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1 Introduction

The presence of dualities is one of the most striking features that sets string theory apart

from other theories of gravity. It identifies configurations that would be seen as completely

different by string theory’s low energy supergravity approximation. In other words, the

symmetry group no longer consists of diffeomorphisms alone, but also contains more exotic

elements that are not geometric in nature.

This suggests the existence of solutions where the transition functions are not coordi-

nate changes alone. Various realizations of this idea have been pursued. Perhaps the oldest

and most successful is F-theory [1], a method to obtain solutions with monodromies which

belong to the S-duality group SL(2,Z). These monodromies are over contractible paths,

that encircle singularities which are interpreted as non-perturbative branes. Another pop-

ular example [2] is a torus fibred over an S1, with a monodromy in the T-duality group.
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In this case the path is non-contractible, and thus there is no singularity. Solutions of this

type are called T-folds; they can be generated by T-dualizing ordinary tori in presence of

NSNS flux.

It is important to explore these possibilities: they can in principle be more numerous

than ordinary geometric ones, but more importantly they might evade restrictions and no-

go theorems that their geometric counterparts have to satisfy. It can be difficult, however,

to establish their existence, because of the very fact that they go beyond the low-energy

supergravity description. If we think about an SL(2,Z) monodromy in type IIB string

theory, at the beginning and the end of the monodromy path the coupling is (in a typical

situation) respectively weak and strong, and in the middle of the path the supergravity

action cannot be trusted even after dualities. If the monodromy is over a non-contractible

path, one can overcome this problem by taking the path long enough that all fields vary

slowly; in this “long-wavelength” approximation, one expects that the two-derivative ac-

tion, which is uniquely determined by supersymmetry, should suffice. Such a logic is not

enough in cases where the non-geometrical monodromy is over contractible paths; in that

case the long-wavelength approximation will break down near the singularity encircled by

the path.

One way to confirm the validity of these constructions is to use dualities or other cross-

checks. F-theory is for example often dual to M-theory, and in those cases its predictions

are confirmed spectacularly. As we mentioned, T-folds can be related by T-duality to

ordinary geometric backgrounds. (Sometimes a worldsheet description exists even before

T-dualizing.)

Another possible way to test non-geometric solutions is to use holography. For F-

theory, this has only recently started being used (for earlier discussions see [3, 4]), essentially

because AdS appears there less naturally than Minkowski space. AdS3 solutions with non-

trivial axio-dilaton were considered in [5, 6]. AdS5 solutions were obtained in [7, 8] by an

S-quotient procedure.

In this paper, we construct AdS4 ×K6 IIB string theory solutions with monodromies

in K6 in the S-duality group SL(2,Z), and we test their validity using holography. The

monodromies are along non-contractible paths, so that there are no singularities encircled

by them; our focus is rather on testing the limits of the long-wavelength approximation.

We obtain the solutions by quotienting in various ways solutions with the local form found

in [9, 10] (originally devised to describe the holographic dual of interfaces in N = 4 super-

Yang-Mills). They are not related to F-theory in its present form; for example, the axio-

dilaton is not holomorphic. We call them by the more general name of S-folds.

We consider two classes of S-folds. The first class has a monodromy given by an

element J ∈ SL(2,Z) with TrJ > 2 (thus in particular being a hyperbolic element of

SL(2,Z)). The geometry has the topology AdS4 × S5 × S1 with the monodromy around

S1. The solutions preserve OSp(4|4) symmetry and are dual to 3d N = 4 SCFTs. They

were previously obtained in [11], which partially inspired this work, by lifting a gauged

supergravity vacuum, but it can also be obtained as a quotient of a “degenerate” interface

(or “Janus”) solution: one where the string coupling diverges at infinity. This second

construction points to the gauge theory dual of these J solutions, since the dual of the
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interface has a known description as the infrared limit of certain 3d gauge theories involving

the so-called T [U(N)] theory [12].

