ)− 3)

]
. (5.35)

The N = 2 vacuum conditions (5.5), (5.8) are satisfied automatically. Eq. (5.6) gives

cosh2 φ = Σ3
(
1− 2|ρ|−1 sinh2 φ

)
, (5.36)

while (5.7) yields

(1− |ρ|−1Σ3) sinhφ = 0 . (5.37)

In addition to the N = 4 AdS5 solution

Σ = 1 , φ = 0 , V = −3

2
g2 , (5.38)

we obtain the N = 2 AdS5 solution

Σ3 = |ρ| , e2φ =
1

3

(
1 + 2|ρ| ± 2

√
ρ2 + |ρ| − 2

)
, V = −1

6
g2|ρ|−2/3(2 + |ρ|)2 .

(5.39)

Note that the latter only exists for |ρ| > 1 since only then we have a real scalar φ. For

|ρ| → 1 the N = 2 AdS5 vacuum merges with the N = 4 vacuum at the origin.

In the N = 2 vacuum most of the gauge symmetries are broken. From (5.11) we see

that the non-trivial scalar covariant derivatives around this vacuum are:

Dφ63 = dφ63 ± g
√
|ρ| − 1

3
A2 ,

Dφ73 = dφ73 ∓ g
√
|ρ| − 1

3
A1 ,

D(φ62 − φ71) = d(φ62 − φ71)∓ 2

3
g
√
ρ2 + |ρ| − 2

(√
2ρ−1A0 +A3

)
. (5.40)

The vector fields on the right hand side get a mass through the Stückelberg mechanism.

The vectors in the first two lines are just two of the gauge vectors of the gauged SU(2).

The N = 2 vacuum is invariant under the combination
(

1√
2
ρ−1A0 −A3

)
, corresponding

to the U(1) R-symmetry.

We can now move on to study the supersymmetric flow connecting the N = 4 and the

N = 2 vacua. The superpotential reads

W =
g

3
Σ−1 cosh2 φ+

g

6
Σ2
(
1− 2|ρ|−1 sinh2 φ

)
, (5.41)

where we are assuming g > 0. It is easy to check that with the parameterization (5.32) of

the coset representative, the constraints (5.25)–(5.28) are satisfied. This means that it is
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consistent to assume that the only flowing scalars are Σ, φ. One can also check that the

scalar potential and the superpotential are related as

V =
3

2
Σ2(∂ΣW )2 +

9

4
(∂φW )2 − 6W 2 . (5.42)

in agreement with (2.20). The flow equations (3.29), (3.30) for the scalar fields read

Σ′ =
g

3

[
cosh2 φ+ Σ3

(
2|ρ|−1 sinh2 φ− 1

)]
, (5.43)

φ′ =
g

2

(
|ρ|−1Σ2 − Σ−1

)
sinh(2φ) . (5.44)

From now on we assume without loss of generality that ρ > 0 so that we can remove the

absolute values.

Let us call the operators dual to the two scalars Oφ and OΣ. Expanding around the

N = 4 vacuum one finds that the dimensionless masses of the two scalars are

m2
φ`

2 = −4(1− ρ−2) , m2
Σ`

2 = −4 . (5.45)

Using the standard AdS/CFT relation m2`2 = ∆(∆− 4) this implies that the dimensions

of the dual operators are15

∆Oφ = 2 +
2

ρ
, ∆OΣ

= 2 . (5.46)

Along the RG flow there is operator mixing and in the IR SCFT we have two new eigenstates

of the dilatation operator. The corresponding operator dimensions are

∆O1 = 3 +

√
25− 72

2 + ρ
, ∆O2 = 1 +

√
25− 72

2 + ρ
. (5.47)

For any ρ > 1 we have that ∆O1 > 4 and thus this is always an irrelevant operator. For

∆O2 one finds

2 ≤ ∆O2 ≤ 4, 1 ≤ ρ ≤ 2.5 ,

4 < ∆O2 ≤ 6, 2.5 < ρ <∞ .
(5.48)

The ratio of central charges (in the planar limit) of the dual SCFTs is

cIR

cUV
=

(
VN=2

VN=4

)−3/2

=
27ρ

(2 + ρ)3
. (5.49)

Since the N = 2 vacuum only exists for ρ > 1, we find that the well-known 27/32 ratio

of central charges [2, 14] is realized only for ρ = 2. As already noticed, this value is also

exactly the one where one finds a modulus for the N = 4 vacuum, corresponding to a

marginal coupling in the dual SCFT.

