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1 Introduction

For relating a theory of quantum gravity, like string theory, to the real world it is of

utmost importance to understand which properties of the low-energy effective action can

be realized in the string theory landscape and which are outside its reach. The set of

theories that cannot be consistently UV completed by a quantum gravity theory has been

termed the swampland [1]. If one could make a clear statement that a certain property of
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the low-energy effective action cannot be realized in the landscape, this would open up the

possibility of in principle falsifying string theory.

During the last years progress in this direction has been made in particular in the realm

of string cosmology, where the question arose whether string theory admits controllable

models of large field inflation. In such scenarios the inflaton transverses trans-Planckian

field ranges and, due to the Lyth bound, gives a tensor-to-scalar ratio r > 10−3, i.e. values

that can be measured with current and future experiments. Well motivated candidates for

such models are based on axions, whose shift symmetry can protect the scalar potential

against quantum gravity corrections.

However, it was argued that the Weak Gravity Conjecture (WGC) [2] provides strong

constraints on models where the axion potential is generated by non-perturbative ef-

fects [3–6]. In effect, the WGC implies that for models with one [7] or more axions [8, 9],

increasing the field range to the trans-Planckian regime means that one moves outside the

regime of a controlled low-energy effective action (see also the early work [10]).

A second approach towards realizing axion inflation is to impose a controlled sponta-

neous breaking of the axionic shift symmetry [11] by adding branes or fluxes. This ansatz

is called axion monodromy inflation and was introduced in the stringy context in [12].

One at first sight promising mechanism to generate a polynomial potential for axion mon-

odromy inflation is to turn on background fluxes generating a tree-level F-term scalar

potential [13–15]. However, concrete attempts to realize such a scenario in a consistent

scheme of string theory moduli stabilization [16, 17] showed that one encounters major ob-

stacles. In fact, the prior assumptions about the range of validity of the low-energy effective

action were violated. For instance, often one could not keep the moduli masses smaller than

the Kaluza-Klein masses. A more general observation [18, 19] was that taking the backre-

action of the rolling axion onto the other moduli into account, the backreacted proper field

distance showed a logarithmic behavior Θ ∼ λ−1 log θ. Here λ−1 can be considered as the

scale in field distance where the backreaction becomes substantial.

It was realized in [19, 20] that this logarithmic scaling of the proper field distance is very

generic and that it precisely reflects one of the conjectured behaviors by Ooguri/Vafa [21] to

distinguish effective field theory models that can be realized in string theory (the landscape)

from those that cannot be coupled in a UV complete way to gravity (the swampland) [1].

This now called ‘Swampland Distance Conjecture (SDC)’ [22] was abstracted from the

very simple example of string theory compactified on a circle, where it is the Kaluza-Klein

tower that shows this behavior in terms of the proper field distance. It says that if one moves

over very large distances in the moduli space of an effective quantum gravity theory, there

appears an infinite tower of states whose mass scales as m ∼ m0 exp(−λ∆Θ). This means

that for ∆Θ > λ−1 the effective theory breaks down. A new field theoretic perspective

on the relation between the logarithmic scaling and the infinitely many exponentially light

states was recently given in [22, 23].

This paper is concerned with the question, at which scale λ−1 this happens, i.e. what

the size of the region where the effective theory can be trusted is. In fact, the concrete

models of axion backreaction discussed in [19] always had λ = O(1), that is the cut-off

in the field distance was close to the Planck-scale. This motivated the authors of [20] to
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formulate the Refined Swampland Distance Conjecture (RSDC), that extends the original

one of Ooguri/Vafa by the statement that λ = O(1). Clearly, if this conjecture holds also

for axions with a potential, it will provide a generic quantum gravity obstacle to realize

axion-monodromy inflation in a controlled way using a low energy effective action. Recent

discussions of the Swampland Distance Conjecture in the context of axion monodromy in-

flation are [24–27] (see also [28] for a geometric reason for finite distances in moduli spaces).

It is the purpose of this paper to go a step back to the original work of Ooguri/Vafa and

analyze the RSDC not only for moduli spaces of toroidal compactifications but for genuine

Calabi-Yau (CY) compactifications of type II superstring theory. This means that the

axions do not receive a potential and remain as periodic flat directions. More concretely,

we will challenge the RSDC by computing proper field distances along geodesics (and

sometimes non-geodesic trajectories) in the Kähler moduli spaces of Calabi-Yau manifolds.

For that purpose we will use the available two methods. First one can compute the periods

of the mirror dual CY manifold and second one can extract the Kähler potential from the

2-sphere partition function of the gauge linear sigma model (GLSM).

It is well known that these Kähler moduli spaces do not only contain (geometric)

regions/phases, where points at infinite distance exist, but also non-geometric phases of

stringy nature, like the Landau-Ginzburg (LG) phase. These often do only have a finite

radius and therefore do not admit points at infinite distance. To reach the latter one first

has to cross the non-geometric phase and move to another geometric phase where such

a point do exist. If the distances one can travel along geodesics in such non-geometric

phases were already larger than Mpl, it would directly falsify the RSDC. Therefore, our

main objective is to compute geodesic distances in the moduli space of Calabi-Yau com-

pactifications and compare them with the expectation from the RSDC. We emphasize that

very similar in spirit, in [29] axion decay constants have been evaluated in the geometric

phases for h11 ∈ {1, 2} CY threefolds with the result that they are bounded from above by

an order one parameter times the Planck-scale.

In section 2, in more detail we explain the RSDC and our approach to check it in

Calabi-Yau moduli spaces. For self-consistency, section 3 contains a summary of the known

techniques we employed to gain the necessary information on the moduli spaces. The reader

familiar with these techniques can safely skip this section. The sections 4 and 5 are the

main sections of this paper. For a couple of one and two moduli examples we analyze

(geodesic) proper field distances between points in their moduli spaces and compare them

with the expectation from the RSDC. In section 6, based on a recent advance [30, 31],

we also investigate the full 101 dimensional Kähler moduli space of the mirror quintic.

The result of this endeavor can be summarized by saying that in all instances our results

are consistent with the RSDC, thus providing non-trivial evidence for it. We finally will

make the compelling observation that our data seem to suggest that the finite proper field

distance one can traverse in a single non-geometric phase scales inversely with the number

of phases.
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2 Prerequisites and objectives

Before we dwell into the more formal analysis, let us explain the objective of this paper.

This is an analysis of the Refined Swampland Distance Conjecture in the moduli space of

Calabi-Yau compactifications.

2.1 Basics on Calabi-Yau moduli spaces

Let us first introduce some very basics of type II compactifications on CY manifolds.

Consider the compactification of type IIA superstring theory on a Calabi-Yau manifold M
with Hodge numbers (h21, h11). The four-dimensional effective theory has N = 2 space-

time supersymmetry. The dimension of complex structure moduli space gives rise to h21

hypermultiplets and the dimension of the Kähler moduli space to h11 vector multiplets.

Such a compactification is dual to type IIB compactified on the mirror CY manifold W
with Hodge numbers h21(W) = h11(M) and h11(W) = h21(M), which gives the same

massless spectrum.

Since hyper- and vector multiplets decouple in N = 2 supergravity, the vector multiplet

moduli space of the type IIB model on the mirror CY does not receive world-sheet instanton

corrections and can be reliably computed at string tree-level (in α′). This complex structure

moduli space is mapped via mirror symmetry to the Kähler moduli space of the type IIA

model. The latter indeed receives α′ corrections which can be read off once one knows the

precise mirror map between the moduli.

In this paper we will be concerned with field distances in these vector multiplet mod-

uli spaces. In section 3, we will review methods to compute their Kähler potential and

consequently their metric. The classic method of Candelas et al. [32] applies to the com-

plex structure moduli space of the mirror Calabi-Yau manifold W where techniques were

developed to compute the periods of the holomorphic three-form and from them all the

information on the (classical) complex structure moduli space. More recently, methods

were developed [33–35] that work directly for the Kähler moduli space of the original CY

M and allow to compute the 2-sphere partition function utilizing the description in terms

of gauged linear sigma models (GLSMs). From the partition function one can deduce the

Kähler potential.

Of course, the two descriptions have to agree so that we are free to use either the

language of the complex structure or the Kähler moduli space. Throughout this paper, we

will use the Kähler moduli space, i.e. we will speak of large and small radius regime. When

we say conifold locus (that is actually defined in the complex structure moduli space), we

mean the mirror dual of it. As we will see in the next section, the advantage is that Kähler

moduli more directly set the mass scale of the Kaluza-Klein modes.

2.2 The Refined Swampland Distance Conjecture

In this section, we briefly explain the Swampland Distance Conjecture and recall one of

its motivations. In the original paper by Ooguri/Vafa [21], what later has been called the

‘Swampland Distance Conjecture’, was just one of the proposed criteria to discriminate
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effective field theories arising in the string landscape from those that do not admit a UV-

completion, i.e. lie in the swampland. Certainly, this criterium was the most quantitative

one and, as the name suggests, is about distances in field space. Let us explain its origin

for the Kähler moduli space of the type IIA model on M.

In the large volume regime the Kähler potential for the Kähler moduli of M is given

in terms of the triple intersection numbers as

K = − log
(
− i

6
κijk (ti − ti)(tj − tj)(tk − tk)

)
(2.1)

where the ti, with i = 1, . . . , h11, denote the complexified Kähler moduli

ti =

∫
Σi

B + i

∫
Σi

J (2.2)

where the two-cycles Σi are a basis of H2(M). Following a generic trajectory inside the

Kähler cone Im(ti) ∼ αi r, αi ∈ R, for very large r the effective Kähler potential behaves

as K = −3 log r. Hence, the Kähler metric along the trajectory becomes

G(r) =
3

4 r2
. (2.3)

There might exist special trajectories for which the numerator is smaller than three but it

will never be larger. The proper field distance Θ along a trajectory xα(τ) is defined as

Θ =

∫ τ∗

τ0

dτ

√
Gαβ

dxα

dτ

dxβ

dτ
, (2.4)

which in this case becomes

Θ =

∫ r∗

r0

dr
√
G(r) =

1

λ
log
(r∗
r0

)
(2.5)

with λ = 2√
3
≈ 1.15. This logarithmic scaling has a dramatic consequence for the validity

of the effective field theory in which the Kaluza-Klein (KK) modes are assumed to be

integrated out. The generic KK mass-scale can be estimated as

MKK ∼
Ms√
r
∼
Mpl

r2
∼MKK,0 exp(−2λΘ) (2.6)

which implies that for trans-Planckian field excursions Θ > λ−1 ≈ 0.87 an infinite tower of

KK-states becomes light, thus spoiling the validity of the effective field theory.

In [21] Ooguri and Vafa formulated this in a more concise manner. They provided a

couple of conjectured criteria that an effective theory in the landscape necessarily should

satisfy. The most quantitative criterion was termed the Swampland Conjecture in [20] and

later was renamed as Swampland Distance Conjecture [22]. It says:

Swampland Distance Conjecture.

For any point p0 in the continuous scalar moduli space of a consistent quantum

gravity theory (the landscape), there exist other points p at arbitrarily large
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distance. As the geodesic distance Θ = d(p0, p) diverges, an infinite tower of

states exponentially light in the distance appears, meaning that the mass scale

of the tower varies as

M ∼M0 e
−λΘ . (2.7)

Thus, the number of states in the tower which are below any finite mass scale

diverges as Θ→∞.

In the initial version of the conjecture, λ is still an undetermined parameter that specifies

when the exponential drop-off becomes significant. As we have seen in (2.5), for trajectories

(not necessarily geodesic) in the large volume regime of CY compactifications one has

Θλ ≡ λ−1 ∼ O(1).

Infinitely many states becoming exponentially light in field space indicates that the

effective quantum gravity theory at the point p0 only has a finite range of validity in the

scalar moduli space. To determine the exact value of the displacement where the effective

theory breaks down, all relevant mass scales have to be taken into account. Therefore, the

exact upper bound on the displacement is highly model-dependent, but it is sure that in

the presence of the exponential drop-off, any physics that we might derive for larger values

Θ > Θλ = λ−1 cannot be trusted.

However, it is not a priori clear at which finite value of the distance Θ0 along a geodesic

this exponential drop-off first sets in. Indeed, the scale Θλ was derived already in the large

radius regime without any reference to the point p0 where the geodesic started. In [19, 26],

by analyzing a couple of string theory models, evidence was provided that Θ0 is equal to

the natural mass scale in quantum gravity, namely Mpl.
1 For the simple examples chosen,

all scales turned out to be related, i.e. Θ0 ' Θλ = λ−1. Let us point out that these

papers focused on stabilized moduli in contrast to the original work of [21]. In the case of

unstabilized moduli, general arguments were given in [20] in favor of a Refined Swampland

Distance Conjecture which states that not only Θλ . O(1) but also Θ0 . O(1) (in Planck

units). In other words, for any starting point of a geodesic, one cannot follow it for a longer

distance than Mpl before the validity of the effective theory breaks down.

The objective of this paper is to test this highly non-trivial conjecture in the Kähler

moduli space of type IIA string compactications on CY manifolds. For that purpose we

head out to compute the critical values Θ0 and Θλ for a plenitude of different trajecto-

ries/geodesics in various CY manifolds. Let us explain this idea in more detail.

2.3 Objective: testing the RSDC in CY moduli spaces

As we have recalled, the intuition for the Swampland Distance Conjecture derives from the

form of the Kähler potential in the large radius regime.2 It is known that the Kähler moduli

space of a Calabi-Yau manifold also contains non-geometric regions where α′ corrections

1There, the displaced field was actually an axion, hence the consequences of the SDC were only visible

through backreaction effects induced by moduli stabilization.
2Other examples were presented already in [21], for example the Planck-normalized mass of the oscillator

modes of the F- and D-strings as a function of the string coupling.
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Figure 1. Sketch of the Kähler moduli space of the quintic.

become important. For instance, for the quintic the form of the Kähler moduli space has

the structure shown in figure 1.

As indicated, there are three distinguished points: the large volume point, the conifold

and the Landau-Ginzburg (LG) point. The LG or Gepner point is the one of minimal

radius. To cover the whole moduli space, one needs at least two charts, whose radii of

convergence are shown by the dashed arc in figure 1.

The concrete description of this moduli space will be recalled in section 4.1. At this

stage, we just want to mention that one can ask the question whether the RSDC still holds

for points p0 in the small volume regime. We will see that the conifold and LG points are

at finite distance in the moduli space so that the only region featuring infinite distances

is the large volume regime. Following a geodesic from the LG point to the large volume

regime, one expects that the proper field distance depends on Im t like shown in figure 2.

As long as one stays in the small volume regime the proper field distance scales polyno-

mially with Im t and at some point (Im t0,Θ0) the logarithmic scaling becomes dominant.

As a consequence, we define the critical field distance as the sum

Θc = Θ0 + λ−1 , (2.8)

which includes the distance Θ0. This makes sense as we would like to know how much

distance can one travel along a geodesic before the effective field theory breaks down. For

the quintic example, displacing the Kähler modulus from the LG point towards the large

volume phase, Θ0 would be at least the proper distance to the edge of the convergence

region of the LG phase, which is approximately the same as the distance between the LG

and conifold point.

Clearly, if Θ0 determined in this way was already larger than the Planck-scale, the

RSDC would be falsified. Said the other way around, if the RSDC is correct, the proper
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Figure 2. Expected relation between proper field distance Θ and Im t.

field distance that can be traveled in the small volume regime must be smaller than Mpl.

Therefore, the (proper) radius of convergence for any chart that does not contain a region

of infinite distance should be sub-Planckian.

Now, let us confirm that the identification of Θ0 with the radius of convergence is

really a good approximation. In the case of a single modulus, the general asymptotic form

of the prepotential is [32]

F = −5

6
t3 + i

ζ(3)

2(2π)3
χ(M)︸ ︷︷ ︸

≡−c

+ . . . , (2.9)

where the constant is the one-loop contribution and the dots denote non-perturbative

corrections. From this we find that the asymptotic form of the proper distance is

∆Θ =

√
3

2
log(t) +

√
3c

5

1

t3
+O

(
1

t6

)
. (2.10)

The point where the perturbative 1/t3 contribution is of the same order as the asymptotic

logarithm is found to be at

teq ' e
1
3
W (2c/5) , (2.11)

where W (x) is the Lambert W -function. For the quintic with Euler characteristic χ =

−200, this is approximately at teq ' 1.06, a value well below the minimal value of t

in the large radius phase tmin ' 1.21. Indeed, at the phase boundary, the logarithm is

approximately twice the size of the 1/t3 term, which can be considered a small correction

for all t larger than this. This is the case for all models that we analyzed and of course

consistent with the fact that the 1/t expansion is a perturbative expansion which breaks

down in the non-geometric regions of the moduli space.

– 8 –



J
H
E
P
0
6
(
2
0
1
8
)
0
5
2

As a result, the logarithm is a good approximation for the behavior of the proper

distance over the whole large volume phase and only breaks down at the boundary to

non-geometric regions. Thus, the only relevant contribution to Θ0 comes from inside the

non-geometric phases and the behavior predicted by the SDC sets in immediately after

crossing the phase boundary.