The simplest field theory in this first class consists of a single gauge group U(N) with

Chern-Simons coupling, which gauges the diagonal of the two U(N) flavor symmetries of

T [U(N)] (see figure 2). Although the UV description for this class of 3d theories has only

N = 3 supersymmetry, the gravity duals indicate that the supersymmetry is enhanced to

N = 4 at low energies. We will support this scenario by providing an alternative description

of these theories, closely related to the gravity dual solutions, as the low energy limit of a 4d

N = 4 U(N) SYM theory on a circle whose coupling varies and has a J monodromy around

the circle, while preserving 3d N = 4 supersymmetry. Although the resulting theory is not

fully Lagrangian, assembling known ingredients we can compute its three-sphere partition

function Z. Remarkably, this turns out to be a Gaussian integral, which we manage to

solve fully, even at finite N , with Fermi gas techniques. In the large N limit, this result

agrees with the result one obtains from the supergravity solution: F ≡ −lnZ ∼ f(J)N2,

with a coefficient that depends on J and that is reproduced exactly. This provides a strong

confirmation of the existence of this class of S-folds.1

Emboldened by this success, we then investigate a second, more challenging class,

where brane singularities are also included. Again the SL(2,Z) monodromies are over a

non-contractible path, so that there are no singularities that can be interpreted as seven-

branes as in F-theory. But the class of local solutions in [9, 10] allows to include NS5-

branes and D5-branes wrapping various S2 submanifolds; in fact for fully geometrical

global solutions these have to be included [14, 15]. In an S-fold this is not necessarily the

case, as the above-mentioned J class demonstrates; but branes complicate the applicability

of the supergravity approximation in interesting ways. We obtain solutions in this second

class by quotienting a geometrical solution by an involution that mixes a geometrical and

an SL(2,Z) action. The original geometric solution has still an S5×S1 internal space with

five-brane singularities wrapping S2s; the geometrical part of the quotient acts as a rotation

(an order four involution) on the S5 and as a shift on the S1. We call the resulting solutions

S-flip solutions. The monodromy of the resulting solution is the S-duality element S =(
0 −1
1 0

)
∈ SL(2,Z) and is along the non-contractible S1 circle. Part of the supersymmetry of

the original geometrical solution is broken by the quotient. The preserved superconformal

algebra is OSp(3|4) and the dual SCFT has only N = 3 supersymmetry. We did not find

S-fold solutions in this class with a monodromy by another SL(2,Z) element.

The field theory duals for this second class are necklace quivers where one link is not

an ordinary bifundamental hypermultiplet but rather a T [U(N)] link: namely, a T [U(N)]

theory whose two U(N) flavor symmetries are gauged by two neighboring gauge groups.

Each theory has in fact several dual realizations. The simplest example is a theory with

two U(N) nodes connected by a bifundamental hypermultiplet and a T [U(N)] link (see

1The same 4d SYM setup with the Janus configuration with J-monodromy and the resulting 3d low-

energy theories were previously studied in [13] for abelian gauge groups (single D3 brane), in which case the

3d theory reduces to a Chern-Simons quiver. The identity (2.33) that we use in our holographic test appears

already in this work, and is interpreted there as an equality of Hilbert space dimensions. We provide an

alternative derivation of it.
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figure 4), that we call “half-ABJM”, because it comes about by a quotient of a solution

which is holographic dual [15] to the ABJM theory [16]. It has a necklace generalization

with M̂ + 1 gauge groups, where one of the links is a T [U(N)] link, as described above,

and one of the gauge groups has M fundamental hypermultiplets. For these theories we

compute the three-sphere partition function in terms of a matrix model; it depends only

on K ≡ M + M̂ . The long-wavelength approximation suggests making the monodromy

path long; this requires N � K2. However, the branes now introduce a local region where

the supergravity action changes rapidly. Such a region is of course present in any solution

with branes; past experience with holography suggests simply imposing that this region

does not eat up the entire geometry, which imposes N & K. We are able to evaluate the

limit of the matrix model at the lower end of this window, getting F ∼ 1
2N

2lnN ; again we

find agreement with the supergravity results.