15One could in principle choose the other root of the quadratic equation for ∆Oφ , i.e. ∆Oφ = 2− 2
ρ
. This

however violates the unitarity bound, ∆ > 1, for 1 < ρ < 2. Moreover for ρ = 2 we know from the FGPW

model that ∆Oφ = 3 which is obeyed for the choice in (5.46).
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Figure 2. Left : numerical solutions for φ(r) (red solid line) and
√

6 log Σ(r) (blue solid line). The

dashed red/blue lines are the values for the scalars at the IR N = 2 AdS5 vacuum at r → −∞.

The UV N = 2 AdS5 vacuum is at r →∞ with φ =
√

6 log Σ = 0 there. We have fixed g = 1 and

ρ = 2. Right : a contour plot of the superpotential as a function of the scalars
√

6 log Σ (horizontal

axis) and φ (vertical axis) together with a parametric plot of the numerical solution for the scalars

from the left panel.

Let us compare the ratio in (5.49) with the ratio of central charges from equation (2.22)

in [19] where we fix z = 1 for the UV theory (this corresponds to the Maldacena-Núñez

N = 2 solution) and the goal is to map the parameter z from [19] to the parameter ρ

in (5.49). From [19] we find

cIR

cUV
=

9z2 − 1 + (1 + 3z2)3/2

16z2
. (5.50)

One can now find a map between z2 and ρ. The explicit expression is not very illuminating

but one finds that z2 = 0 is mapped to ρ = 2 and z2 = 1 is mapped to ρ = 1. Moreover

the map is monotonic, i.e. if we restrict ourselves to 0 ≤ z2 ≤ 1 we have to restrict ρ to

be in the range 2 ≥ ρ ≥ 1. This suggest that our model with two vector multiplets may

describe holographic RG flows between the N = 2 Maldacena-Núñez vacuum and some of

the N = 1 vacua with |z| < 1 studied in [19].

The flow equations (5.43) for this model can be integrated numerically. This is illus-

trated in figure 2. It is clear from this figure that there is a smooth domain wall solution

which interpolates between the N = 4 and N = 2 AdS5 vacua.

To understand better what drives the flow we can expand the BPS flow equations

near the N = 4 AdS5 vacuum in the UV. The linearized expansion of the BPS equations

depends on the value of ρ. For ρ > 2 we find

φ ≈ cφ e−(2−2/ρ)r/` , Σ ≈ 1 + cΣ e−2r/` , (5.51)
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while for 1 < ρ < 2 the result is

φ ≈ cφ e−(2−2/ρ)r/` , Σ ≈ 1 + c2
φ

2 + ρ

3(2− ρ)
e−4r(1−ρ−1)/` + cΣ e−2r/` . (5.52)

Using (5.46) we conclude that the RG flow is driven by a source term for the operator

Oφ proportional to the constant cφ. The constant cΣ is related to the vev of the operator

OΣ which is dynamically generated along the RG flow. The expression in (5.51) has the

expected form for scalar fields with masses as in (5.45). The result in (5.52) however is

different since for 1 < ρ < 2 one should keep quadratic (and higher order) terms in φ in

the linearized expansion of the differential equation for the scalar Σ in (5.43).

The case ρ = 2 should be treated separately and the linearized expansion of the BPS

equations near the N = 4 AdS5 then reads

φ ≈ cφ e−r/` , Σ ≈ 1 +
4

3`
c2
φ re

−2r/` + cΣ e−2r/` . (5.53)

This is the behavior of an RG flow triggered by sources for operators of dimensions 3 and

2. This behavior was also observed in section 5 of [2]. The regular numerical solution

displayed in figure 2 fixes a particular relation between the constants cφ and cΣ which

depends on the value of ρ.