It is the goal of this paper to check two very concrete predictions of the RSDC, namely

that both Θλ and Θ0 should be bounded by O(1) in Planck units.

3 The Kähler metric on moduli spaces

To be able to test the RSDC, for concrete examples of CY manifolds one needs the explicit

form of the metric on the Kähler moduli space. In this rather technical section we describe

the two employed methods to calculate this metric.

First we use the conjecture of [34] which was proven by [35]. There the Kähler potential

and thereby the metric can be read off from the partition function of a corresponding gauged

linear sigma model (GLSM). Second one calculates the periods of the holomorphic three-

form for the mirror CY and transforms them into an integral symplectic basis. Using two

different methods allows us to also compare the numerical results.

Moreover the two methods have different advantages and disadvantages. While the

GLSM construction is very efficient and mathematically easier, it is hard to extract the

periods and thereby the mirror map from the partition function in the non-geometric

phases. The period formalism on the other hand becomes quite involved, but from the

periods one also obtains the mirror map directly.

3.1 Sphere partition function for GLSM

In the GLSM approach the Kähler potential is given in terms of the 2-sphere partition

function of the gauged linear sigma model

e−K = ZS2 . (3.1)

The partition function for a general N = (2, 2) GLSM was calculated in [33, 36]. In the

Coulomb branch the relevant fields in the path integral are the scalar parts aj of the vector

multiplets and the field strengths Fj of the vector part of the vector multiplet. The index

j labels the s vector multiplets of the theory, while the index i labels the M chiral fields.

As the sphere is a compact space, the field strengths are quantized, 1
2π

∫
S2 Fj = mj with

the mj being integers. Thus for an abelian gauge group G = U(1)s it can be written as

ZS2(ξ, ξ̄, Q,R) =
∑
m1∈Z

. . .
∑
ms∈Z

i∞∫
−i∞

da1 . . .

i∞∫
−i∞

das Zclass Zgauge Zchiral (3.2)

where the purely imaginary integration contour for the scalar fields ai is chosen to sim-

plify the expressions. For an abelian gauge group Zgauge = 1 is trivial. The classical

contribution is

Zclass =
s∏
j=1

e−4πirjaj+iθjmj , (3.3)
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and the contribution from the 1-loop determinants of the chiral fields are given by

Zchiral =

M∏
i=1

Γ

(
Ri/2 +

s∑
j=1

Qi,j · (aj −mj/2)

)
Γ

(
1−Ri/2−

s∑
j=1

Qi,j · (aj +mj/2)

) . (3.4)

After performing the integration, the partition function only depends on the complex-

ified Fayet-Iliopoulos (FI) parameters ξj = 2πrj + iθj , and the gauge- and R-charges Qi,j
and Ri of the chiral fields. In the next section we describe how to identify these parameters

for a given Calabi-Yau.

Data of GLSM. The GLSM is a two-dimensional N = 2 supersymmetric gauge theory

build out of M chiral multiplets Φm with m = 1, . . . ,M − N and Σn with n = 1, . . . , N .

In addition there are s vector multiplets Vj . The chiral multiplets carry the U(1) charges

shown in table 3.5.

Φ1 Φ2 . . . ΦM−N Σ1 . . . ΣN

U(1)1 Q1,1 Q2,1 . . . . . . QM−N,1 QM−N+1,1 . . . QM,1

U(1)2 Q1,2 Q2,2 . . . . . . QM−N,2 QM−N+1,2 . . . QM,2
...

...
...

...
...

...
...

...

U(1)s Q1,s Q2,s . . . . . . QM−N,s QM−N+1,s . . . QM,s

(3.5)

The M−N fields Φm can be considered as the homogeneous coordinates of an ambient toric

variety that has s identifications. The N fields Σn provide the constraints. The dimension

of the resulting space is D = M − 2N − s. The CY condition is related to the vanishing

of the mixed gravitational-abelian gauge anomalies, which are proportional to the sum of

the gauge charges

M∑
i=1

Qi,j = 0 . (3.6)

In addition there exist a superpotential

W =
N∑
n=1

Pn(Φ) Σn (3.7)

that is linear in the Σn and the polynomials are such that W carries vanishing charges.

Moreover, one associates R-charges Ri to the chiral fields such that the superpotential

has R-charge 2. The superpotential only depends on the complex structure, therefore the

A-model partition function is independent of the superpotential itself. The superpotential

only restricts the value of the R-charges. The R-charges of the fields are determined by

the condition that R(W ) = 2 with the R-charges of all chiral field positive. This does not

uniquely fix the R-charges, but the remaining freedom corresponds to a rescaling of the

partition function or equivalently a Kähler transformation of the Kähler potential.
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In this paper we will be concerned with for instance non-singular hypersurfaces in

weighted projective spaces

WCPDk1,...,kD+1
[d1, . . . , dN ] . (3.8)

Since s = h11 = 1 there is only a single gauge symmetry and the chiral fields carry charge

Qm,1 = km, m = 1, . . . , D + 1 and Qn,1 = −dn with n = 1, . . . , N .

If the space is singular, the singularities have to be resolved. If this is possible by

toric methods, additional U(1) gauge symmetries are added. The gauge charges of the

chiral fields are in this case determined by the generators of the Mori cone, which can be

calculated using the PALP package [37].

Coordinates on Kähler moduli space. The partition function (3.2) is given in terms

of the FI-parameters ξj of the GLSM used to describe the CY. We define zj = exp(2πiξj)

and qj = exp(2πitj), where in the second definition ti are the complexified Kähler moduli,

ti =
∫

Σi
(B + iJ). While the calculations are simpler in the z coordinate system, most

results in the literature are stated in terms of the “algebraic” coordinates, denoted by φ or

ψ. These are the coefficients of the deformations of the defining polynomial in the mirror

dual. To relate these coordinates to each other, one determines special points in the moduli

space. These special points are the Landau-Ginzburg point at φ = 0, the large complex

structure point φ = ∞ and the singular loci. In the GLSM coordinates, the singular loci

are located at the solutions to the equations [38]

M∏
i=0

〈
δi
〉Qi,j = zj . (3.9)

and
M∏
i=0

〈
δi|H

〉Qi,j
= zj , (3.10)

where 〈δi〉 denotes the VEV of the operator δi =
∑s

j=1Qi,j aj . Here aj is the scalar part

of the vector multiplet. The δi|H are obtained from δi by setting all a which are charged

under a subgroup H of G to 0 and by only taking the uncharged chiral fields into account.

The equation has to be fulfilled for all subgroups of G whose charges span RM−D−rank(H)

with positive coefficients.

In the algebraic coordinates, the manifold becomes singular at the points where the

transversality condition is violated, i.e.

P (x) = 0 ,
∂P (x)

∂xi
= 0 , ∀xi . (3.11)

Matching these two loci allows to fix the coordinate transformation z → φ.

The procedure is the same for all models, so we will demonstrate it in the case of the

two parameter model P4
11222[8] with gauge group G = U(1)×U(1). The gauge charges are

Q =

(
0 0 1 1 1 1 −4

1 1 0 0 0 −2 0

)
. (3.12)
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Inserting this into (3.9) and expressing the δi in terms of aj gives

z1 = (−4s1)−4s3
1(s1 − 2s2)

z2 = s2
2(s1 − 2s2)−2

(3.13)

where for ease of notation 〈aj〉 = sj . These equations have solutions if

218z2
1z2 − (1− 28z1)2 = 0 . (3.14)

Moreover, the only subgroup of G whose charges span R is the first U(1). The remaining

charges are QH = (1 1 − 2). Therefore (3.10) produces the additional relation

z2 = s2
2(−2s2)−2 = 1/4 . (3.15)

Turning to the algebraic coordinates, the defining polynomial is

P (x) = x12
1 + x12

2 + x6
3 + x6

4 + x2
5 − 12ψ x1x2x3x4x5 − 2φx6

1x
6
2 . (3.16)

Solving the system of equations (3.11) with this polynomial gives the conditions φ2 = 1

and (φ+ 8ψ)2 = 1. The equations φ2 = 1 and z2 = 1/4 fix the transformation

z2 =
1

4φ2
. (3.17)

After some algebraic manipulations the remaining equations fix

z1 =
φ

211ψ4
. (3.18)

Note that these transformations agree with [39] up to an interchange of the indices.

Evaluating the partition function. The partition function (3.2) is of the Mellin-

Barnes type

Z =

∫
γ+iRn

dτ h(t) e−p·τ
∏
i

Γ[pi(τ)]

Γ[gi(τ)]
(3.19)

where h(τ) is an entire function, pi and gi are polynomials in τ and γ and p are constant

vectors. In the literature, numerical algorithms solving this type of integrals are described.

We use the method of [40] which applies a construction of [41].

Moreover, in some phases it is possible to directly rewrite the integral as an infinite

sum over residues, which will be demonstrated in the examples where it applies.

3.2 Examples

In this section we apply the methods of the sections 3.1 and 3.1 to some CY spaces. We

start with the quintic, which was well studied in [32]. Second, we look at the one parameter

models of [42]. Finally we study the two-parameter models of [43].
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Quintic P4
11111[5]. The quintic P4

11111[5] has h11 = 1 and is one of the simplest examples.

The gauge group is G = U(1). The defining polynomial is

P = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 , (3.20)

so that one chooses the superpotential

W = (Φ5
1 + Φ5

2 + Φ5
3 + Φ5

4 + Φ5
5) Σ1 , (3.21)

and the charges Q = (1, 1, 1, 1, 1,−5). The superpotential forces the R-charges to be of the

form R = (2q, 2q, 2q, 2q, 2q, 2 − 10q), up to the choice of a single parameter q. With this

choice, q is limited to be taken from the open interval (0, 2/5), such that all Ri > 0. The

actual value of q does not influence the results.

Inserting these values in the partition function (3.2) and choosing q = 1/5 one obtains

Z =
∑
m

i∞∫
−i∞

da z−
m
2
−az̄

m
2
−a Γ

(
−5
(
a− m

2

))
Γ5
(
−m

2 + a+ 1
5

)
Γ5
(
−m

2 − a+ 4
5

)
Γ
(
5
(
m
2 + a

)
+ 1
) . (3.22)

In the case a > 0, i.e. the geometric phase, one can close the contour to the left, while

for a < 0, i.e. the LG phase, one closes the contour to the right. The gamma functions in

the denominator cancel the poles such that only one type of gamma functions contribute

in each phase. In the LG phase this is only the gamma function corresponding to the Σ1

field, leading to first order poles. The partition function can be rewritten in terms of a sum

over the residues at these poles. Shifting the summation index m and using the identity

Γ[x+ b] =
(−1)b Γ[1− x]Γ[1 + x]

bΓ[1− x− b]
(3.23)

for integer b, in terms of hypergeometric functions one obtains [34]

ZLG =
1

5

3∑
l=0

(−1)l (zz̄)−
l
5

Γ5
(

1+l
5

)
Γ2(l + 1) Γ5

(
4−l
5

) ·
∣∣∣∣4F3

(
1+l
5 , . . . , 1+l

5 ; 2+l
5 , . . . , (̂5−l)+δ

5 . . . , 5+l
5 ;− 1

55z

)∣∣∣∣2 ,
(3.24)

where the f̂ term is omitted.

The partition function in this LG phase does not contain any logarithms. In the large

volume phase, the five Q = 1 chiral fields contribute, leading to fourth order poles. These

result in logarithms and polygamma functions in the partition function and a quite lengthy

expression. The metric following from these two partition functions is shown in figure 4.

It perfectly agrees with [32].

Hypersurface in weighted projective space. There are four CYs constructed by the

vanishing of a polynomial in a single weighted projected spaces with h11 = 1. These are

P4
11111[5], P4

11112[6], P4
11114[8] and P4

11125[10]. The gauge charges are given by the weights

of the projective space and the degree of the polynomial, Qm = km, Q6 = −d, and the
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model Q R

P4
11222[8]

(
0 0 1 1 1 1 −4

1 1 0 0 0 −2 0

) (
2× (2− q1 − 4q2)/8, 3× (2− q1)/4, q2, q1

)

P4
11226[12]

(
0 0 3 1 1 1 −6

1 1 0 0 0 −2 0

) (
2× (2− q1 − 6q2)/12, 2× (2− q1)/6, (2− q)/2, q2, q1

)

P4
11169[18]

(
0 0 0 2 3 1 −6

1 1 1 0 0 −3 0

) (
3× (2− q1 − 9q2)/18, (2− q1)/9, (2− q1)/6, q2, q1

)
Table 1. Charges for the two-parameter models.

R-charges are given by Rm = (2−q)·km
d , R6 = q. The value of q can be chosen in the open

interval (0, 2), without changing the result. To obtain the highest numerical stability one

has to integrate as far away from the poles as possible, making q = 1 the most stable

choice. All models in this category have a similar geometry as the quintic, i.e. they consist

of a geometric phase and a Landau-Ginzburg-orbifold phase with a Zd-symmetry.

Two parameter models. In addition we look at CYs with h11 = 2. This class of CYs

contains for example P4
11222[8], P4

11226[12] or P4
11169[18]. In these models the charge matrix

Qi,j is given by the l-vectors, which span the Mori cone of the given model. These are

known for a great variety of CYs or can be calculate using the PALP package [37]. The

gauge charges are listed in table 1.

Here, the R-charges of the Σ field is denoted q1 and the R-charge of the field corre-

sponding to the exceptional divisor q2. The R charges for the remaining five fields are

generally determined by the superpotential condition to be

Rm =
1

d

(
2− q1 −

d

Q6,2
q2

)
(3.25)

for the fields with gauge charge (0, 1) and

Rm = (2− q1)
Q6,2

d
(3.26)

for the other fields. With this choice of parameterization q1 and q2 have to fulfil the

conditions 0 < q1 < 2 and 0 < q2 <
2−q1
d/Q6,2

.

These parameters contain all information needed to evaluate the partition function

and consequently the metric. The result is given in terms of the FI parameters which, as

described, can be mapped to the algebraic complex structure moduli of the mirror dual

CY. In order to compare with the large volume regime, we finally need the map from the

algebraic complex structure moduli to the Kähler moduli ti =
∫

Σi
(B + iJ) of the original

CY. For that purpose we need the mirror map that is best computed via the periods of the

holomorphic three-form on the mirror CY. Let us review how this works.
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3.3 Kähler potential and mirror map via periods

The Kähler potential can also be determined from the periods of the mirror dual. This

will provide us with a cross-check for the GLSM method, as well as with a way to compute

the more detailed information of the periods and the mirror map. These are not easily

extracted from the 2-sphere partition function.

For computing an independent set of periods all over the complex structure moduli

space, for a simple set of mirror dual CYs, one can proceed as follows. For CYs that

are mirror dual to hypersurfaces in a weighted projective space, one basic period can

be computed by direct integration of the holomorphic three-form in the large complex

structure regime. Then one can analytically continue this expression into the Landau-

Ginzburg region, in which one can generate a linearly independent set of periods by using

the symmetries of the deformed polynomial. A subsequent analytic continuation allows to

cover the whole moduli space.

If the Calabi-Yau threefold M is defined by a vanishing polynomial P in a weighted

projective space WCP, then the mirror W can be constructed as a quotient M/G, where

G is a product of Zn symmetries [44]. This is the so-called Greene-Plesser construction.

The polynomial P is split into a defining (Fermat type) polynomial P0, a fundamental

deformation Φ0 ·
∏5
i=1 xi = Φ0 e0 and all other possible deformations Φαeα. The Φi can be

considered as variables on the complex structure moduli space of W.

The holomorphic three-form is given by the residue

Ω(Φα) = ResW

[ ∏5
i=1 dxi

P (xi,Φα)

]
, (3.27)

and the fundamental period is defined as

ω0(Φα) = −Φ0

∮
B0

Ω(Φα) = −Φ0
C

(2πi)5

∫
Γ

∏5
i=1 dxi

P (xi,Φα)
, (3.28)

where C is an arbitrary constant and the sign as well as factors of 2πi can be reabsorbed

into it. Moreover, B0 is the fundamental cycle which is a T 3 in the limit Φ0 → ∞, while

Γ is an auxiliary contour in C5, which allows for a rewriting as a residue integral. In [42],

in the large complex structure limit Φ0 → ∞, the residue integral (3.28) has been carried

out perturbatively in 1/Φ0 to all orders.

Given the fundamental period in the large Φ0 region of the moduli space, one can

analytically continue the fundamental period to small Φ0. In this region, one can obtain a

complete set of periods by

ωj(Φ) = ω0(AjΦ) , (3.29)

where A is the symmetry group of the Fermat type polynomial P0. Afterwards, these

periods can be analytically continued back to the large Φ0 region.

Periods for one-parameter models. The first class of CY threefolds are hypersurfaces

with h21 = 1, like the mirror duals of non-singular hypersurfaces in weighted projective
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spaces WCPk1,...,k5 [d]. In this case (3.28) evaluates to

ω0(Φ0) =
∞∑
r=0

Γ(d r + 1)∏5
j=1 Γ(kj r + 1) Φd r

0

. (3.30)

A full basis of the periods for the one-parameter CY hypersurfaces have been determined

in [45, 46].