One might be curious about what happens if one pushes the limits of the long-

wavelength approximation. In the limit N � K2, the monodromy path is small and

the branes are effectively smeared. Their backreaction is felt all over the geometry; this

suggests that the supergravity approximation might break down. On the field theory side,

for K = 1 we can evaluate the matrix model analytically at large N : this case corresponds

to the half-ABJM theory mentioned earlier. A computation rather similar to [17] produces

a behavior that is unlike what the two-derivative supergravity action would predict, as

expected. A surprise is that in this limit F ∼ N5/3, which happens to be the same as

models with massive IIA holographic duals. This might suggest a dual IIA description of

our solution in this limit, which at present is not obvious.

The rest of the paper is organized in two main sections, each devoted to the study

of one of the two classes of solutions we just described. In section 2 we consider Janus-

type S-folds; after describing the general idea, we focus in section 2.1 on an example

corresponding to a particularly simple element J ∈ SL(2,Z); we describe its field theory

dual in section 2.2. In section 2.3 we then check that the three-sphere partition function

computed with field theory and supergravity methods indeed match. In section 2.4 we then

consider the generalization to any element J ∈ SL(2,Z) with TrJ > 2. We then proceed in

section 3 to the second class, that of S-flip solutions. Again we first illustrate the class with

an example, considered from the field theory and supergravity points of view in sections 3.1

and 3.2 respectively. We then go on to construct more general examples in this class in

section 3.3, before performing a holographic check in section 3.4.

2 Janus S-fold solutions and SCFTs

The 10d type IIB supergravity solutions that we construct in this paper are obtained by a

certain S-folding procedure applied to a class of solutions whose local form was found in [9,

10]. These solutions describe an AdS4×S2×S2×Σ geometry, where Σ is a Riemann surface,

which admit 16 Killing spinors and are dual to SCFTs with 3d N = 4 supersymmetry. The

SU(2) × SU(2) R-symmetry is reflected in the isometries of the two two-spheres. Global

solutions in this class were proposed in [14, 15] for Σ having the topology of a disk or an
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annulus with five-brane singularities on the boundary2 as gravity duals of a class of 3d

N = 4 linear and circular quivers. Other solutions, which were in fact the initial solutions

found in [9, 10], are such that Σ is an infinite (non-compact) strip with two asymptotic

AdS5×S5 regions and are holographic duals of 3d N = 4 defect SCFTs in 4d N = 4 SYM.

The simplest example in this class is the Janus solution which we will discuss shortly.

The solutions are elegantly parametrized by two real harmonic functions on Σ, denoted

h1, h2, which obey some boundary conditions on the boundary of Σ.3 A summary of the

local supergravity solution in terms of h1, h2 is given in appendix A. In known solutions Σ

is an infinite strip or an annulus and is parametrized by a complex coordinate z = x+ iy,

with x periodic for the annulus and y ∈ [0, π2 ]. On the upper boundary y = π
2 one two-

sphere shrinks to zero size, while on the lower boundary y = 0 the other two-sphere shrinks

to zero size.

In this section we construct supergravity solutions by S-folding a special Janus solution,

we propose a holographic dual 3d N = 4 SCFT and perform a non-trivial test of the

holographic duality. The simplest S-fold supergravity solutions that we find reproduce

solutions described in [11].

2.1 Supergravity solutions

The supersymmetric Janus supergravity solution is the holographic dual background to

the Janus interface theory in 4d N = 4 U(N) SYM. The simplest Janus interface is

characterized by having varying gauge coupling τ(x′) = 4πi
g(x′)2 along a space direction x′,

while preserving 3d N = 4 supersymmetry. It was introduced in [18] and generalized

in [19].4 The holographic dual background corresponds to a solution with Σ an infinite

strip, which is shown in figure 1. Their ten-dimensional topology is that of AdS4×S5×R.