Now we turn our attention to reproducing the ratio (5.49) between the central charges

from a field theory argument. This can be viewed as a generalization of the results in [14]

which is reproduced by selecting ρ = 2 above. To this end suppose that we have a deforma-

tion of the N = 2 SCFT dual to the N = 4 AdS5 vacuum in the UV which is such that the

resulting RG flow ends in an N = 1 SCFT with a superconformal R-symmetry given by the

following linear combination of the Cartan generators of the UV SU(2)×U(1) R-symmetry

RIR
N=1 =

1 + α

3
RN=2 +

4− 2α

3
I3 . (5.54)

Using this superconformal R-symmetry and the anomaly relations in (4.2) one readily

finds the following relation between the UV and IR central charges

aIR = (1 + α3)aUV −
3

4
α2(α+ 1)cUV ,

cIR = α(α2 − 1)aUV +
1

4
(α+ 1)(4− 3α2)cUV .

(5.55)

For α = 1/2 the result above reproduces the anomaly calculation in [14]. When the UV

theory has aUV = cUV, such as in SCFTs with a weakly coupled gravity dual, one finds

that the relations in (5.55) reduce to

aIR = cIR =
1

4
(α+ 1)(α− 2)2 aUV . (5.56)

This suggests that to reproduce the supergravity result found in (5.49) above we have to

make the identification16

ρ =
2 + 2α

2− α
. (5.57)

16Unitarity and the a-theorem imply that 2 > α > 0 which is mapped to the range ∞ > ρ > 1 in the

supergravity analysis.
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This indeed turns out to be the case since as we show in appendix B the combination

of gauge fields which are massless at the IR N = 2 vacuum in (5.39) corresponds to the

generator

RIR
N=1 =

ρ

ρ+ 2
RN=2 +

4

ρ+ 2
I3 , (5.58)

which after the identification in (5.57) reduces to (5.54). As an additional consistency

check one can show that the charge of the scalar φ under the supergravity gauge field

corresponding to the UV superconformal R-symmetry generator, i.e. the one in (5.54)

with α = 0, is 4
3(1 + ρ−1). This should correspond to the superconformal R-charge of the

operator Oφ in the dual SCFT. It is generally expected that operators dual to supergravity

scalar fields belong to chiral multiplets and thus the conformal dimension of Oφ should be

determined by its R-charge via the relation

∆φ =
3

2
× 4

3
(1 + ρ−1) = 2 +

2

ρ
. (5.59)

It is reassuring to find that this result nicely agrees with the one obtained in (5.46) from

an explicit evaluation of the mass of the scalar φ.

5.4 A model with two N = 2 vacua

We now consider a more involved model displaying an N = 4 vacuum and two distinct

N = 2 vacua. Since this is similar to the previous example we studied we keep the

presentation short. We take four vector multiplets and choose the embedding tensor as

f123 = g , ξ45 = − g√
2
, ξ67 = −

√
2 gρ−1

1 , ξ89 = −
√

2 gρ−1
2 . (5.60)

For simplicity, we assume g > 0, ρ1 > 0, ρ2 > 0. We parameterize an SO(5,4)
SO(5)×SO(4) coset

element in terms of the scalar fields φ, χ as

V = e−2φ cosχ (t16+t27)−2φ sinχ (t18+t29)

=



chφ 0 0 0 0 −shφ cosχ 0 −shφ sinχ 0

0 chφ 0 0 0 0 −shφ cosχ 0 −shφ sinχ

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

−shφ cosχ 0 0 0 0 chφ cos2 χ+ sin2 χ 0 sh2 φ
2

sin 2χ 0

0 −shφ cosχ 0 0 0 0 chφ cos2 χ+ sin2 χ 0 sh2 φ
2

sin 2χ

−shφ sinχ 0 0 0 0 sh2 φ
2

sin 2χ 0 chφ sin2 χ+ cos2 χ 0

0 −shφ sinχ 0 0 0 0 sh2 φ
2

sin 2χ 0 chφ sin2 χ+ cos2 χ


Again we have Xm = δm3 . In addition to the usual N = 4 vacuum at the origin with

cosmological constant V = −3
2g

2, we obtain two N = 2 vacua by solving the supersymme-

try conditions in a way similar to the example in section 5.3. The first N = 2 vacuum is

Σ3 = ρ1 , χ = 0 , e2φ =
1

3

(
1 + 2ρ1 + 2

√
ρ2

1 + ρ1 − 2
)
, V

(1)
N=2 = −g

2

6
ρ
−2/3
1 (2 + ρ1)2 ,

(5.61)
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while the second is

Σ3 = ρ2 , χ =
π

2
, e2φ =

1

3

(
1 + 2ρ2 + 2

√
ρ2

2 + ρ2 − 2
)
, V

(2)
N=2 = −g

2

6
ρ
−2/3
2 (2 + ρ2)2 .