For the quintic, i.e. P4
1,1,1,1,1[5] with Φ0 = 5ψ, the fundamental period in the large

complex structure/large volume regime |ψ| > 1 reads

ω0(ψ) =
∞∑
r=0

Γ(5r + 1)

Γ5(r + 1)(5ψ)5r
=
∞∑
n=0

(5n)!

(n!)5(5ψ)5n
. (3.31)

Mirror map for one-parameter models. To obtain the mirror map, from the litera-

ture [42, 47] we take the known form of the fundamental period around the large complex

structure point

ω0(z) =

∞∑
n=0

cnz
n . (3.32)

For CYs with h11 given as smooth hypersurfaces in weighted projective space, the coordi-

nate z is related to the deformation parameter of the fundamental deformation via

z =

∏5
j=1 k

kj
j

dd
ψ−d . (3.33)

For complete intersections, d is replaced by the sum of hypersurface degrees. The Picard-

Fuchs equation admits exactly one solution linear in logarithms

ω̃(z) =
1

2πi
ω0 log(z) +

∞∑
n=0

c̃nz
n . (3.34)

The series coefficients c̃n can be determined algorithmically from ω0 [47] as

c̃n =
1

2πi

∂

∂ρ
cn+ρ

∣∣∣∣
ρ→0

, (3.35)

where implicitly the coefficients cn have to be analytically continued in n. The mirror

map in the large complex structure/large radius regime is determined by its monodromy

properties as

t(z) =
ω̃(z)

ω0(z)
. (3.36)

The continuation to small ψ is achieved by finding a Mellin-Barnes integral representation

for the power series over cn and c̃n.

For degree d hypersurfaces in WCP4, with projective weights kj , we have

cn =
Γ(dn+ 1)∏5

j=1 Γ(kjn+ 1)
,

c̃n =
cn
2πi

Ψ(dn+ 1)−
5∑
j=1

Ψ(kjn+ 1)

 .

(3.37)
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Here Ψ denotes the polygamma function. From the coefficients one can see that the series

converge in the region |z| <
∏
j k

kj
j /d

d. The corresponding Mellin-Barnes integrals are

ω0(z) =

∫
γ

dν

2i sin(πν)
cν(−z)ν ,

∞∑
n=0

c̃nz
n =

∫
γ

dν

2i sin(πν)
c̃ν(−z)ν .

(3.38)

For small z, corresponding to large ψ, i.e. the LCS phase, we pick up the residues of the

sine at ν ∈ N0. The residue integral for ω0(z) only gets contributions from the simple poles

of the gamma function at ν = −n/d, n ∈ N. The second integrand also has poles at the

same values of ν, but now up to second order from the combination of the gamma and

polygamma functions. For the analytic continuation of ω0(z) into the Landau-Ginzburg

regime, we find

ω0(z) = −π
d

∞∑
n=1

(−1)n

sin(πn/d)

(−z)−n/d

Γ(n)
∏5
j=1 Γ(1− nkj/d)

, |z| >
∏
j k

kj
j

dd
. (3.39)

On the other hand, for the period containing the logarithm in the LCS phase we obtain

ω̃(z) =
π

2id

∞∑
n=1

(−1)n

sin(πn/d)

(−z)−n/d

Γ(n)
∏5
j=1 Γ(1− nkj/d)

(
cot(πn/d) + i

)
. (3.40)

From this information one can now determine the mirror map via (3.36).

Periods for two-parameter models. The second class of CYs is a set of five two-

parameter (h11 = 2) Fermat hypersurfaces in WCP4, for which the full set of periods in

the Landau-Ginzburg phase was calculated in [42]. These are the manifolds

P4
(1,1,2,2,2)[8]86,2

−168 , P4
(1,1,2,2,6)[12]128,2

−252 , P4
(1,1,1,6,9)[18]272,2

−540 ,

P4
(1,4,2,2,3)[12]74,2

−144 , P4
(1,7,2,2,2)[14]122,2

−240 .
(3.41)

Their mirrors are given by the vanishing set of the polynomial

P =

5∑
j=1

x
d/kj
j − ψ x1x2x3x4x5 −

d

q1
φxq11 x

q2
2 x

q3
3 x

q4
4 x

q5
5 , (3.42)

after modding out an appropriate discrete symmetry group. Here d denotes the degree of

the polynomial, the ki are the projective weights, D = d/q1 is always an integer and the qi
(i 6= 1) can be computed from the projective weights and D through

qiki
q1

=

{
0 , i ≥ D
1 , i < D

. (3.43)
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For the computation of the periods it suffices to know that D = 2 for all of the above

models, except for the case3 of P4
(1,1,1,6,9), where D = 3. The fundamental period ω0 in the

large complex structure/large volume regime has been computed in [42] to be given by

ω0(ψ, φ) =
∞∑
l=0

(q1l)!(dψ)−q1l(−1)l

l!
∏5
i=2

(
ki
d (q1 − qi)l

)
!
Ul(φ) , (3.44)

where the function Uν(φ) can be written in terms of hypergeometric functions as

Uν(φ) =
e
iπν
2 Γ
(

1 + ν
2 (k2 − 1)

)
2Γ(−ν)

[
2iφ

Γ(1− ν/2)

Γ
(

1+νk2
2

) 2F1

(
1− ν

2
,

1− k2ν

2
;

3

2
;φ2

)
+

+
Γ(−ν

2 )

Γ
(

2+νk2
2

) 2F1

(
−ν

2
,−k2ν

2
;

1

2
;φ2

)]
. (3.45)

For fixed values of φ the series converges for sufficiently large ψ. The actual convergence

criterion is model-dependent.

In order to obtain a full set of periods, this expression has to be analytically continued

to small ψ. The result is [42]

ω0(ψ, φ) = −2

d

∞∑
n=1

Γ(2n
d ) (−dψ)n U− 2n

d
(φ)

Γ(n) Γ
(
1− n

d (k2 − 1)
) ∏5

i=3 Γ
(
1− kin

d

) , (3.46)

which converges for sufficiently small ψ. By acting with the phase symmetry of the poly-

nomial one derives the remaining periods

ωj(ψ, φ) = ω0(αjψ, αjq1φ) , (3.47)

where α is a d-th root of unity.

As this set of periods is overcomplete, we have to choose a linearly independent subset.4

This form of the periods is useful for performing the analytic continuation to large φ,

since it can be done by standard techniques for the hypergeometric function. In order to

continue the periods back to the region where ψ is large, we will find it useful to use an

alternative form, where the principal summation runs over powers of φ times a certain

generalized hypergeometric function in ψ. The result of a rather lengthy computation

is that ωj(ψ, φ) can be decomposed into eigenfunctions ηj,r(ψ, φ) of the phase symmetry

(ψ, φ, j)→ (αψ,−φ, j + 1) as

ωj(ψ, φ) = −2

d

d∑
r=1

(−1)r e2πijr/d ηj,r(ψ, φ) (3.48)

3Due to the differing value of D, the periods for this model behave in a slightly different way. The

subsequent formulae are valid for the case D = 2 but the method can be easily carried over to D = 3, see

appendix A.
4In the cases of interest to us, one can take the first 6 periods.
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with

ηj,r(ψ, φ) =
1

2

∞∑
n=0

eiπn(j+1/2) (2φ)n

n!
Vn,r(ψ) . (3.49)

Now, the full ψ-dependence is contained in the functions Vn,r(ψ)

Vn,r(ψ) = Nn,r (dψ)rHn,r(ψ) , (3.50)

that are analogues of the function Uν(φ) in (3.45). They consist of a generalized hyperge-

ometric function Hn,r(ψ) and a numerical prefactor Nn,r. The first is explicitly given by

Hn,r(ψ) = (d+1)Fd

(
1,
n

2
+
r

d
, 1 +

r

d
−
l2 + 1− n

2

k2
, 1 +

r

d
− li + 1

ki︸ ︷︷ ︸
i=3,...,5 li=0,...,ki−1

;
r + l

d︸ ︷︷ ︸
l=0,...,d−1

;

5∏
j=1

k
kj
j ψd

)

(3.51)

where the underbrackets indicate that for each value in the allowed index range for i, li, l

we have to insert the corresponding parameter in the hypergeometric function. For the

relevant models k1 = 1, so we indeed obtain a hypergeometric function with (p, q) =

(2 + k2 + · · ·+ k5, d) = (d+ 1, d).

The numerical prefactor can explicitly be expressed as

Nn,r = πd−3 d
1
2
−r

 5∏
j=2

k
− 1

2
+
kjr

d
j

 k
n
2
2

×
Γ
(
n
2 + r

d

)
d−1∏
l=0

Γ
(
l+r
d

) k2−1∏
l2=0

Γ
(
l2+1−n/2−k2r/d

k2

) 5∏
i=3

ki−1∏
li=0

Γ
(
l+1−kir/d

ki

) . (3.52)

This expression is valid for φ < 1 and arbitrary ψ, with implicit analytic continuation of

the hypergeometric function understood. In practice the degree of the generalized hyper-

geometric function pFq is reduced in all these examples to at most (p, q) = (13, 12).

To compute the metric on moduli space, we first have to transform a linearly inde-

pendent set of periods into a symplectic basis Π = (FΛ, X
Λ). Then one can calculate the

Kähler potential via

K = − log
(
− iΠ Σ Π

)
= − log

(
− i(XΛFΛ −X

Λ
FΛ)

)
. (3.53)

Here

Σ =

(
0 1

−1 0

)
(3.54)

is the symplectic scalar product.

The basis transformation can be found case by case by a monodromy calculation [43, 48]

or by the algorithmic procedure of [49]. In our analysis of the RSDC for two parameter

models, we will focus on the three manifolds P4
11222[8],P4

11169[18] and P4
11226[12]. For the

first two, the mirror map and change to symplectic basis can be found in [43, 48]. For

P4
11226[12], we will compute it in the following.
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Region Convergence Criterion

Landau Ginzburg |φ| < 1 and |864ψ6| < |φ± 1|
Hybrid: P1 fibration |φ| > 1 and |864ψ6| < |φ± 1|
Hybrid: orbifold |φ| < 1 and |864ψ6| > |φ± 1|
LCS |φ| > 1 and |864ψ6| > |φ± 1|

Table 2. Different physical regions in the complex structure moduli space of the mirror of P4
11226.

The ± is to be interpreted as a logical “and”.

An example: P4
11226[12]. To illustrate the calculation of the periods, the mirror map

and the metric on the whole moduli space, we consider the CY defined as the mirror of the

hypersurface P4
11226[12]. A cousin of this model, P4

11222[8], has first been analyzed in great

detail in [43], although the emphasis has been mostly on the LCS region. The defining

polynomial is

P (x) = x12
1 + x12

2 + x6
3 + x6

4 + x2
5 − 12ψ x1x2x3x4x5 − 2φx6

1x
6
2 , (3.55)

where we have to mod out a H = Z2
6 × Z2 phase symmetry [43]. The transformation

(φ, ψ) → (−φ, αψ) can be absorbed into a coordinate redefinition of the ambient space

which leaves the hypersurface constraint P (x) invariant, so the actual (uncompactified)

moduli space becomes the corresponding Z12 quotient of C2. The manifold develops a

conifold singularity at

864ψ6 + φ = ±1 . (3.56)

Before analytic continuation, a detailed analysis of the asymptotic behavior of Uν(φ) and

application of the Cauchy root test shows that the periods (3.46) converge in the region

|φ| < 1 and |864ψ6| < |φ±1|, where the “±” indicates the minimum of the two values. Upon

analytical continuation one finds four distinct regions of the moduli space as summarized

in table 2.

The LG and LCS regions are familiar from the quintic. In addition we get two hybrid

regions, which share properties of the LG and LCS regions. The hybrid region where

φ→∞ and ψ stays small will be called the P1(-fibration)-phase, whereas the region with

ψ →∞ and φ small will be referred to as the orbifold(-hybrid)-phase, for reasons that will

become clear in section 5.

The reduced set of periods (ω0, . . . , ω5) form a basis. We can calculate these in the

LG phase by expanding the hypergeometric function in (3.46) around φ = 0. The result

is polynomial in both φ and ψ. In the P1 fibration region we expand the hypergeometric

function around i∞. We find that the even periods ω2j now contain simple logarithms in φ

~ωP1(ψ, φ)

ψ
=



(4.39 + 0.00i)

(5.61 + 0.70i) + (1.21 + 0.70i) log φ

(2.20 + 3.80i)

(2.20 + 5.21i) + (0.00 + 1.40i) log φ

(−2.20 + 3.80i)

(−3.41 + 4.51i)− (1.21− 0.70i) log φ


φ−1/6 +O

(
φ−5/6

)
. (3.57)

– 20 –



J
H
E
P
0
6
(
2
0
1
8
)
0
5
2

In a similar fashion, in order to obtain an expression for the periods in the orbifold hybrid

phase, we expand the generalized hypergeometric function in (3.48) around i∞, upon which

all of the periods except ω0 acquire logarithmic terms up to third order log(ψ)3.

For the LCS region, standard tools are available to compute the metric and periods such

as INSTANTON [47]. For this reason we will not further pursue the analytic continuation

of the periods into the LCS region.

Mirror map and intersection matrix for two-parameter models. We now explain

the computation of the mirror map and intersection matrix. These can both be determined

calculating the monodromy matrices of the periods around certain boundary divisors of the

compactified moduli space. For the manifolds P4
11222[8] and P4

11169[18] this has been done

in [43] and [48], respectively. Next, we analyse the case P4
11226[12], for which the procedure

is analogous to P4
11222[8] (see [43]).

Using the just determined explicit form of the periods, it is straightforward to calculate

the monodromy transformations. For the monodromy obtained by moving around φ = 1,

we find ~ω → B ~ω with

B =



1 0 0 0 0 0

1 0 0 0 −1 1

−1 1 1 0 1 −1

0 0 1 0 2 −2

0 0 −1 1 −1 2

0 0 0 0 0 1


. (3.58)

The monodromy matrix T about the conifold is determined to be

T =



2 −1 0 0 0 0

1 0 0 0 0 0

−1 1 1 0 0 0

−2 2 0 1 0 0

2 −2 0 0 1 0

1 −1 0 0 0 1


. (3.59)

Finally, we calculate the monodromy matrix A corresponding to the monodromy around

ψ = 0

A =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0


. (3.60)

Following [43] we define the matrix T∞ = (AT)−1. The monodromies around the boundary

divisors whose intersection is the large complex structure point are then S1 = T2
∞ and

S2 = B−1T∞. We also define Ri = Si − 1. We check that the triple products between the

Ri reproduce the triple intersection numbers of P4
11226[12]. Using the ansatz

ti =
~Ai · ~ω
ω0

, (3.61)
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where ~Ai , i = 1, 2 are row vectors and demanding that monodromies around the LCS

boundary divisors correspond to shifts of the B-field, hence gauge transformations

~Ai · Rj = δij (1, 0, 0, 0, 0, 0) , (3.62)

we can solve for the mirror map up to a constant shift. The result for the A-vectors is

~A1 =

(
c1, 0,

1

2
, 0,

1

2
, 0

)
, ~A2 =

(
c2,

1

2
,−1

2
,

1

2
,−1

2
,

1

2

)
, (3.63)

where we fix the constants to be c1 = −1
2 and c2 = 1

2 . By demanding that the monodromy

in the symplectic basis of periods are in fact integral and symplectic, we determine the

basis transformation to be

Π =



−1 1 0 0 0 0
1
2

1
2

3
2 −

1
2

1
2 −

3
2

2 0 0 0 −1 0

1 0 0 0 0 0

−1
2 0 1

2 0 1
2 0

1
2

1
2 −

1
2

1
2 −

1
2

1
2


ω . (3.64)

This can then be used to compute the Kähler potential (3.53).

4 RSDC for CY manifolds with h11 = 1

In this section we investigate the manifestation of the RSDC for regions of one dimensional

Calabi-Yau Kähler moduli spaces beyond the large volume phase. As our prototype ex-

ample, we will discuss the quintic in very much detail. Besides the large volume point,

there also exist the conifold and Landau-Ginzburg orbifold points. Recall that in proper

distance, the large volume point was infinitely far away from any other point in mod-

uli space, but that for field distances larger than Θλ =
√

3/4Mpl < Mpl a logarithmic

scaling sets in that renders infinitely many states exponentially light. Thus, at distances

larger than Mpl the effective field theory could not be trusted anymore. The question is

whether proper distances Θ0, accumulated before by traversing non-geometric phases, are

also smaller than the Planck-scale. Besides the quintic we also check the RSDC for the

other three one-parameter Calabi-Yau manifolds given as smooth hypersurfaces in WCP.