(5.62)

Note that for the two vacua to be distinct we need ρ1 6= ρ2. In addition it is simple to

find the ratio of central charges of the dual SCFTs. If we assume that ρ2 > ρ1 > 1 we find

the N = 4 vacuum is in the UV, the vacuum in (5.61) is intermediate and the vacuum

in (5.62) is in the deep IR,

c
(1)
IR

cUV
=

(
V

(1)
N=2

VN=4

)−3/2

=
27ρ1

(2 + ρ1)3
,

c
(2)
IR

cUV
=

(
V

(2)
N=2

VN=4

)−3/2

=
27ρ2

(2 + ρ2)3
. (5.63)

The metric on the space spanned by the three scalars Σ, φ, χ is

ds2 = 3 Σ−2dΣ2 + 2 dφ2 + 2 sinh2 φ dχ2 . (5.64)

The expression for the scalar potential is not particularly illuminating, however it can

easily be recovered using (2.20) and the superpotential

W =
g

3
Σ−1 cosh2 φ+

g

6
Σ2
[

1− 2
(
ρ−1

1 cos2 χ+ ρ−1
2 sin2 χ

)
sinh2 φ

]
. (5.65)

Let us now discuss possible supersymmetric flows connecting the three supersymmet-

ric vacua in this model. The constraints (5.25)–(5.28) are satisfied, so a flow involving

Σ, φ, χ will not require switching on other scalars. The superpotential above generates the

following flow equations for the scalar fields:

Σ′ =
g

3

[
cosh2 φ+ 2Σ3

(
ρ−1

1 cos2 χ+ ρ−1
2 sin2 χ

)
sinh2 φ− Σ3

]
,

φ′ =
g

2

[
Σ2
(
ρ−1

1 cos2 χ+ ρ−1
2 sin2 χ

)
− Σ−1

]
sinh(2φ) ,

χ′ =
g

2

(
ρ−1

2 − ρ
−1
1

)
Σ2 sin(2χ) . (5.66)

There are flows from the N = 4 vacuum to either one of the N = 2 vacua with χ = 0 (5.61)

or χ = π/2 (5.61). These flows have a constant value for the scalar χ and can be constructed

numerically in a way very similar to the one described at the end of section 5.3. On the other

hand, in order to flow from the vacuum in (5.61) to the one in (5.62) the scalar χ has to

flow. This seems to imply that the numerical integration of the BPS flow equations is finely

tuned and it is more challenging to construct these flows numerically. This is most likely

related to the fact that both vacua in (5.61) and (5.62) are saddle points of the potential V .

6 Discussion

In this paper we studied the general structure of supersymmetric AdS vacua in half-maximal

five-dimensional gauged supergravity as well as possible supersymmetric domain-wall so-

lutions that connect them. Our results have a direct application to holography where they
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translate into constraints on the possible conformal vacua and RG flows of four-dimensional

N = 2 SCFTs with a gravity dual.

The approach we took in this work is “bottom-up”, i.e. we eschewed any reference to

a particular embedding of the gauged supergravity into string or M-theory and studied the

general structure of the five-dimensional theory. On one hand this allowed us to obtain

very general results that should be applicable to all four-dimensional N = 2 SCFTs with

a holographic dual, but on the other hand leaves the question open to what are concrete

realizations in ten or eleven dimensions. For instance the domain wall connecting two

supersymmetric AdS5 vacua with sixteen supercharges studied in section 3.5 should imply

a corresponding RG flow connecting two N = 2 SCFTs with a gravity dual. We provided

further evidence for this claim with the anomaly calculation in section 4, however we are

not aware of an explicit example of such an RG flow either in a “top-down” model arising

from string or M-theory or in field theory. A potential realization of this N = 2 RG flow

might be provided by the theories of class S, i.e. N = 2 SCFTs arising from M5-branes

compactified on a punctured Riemann surface, discussed in [37]. The vev deformation

of the UV N = 2 SCFTs which reduces the SU(2)R R-symmetry and the SU(2)F flavor

symmetry to the diagonal subgroup (preserved all along the flow) may be provided by an

appropriate “Higgsing of a puncture” on the Riemann surface. It was furthermore shown

in [37] how to describe this class of strongly interacting N = 2 SCFTs holographically in M-

theory. What is missing to connect this set-up to our results is a well-defined prescription

to assign a given five-dimensional gauged supergravity theory to any of the AdS5 eleven-

dimensional solutions in [37]. It will be interesting to understand how to make such a link.

We should also stress that the results presented in section 4 for the conformal anomalies

of the UV and IR N = 2 SCFTs are valid beyond the supergravity approximation. It may

be useful to emphasize that the IR central charges aIR and cIR in section 4 are those of

the full IR SCFT. As a consequence of the partial spontaneous breaking of the UV global

symmetry, the IR theory will contain a free sector made of Goldstone bosons in addition to

the interacting sector.17 In class S theories it is known how to separate the contributions

of the Goldstone bosons from the rest, see e.g. [38].

We were also able to describe general constraints for the existence of AdS5 vacua

and domain-walls with eight supercharges in a gauged supergravity theory with at least

one AdS5 vacuum with 16 supercharges. These results should be useful to understand

RG flows between N = 2 and N = 1 SCFTs in four dimensions. The model with two

vector multiplets discussed in section 5.3 is a particularly simple example of our general

results which nevertheless is rich enough to capture interesting physics. For ρ = 2 this

model provides a holographic realization of the universal field theory RG flow discussed

in [14]. A well-known “top-down” example of this RG flow is provided by the N = 1 mass

deformation of N = 4 SYM [1, 2], as well as its Zk orbifold [15, 16, 39]. It is widely expected

that this universal RG flow should connect also the N = 2 and N = 1 Maldacena-Núñez

SCFTs arising from M5-branes wrapping a smooth Riemann surface [17]. These theories

have holographic dual AdS5 vacua but there is no known domain wall solution connecting

17We thank Prarit Agarwal for useful discussions on this.

– 32 –



J
H
E
P
0
6
(
2
0
1
8
)
0
8
6

them. The supergravity solution with ρ = 2 described in section 5.3 should serve as a

five-dimensional effective description of this holographic RG flow. It will certainly be very

interesting to embed this five-dimensional model into a consistent truncation of eleven-

dimensional supergravity. We are not aware of an explicit embedding of the model with

ρ 6= 2 in section 5.3 into string or M-theory. However it is natural to conjecture that it may

be describing holographic RG flows between the N = 2 Maldacena-Núñez SCFT and one of

the N = 1 SCFTs with 0 < |z| < 1 studied in [18, 19]. By the same token we can speculate

that the model with one N = 4 and two N = 2 vacua described in section 5.4 may describe

holographic RG flows connecting the N = 2 Maldacena-Núñez vacuum with two of the N =

1 theories with |z| < 1 in [18, 19]. To establish these conjectures rigorously one has to show

how to construct a consistent truncation for the eleven-dimensional supergravity solutions

of [18, 19] to five-dimensional gauged supergravity. Partial progress in this direction was

presented in [40], however the solution to the full problem is still out of reach.

Finally we would like to point out that various interesting conjectures about the struc-

ture of RG flows in quantum field theory were presented in [41, 42]. Supersymmetric CFTs

with holographic duals and the RG flows connecting them provide a natural playing ground

to explore these conjectures and we hope that some of our results may be useful in this

context.
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A Uniqueness of half-maximal AdS solutions in various dimensions

Half-maximal gauged supergravity theories in different dimensions share a very similar

structure. Their matter content and their couplings are completely fixed by the number

of vector multiplets and the embedding tensor specifying the gauge group. Therefore a

natural question is the possible existence of a no-go result for multiple N = 4 vacua within

half-maximal supergravity in dimension other than five, similar to the one obtained in

section 3.2. Indeed, in this appendix we show that, again under the assumption that the

only compact subgroup of the gauge group is the R-symmetry of the vacuum, an analogous

proof holds in dimensions four, six and seven. In more general situations it is natural to

expect that there may be two distinct N = 4 vacua in four, six and seven dimensions. This

should be viewed as a generalization of the five-dimensional results presented in section 3.3.