4.1 An illustrative example: the quintic P4
11111[5]

After investigating the local properties of the metric on the quintic moduli space at the LG

and conifold point, we move on to discuss the global properties of the moduli space and

test the RSDC in this setting. This requires finding the shortest geodesics between two

points in moduli space. Because of the complicated form of the metric, described in terms

of hypergeometric functions, we solve the geodesic equation numerically. To obtain the

metric for the Kähler moduli space of the quintic we use known results for the periods of

the complex structure moduli space of the mirror quintic as well as the mirror map. Later,

for the other one-parameter Calabi-Yau threefolds, we will obtain the metric by the GLSM

construction of section 3. The availability of these two separate computational methods

provides us with a useful crosscheck.
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The Landau-Ginzburg point of the quintic. We want to compute the metric on the

Kähler moduli space of the quintic threefold. For this purpose we consider the mirror dual

of the quintic P4[5](101,1), whose single complex structure modulus is given by the complex

parameter ψ appearing in the hypersurface constraint

P =
5∑
i=1

x5
i − 5ψ

5∏
i=1

xi = 0 . (4.1)

The transformation ψ → αψ, where α5 = 1, can be absorbed into a redefinition of the

coordinates xi. For this reason the moduli space has the simple form of an angular wedge

0 ≤ Arg(ψ) < 2π/5. By mirror symmetry the complex structure moduli space of this

Calabi-Yau is equivalent to the Kähler moduli space of the quintic. After applying the

mirror map, it has the structure depicted in figure 1. At ψ =∞ there is the large complex

structure point, which is mapped to the large volume point t = i∞ of the quintic. For the

co-dimension one conifold locus ψ5 = 1, which is mapped to t ' i1.21, this hypersurfaces

becomes singular, i.e. P = ∂iP = 0 for i = 1, . . . , 5. Moreover, at ψ = 0 one has the

Landau-Ginzburg point which is the point of smallest (but still finite) volume in the mirror

dual description where it is located at t = 0.5 + i cot(π/5)/2. Because of this property, it

is also the point deepest inside the non-geometric regime of the moduli space.

Following [32], one can solve the Picard-Fuchs equations around the Landau-Ginzburg

point where an independent set of solutions is given by5

ωk(ψ) = (5ψ)k
∞∑
n=0

(
Γ(k/5 + n)

Γ(k/5)

)5 Γ(k)

Γ(k + 5n)
(5ψ)5n (4.2)

for k = 1, 2, 3, 4. These infinite sums converge for |ψ| < 1 and have the fundamental domain

0 ≤ Arg(ψ) < 2π/5. In the Kähler moduli space of the quintic, this corresponds to the

non-geometric phase. They can be rewritten in terms of hypergeometric functions, whose

analytic continuation to the region |ψ| > 1, corresponding to the large volume region,

is straightforward. The transformation to a symplectic basis is performed by applying a

matrix m, so that Π = mω, whose inverse was explicitly stated in [50].

Thus, the symplectic basis of the periods can be expanded around the Landau-Ginzburg

point as

F 0 = 2.937558i ψ − 4.289394i ψ2 + 1.462601i ψ3 +O(ψ4)

F 1 = (7.314220− 11.691003i)ψ − (0.963029− 6.520577i)ψ2

− (0.328374 + 2.223391i)ψ3 +O(ψ4)

X0 = (2.021600− 1.468779i)ψ − (0.696854− 2.144697i)ψ2 (4.3)

− (0.237613 + 0.731300i)ψ3 +O(ψ4)

X1 = 2.125637i ψ − 1.185559i ψ2 + 0.404253i ψ3 +O(ψ4)

5Note that a different basis of the periods can be obtained from the fundamental period (3.31) by acting

with the Z5 symmetry of this model, see [32].
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where we have actually expanded them up to order 100. Writing ψ = |ψ| exp(iθ), the

resulting Kähler potential takes the simple form

K = − log
[
− i(XΛFΛ −X

Λ
FΛ)

]
= − log

(
19.217617 |ψ|2 − 3.694710 |ψ|4 + 0.429576 |ψ|6

+ 0.320294 |ψ|7 cos(5θ) +O(|ψ|8)
)
.

(4.4)

We notice that the first three terms feature a continuous phase shift symmetry θ → θ+ ∆θ

that is broken by the fourth and higher order terms to a discrete shift symmetry θ →
θ + 2πn/5. This behavior is very similar to the large complex structure point where also

the tree-level Kähler potential features a continuous shift symmetry that is broken to a

discrete one by non-perturbative instanton corrections.6

Swampland Distance Conjecture. The Swampland Distance Conjecture says that

any quantum gravity effective action has only a finite range of validity in field space. In its

refined version this critical distance is of the order of the Planck-length. Recall that the

intuition for this conjecture came from reasoning in the volume regime. There, the proper

field distance Θ was related to the distance t appearing in the masses of KK modes as

Θ ∼ λ−1 log t so that for Θ > Θλ = λ−1 infinitely many states became exponentially light,

thus spoiling the validity of the effective field theory.

The question we can now approach is, how this picture generalizes to the stringy

quantum regime of small volumes/radii. Here, where the asymptotic logarithmic scaling

of the proper distance is not present, we may potentially accumulate a contribution Θ0 to

the proper distance without a significant change in mass scales. If this was already above

the Planck scale, it would be in contradiction with the RSDC.

First, we can compute the proper field distance between the Landau-Ginzburg point

ψ = 0 and a point ψ = reiθ inside the radius of convergence 0 ≤ r < 1. As we will

see shortly, for r < 0.5 we can approximate the Kähler potential by its first three shift

symmetric terms. In this case the geodesic is just a ray of constant θ so that the proper

field distance is

∆Θ ∼
∫ 1

0
dr
√
Gψψ(r) (4.5)

with r = |ψ|. At lowest order in r the Kähler metric is just a constant

Gψψ(r) ∼ β

α
(4.6)

with α = 19.217617 and β = 3.694710 so that

∆Θ =

∫ 1

0
dr
√
Gψψ(r) ∼

√
β

α
∼ 0.44 . (4.7)

6Note that here we have used the wording from the mirror dual Kähler moduli perspective.
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Figure 3. Plot of G
1/2

ψψ
(r, θ). Dashed line: up to order r6. Solid upper line: up to order r100 for

θ = 0. Solid lower line: up to order r100 for θ = 2π
10 .

Including also the term of order |ψ|6 in the Kähler potential, only changes this result slightly

to 0.43. With the periods computed up to order O(100) we have numerically evaluated

the integral. In figure 3 we show the behavior of the integrand
√
Gψψ(r, θ) along the two

rays θ = 0 and θ = 2π
10 . In the figure we also included the contribution from the first three

shift symmetric terms. It shows that up to r = 1/2 this is a good approximation and

the angle dependence sets in once one reaches the boundary. The divergence for the line

θ = 0 at r = 1 reflects the fact that here one hits the conifold singularity, where the metric

diverges. For the mid point θ = 2π
10 , the metric even becomes smaller close to the radius of

convergence. However, for the proper field distance we find the numerical results

∆Θ(θ = 0) = 0.45 , ∆Θ(θ = 2π
10 ) = 0.42 . (4.8)

Let us make two remarks

• Unlike the large volume point, the Landau-Ginzburg point is at finite proper field

distance. Therefore, one does not get the log-behavior for large field distances, as for

the large complex structure point. As a consequence the points at large distance are

still those in the large volume region.

• In order to reach those points, one has to cross the chart 0 ≤ |ψ| < 1. Therefore,

if this region had already a trans-Planckian radius, the RSDC would be violated.

The Refined Swampland Distance Conjecture in such a case means that the radius of

convergence should not be larger than Mpl. This is consistent with the ∆Θ we found.

The conifold point. As we have seen, even though the metric diverges at the conifold

point ψ5 = 1, the distance to it converges. The conifold point is not as interesting as the
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Figure 4. The metric on the Kähler moduli space of the quintic.

Landau-Ginzburg point with regards to violating the RSDC because it sits right at the

boundary between the two phases. It is at maximum distance to the Landau-Ginzburg

point, but this distance is still finite and below the Planck scale. The distance to the

large volume phase is infinitesimal. This means that independent of the direction in which

we displace, there will be no tension with the RSDC. In the following discussion we will

therefore focus on geodesics which start at the point deepest inside the non-geometric

phase, i.e. the Landau-Ginzburg point, and continue into the large volume phase.

Trajectories traversing multiple patches. After locally checking some necessary con-

ditions for the Refined Swampland Distance Conjecture to hold, we will now consider

geodesics which traverse multiple coordinate patches. For that purpose, we use the follow-

ing general procedure

• Determine the metric on the moduli space and compute the corresponding geodesics

xµ(Θ), parametrized by proper distance Θ.

• Identify a tower of states whose mass should decrease along the geodesics.

• Find the mass MKK(ψ) of this tower as a function of the position in moduli space.

• Express the mass MKK(Θ) in terms of the proper distance along the geodesics.

The moduli space metric of the quintic is obtained patchwise from the periods in the

Landau-Ginzburg and large volume regions respectively up to order ψ50, or alternatively

by the GLSM construction of section 3. The resulting metric is illustrated in figure 4.

The geodesics can be obtained numerically by solving the geodesic equation

d2xµ

dτ2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 , (4.9)
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where τ = aΘ + b is an affine parameter and in our case x = (r, θ). We set b = 0 without

loss of generality. The parameter a can then be determined from the initial conditions by

computing the square root of the pullback of the metric onto the geodesic

a =
dΘ

dτ
=

√
Gαβ(x(τ))

dxα

dτ

dxβ

dτ

∣∣∣∣∣
τ=0

. (4.10)

We first want to investigate the fate of geodesics going radially outward from the

Landau-Ginzburg point ψ = 0. While the coordinate ψ = r exp(iθ) is periodic, θ ≡ θ+2π/5,

the metric additionally enjoys an enhanced Z2 reflection symmetry along the ray θ = π/5.

This allows us to restrict to geodesics in the angular region θ ∈ (0, π/5). We can also

directly infer that the rays θ = 0, π/5 are exact geodesics.

The behavior of the radially outgoing geodesics can be qualitatively deduced as follows.

The geodesic equation implies

θ̈ = −Γθrr ṙ
2 − 2Γθrθ ṙ θ̇ =

1

2
GθθGrr,θ ṙ

2 −GθθGθθ,r ṙ θ̇ . (4.11)

For small r the metric is approximately constant so that, with the initial condition θ̇(0) = 0,

θ stays approximately constant while r increases. When r ' 1, the θ gradient of the metric

becomes important and equation (4.11) implies that the initially straight line is attracted

towards the region of increasing Grr, i.e. the conifold point. Once the geodesic passes

into the region r � 1, the metric becomes approximately flat in the θ direction but the

r gradient becomes important. Since now θ̇ < 0, ṙ > 0, Gθθ,r < 0, the minus sign in the

second term of (4.11) implies that the geodesic continues towards decreasing θ until it hits

the Re(ψ) = 0 axis. It then re-enters the moduli space from the θ = 2π/5 ray.

Since we are interested in the geodesic distance and hence shortest geodesics between

points, we can stop integrating the geodesic when it hits the axis. This is because of

the symmetry properties of the metric we will always find a shorter geodesic connecting

the relevant points in the “upper” half-cone of the moduli space. Figure 5 shows a few

representative geodesics.

We can see directly from the discussion of the radius of the Landau-Ginzburg region

that geodesics passing too close to the conifold point will not be interesting, since they hit

the Re(ψ) = 0 axis shortly after crossing the phase boundary. This means that they will

not have total length much bigger than the distance between the Landau-Ginzburg and

conifold point ∆Θ ' 0.45. In fact for the geodesic with θ = π/50 we find the numerical

result ∆Θ ≈ 0.5.

In order to test the RSDC in this moduli space we will consider another set of geodesics

with a slightly finer scanning of the angle, θ = π/5− iπ/60, for i = 0, . . . , 11. Disregarding

the geodesic θ = π/5, which continues straight to the large volume point, the longest

geodesic in this family has θ = 11
60π, which hits the axis at Re(ψ) ≈ 110, after traveling for

a total proper distance of ∆Θ ≈ 1.53.

By performing an asymptotic expansion of the metric in the large volume phase, we

realize that it has the asymptotic form

grr(r) ≈
3

4 (r log r)2 (4.12)

– 27 –



J
H
E
P
0
6
(
2
0
1
8
)
0
5
2

Re(ψ)

Im(ψ)

1

Figure 5. Geodesics for the initial data (r, ṙ, θ, θ̇) = (0, 1, i · π/50, 0), for i = 1, . . . , 10. The orange

geodesics are the Z2 images.

with λ = 2/
√

3. From this one can see that the geodesic distance from the Landau-Ginzburg

point asymptotically grows as the double logarithm

Θ(r) ' 1

λ
log
(

log(r)
)
. (4.13)

After identifying a family of relevant geodesics, the next step is to identify a tower of

states, whose mass we expect to display the exponential behavior predicted by the Refined

Swampland Distance Conjecture. Through mirror symmetry, the complex structure moduli

space of the mirror quintic is mapped to the Kähler moduli space of the quintic. The single

complex structure modulus ψ is mapped to the overall volume modulus t =
∫
B + i

∫
J

of the quintic. Working in the Kähler moduli space of the quintic, we have as a natural

candidate the Kaluza-Klein tower associated to the overall volume. As we have computed

in section 2.2, the associated mass scale is then

MKK(t) ∼ 1

(Im(t))2
. (4.14)

In order to express this in terms of the proper field distance, one needs the mirror map

t = t(ψ).

Let us now be more precise about the computation of the mirror map, which is de-

fined by

t(ψ) =

∫
B + i

∫
J =

X1(ψ)

X0(ψ)
. (4.15)

Using the explicit form of the periods X0 and X1, we find for the mirror map near the

Landau-Ginzburg point

tLG(ψ) = −1

2
+ 0.688 i+ (0.279 + 0.384 i) ψ + . . . for |ψ| < 1 . (4.16)
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Figure 6. The fundamental domain of the Landau-Ginzburg region in the coordinate tLG = X1/X0

for various Arg(ψ).

Figure 6 shows tLG for different Arg(ψ), which agrees with the more qualitative plot in

figure 1.

Similarly, one can compute the mirror map near the conifold

tC(ψ) = 0.540 i+0.754 i ψ

1.071−(0.124+0.890 i) (ψ−1)+0.283 (ψ−1) log
(

1
ψ5−1

) + . . . for |ψ| ≈ 1 (4.17)

and in the large volume regime

tM (ψ) =
5

2π
log(5) +

5

2π
i logψ + . . . for |ψ| > 1 , (4.18)

where we used results from section 3.3.

At this point we can already see the exponential relation between MKK and Θ. Combin-

ing the doubly logarithmic behavior of Θ(r) (4.13) with the logarithmic one of tM (ψ) (4.18),

we have7

Θ ' 1

λ
log (Im(tM )) ⇒ MKK '

1

(Im(tM ))2
' e−2λΘ . (4.19)

This is precisely the behavior predicted by the RSDC.

Since we know both the proper distance Θ and the value of the complexified Kähler

modulus t =
∫
B+ i

∫
J along the geodesics, we can plot the logarithm of Im(t) against Θ.

The Refined Swampland Distance Conjecture predicts a linear behavior after some

critical distance Θ0 . 1. Figure 7 shows that this is precisely the case. The expected linear

behavior is reached for Θ = Θ0 . O(1). The depicted red graph corresponds to the central

geodesic with initial angle θ = π/5. We find that this is the geodesic for which Θ0 is the

largest. The dotted blue line shows the fit to the asymptotic linear behavior, while the

dashed grey fit also captures corrections to Θ ' 1
λ log(Im(t)) up to order 1/Im(t)3.

7The factor of two in the exponential should not be taken too seriously, as we just gave a rough estimate

for the KK mass scale, MKK ∼ Ms/Vol
1
6 . We note that in [22] another proposal for the infinite tower of

exponentially light states has been given. There, these were BPS wrapped D-branes, i.e. non-perturbative

states.

– 29 –



J
H
E
P
0
6
(
2
0
1
8
)
0
5
2

Θ0.5 1.0 1.5

log(Im(t))

0.5

1.0

1.5

Θ0 Θc

ϕ

λ = tan(ϕ)

Figure 7. The logarithm of Im(t) against Θ.

The parameters λ and Θ0 are determined as follows. The value of Θ0 is defined to be

the value of the proper distance along the geodesics from the Landau-Ginzburg point to

the phase boundary at |ψ| = 1. We also define t0 to be the value of the Kähler modulus

at the phase boundary, t0(θ) ≡ t(r = 1, θ). To determine λ, we perform a fit of the

asymptotic behavior of the proper distance as a function of the Kähler modulus according

to the leading order terms

Θ(t) ' 1

λ
log(t) + α0 +

α1

t3
. (4.20)

The angular distribution of the fit-parameters as well as Θλ,Θ0 and Θc is shown in table 3.

We have excluded the geodesics with i = 10, 11 from the analysis because the fact that

they hit the Re(ψ) axis almost immediately after the phase transition did not allow for a

good fit. As a result we find that the critical distance is always of order one and satisfies

the bound

Θc ≤ 1.413 . (4.21)

The amount of variation of Θ0 is minimal, while λ deviates noticably between the different

geodesics.