It should then be possible to exhibit holographic RG flows connecting these distinct AdS

vacua analogous to the ones studied in section 3.5. Indeed, examples of such flows in six-
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and seven-dimensional half-maximal gauged supergravity have been studied in [43, 44]. It

will be interesting to study this further and understand these holographic RG flows from

the point of the dual SCFT.

A.1 Four dimensions

In four dimensions, fully supersymmetric AdS vacua in half-maximal supergravity have

been discussed in [6]. There it was shown that the gauge group of N = 4 AdS vacua is

G = H+ ×H− ×Hc ⊂ SO(6, n) , (A.1)

so that H± have the same properties as Hnc in five dimensions, see (3.6), but with the

novelty that H+ and H− are electrically and magnetically gauged, respectively. In the

AdS4 vacuum we find again the breaking

H± → SU(2)± . (A.2)

In the holographically dual 3d N = 4 SCFT, SU(2)+ × SU(2)− is the R-symmetry group.

Hc is again compact and semi-simple and is gauged under vector multiplet gauge bosons.

It corresponds to the group of flavor symmetries in the dual SCFT. The embedding tensor

has components fMNP
± (while ξM± have to vanish in the N = 4 vacuum). If we define

fmnp = VMmVNnVP p(τf−MNP − f+
MNP ) , (A.3)

where τ is the SL(2) complex scalar in the gravity multiplet, then the N = 4 supersymmetry

conditions read

VMmVNnVP af±MNP = 0 , (A.4)

1

6
εmnpqrsfqrs = − i fmnp . (A.5)

Using the quadratic constraints and the symmetries of the scalar manifold one can take

f123 =
1

3
√

2
µ , f456 = − 1

3
√

2
iµ . (A.6)

The cosmological constant is V = −3
2 f
mnpf∗mnp = −|µ|2.

Let us fix one N = 4 AdS4 vacuum to be at the origin, and let us assume that Hc is

trivial. Then we can argue analogously to the five-dimensional case that because of (A.4),

the following identities hold (up to SO(6) rotations) in the second vacuum

VM 1 = ΛM
NδN

1 , VM 4 = Λ̃M
NδN

4 ,

VM 2 = ΛM
NδN

2 , VM 5 = Λ̃M
NδN

5 ,

VM 3 = ΛM
NδN

3 , VM 6 = Λ̃M
NδN

6 ,

(A.7)

where Λ and Λ̃ describe the embedding of SU(2)± into H±, respectively, which correspond

to Goldstone directions in VMm, cf. (3.12). Note that the two SU(2) gauge groups cannot

mix since they are electrically and magnetically gauged.
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A.2 Six dimensions

In six dimensions, half-maximally supersymmetric AdS vacua are the only allowed super-

symmetric AdS vacua and have been constructed and studied in [10, 45–47]. Let us start

by briefly reviewing [10].

The gauge group is

G = H ×H ′ ⊂ SO(4, n) , (A.8)

where H ⊂ SO(3,m) and H ′ ⊂ SO(1, n−m) for some m ≤ n. As in lower dimensions, this

gauge group is spontaneously broken in a supersymmetric vacuum to its maximal compact

subgroup, which turns out to be

SO(3)×Hc , (A.9)

where SO(3) is gauged by three of the four graviphotons and corresponds to the R-

symmetry group of the dual CFT, while Hc ⊂ SO(n−m) corresponds to flavor symmetries.

The supersymmetry constraints on the embedding tensor reflect the discussion of the

gauge group and are given by

VMmVNnVP 0fMNP = 0 ,

VMmVN 0VP afMNP = 0 ,

VMmVNnVP afMNP = 0 ,

VMmVNnVP pfMNP = g εmnp , (A.10)

for m = 1, 2, 3. The gauge coupling g and the mass m̃ of the two-form in the gravity

multiplet together also determine the cosmological constant via

V = −20 m̃2
( g

3m̃

)3/2
. (A.11)

Again, if we fix one half-maximal AdS6 vacuum to sit at the origin and we assume

that Hc is empty, we can argue from the third equation in (A.10) that the vielbein

(VM 0,VMm,VMa) of any other N = 4 AdS6 vacuum must be related by the following

embedding

VM 0 = ΣM
NδN

0 ,

VM 1 = ΛM
NδN

1 ,

VM 2 = ΛM
NδN

2 ,

VM 3 = ΛM
NδN

3 , (A.12)

where Λ has the same form as in (3.12) and therefore describes the embedding of SO(3)

into H ′. Similarly, Ξ is a transformation in SO(1, n−m) whose non-vanishing components

are Ξ0
a and Ξa

0 given by

Ξ0
a = λ̃bfb0

a . (A.13)

Again, the transformations Λ and Ξ are precisely the Goldstone modes of the model, and

thus the N = 4 vacuum is unique.

When Hc contains an SO(3) subgroup, multiple supersymmetric AdS6 solutions pre-

serving all sixteen supercharges can be found. A supersymmetric flow between two such

solutions was constructed in [43].
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A.3 Seven dimensions

Supersymmetric AdS vacua of half-maximal supergravity in seven dimensions have been

discussed in [7]. Analogous to lower dimensions, the gauge group is of the form

G = H ×Hc ⊂ SO(3, n) , (A.14)

where H is spontaneously broken in the AdS vacuum to its maximal compact subgroup

SO(3), which is gauged by graviphotons and corresponds to the R-symmetry of the dual

CFT. The compact group Hc ⊂ SO(n) corresponds to flavor symmetries in the CFT. This

result is found by inspecting the supersymmetry conditions imposed on the embedding

tensor components fMNP , ξM . These read:

ξM = 0 ,

VMmVNnVP afMNP = 0 ,

VMmVNnVP pfMNP = g εmnp , (A.15)

where the gauge coupling constant g determines the cosmological constant. Again, if Hc is

trivial the only transformations that leave these conditions invariant are

VM 1 = ΛM
NδN

1 ,

VM 2 = ΛM
NδN

2 ,

VM 3 = ΛM
NδN

3 , (A.16)

with Λ given by (3.12), which corresponds to shifts by a Goldstone boson, establishing

uniqueness of the supersymmetric AdS7 vacuum.

Also in this case, when Hc contains an SO(3) subgroup, one can have multiple AdS7

solutions preserving sixteen supercharges, as well as supersymmetric flows connecting them,

see [44] for an example.

B The generator of the IR U(1)R symmetry

In this appendix we show that the generator of the U(1) R-symmetry at the IR fixed point

of the holographic flow discussed in section 5.3 is given in field theory units by

RIR
N=1 =

ρ

ρ+ 2
RN=2 +

4

ρ+ 2
I3 . (B.1)

We can extract the information we need from the action of the supergravity gauge

covariant derivative on the spinor parameter εi. The general form of the gauge covariant

derivative was given in eq. (2.7). When acting on the spinor parameter, this reads:

Dε = ∇ε− 1

4
(−Âmf̂mnpΓnp + Âaf̂anpΓnp +A0ξ̂npΓnp)ε , (B.2)

where ∇ is the covariant derivative in the ungauged supergravity theory and we are sup-

pressing the USp(4) indices on the spinor as well as on the SO(5) gamma matrices.
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Before coming to the IR vacuum, let us consider the vacuum at the origin of the scalar

manifold, preserving sixteen supercharges. Recalling the form (5.31) of the embedding

tensor, we have at that point:

Dε = ∇ε−
(
−1

4
gAmεmnpΓnp −

g

2
√

2
A0Γ45

)
ε , (B.3)

where in this equation the indices m,n, p run over 1, 2, 3 only. The embedding of the

SU(2) × U(1) R-symmetry of the N = 4 vacuum in USp(4) is such that we have the

following identification:

Γ45 = RN=2 , −1

4
εmnpΓnp = Im , m = 1, 2, 3 . (B.4)

Therefore the covariant derivative can be written as

Dε = ∇ε−
(
gAmIm −

g

2
√

2
A0RN=2

)
ε . (B.5)