As a cross-check of our method, for the central geodesic with θ = π/5 we can compare

the result for λ and α1 with the analytic result (2.10). The value for Θλ ' 0.866 agrees

perfectly with the expected value of Θλ =
√

3/4. For α1, we insert the Euler characteristic

of the quintic (χ = −200) into the formula (2.10) and obtain α1 ' 0.168, which deviates

from the fit value only by one percent. This can be explained by the fact that we neglected

the higher order 1/t corrections in our fit.
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θinit · 60/π α0 α1 λ−1 Θ0 Θc

3 0.1315 0.2043 0.9605 0.4262 1.3866

4 0.1127 0.2099 0.9865 0.4261 1.4125

5 0.0998 0.2213 0.9780 0.4260 1.4040

6 0.0955 0.2294 0.9567 0.4259 1.3827

7 0.0818 0.2475 0.9611 0.4259 1.3869

8 0.0877 0.2592 0.9275 0.4258 1.3533

9 0.0808 0.2825 0.9253 0.4257 1.3510

10 0.0929 0.3093 0.8969 0.4257 1.3226

11 0.0998 0.3497 0.8845 0.4257 1.3102

12 0.1234 0.1662 0.8657 0.4256 1.2914

Table 3. Values of the fit-parameters α0, α1, λ
−1, critical distance Θ0 and combined critical distance

Θc for the family of geodesics with initial angles θinit = π/5− iπ/60, for i = 2, . . . , 11. We see that

Θ0 is approximately constant for the quintic. The total critical distance varies mostly because of

the angular dependence of λ.

We observe that those geodesics passing closer to the conifold and thus deviate the

most from being straight lines in the ψ-plane have the largest Θλ. This is because of

the fact that while both the real and imaginary part of the complexified Kähler modulus

contribute to the proper distance, only the imaginary part controls a mass scale. The

imaginary part of the Kähler modulus is (asymptotically) mapped to the absolute value

|ψ| through the mirror map, while the real part is mapped to Arg(ψ). Curving into the

“axionic” direction in moduli space thus decreases the rate of the exponential mass fall-off.

The fact that we still find Θλ < Mpl for all geodesics is a non-trivial test of the RSDC.

It seems to be not unrelated to the statement that periodic directions of the moduli space

should have a sub-Planckian periodicity.

For the average over all sampled geodesics of t0, the value of the Kähler modulus

at the phase transition, we obtain the value Im(t0) ' 1.31. The average values of the

characteristic proper distances of the geodesics turn out to be

Θ0 ' 0.4259 , Θλ ' 0.9343 , and Θc ' 1.3601 , (4.22)

in perfect agreement with the RSDC.

4.2 Hypersurfaces: P4
11112[6], P4

11114[8] and P4
11125[10]

As pointed out in section 3.2 there are only four Calabi-Yau manifolds with h11 = 1

defined by a single polynomial constraint in a weighted projective space, namely P4
11111[5],

P4
11112[6], P4

11114[8] and P4
11125[10]. After having discussed the quintic rather detailed in

the last section, we are now turning towards the other three manifolds. These are per

construction very similar to the quintic so that the results we are going to compute will be

qualitatively equivalent and only differ by slightly altered numerical values.

In particular the structure of the moduli space agrees exactly with the one of the

quintic. That is, there exists a conifold singularity at ψ = 1 with ψ being the coordinate
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of the moduli space. The regime |ψ| > 1 is covered by the large volume chart, whereas the

region |ψ| < 1 corresponds to the (orbifolded) Landau-Ginzburg phase. There is again a

residual Zd symmetry depending on the degree d of the analyzed projective space.

The behavior of the metric for P4
11112[6] is qualitatively the same as for the quintic. For

these two CY threefolds the metric is approximately flat around the origin Gψψ ' const,

whereas the asymptotic behavior of the metric is like Gψψ ' 1/(|ψ|2 log |ψ|2). For the other

two threefolds P4
11114[8] and P4

11125[10] the metrics differ slightly around the origin, in that

they have Gψψ ' const · |ψ|2, but show the same asymptotic behavior.

In the following we shall determine average values for λ, Θ0 and Θc based on charac-

teristic geodesic trajectories for each of the three moduli spaces. Analogously to figure 5

we will investigate geodesics starting close to ψ = r exp(iθ) = 0 and moving outwards in

radial direction. All of them will transit from the Landau-Ginzburg phase into the large

volume regime. More precisely, we analyze 12 geodesics γj , j = 0, . . . , 11 with start points

(ri, θi) =
(
ri,

π
d

(
1− j

12

))
and choose an initial velocity (r′i, θ

′
i) = (1, 0). Note that ri has

to be adjusted model by model since numerical fluctuations disturb the metric near the

origin. Apparently γ0 corresponds to the angle bisector and γ11 comes close to the conifold

singularity.

Before presenting the results for each model, let us point out that we determined the

Kähler metric from the partition function of the corresponding GLSM, as described in

section 3. A formula to calculate the mirror map of one-parameter models was given in

section 3.3. The evaluation of the geodesics follows the procedure described for the quintic.

Hence, in order to determine the slope parameter λ, we will again fit the ansatz

Θ(t) ' 1

λ
log(t) + α0 +

α1

t3
. (4.23)

Now, let us present our results case by case.

P4
11112[6]. We take the initial value ri = 0.01 and add to every geodesic an initial length of

Θi =

∫ ri

0
dr
√
Gψψ ' 0.0039 . (4.24)

Computing the proper distance for each geodesic and fitting the ansatz (4.23), we obtain

the values listed in table 4. Notice that our fits led to an average threshold Im t0 ' 1.49

calculated as the transition point to the large volume phase.

The average proper distance collected in the non-geometric phase is Θ0 ' 0.40. For the

distance between the Landau-Ginzburg and conifold points we find the value ∆Θ ' 0.41.

These results are not in contradiction with the RSDC as all values are O(1)

Θ0 ' 0.3984 , Θλ ' 0.9056 , and Θc ' 1.3041 . (4.25)

P4
11114[8]. For this moduli space we have computed the geodesics starting from ri = 0.1

and as a consequence had to add Θi ' 0.0023 to the proper lengths of the geodesics. The

critical value of the Kähler modulus at the phase transition is on average Im t0 ' 1.77.
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θinit · 72/π α0 α1 λ−1 Θ0 Θc

1 -0.081 0.414 0.957 0.405 1.362

2 -0.058 0.347 0.934 0.404 1.338

3 -0.057 0.329 0.929 0.402 1.331

4 -0.052 0.319 0.911 0.400 1.311

5 -0.056 0.327 0.906 0.399 1.305

6 -0.067 0.347 0.914 0.398 1.312

7 -0.074 0.368 0.914 0.397 1.311

8 -0.068 0.389 0.896 0.396 1.292

9 -0.060 0.423 0.882 0.396 1.278

10 -0.060 0.459 0.881 0.395 1.276

11 -0.060 0.502 0.879 0.395 1.274

12 -0.042 0.283 0.866 0.395 1.260

Table 4. Fitting the ansatz (4.23) to a plot of the proper length of geodesics γj depending on

the mirror map coordinate t. The table lists all fitting parameters including the critical distance

Θc = Θ0 + λ−1 for the model P4
11112[6].

θinit · 96/π α0 α1 λ−1 Θ0 Θc

1 -0.426 0.747 0.933 0.225 1.158

2 -0.409 0.673 0.920 0.224 1.144

3 -0.399 0.629 0.908 0.223 1.130

4 -0.393 0.619 0.893 0.221 1.115

5 -0.398 0.640 0.892 0.221 1.113

6 -0.409 0.668 0.900 0.220 1.120

7 -0.417 0.700 0.904 0.219 1.123

8 -0.414 0.737 0.893 0.218 1.112

9 -0.409 0.782 0.883 0.218 1.101

10 -0.410 0.827 0.882 0.218 1.100

11 -0.408 0.885 0.878 0.218 1.096

12 -0.388 0.613 0.865 0.217 1.082

Table 5. Fitting the ansatz (4.23) to a plot of the proper length of geodesics γj depending on

the mirror map coordinate t. The table lists all fitting parameters including the critical distance

Θc = Θ0 + λ−1 for the model P4
11114[8].

The distance between the Landau-Ginzburg and conifold points is ∆Θ ' 0.23. All

results can be found in table 5.

The RSDC is thus in agreement with the analyzed geodesics in the moduli space of

P4
11114[8]. In average we end up with the following values

Θ0 ' 0.2201 , Θλ ' 0.8961 , and Θc ' 1.1162 . (4.26)
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θinit · 120/π α0 α1 λ−1 Θ0 Θc

1 -0.655 1.482 0.949 0.213 1.162

2 -0.616 1.289 0.919 0.212 1.131

3 -0.593 1.179 0.899 0.210 1.109

4 -0.583 1.151 0.885 0.210 1.094

5 -0.587 1.182 0.885 0.209 1.094

6 -0.597 1.219 0.891 0.208 1.099

7 -0.602 1.263 0.892 0.208 1.100

8 -0.598 1.322 0.884 0.207 1.091

9 -0.593 1.392 0.876 0.207 1.083

10 -0.594 1.449 0.875 0.207 1.082

11 -0.592 1.522 0.873 0.207 1.080

12 -0.578 1.195 0.865 0.206 1.071

Table 6. Fitting the ansatz (4.23) to a plot of the proper length of geodesics γj depending on

the mirror map coordinate t. The table lists all fitting parameters including the critical distance

Θc = Θ0 + λ−1 for the model P4
11125[10].

P4
11125[10]. Here we have assumed ri = 0.14, leading to Θi ' 0.0040 which needs to be

added to the proper lengths. For this model the proper distance between the Landau-

Ginzburg and conifold points has the smallest value, ∆Θ ' 0.21. Fitting the ansatz (4.23)

gives the values summarized in table 6. Note that the critical Kähler modulus is Im t0 '
2.17. Also in this model the average values agree with the RSDC

Θ0 ' 0.2086 , Θλ ' 0.8911 , and Θc ' 1.0997 . (4.27)

5 RSDC for CY manifolds with h11 = 2

In this section we will extend our analysis to CY threefolds with two Kähler moduli. As

a consequence, in addition to the LG and large volume phase (LV) we obtain also two

hybrid regimes. As a new feature, these hybrid phases have solely one complex parameter

ψ or φ bounded, whereas the other one is able to reach infinite distances. Our goals are

to determine the precise proper length of finite directions in the different phases of the

moduli space, extract the logarithmic behavior of proper distances along infinite directions

and last but not least compute the critical distance Θλ for certain accessible regimes.

More precisely, if we consider an infinite direction, we will always encounter a log-

structure in the mirror map. Thus the corresponding Kähler modulus may grow only

logarithmically past some critical distance, which is expected to cause a Kaluza-Klein state

becoming exponentially light. Therefore, the appearance of the logarithm is in agreement

with the Swampland Distance Conjecture [21], where the state in question is given by this

Kaluza-Klein mode.

Recall that the RSDC makes a stronger statement by predicting the invalidity of the

effective theory after having traversed at most O(1)Mpl in moduli space. Hence, the log-
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term behavior in the proper distance has to occur roughly at proper distance one and finite

directions in the moduli space have to have proper length less than one. In this section,

we will explicitly confirm the latter and asymptotically approach the log scaling.

Similar to the one-parameter section we shall discuss one example, that is P4
11222[8],

quite extensively and briefly list the results for other two parameter CY threefolds.

5.1 An illustrative example: P4
11222[8]

Let us at first focus on the weighted projective space P4
11222[8] which was studied in great

detail in the literature, see for instance [39, 42, 43]. Recall the construction of the Kähler

metric on the mirror dual in section 3, where we had already introduced basic facts about

the geometry of P4
11222[8].

In terms of the homogeneous coordinates [x1, x2, x3, x4, x5], consider the Calabi-Yau

hypersurface

P = x8
1 + x8

2 + x4
3 + x4

4 + x4
5 − 8ψ x1x2x3x4x5 − 2φx4

1x
4
2 , (5.1)

with two complex parameters (ψ, φ) corresponding to complex structure moduli. The

smooth family of threefolds given by the quotient {P = 0}/(Z4)3 identifies the mirror of

P4
11222[8]. Following [43] it is convenient to mod the hypersurfaces {P = 0} by an even

larger group, which requires to mod the parameter space
{

(ψ, φ)
}

by a Z8. Its generators

act according to

(ψ, φ) 7→ (αψ,−φ) (5.2)

with α being the 8th root of unity.

The special points of the moduli space appear when the hypersurface constraint (5.1)

becomes singular, that is, for nontrivial solutions to P = 0 and ∂P/∂xi = 0 for all xi. One

finds a conifold singularity at

(φ+ 8ψ4)2 = 1 (5.3)

as well as another singularity for8

φ2 = 1 . (5.4)

The two singularities above split the moduli space into four phases: a smooth Calabi-Yau,

a Landau-Ginzburg (orbifold) and two hybrid regimes, which we call hybrid P1 and hybrid

orbifold.

5.1.1 The phase structure of the Kähler moduli space

Let us explain the origin and connection of these four-phases. We start in the LG phase.

In this phase both complex structures are bounded and all homogeneous coordinates xi

8The singular threefolds at the locus φ = 1 are birationally equivalent to the mirror of the one-parameter

space P5
11111[2 4] (see [42]).
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are classically vanishing, such that the target space is simply a point. However, there are

massless quantum fluctuations around their vacuum expectation values or in other words,

there exists a residual Z8 symmetry on the coordinates xi. Hence effectively we have a

Landau-Ginzburg (orbifold) theory living on C5/Z8.

The singularity of C5/Z8 can be “blown-up” by replacing the singularity with an

exceptional divisor. Here, it turns out that this divisor has two irreducible components [39]:

C3 × P1 and P4. The four different phases are obtained by separately blowing up to these

components of the divisor. For instance, consider blowing-up to the component C3 × P1.

This leads to a one dimensional target space given by a Landau-Ginzburg (orbifold) bundle

over a P1 space. That is why we denote this regime as hybrid P1 phase. Again, some of

the xi were only fixed classically, such that one still faces a residual Z4 symmetry at every

point of P1.

In a second step, also blowing-up along the second component P4 of the exceptional

divisor resolves the Z4 singularities in each fiber. Satisfying in addition a hypersurface

constraint gives a K3 surface fibered over the P1 base. Thus, one arrives at a smooth

Calabi-Yau manifold. The full procedure can be summarized as follows

phase
LG theory resolved by−−−−−−−→

C3×P1

hybrid theory resolved by−−−−−−−→
P4

smooth

on C5/Z8 on C4/Z4 Calabi-Yau

target
point P1

K3 fibration

space over P1 base

Alternatively, one may first blow-up the P4 component. In this case one ends up in a hybrid

orbifold phase. This regime is an orbifold because its target space is still equipped with Z2

quotient singularities.

Following [39] let us introduce the coordinates

ρ1 =
1

2π
log |4φ2| , ρ2 =

1

2π
log

∣∣∣∣211 ψ4

φ

∣∣∣∣ . (5.5)

The separation of the four phases of the complex structure moduli space can be nicely

depicted in these coordinates, see figure 8. Moreover, the ρ1,2 coordinates make the spatial

extension of the conifold singularity (φ + 8ψ4)2 = 1 apparent, which is marked by the

shaded area in the plot.

An obvious question is whether one can circumvent the singular area in plot 8 or in

other words, transit between any of the four phase of the moduli space. In principle this

is indeed possible by computing the periods in charts covering the whole moduli space.

However, our periods derived in section 3.3 do not converge for the entire moduli space.

Instead they cannot be trusted arbitrarily close to the conifold singularity. Let us explain

this point in more detail for the case of P4
11222[8].
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-0.5 0.5 1.0

0.5

1.0

1.5

ρ1

ρ2

φ2 = 1

(φ+ 8ψ4)2 = 1

Large volume

phase

P1 phase

Landau-Ginzburg

phase

orbifold

phase

Figure 8. The singular loci divide the Kähler moduli space of P4
11222[8] in four regimes [39]. Note

that one is in principle able to transit between the phases if the moduli are equipped with a non-zero

imaginary part.
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ρ2
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P1

|8ψ4| > |φ± 1|

|8ψ4| < |φ± 1|

|8ψ4| > |φ± 1|

|8ψ4| < |φ± 1|

Figure 9. These plots depict the convergence regions of the periods for P4
11222[8], where the blue

regions covers |8ψ4| > |φ ± 1| and yellow |8ψ4| < |φ ± 1|. Shown are three different phases of

φ. In the left graph we have chosen φ = |φ|, hence the convergence area agrees with the phase

picture from the conifold constraint (φ + 8ψ4)2 = 1. In the middle graph we have φ = |φ| e 1
2 i, i.e.

the periods derived in section 3.3 cannot describe transitions between blue and yellow phases. As

shown in the right graph, the non-convergence area vanishes precisely for choosing φ = |φ| eπ
2 i. In

all plots ψ is real.

The singular loci are fixed by (φ+ 8ψ4)2 = 1 as well as φ2 = 1, hence one can clearly

circumvent the singularities simply by giving ψ or φ a non-zero imaginary part. So, there

are in fact trajectories starting and ending in different phases. However, in practice the

period computation of section 3.3 converges for |8ψ4| ≶ |φ ± 1|, which agrees with the

conifold constraint only for real moduli. Obviously, rotating ψ by some phase shift does

not affect the convergence relation, but adding a phase to φ does. Figure 9 shows three

plots of the convergence regions of the periods differing by the phase of φ. As one can see,
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φ

ψ

0 φ = 1

|8ψ4| ≶ |φ± 1|

large volume

P1
Landau

Ginzburg

orbifold

Figure 10. A schematic plot of the four phases of P4
11222[8] in real (φ, ψ) coordinates. The singular

locus |8ψ4| ∼ |φ± 1| is actually a two dimensional surface due to the ± indicating a logical “and”.