Now let us consider the supersymmetric flow discussed in section 5.3. Since we have

found there that Xi
j = (Γ3)i

j , the supersymmetries being preserved along the flow are

ε+ = 1+Γ3
2 ε. This also implies Γ45ε+ = −Γ12ε+. Acting with the projector 1+Γ3

2 on (B.2)

to select these supersymmetries and using the expression for the dressed components of

the embedding tensor given in (5.33), we arrive at

Dε+ = ∇ε+ −
g

2

(
−A3 cosh2 φ+

1√
2ρ
A0(ρ− 2 sinh2 φ)

)
Γ12ε+ . (B.6)

At the UV vacuum φ = 0 and this yields

Dε+ = ∇ε+ − (gA3I3 −
g

2
√

2
A0RN=2)ε+ . (B.7)

Of the two symmetries generated by RN=2 and I3, one linear combination is preserved

along the flow, while another one is spontaneously broken, with the associated gauge field

becoming massive. The symmetry that is preserved is manifest by evaluating the covariant

derivative at the IR vacuum. Recalling that the latter is characterized by cosh2 φ = ρ+2
3 ,

sinh2 φ = ρ−1
3 , we find

Dε+ = ∇ε+ −AIRΓ12ε+ , (B.8)

with

AIR =
g

6
(2 + ρ)

(
1√
2
ρ−1A0 −A3

)
, (B.9)

and Γ12 is the generator of the IR R-symmetry, which should be understood as the linear

combination of RN=2 and I3 we are after. In addition, when in the main text we discussed

the gauge symmetries being broken, we found that the combination

Abroken = g(
√

2ρ−1A0 +A3) (B.10)
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is massive (this is determined up to an overall normalization that will not matter). Inverting

the relation between AIR, Abroken and A0, A3 we obtain

A0 =

√
2ρ

3g

(
Abroken +

6

2 + ρ
AIR

)
,

A3 =
1

3g

(
Abroken − 12

2 + ρ
AIR

)
. (B.11)

Plugging this in (B.7), we find that the generator multiplying AIR is (B.1), which is what

we wanted to show.

As an additional consistency check of our results, let us retrieve the ratio of central

charges by studying the topological term in supergravity. After ignoring all other vector

fields, the relevant Chern-Simons term of half-maximal supergravity is

LCS ∼ A0 ∧ dA3 ∧ dA3 . (B.12)

If we also discard the vector becoming massive in the IR vacuum, the remaining Chern-

Simons term is

LIR
CS ∼

32
√

2ρ

g3(2 + ρ)3
AIR ∧ F IR ∧ F IR . (B.13)

The coefficient of this term in the supergravity Lagrangian is proportional to the cubic

R-symmetry anomaly of the IR superconformal R-symmetry which gives the leading con-

tribution to the aIR = cIR conformal anomaly. The analogous Chern-Simons term in the

UV can be obtained by setting ρ→ 1 in (B.13) to find

LUV
CS ∼

32
√

2

27g3
AUV ∧ FUV ∧ FUV . (B.14)

Taking the ratio of the two coefficients in (B.13) and (B.14) above we obtain the same

result as the central charge ratio in (5.49) computed by comparing the IR and UV values

of the cosmological constant.
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[7] J. Louis and S. Lüst, Supersymmetric AdS7 backgrounds in half-maximal supergravity and

marginal operators of (1, 0) SCFTs, JHEP 10 (2015) 120 [arXiv:1506.08040] [INSPIRE].

[8] J. Louis, H. Triendl and M. Zagermann, N = 4 supersymmetric AdS5 vacua and their moduli

spaces, JHEP 10 (2015) 083 [arXiv:1507.01623] [INSPIRE].

[9] J. Louis and C. Muranaka, Moduli spaces of AdS5 vacua in N = 2 supergravity, JHEP 04

(2016) 178 [arXiv:1601.00482] [INSPIRE].

[10] P. Karndumri and J. Louis, Supersymmetric AdS6 vacua in six-dimensional N = (1, 1)

gauged supergravity, JHEP 01 (2017) 069 [arXiv:1612.00301] [INSPIRE].
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