Directions bounded in field space do not necessarily have to be bounded in their proper distance.

a small phase for φ opens the border between Landau-Ginzburg and hybrid P1 phase. Only

if the phase is precisely Arg (φ) = π
2 , the convergence relations reduce to a single condition

|8ψ4| ≶ |φ|2 + 1, such that one is able to traverse between any of the four phases. This is

only possible due to the Z2 symmetry of φ determining the convergence relation.

The same statement holds true for P4
11226[12], but not for P4

11169[18] as one can observe

later. In the case of P4
11169[18], φ has a Z3 symmetry and thus the convergence relations

cannot reduce to a single one (see equation (5.54) for details). As a consequence, it is

impossible to cover the entire moduli space with the charts derived in section 3.3.

5.1.2 Tests of the RSDC: computing Θ0 and log-behavior

As shown in figure 10, schematically the different phases of the moduli space can also be

depicted in the coordinates (ψ, φ). Here we are assuming to have real fields, i.e. setting

Im(ψ) = Im(φ) = 0 for simplicity.

Before starting the discussion about the lengths of curves in the moduli space, let us

stress that we are distinguishing three different types of curves: we call any arbitrary path

a trajectory. If the trajectory is additionally satisfying the geodesic equation it is called

geodesic. The length of the globally shortest geodesic is denoted as the distance or proper

length. The reason for making such a clear separation between different types of curves

will become apparent in the following.

Figure 10 might be misleading in the sense that finite sized directions in the fields ψ

and φ do not necessarily have to be finite in their proper length. In the case of P4
11222[8], it

will eventually turn out that all these seemingly finite directions in ψ, φ are in fact bounded

in their proper lengths. To compare with the prediction of RSDC, in the following we shall

calculate the proper length of such finite directions.

Secondly, in this section we will be concerned with trajectories along infinite directions.

Both in the large volume and in the hybrid phases the Swampland Distance Conjecture

implies that they show a log behavior in their distances. One has to be cautious here, as
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actually, this has to hold for the globally shortest geodesics between two arbitrary points

in the moduli space. Hence, one would have to solve the geodesic differential equations for

certain start and end points and minimize the set of solutions regarding their proper lengths.

Due to the huge variety of possible trajectories in the four real dimensional moduli space

of P4
11222[8], this is obviously very elaborate and exceeds our computational capabilities.

Therefore, we proceed by doing the analysis in asymptotic regimes of the moduli space

where we are able to determine the shortest geodesics.

To see the exponentially light KK-modes it is important to express the final result

in terms for the Kähler coordinates ti that can be determined via the mirror map. As

discussed, the mirror map can be found by analyzing the monodromy properties of the

periods. For the case at hand this has been done by [43] and the mirror map in all phases

is given by

t1 = −1

4
+

2ω2 + ω4

4ω0
,

t2 =
1

4
− 2ω2 + ω4

4ω0
+

3ω1 + 2ω3 + ω5

4ω0
,

(5.6)

where the periods ωi have been computed in section 3.3. Later, we will find it useful

to state the asymptotic behavior of the Kähler coordinates at special points in moduli

space. Let us emphasize that the Kähler metrics that we are going to employ, have all

been computed with the period method presented in section 3.3. The GLSM method

introduced in section 3 was primarily used to cross check results.

Landau-Ginzburg phase. The Landau-Ginzburg regime is similar to the example of

the quintic 4.1 in the sense that the algebraic parameters |φ| and |ψ| are both bounded

0 ≤ φ < 1 , 0 ≤ ψ < ψc . (5.7)

The upper bound ψc is determined as a solution of the convergence condition |8ψ4| < |φ±1|
for fixed φ. The reader is referred to section 3.3 for details.

As already pointed out, whether all geodesics in the LG phases stay finite is a priori

not obvious. If they are finite, it is important to compute their proper lengths. For that

purpose let us investigate three trajectories as depicted in figure 11. All of these trajectories

start close to the smallest possible values of the algebraic moduli ψ = φ = 0. Then, we

consider one trajectory only in direction of ψ or φ, respectively. Additionally, there will

be one moving directly towards the conifold singularity. The labeling of the curves follows

figure 11. Using the metric computed in section 3, we obtain the following lengths for these

trajectories

∆Θ1 =

∫
γ1

dψ
√
Gψψ(ψ) = 0.40 ,

∆Θ2 =

∫
γ2

dφ
√
Gφφ(φ) = 0.24 ,

∆Θ3 =

∫
γ3

dτ

√
Gµν (ψ(τ), φ(τ))

dxµ

dτ

dxν

dτ
= 0.36 ,

(5.8)
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φ
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|8ψ4| ≶ |φ± 1|

γ2
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orbifold

Figure 11. The Landau-Ginzburg phase has finite length in every direction. To show this we

compute the lengths of the following three paths in (φ, ψ): γ1 : (0, 0)→ (0, 0.59), γ2 : (0, 0)→ (1, 0),

γ3 : (0, 0)→ (0.5, 0.5).

where we have denoted xµ = {ψ, φ}. All these directions are finite and smaller than one,

as expected from the RSDC.

For the sake of completeness, let us point out that the mirror map coordinates in the

Landau-Ginzburg regime approach the finite values t1 = 1
2(−1 + i) and t2 ' 0.5 + 0.21 i for

φ, ψ → 0.

Hybrid phase — P1. The conceptually new regimes of this moduli space are clearly the

hybrid phases P1 and orbifold. We begin with the hybrid P1 phase, where the two complex

structure parameters are limited by the regime

1 < φ < ∞ , 0 ≤ ψ < ψc . (5.9)

Again, the upper bound ψc is determined as solution of the convergence condition |8ψ4| <
|φ± 1| for fixed φ.

The phase diagram of figure 8 leads naturally to the following questions: first, does

really only one Kähler modulus ti exhibit a logarithmic behavior for large distances in

field space? That is to be expected for trajectories parallel to the φ axis, but not for the

ones parallel to the Landau-Ginzburg regime. Second, does there exist a geodesic moving

towards |ρ1| → ∞ or is the attractive effect of the conifold singularity strong enough to

bend any geodesic into the singularity? Finally, will the RSDC hold true even for geodesic

passing the Landau-Ginzburg and a hybrid phase before entering the large volume regime?

It seems to be challenging for arbitrary geodesics to collect less than O(1)Mpl in the proper

distance after crossing two regimes. In order to answer the latter two questions one has to

consider actual geodesics. Thus we will comment on these questions later and focus now

on the first one by analyzing the trajectories shown in figure 12. Note that we assume

again for simplicity ψ, φ to be real-valued.
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φ

ψ

0 φ = 1

|8ψ4| ≶ |φ± 1|

γ1 γ2

γ3

LV

P1

Landau-

Ginzburg

orbifold

Figure 12. The hybrid P1 fibration regime has one finite as well as one infinite direction. The

dashed arrow and coordinate axes symbolize their extension to infinity. For the calculation we used

γ1 : (1.1, 0)→ (1.1, 0.33).

The curve γ1 starts near ψ = 0, φ = 1 and moves only in ψ direction, hence along the

Landau-Ginzburg regime towards the singularity. Via integration we find its length

∆Θ1 =

∫
γ1

dψ
√
Gψψ(ψ) = 0.24 . (5.10)

This result is consistent with the RSDC and with our expectations, as it is close to to the

Landau-Ginzburg phase. Besides, we can estimate the asymptotic distance for large φ as

depicted by curve γ2 in figure 12. According to section 3.3, in the P1 phase the asymptotic

behavior of the metric for (φ→ 0, ψ →∞) is

Gasymp
P1 '

(
Gasymp

φφ
0

0 Gasymp

ψψ

)
'

( 0.25
|φ|2 (log |φ|)2 0

0 0.5905√
|φ|

)
. (5.11)

Integrating this asymptotic metric for large φ leads to a finite and non-zero value

∆Θ2 =

∫
γ2

dψ
√
Gasymp

P1, ψψ
(φ) '

√
0.5905√
|φ|
· 4

√
|φ|
8

= 0.46 . (5.12)

Finally, we want to point out that the trajectory γ3 “parallel” to the large volume phase

has infinite length. To see that, we would have to integrate the Kähler metric of P1 in the

φ direction towards ∞. But asymptotically this integral is given by

Θ ∼
∫
dφ
√
Gasymp

P1, φφ
(φ) ∼ log (log φ) . (5.13)

As a consequence, the direction φ in P1 is infinite, in contrast to the ψ direction.

As we have seen, it is the Kähler coordinates Im(ti) (following from the mirror map)

that control the exponential drop-off of the KK-modes. As explained in section 3.3 and
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φ

ψ

0 φ = 1

|8ψ4| ≶ |φ± 1|

γ1

γ2

γ3

LV

P1

Landau-

Ginzburg

orbifold

Figure 13. In the hybrid orbifold phase we find again an infinite direction γ3 plus a finite one

γ1 : (0, 0.59)→ (1, 0.59). The distance in the φ direction asymptots (indicated by dashed arrow) to

a finite γ2, more precisely the distance will be zero.

using eq. (5.6), deep inside the P1 phase (ψ → 0, φ→∞), we find

t1 '
1

2
(−1 + i) + . . . ,

t2 '
(

1− i

2

)
+

8i log(2)

2π
+
i

π
log(φ) + . . . .

(5.14)

This is just right, as the logarithmic scaling behavior with respect to t2 becomes

Θ ∼ log (log φ) ∼ log(Im t2) . (5.15)

Hybrid phase — orbifold. As one might guess from figure 10, the hybrid orbifold

phase is qualitatively quite similar to the P1 hybrid phase. Now the algebraic coordinates

may vary in the interval

0 ≤ φ < 1 , ψc < ψ <∞ , (5.16)

with ψc as in the other phases. Again, we focus on three trajectories: a finite one γ1 along

the Landau-Ginzburg regime, its asymptotic equivalent γ2 for large ψ and an infinite direc-

tion γ3 along the large volume regime. Figure 13 summarizes these curves schematically.

We begin by computing the distance from φ = 0 to the conifold singularity. Keeping

ψ fixed, the integral leads to the length

∆Θ1 =

∫
γ1

dφ
√
Gφφ(φ) = 0.21 , (5.17)

which is very close to our result (5.8) in the Landau-Ginzburg phase.

Let us now check whether this asymptots to a finite distance γ2 as in the P1 fibration

regime. The asymptotic metric for real moduli near φ ' 0 (see section 3.3 for details) reads

Gasymp
orbi '

(
0.09

| log(ψ)|2 0

0 0.75
|ψ|2 (log |ψ|)2

)
. (5.18)
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Consequently, the asymptotic distance γ2 is indeed finite

∆Θ2 =

∫
γ2

dφ
√
Gasymp

orbi, φφ
(ψ) ∼

√
0.09

| logψ|

∫ 1

0
dφ

ψ→∞−−−−→ 0 . (5.19)

This is interesting since the distance to the large volume phase vanishes. In other words,

for large ψ we end up at the φ = 1 singularity and hence on the one-parameter subspace

P5
11111[2 4].

From the metric one can see that the pure ψ direction γ3 of the hybrid orbifold phase

is infinite. The metric in the ψ direction leads again to a Θ ∼ log(logψ) growth of the

distance. The asymptotic form of the mirror map confirms exactly our observation. For

(ψ →∞, φ→ 0), we find

t1 '
i

2π
log(8ψ)4 + . . . ,

t2 '
1

2
+ . . . .

(5.20)

Thus, the distance is in agreement with the Swampland Distance Conjecture as now Θ ∼
log (logψ) ∼ log(Im t1).

Only t1 grows logarithmically for large values of ψ, whereas t2 approaches a constant.

Note that this was exchanged in the P1 regime. In addition, the imaginary part Im(t2) =∫
Σ2
J asymptotes to zero.9 This means that one has a vanishing two-cycle Σ2, validating

the interpretation of being located at the one-parameter subspace P5
11111[2 4].

Large volume phase. In the remaining phase of the moduli space under investigation,

the algebraic parameters may take values in

1 < φ < ∞ , ψc < ψ <∞ . (5.21)

and ψc again as in the other phases. By definition it is clear that both directions, φ

and ψ, are infinite. Therefore we expect the Θ ∼ log log(−)-behavior, demanded by the

swampland distance conjecture, in any of these directions.

The mirror map confirms this expectation. Around the large volume point, according

to [43] they are given by

t1 '
1

2
+

i

2π
log

(
(8ψ)4

2φ

)
+ . . . ,

t2 '
i

π
log (2φ) + . . . ,

(5.22)

where the dots denote polynomial corrections. So, whenever one of the algebraic coordi-

nates becomes large, the corresponding Kähler coordinate will grow logarithmically.

9The (at a first glance surprising) possibility for zero minimum distances in string target spaces was

already observed in [51]. In fact, there it was argued that for “sufficiently complicated” topologies a

vanishing exceptional divisor demands some other part of the target space to become infinitely large. This

is in line with the log(ψ) term in t1.
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5.1.3 Tests of the RSDC: computing Θλ

So far, we have only motivated the logarithmic behavior of proper distances by analyzing

the mirror maps of each phase in the moduli space. Let us now turn towards the critical

distance Θλ where the logarithm is significant, i.e. challenge the RSDC. For that purpose,

two different approaches are presented: calculating Kähler potentials and geodesics in

asymptotic regions of the moduli space. Both methods will turn out to give the same

results for Θλ.

Asymptotic Kähler potentials. Before commenting on geodesics in two-parameter

models, recall that the value for Θλ deep inside the large volume regime (LV) can be

derived from the generic form (2.1) of the asymptotic Kähler potential. It is interesting

to compare this Kähler potential in the large volume region to the asymptotic ones in the

two hybrid phases.

For the mirror of P4
11222[8] the prepotential depending on the Kähler coordinates ti is

asymptotically given by [43]

F = −4

3
(t1)3 + 2 (t1)2t2 + . . . , (5.23)

where the dots denote subleading corrections. Employing the standard formula for the

periods Π(t1, t2) = (1, t1, t2, 2F−∂t1F−∂t2F , ∂t1F , ∂t2F) (in inhomogeneous coordinates),

we obtain the Kähler potential

Kasymp
LV ' − log

[
4 i

3
(t1 − t1)3 + 2 i (t1 − t1)2 (t2 − t2)

]
. (5.24)

In the hybrid phases we are able to compute an asymptotic expression for the Kähler

potential as well:

Hybrid P1 phase. Expanding the Kähler potential KP1 of this regime around ψ ≈ 0

and φ→∞, we find asymptotically

exp
(
−Kasymp

P1

)
' 6.99 i

ψψ

(φφ)
1
4

[
5.54− 2.46

ψψ

(φφ)
1
4

+

(
1− 0.59

ψψ

(φφ)
1
4

)
log(φφ)

] (5.25)

which is consistent with the metric (5.11). Taking the mirror map (5.14) into account, in

leading-order leads to the simple result

Kasymp
P1 ' − log(t2 − t2) . (5.26)

Obviously, the large volume Kähler potential (5.24) reduces to the P1 expression for small

t1 and very large t2. It also confirms the target space geometry since the Kähler modulus

t2 measures the size of the P1 space.

– 44 –



J
H
E
P
0
6
(
2
0
1
8
)
0
5
2

Moreover, even without calculating geodesics one can derive a value for Θλ in this

asymptotic region. That is, using the induced metric

Gt2t2 =
1

4 (Im t2)2 (5.27)

and carrying out an analogous calculation as in section 2, we obtain a critical proper

distance Θλ =
√

0.25 ' 0.5. As Θλ < O(1), this is in agreement with the RSDC.

Hybrid orbifold phase. Similarly, we approximate the Kähler potential Korbi in the

hybrid orbifold phase around φ ≈ 0 and ψ →∞ by

exp
(
−Kasymp

orbi

)
' 26.32i− 0.45i φφ+ 0.13i φφ log(ψψ)

+ 17.85i log(ψψ) + 4.29i
[
log(ψψ)

]2
+ 0.34i

[
log(ψψ)

]3 (5.28)

which is again in line with the asymptotic metric (5.18). By plugging in the mirror

map (5.20), we get the leading-order result

Kasymp
orbi ' −3 log(t1 − t1) , (5.29)

which is as expected from the large volume expression (5.24) for t1 much larger than t2.

From the target space point of view, t1 corresponds to the overall volume of the orbifold.

The critical proper distance is the same as already computed in section 2, Θλ =
√

0.75

' 0.87.

Next, we challenge the refined conjecture from the perspective of geodesics.

5.1.4 Tests of the RSDC: asymptotic geodesics

In order to investigate the refined version of the Swampland Distance Conjecture one has

to check whether the proper lengths of geodesics grow at best logarithmically after having

traversed Θλ ∼ O(1)Mpl distances. This behavior is expected to occur for trajectories

moving sufficiently far along one of the infinite directions pointed out above. Obviously, in

the two-parameter model the most interesting geodesics cross various phases. It is crucial

to note that not every geodesic is automatically the globally shortest path between two

points.

Basically the reason boils down to the attractive effect of the singularities in the moduli

space at hand. However, the RSDC holds only for the shortest geodesic, which leads to

technical difficulties. In fact, it is quite delicate to find the solution to the geodesic equation

with minimal proper length for given start and end points. In particular so, as we are now

working in real four dimensional space. One could only determine rough upper bounds for

Θλ from several typical trajectories.

Here we will instead pursue a different approach, where the goal is to compute geodesics

in asymptotic regions of the moduli space, where we have already derived a simple analytic

expression for the Kähler metric on the moduli space.
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Hybrid P1 phase. At first consider the hybrid P1 phase and in particular the regime

ψ ≈ 0 and φ → ∞. In this regime a trajectory purely in the φ direction will be a

geodesic and moreover it will be the shortest one. We show in the following that such a

trajectory solves the geodesic equation and compute the critical distance Θλ. Note that if

it is a geodesic, it is automatically the shortest one due to the symmetric influence of the

singularities.

Taking into account that we want to keep ψ ≈ 0, we assume the initial values ψi =

dψi/dτ = 0 with an affine proper time parameter τ . As a consequence the two interesting

geodesic equations simplify to

d2φ

dτ2
+ Γφφφ

(
dφ

dτ

)2

= 0 (5.30)

d2ψ

dτ2
+ Γψφφ

(
dφ

dτ

)2

= 0 . (5.31)

Recall that the metric in this regime is asymptotically given by eq. (5.11)

Gasymp
P1 '

( 0.25
|φ|2 (log |φ|)2 0

0 0.5905√
|φ|

)
. (5.32)

Due to the simple structure of the metric, the Christoffel symbols are straightforward to

compute

Γφφφ = − 1

φ

(
1 +

1

log φ

)
, Γψφφ = 0 . (5.33)

Hence the geodesic equation (5.31) for ψ shows that there is no movement in the ψ direction,

i.e. we stay at ψ ≈ 0. In other words, a trajectory γ purely in φ direction is indeed a

geodesic. The geodesic equation (5.30) for φ can be solved analytically with two integration

constants C1, C2. The solution turns out to be a double exponential of the form

φ(τ) = exp [exp (C1τ + C1C2)] . (5.34)

If we then evaluate the proper distance Θ for the geodesic γ, we find a direct proportionality

to τ . This is clear since Θ and τ are affine parameters. The crucial factor is the
√

0.25

from the numerator of Gasymp

P1, φφ
. More precisely we find the following proper distance

Θ =

∫
γ
dτ

√
Gasymp

P1, φφ

(
dφ

dτ

)2

=
1

2
C1 τ . (5.35)

The SDC predicts an exponential growth of the Kähler coordinate depending on the proper

distance. Here, one can observe this directly for the geodesic (5.34) and the mirror map t2
from eq. (5.14)

Im(t2) = −1

2
+

8 log 2

2π
+

1

π
exp (2 Θ + C1C2) . (5.36)

The exponential factor becomes relevant beyond a critical distance Θλ = 0.5 according

to our definition in section 2. Since we satisfy Θλ < 1, we are clearly in agreement with

the RSDC.
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Hybrid orbifold phase. One can perform the same analysis for the hybrid orbifold

phase with similar results. There, we consider a trajectory at φ ≈ 0 in the limit ψ → ∞,

i.e. moving far from the origin purely in the ψ direction. The asymptotic metric (5.18)

was again diagonal and included the component Gasymp

orbi, ψψ
= 0.75/|ψ logψ|2. Assuming now

dψ/dτ ≈ 0, the geodesic equations and its solutions are equivalent to the hybrid P1 phase

(with two constants C1, C2). The proper distance is now given by Θ =
√

0.75C1τ , such

that the mirror map (5.20) obeys the following relation

Im(t1) =
6 log 2

π
+

2

π
exp

(
Θ√
0.75

+ C1C2

)
. (5.37)

The critical distance is now found to be Θλ =
√

0.75 ∼ 0.87 < 1 and hence satisfies the

RSDC, as well. Note that all results from investigating geodesics agree precisely with the

one derived from asymptotic Kähler potentials.

To consolidate our results, we consider other two-parameter moduli spaces and perform

a similar analysis.

5.2 P4
11226[12]

In this section we analyse, by analogy with P4
11222[8], the moduli space of P4

11226[12], which

was also investigated in [43]. The defining hypersurface polynomial is now given by

P = x12
1 + x12

2 + x6
3 + x6

4 + x6
5 − 12ψ x1x1x3x4x5 − 2φx6

1x
6
2 . (5.38)

The mirror of P4
11226[12] can again be identified with the Calabi-Yau threefold satisfying

the constraint {P = 0}/G, where in this case the group G may be enlarged to include a

Z12 symmetry. Its action on the algebraic parameters reads

(ψ, φ) 7→ (αψ,−φ) (5.39)

with α = exp (2πi/12). As explained in [43], the structure of the moduli space is very

similar to the one of P4
11222[8]. In particular, the four different phases appear again:

Landau-Ginzburg, large volume, hybrid P1 and hybrid orbifold. The singular loci in case

of P4
11226[12] are φ2 = 1 and the conifold surface (φ+ 864ψ6)2 = 1. The singular threefolds

at φ2 = 1 are again birationally equivalent to the mirror of a one-parameter model. In this

case they correspond to the CICY P5
111113[2 6].

The periods may be calculated with the techniques described in section 3.3. The series

expansion of the fundamental period converges for

|864ψ6| ≶ |φ± 1| , (5.40)

depending on the regime we want to investigate. Note that the ± stands again for a

logical “and”.

Let us now briefly investigate various distances in the moduli space of the mirror

P4
11226[12] in analogy with the schematic drawings in figures 11, 12, 13. In particular we
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want to determine infinite directions and estimate characteristic finite ones. Let us point

out that we assume again real moduli ψ, φ for simplicity.

Furthermore, we shall calculate the mirror map and analyze its asymptotic behavior

for each phase. Eventually, we will encounter the same structure as for the P4
11222[8]

including the logarithms. The derivation of the formula for the mirror map follows [43]

and is summarized in section 3.3. The result turns out to be

t1 = −1

2
+
ω2 + ω4

2ω0
,

t2 =
1

2
− ω2 + ω4

2ω0
+
ω1 + ω3 + ω5

2ω0
,

(5.41)

where the periods ωi have been computed in section 3.3.

Landau-Ginzburg phase. The boundaries of this phase are governed by the constraints

0 ≤ φ < 1 and 0 ≤ ψ < ψc, where the maximal value ψc is the real solution to |864ψ6
c | <

|φ±1|. Then, we start at ψ = φ = 0 deep in the Landau-Ginzburg regime and consider two

trajectories: one purely in direction φ keeping ψ fixed and one vice versa. By integration

we find the maximal length in these directions

∆Θ1 =

∫ ψc

0
dψ
√
Gψψ(ψ) = 0.21 ,

∆Θ2 =

∫ 1

0
dφ
√
Gφφ(φ) = 0.32 .

(5.42)

Hence, we conclude that the Landau-Ginzburg phase is again of finite size in any direction

with distances shorter than O(1)Mpl. The mirror map (5.41) asymptotes to finite values

as well. For φ, ψ → 0 we end up with t1 ' −1
2 + 0.866 i and t2 ' 1

2 + 0.134 i.

P1 hybrid phase. The algebraic parameters of P1 are constrained by the intervals 1 <

φ <∞ and 0 ≤ ψ < ψc with ψc as above. We begin with a trajectory along the boundary

to the Landau-Ginzburg phase. That is, we start at ψ = 0, φ = 1.1 and integrate in ψ

direction up to ψc without altering φ. The length turns out to be finite and quite small

∆Θ1 =

∫ ψc

0
dψ
√
Gψψ(ψ) = 0.1 . (5.43)

According to example P4
11222[8], we expect this length to asymptote to a finite value. There-

fore, we approximate the asymptotic metric for (ψ, φ)→ (0,∞). At leading order we find

Gasymp
P1 '

 0.25
|φ|2 (log |φ|)2 0

0 27.23 |ψ|2

|φ|
2
3

 . (5.44)

Indeed we arrive at a finite result by integration and using |ψc|2 ∼ |φ|
1
3 /(864

1
3 )

∆Θ2 =

∫ ψc

0
dψ
√
Gasymp

P1, ψψ
(ψ, φ) '

√
27.23

|φ|
1
3

·
∫ ψc

0
dψ ψ2 = 0.27 . (5.45)
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Instead of this approximate analytic approach, one may also evaluate the integral over the

full metric numerically, which confirms our result for ∆Θ2. In contrast, distances of the

hybrid P1 phase in φ may become infinite. One way to see this, is that the integral

Θ ∼
∫
dφ
√
Gasymp

P1, φφ
(φ) ∼ log (log φ) (5.46)

does obviously not converge to a finite value.

Next, we evaluate the formulae (5.41) for the mirror map. For φ→∞ and ψ ' 0, we

obtain asymptotically

t1 ' −
1

2
+ 0.866 i+ . . . ,

t2 ' 1 + 0.10 i+
i

π
log(2φ) + . . . .

(5.47)

On the one hand, t1 is finite as in the Landau-Ginzburg phase. On the other hand, t2
growths logarithmically in φ and hence the proper distance is Θ ∼ log t2 in agreement with

the SDC.

Orbifold hybrid phase. In this regime the algebraic parameter may vary within 0 ≤ φ <
1 and ψc < ψ < ∞, employing the constraint |864ψ6

c | ≥ |φ± 1|. At first, we compute the

trajectory from φ = 0 to φ = 1 keeping ψ constant at a minimal value ψ ∼ 0.32. Basically

we integrate along the border to the Landau-Ginzburg phase. A simple calculation shows:

∆Θ1 =

∫ 1

0
dφ
√
Gφφ(φ) = 0.16 . (5.48)

Recall that asymptotically for large ψ this length was decreasing to zero in the example

P4
11222[8]. In fact, we will observe the same behavior here. The metric near φ ' 0 and

ψ →∞ leads to the expression

Gasymp
orbi '

(
0.04

| log(ψ)|2 0

0 0.75
|ψ|2 (log |ψ|)2

)
. (5.49)

Thus, the asymptotic proper distance in φ direction is again vanishing due to its scaling∫ 1
0 dφ

√
Gasymp

orbi, φφ
(ψ) ∼ 1/| logψ|. One then ends up at the φ = 1 locus which is birational

equivalent to the complete intersection CY P5
111113[2 6]. Note that one may traverse infinite

distances in ψ direction as expected. This is easy to see from the metric and in direct

analogy with P4
11222[8].

This time, for ψ →∞ and φ ' 0 the mirror map (5.41) approaches the values

t1 ' −
3

4
+

i

2π
log(12ψ)6 + . . . ,

t2 '
1

2
+ . . . ,

(5.50)

indicating a logarithmic growth of the proper distance depending on the Kähler modulus

t1. Analogously to P4
11222[8], the imaginary part of t2 vanishes asymptotically, i.e. the two-

cycle Σ2 shrinks to zero [51]. Again, we arrive then on the φ = 1 locus which corresponds

to the one-parameter CICY P5
111113[2 6].
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φ

ψ

0 φ = 1

|864ψ6| ≶ |φ± 1|

0.21

0.32

0.10 0.27

∞

0.16

0

∞
LV

P1

Landau-

Ginzburg

orbifold

Figure 14. Schematic plot of the moduli space of the mirror P4
11226[12] with finite as well as infinite

directions as calculated above.

Large volume phase. Finally, the large volume regime 1 < φ < ∞ and ψc < ψ < ∞
(ψc as above) is infinite in both directions φ, ψ. As expected, we find a logarithmic growth

of the proper distances in any direction, after employing the mirror map [43]

t1 '
1

2
+

i

2π
log

(
(12ψ)6

2φ

)
+ . . . ,

t2 '
i

π
log (2φ) + . . . .

(5.51)

The dots indicate polynomial corrections that are sub-leading at infinity.

Summary. The different regimes of the moduli space of the mirror P4
11226[12] with its

finite lengths are schematically depicted in figure 14. The results are qualitatively very

similar to P4
11222[8]. In accordance with the RSDC, all finite characteristic lengths are

smaller than O(1)Mpl. Infinite directions show a log-behavior in their corresponding Kähler

modulus. This confirms again the predictions from the SDC.

In addition, we were able to determine the critical distance Θλ, where the logarith-

mic behavior becomes essential. The computation is indeed equivalent to the one of sec-

tion 5.1.4. By using the metrics (5.44) and (5.49), we find therefore in the hybrid P1 phase

Θλ = 1/2 and in the hybrid orbifold phase Θλ =
√

0.75.

5.3 P4
11169[18]

The final example in this section is the moduli space of P4
11169[18]. An extensive analysis

of this model can be found in [48]. In the literature it was shown that the most general
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possible polynomial of degree 18 employed to describe this moduli space may be reduced to

P = x18
1 + x18

2 + x18
3 + x3

4 + x2
5 − 18ψ x1x1x3x4x5 − 3φx6

1x
6
2x

6
3 . (5.52)

The moduli space is again defined by the hypersurface constraint {P = 0}/G. There exists

a scaling symmetry preserving the form of P , which is identified with an enlarged group

Ĝ. This group induces a Z18 action on the algebraic parameters

(ψ, φ) 7→ (αψ, α6φ) (5.53)

with the nontrivial 18th root of unity α = exp (2πi/18). In fact, there are additional

transformations leaving the hypersurface constraint invariant. For these and further details

we simply refer to the literature.

The qualitative structure of the moduli space is similar to the one of P4
11222[8], in the

sense that there are four extended phases: Landau-Ginzburg, orbifold, large volume and

an additional hybrid phase. However, now we do not have a hybrid P1 phase, but instead

the exceptional divisor has a P2 component [52] and thus for large φ, small ψ we face a P2

target space. Moreover, the large volume phase corresponds to a different geometry, that

is not a K3× P1 fibration that we ended up with in P4
11222[8]. The singular loci in case of

P4
11169[18] are slightly different as well. Both singularities correspond to conifolds and are

located at φ3 = 1 and (φ+ 2238ψ6)3 = 1.

For the calculation of the periods we refer to section 3 and in particular to section 3.3.

We will restrict our analysis again to the computation of finite distance in the moduli space

according to the schematic curves plotted in figures 11, 12 and 13. One can show that the

series expansion of the fundamental period converges for

|2238 ψ6| ≶ |φ− α−6τ | , (5.54)

depending on the regime we want to investigate. Now we have three constraints as τ may

vary between 0,1,2 with α = exp (2πi/18). Let us point out that we assume again real

moduli ψ, φ for simplicity.

Infinite directions will show a logarithmic behavior in their proper distances depending

on the Kähler moduli. The mirror map for the P4
11169[18] model is given by [48]

t1 =
ω3 − ω0

ω0
,

t2 =
ω4 + ω5 − 2ω3 + 2ω0

ω0
.

(5.55)

Landau-Ginzburg phase. Here, the moduli take values within the intervals 0 ≤ φ < 1

and 0 ≤ ψ < ψc, with ψc being the maximal real solution to condition (5.54). We compute

the following two trajectories: one purely in direction φ keeping ψ fixed and one vice versa,

starting at ψ = φ = 0. Their lengths are given by

∆Θ1 =

∫ ψc

0
dψ
√
Gψψ(ψ) = 0.074 ,

∆Θ2 =

∫ 1

0
dφ
√
Gφφ(φ) = 0.087 .

(5.56)
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Again, both directions are finite and less than O(1)Mpl. This result is confirmed by the

mirror map because they converge to finite values as well. More precisely, for φ, ψ → 0

we obtain the asymptotic mirror map (5.55) coordinates t1 ' ω−2 = −1
2 + 0.866 i and

t2 ' 1 + 0.238 i.

P2 hybrid phase. Considering the parameter space 1 < φ < ∞ and 0 ≤ ψ < ψc, we

compute at first the proper distance of a trajectory along the Landau-Ginzburg phase.

Taking ψ = 0, φ = 1.1 as initial values, we integrate along the ψ direction up to ψc without

altering φ

∆Θ1 =

∫ ψc

0
dψ
√
Gψψ(ψ) = 0.015 . (5.57)

One can approximate the Kähler metric for (ψ, φ)→ (0,∞)

Gasymp
P2 '

 0.5
|φ|2 (log |φ|)2 0

0 185837.8 |ψ|6

|φ|
4
3

 (5.58)

and compute the maximal distance in the ψ direction asymptotically

∆Θ2 =

∫ ψc

0
dψ
√
Gasymp

P2, ψψ
(ψ, φ) '

√
185837.8

|φ|
2
3

·
∫ ψc

0
dψ ψ3 = 0.12 , (5.59)

with |ψc|4 ∼ |φ|
2
3 /(2238)

2
3 . A numerical evaluation of the integral with the full (not asymp-

totic) metric gives the same result. Due to the other component of the metric above,

distances in the φ direction may become infinite.

Computing the mirror maps reveals a logarithmic growth of t2 in φ and hence a loga-

rithmic growth of the proper distance Θ in t2 as expected due to the Swampland Distance

Conjecture. On the other hand, t1 approaches the finite value which we also found in the

Landau-Ginzburg phase. Indeed, in the limit φ → ∞ and keeping ψ ' 0, inserting the

periods computed in section 3.3 into (5.55) leads to (recall ω = exp(2πi/3))

t1 ' ω−2 + · · · ' −1

2
+ 0.866 i+ . . . ,

t2 '
3

2
+

3 i

2π
log(3φ) + . . . .

(5.60)

Orbifold hybrid phase. In this regime the algebraic parameters are fixed by 0 ≤ φ < 1

and ψc < ψ < ∞. As before, we begin with computing a trajectory from φ = 0 to φ = 1

keeping ψ constant at a minimal value ψ ∼ 0.32.

∆Θ1 =

∫ 1

0
dφ
√
Gφφ(φ) = 0.065 . (5.61)

In the former examples P4
11222[8] and P4

11226[12] this distance was asymptotically vanishing

for large ψ. Thus, we approximate the Kähler metric near φ ' 0 and ψ →∞

Gasymp
orbi '

(
1

| log(ψ)|6 0

0 0.75
|ψ|2 (log |ψ|)2

)
. (5.62)
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Thus, also here the distance in φ direction is asymptotically zero. However, in ψ direction

it is possible to travel infinite distances.

The mirror map coordinates (5.55) for ψ →∞ and φ ' 0 are approximately given by

t1 ' −
2

3
+

i

2π
log(18ψ)6 + . . . ,

t2 ' 1 + . . . .
(5.63)

Since the proper distance scales like Θ ∼ log logψ, we end up once again with a logarithmic

growth of Θ in t1.

As opposed to the P2 hybrid phase, now it is t1 which may become infinitely large.

Again, the imaginary part of t2 vanishes asymptotically and hence the two-cycle Σ2 shrinks

to zero [51]. In this limit one finally hits the conifold singularity at φ = 1 as the proper

distance to the singularity approaches zero. Recall that in the case of P4
11222[8] we were

running into a non-singular one-parameter subspace instead.

Large volume phase. Eventually, the large volume regime 1 < φ <∞ and ψc < ψ <∞
(ψc as above) is infinite in both directions φ, ψ with the mirror map given by [48]

t1 ' −
1

2
+

i

2π
log

(
(18ψ)6

3φ

)
+ . . . ,

t2 '
3

2
+

3 i

2π
log (3φ) + . . . .

(5.64)

Summary. Overall, distances of the moduli space of P4
11169[18] behave similar to the ones

of both other two-parameter models, which we discussed above. Figure 15 summarized all

distances of P4
11169[18]. The logarithmic dependence of the different mirror maps under-

line the Swampland Distance Conjecture and the small finite lengths its refined version.

Furthermore, we can compute the critical distance Θλ in asymptotic regions of the moduli

space. Following section 5.1.4 the metrics (5.58) and (5.62) lead to Θλ =
√

0.5 ≈ 0.71 for

the hybrid P2 phase and Θλ =
√

0.75 for the hybrid orbifold phase. In accordance with

the RSDC both distances are less than Mpl.

6 RSDC for a CY manifold with h11 = 101

After a thorough analysis of the geometry of the moduli space of one- and two-parameter

CYs, we now turn to the question of the description of higher dimensional moduli spaces.

While the methods used so far are in principle applicable to models with many moduli, the

computational effort increases drastically, rendering this approach unfeasible.

A new method, recently developed by Aleshkin and Belavin in [30] and [31], allows

the computation of the periods of the complete 101-dimensional Kähler moduli space of

the mirror quintic in the Landau-Ginzburg phase. We will apply this method with slight

modifications to calculate the radii of the Landau-Ginzburg phase of the Kähler sector of

the mirror quintic.
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φ

ψ

0 φ = 1

|2238 ψ6| ≶ |φ− α−6τ |

0.087

0.074

0.015 0.12

∞

0.065

0

∞
LV

P1

Landau-

Ginzburg

orbifold

Figure 15. Schematic plot of the moduli space of the mirror P4
11169[18] with finite as well as infinite

directions as calculated above. The constraint for one conifold uses τ = 0, 1, 2 and α = exp (2πi/18).

The defining polynomial for the quintic can be written as

P = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 +

100∑
s=0

Φse
s (6.1)

with es = xs11 x
s2
2 x

s3
3 x

s4
4 x

s5
5 . The s are 101 5-dimensional vectors labeling the deformations,

with each entry representing the exponent of one coordinate. In the following formulas,

the index µ labels the 2h21 + 2 = 204 periods and has to be understood in the same

way. The deformations of the polynomial can be grouped into all possible permutations

of 5 s-vectors, (1, 1, 1, 1, 1), (2, 1, 1, 1, 0), (2, 2, 1, 0, 0), (3, 1, 1, 0, 0) and (3, 2, 0, 0, 0). The

number of permutations of these are (1, 20, 30, 30, 20). Note that Φ0 corresponds to the

fundamental s = 0 = (1, 1, 1, 1, 1) deformation and is the same as the ψ parameter of the

quintic up to a rescaling −5Φ0 = ψ.

The periods are given by [30]

σµ(φ) =
∑
n1≥0

. . .
∑
n5≥0

[
5∏
i=1

(
µi + 1

5

)
ni

] ∑
m∈Σn

100∏
s=0

Φms
s

ms!
, (6.2)

where (x)a = Γ[x+ a]/Γ[x] denotes the Pochhammer symbol, n is a 5-dimensional vector

with integer entries, m is a 101-dimensional vector with scalar entries ms and

Σn =

{
m

∣∣∣∣∣∑
s

mssi = 5ni + µi ∀i ∈ 1..5

}
. (6.3)
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The Kähler potential is

e−K =

203∑
µ=0

(−1)deg(µ)/5

 5∏
i=1

Γ
(
µi+1

5

)
Γ
(

4−µi
5

)
 |σµ(φ)|2 , (6.4)

where deg(µ) =
∑5

i=1 µi is the degree of the corresponding deformation. All moduli cor-

responding to the permutations of the same s-vector have the same periods and there-

fore the Kähler potential is symmetric. For computational feasibility we restrict to this

five-dimensional subspace, i.e. from now on s = 0, . . . , 4 and µ = 0, . . . , 11. Including the

(0, 0, 0, 0, 0) deformation corresponding to H3,0 and the conjugated cycles, we obtain twelve

periods. The Kähler potential becomes

e−K =

11∑
µ=0

πµ(−1)deg(µ)/5

 5∏
i=1

Γ
(
µi+1

5

)
Γ
(

4−µi
5

)
 |σµ(φ)|2 , (6.5)

where πµ denote the numbers of permutations of the deformations, i.e. πµ = {1, 1, 20, 30,

30, 20, 1, 1, 20, 30, 30, 20}. In addition a combinatorial coefficient c(ms) has to be included

in the periods:

σµ(φ) =
∑
n1≥0

. . .
∑
n5≥0

[
5∏
i=1

(
µi + 1

5

)
nj

] ∑
m∈Σn

4∏
s=0

Φms
s · c(ms) . (6.6)

This coefficient can be calculated as follows. In principle one has to find 101-dimensional

vectors m, which solve (6.3). If one uses the symmetry of the problem to reduce to 5

dimensions, one deformation represents πs different deformations.

The calculation is most easily understood in an example. We look at a deformation

which has 20 permutations, e.g. the (2,1,1,1,0). If this deformation contributes for example

ms=3, there are 3 different ways to obtain this. Three deformations could contribute 1, one

deformation contributes 1 and another one 2 or one single deformation contributes 3. Then

one has to choose these deformations out of the 20 available, resulting in
(

20
3

)
+
(

20
1

)(
19
1

)
+
(

20
1

)
different combinations. But these deformations are not of the same order in the fields,

therefore one has to include the 1
ms!

term of (6.2). The final coefficient then is(
20
3

)
1!1!1!

+

(
20
1

)(
19
1

)
1!2!

+

(
20
1

)
3!

=
4000

3
. (6.7)

The c(ms) in (6.6) calculates exactly this number.

For the general case, first we define the set of all possible integer partitions with less

then πs integers of s as P (s). Then we count how often each integer appears in each

permutation of this set. The resulting set is denoted A. We then define a set Lk for each

ms with elements Lk,i as

Lk,i = πs −
i−1∑
j=1

Ak,j (6.8)
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direction ∆Θ

Φ0 0.4656

Φ1 0.0082

Φ2 0.0670

Φ3 0.0585

Φ4 0.0089

Table 7. Proper distances between the conifold and the Landau-Ginzburg point in the complex

structure moduli space of the quintic.

In the example above,

A = {{3, 0, 0}, {1, 1, 0}, {0, 0, 1}} and

L = {{20, 17, 17}, {20, 19, 18}, {20, 20, 20}} .
(6.9)

With these definitions the coefficient can be written as

c(ms) =

|P (s)|∑
k=1

ms∏
j=1

(
Lk,j
Ak,j

)
/(k!)Ak,j (6.10)

where |P (s)| denotes the number of elements in P (s). These formulas allow for the calcu-

lation of the Kähler potential.

The final information needed to calculate the proper distances using (2.5) are the

boundaries of integration. We start at the Landau-Ginzburg point and go along trajectories

where only one deformation is turned on. The endpoint of the trajectory is the conifold.

To determine the position of the conifold one has to solve the transversality conditions for

each deformation. As we have combined several deformations into one, these conditions

are highly non-trivial to solve. This is most easily done by reformulating the problem as a

minimization problem which then can be solved by standard minimization techniques. As

the objective function we choose

Π = P 2 +
∑
i

(
∂P

∂xi

)2

+ Φ . (6.11)

The first two terms are the transversality conditions squared. The last term, linear in

the deformation parameter, is added to ensure that the global minimum is the smallest

value for Φ, as we are interested in the boundary of the conifold which lies in the Landau-

Ginzburg phase.

With the Kähler potential from (6.5) we calculate the proper distance between the

Landau-Ginzburg point and the conifold. Table 7 lists these distances. The periods are

evaluated up to twelfth order.

The distances are all smaller than one, with the distance for the fundamental defor-

mation being the largest. This originates mainly from the conifold position, which depends

on the amount of deformations included. For Φ0 the polynomial is

P = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + Φ0x1x2x3x4x5 . (6.12)
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This polynomial fails to be transversal at Φ0 = −5, which is the known result for the

quintic at ψ = 1. If one instead looks at the polynomial

P = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + Φ1x

2
1x2x3x4 (6.13)

the singularity lies at Φ1 = −5
22/5

. If one includes one more deformation, e.g.

P = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + Φ1(x2

1x2x3x4 + x2
1x2x3x5) (6.14)

the value changes to Φ1 = −5/26/5, i.e. it decreases. For more than two deformations this

could not be analytically solved. Φ1 couples in our case to 20 deformations, the numerical

procedure described above results in a conifold position of Φ1 = O(10−9). So while one

includes more moduli in the trajectories, the conifold in these directions is much closer to

the Landau-Ginzburg point. The latter effect dominates, resulting in a total decrease of

proper distance.

In view of the RSDC this result is very compelling. It appears that the radii of

the non-geometric phases decrease with the number of dimensions. In the one-parameter

models, the Landau-Ginzburg phases have a radius of ≈ 0.4. In the two parameter models,

the radii of the non-geometric and hybrid phases range between 0.1 and 0.3. Finally, in

the 101 parameter example of the mirror quintic the proper distances are 1-2 orders of

magnitude lower.

When the number of dimensions of the moduli space increases, one can travel through

more phases before reaching a logarithmic behavior. But at the same time, the proper

distance per phase decreases. This suggests that at the boundary to the geometric phase,

eventually the total collected value of Θ0 does not scale with the dimension of the moduli

space. This implies that in the non-geometric phases〈
Θ0

phase

〉
·#(phases) < Mpl (6.15)

holds. That is, the average Θ0 per phase times the number of phases the geodesic passes

through is smaller than Mpl. A generic geodesic does not pass through all phases. It would

be nice to check this explicitly. Sadly, the convergence of the periods and the partition

function of the GLSM at the boundaries of the phases is slow. Moreover, finding the global

shortest geodesic between two points in a high-dimensional space is a difficult problem.

Nevertheless, the fact that the diameters of the non-geometric phases are decreasing is a

strong hint that this could be true.

7 Conclusions

In this paper we analyzed the full Kähler moduli space for a concrete set of Calabi-Yau

manifolds with respect to the Refined Swampland Distance Conjecture. Because in the

large radius phases the behavior could be expected to be very similar to toroidal models,

special emphasis was put on the non-geometric phases. We first reviewed the available

two techniques to compute the Kähler potential in these phases and applied and compared
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them for threefolds defined via hypersurfaces in weighted projective spaces with (mostly)

small number of complex structure moduli h21 ≤ 2.

The essential quantity of interest was the length of trajectories/geodesics in the various

phases. It turned out that in the LG phases these were all finite and smaller than the

Planck-length. Had we found numbers that were say an order of magnitude larger than

the Planck-length, the RSDC would have been falsified. The hybrid phases were also

showing a hybrid behavior with respect to the length of geodesics. For the complex two-

dimensional moduli spaces that we analyzed, there was one direction of finite size and

another one of infinite size that showed the same logarithmic scaling behavior as describe

by the Swampland Distance Conjecture. All our findings were consistent with the RSDC.

We also analyzed the LG phase of the full 101 dimensional Kähler moduli space of the

mirror quintic. Here we observed an interesting scaling of the proper field distances with

the inverse of the number of moduli so that eventually the overall collected proper field

distance could still remain smaller than one.

Our setting was very close to the original one by Ooguri/Vafa [21] , in the sense

that we were considering a flat moduli space, where the axions, the B-fields, are com-

pact and the only non-compact directions are saxionic. As has been clarified by recent

work [19, 20, 24–27], for application to axion monodromy inflation, one has to formulate

an axionic version of this conjecture. Due to flux, the axions receive a well controlled

potential that makes them non-compact so that now the former shift symmetry acts not

only on the axions themselves but on the combination of fluxes and axions. In this case,

one is not interested in a RSDC along flat directions but along axionic directions with a

potential. The backreaction of such an axion excursion onto the saxionic moduli was es-

sential for finding the same logarithmic scaling of the proper field distance. Thus, there are

indications that a RSDC is at work here, too. However, more work is needed to undoubt-

edly establish this and come closer to a sort of no-go theorem for the existence of models

of large field inflation in controllable effective field theories derived from string theory.
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A Periods of P4
11169[18]

For completeness we record the periods for the mirror to P4
11169[18], in forms suitable for

analytic continuation into the hybrid regions of large φ or large ψ.
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The periods in the Landau-Ginzburg phase are given by

ωj(ψ, φ) = −1

6

∞∑
n=1

Γ(n/6)(−2 · 311/6ψ)ne2πinj/18

Γ(n)Γ(1− n/3)Γ(1− n/2)
U−n

6

(
e2πij/3φ

)
,

Uν(φ) = 3−
3
2
−ν 2πe2πiν/6

Γ(−ν)

∞∑
m=0

Γ
(
m−ν

3

) (
e2πi/3φ

)m
Γ2
(
1− m−ν

3

)∏3
i=1 Γ

(
i+m

3

) , (A.1)

which converge for |φ| < 1 and |2238ψ6| < |φ − α−6τ |, where α is an 18th root of unity

and τ = 0, . . . , 2. The U -function can be rewritten in terms of generalized hypergeometric

functions as follows

Uν(φ) =
3−1−ν

2

e2πiν/6

Γ(−ν)

(
2

Γ
(−ν

3

)
Γ2
(

3+ν
3

)3F2

(
−ν
3
,
−ν
3
,
−ν
3

;
1

3
,

2

3
;φ3

)
+ 9e4πi/3φ2 Γ

(
2−ν

3

)
Γ2
(

1+ν
3

)3F2

(
2− ν

3
,

2− ν
3

,
2− ν

3
;
4

3
,
5

3
;φ3

)
+ 6e2πi/3φ

Γ
(

1−ν
3

)
Γ2
(

2+ν
3

)3F2

(
1− ν

3
,

1− ν
3

,
1− ν

3
;

2

3
,

4

3
;φ3

))
,

(A.2)

which allows for analytic continuation to |φ| > 1.

Alternatively, if we first sum over powers of ψ we get the representation

ωj(ψ, φ) =
−π
35/2

18∑
r=1

e2πijr/18e−iπr/18ηj,r(ψ, φ) ,

ηj,r(ψ, φ) =

∞∑
m=0

e2πim(j+1)/3φm∏3
l=1 Γ

(
l+m

3

) Vm,r(ψ) ,

Vm,r(ψ) = (−18ψ)r
Γ
(
m
3 + r

18

)
7F6

(
a; b; 6699ψ18

)
Γ2
(
1− m

3 −
r
18

)
Γ(r)Γ(1− r

2)Γ(1− r
3)
,

a =

(
1,
r + 6

18
,
r + 12

18
,
r + 6m

18
,
r + 6m

18
,
r + 6m

18
,
r

18

)
,

b =

(
r + 1

18
,
r + 5

18
,
r + 7

18
,
r + 11

18
,
r + 13

18
,
r + 17

18

)
,

(A.3)

which again converges for |φ|<1 and can be analytically continued to |2238ψ6|> |φ−α−6τ |.
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