The harmonic functions, as re-expressed in [14], are

h1(z, z̄) = −iα sinh(z − β) + c.c.

h2(z, z̄) = α̂ cosh(z − β̂) + c.c. ,
(2.1)

with real parameters α, α̂, β, β̂ and we choose α, α̂ > 0.5 The complex coordinates z = x+iy

spans the infinite strip with

−∞ < x < +∞ and 0 ≤ y ≤ π

2
. (2.2)

The asymptotic regions x→ ±∞ are AdS5×S5 spaces with identical radii L, but with

different dilaton values e2φ± (τ± = ie−2φ± in figure 1-a),

L4 = 16αα̂ cosh(β − β̂) , e2φ± =
α̂

α
e±(β−β̂) . (2.3)

2The points on the boundary of Σ are still interior points of the geometry, due to the vanishing of a

two-sphere with appropriate scaling.
3Alternatively the solutions can be parametrized by two holomorphic functions A1,A2 on Σ with certain

boundary conditions, which have shift ambiguities.
4See also [20, 21] for other studies of the supersymmetric Janus theory.
5Other choices are obtained by charge conjugations.
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Figure 1. a) Picture of Σ (yellow strip) for the Janus solution with asymptotic axio-dilaton values

τ±. b) J-folding of the extremal Janus solution. This involves an SL(2,R) transformation before

taking the J-fold quotient. The resulting solution has a cut (green) with J monodromy.

The geometry has a 5-cycle with the topology of a 5-sphere C5 = I × S2
1 × S2

2
∼= S5, where

I is an interval going from the upper to the lower boundary of Σ and supporting N units

of 5-form flux, with

N =
1

(4π2α′)2

∫
C5
F5 =

L4

26π
, (2.4)

in the convention α′ = 4. The 5-form flux is independent of the position of C5 along x and

therefore spans the whole geometry. If β = β̂ the solution is globally AdS5×S5. A change

of variables x → x + c can be used to set β̂ = −β if desired. The solution has then three

parameters.

We now consider a degenerate limit of the Janus solution with β = −β̂ → −∞,

α, α̂→ 0 and αe−β = c > 0, α̂eβ̂ = ĉ > 0 fixed, leading to

h1(z, z̄) =
c

2i
(ez − ez̄)

h2(z, z̄) =
ĉ

2
(e−z + e−z̄) .

(2.5)

The asymptotic regions in this limit have AdS5 radius L4 = 8cĉ and diverging dilaton

φ+ = −∞, φ− = +∞, which is why we call it a degenerate limit.6 Constant shifts in x

allows to set c = ĉ, so that there is really only a one-parameter family of such degenerate

solutions (with discrete parameter N). This solution was already found in [11] from a

different construction.

One nice property of this limit is that the dependence on x becomes very simple, with

all fields being independent of x (in particular the metric) except for the dilaton and the

6This solution can also be reached from the solution dual to the T [U(N)] theory, by sending the five-

brane stacks to infinity, as was studied in [22] and in [23] where this extremal background appeared from

a non-abelian T-duality action on AdS4 IIA solutions.
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three-form fields7

ds2 = (cĉ)1/2
[
2

1
4 (7− cos(4y))

1
4ds2

AdS4
+ 2

3
2

(2 + cos(2y))
1
4

(2− cos(2y))
3
4

sin(y)2ds2
S2
(1)

+ 2
3
2

(2− cos(2y))
1
4

(2 + cos(2y))
3
4

cos(y)2ds2
S2
(2)

+ 2
5
4 (7− cos(4y))

1
4 (dx2 + dy2)

]
,

e2φ =
ĉ

c

(
2 + cos(2y)

2− cos(2y)

) 1
2

e−2x ,

H3 = ωS2
(1)
∧ db1 , b1 = 8ĉ

sin(y)3

2− cos(2y)
e−x ,

F3 = ωS2
(2)
∧ db2 , b2 = −8c

cos(y)3

2 + cos(2y)
ex ,

(2.6)

with ds2
AdS4

, ds2
S2
(i)

, the unit radius metrics on AdS4 and the two-spheres respectively. We

have N = cĉ
8π , while ĉ

c is a free (unphysical) parameter. These fields are those transforming

under SL(2,Z) type IIB (gauge) symmetry (see appendix A) and one may look for a

symmetry of the solution under the combined action of a translation along x and an

SL(2,Z) transformation J . If such a symmetry exists we can quotient the solution by

its action and produce an S-fold solution with compact x direction and J monodromy.

Unfortunately no such symmetry exists in the above solution. However one may generate

new solutions by applying SL(2,R) transformations to the degenerate solution (2.5). A

new solution obtained that way may then admit the desired symmetry, and thus would

allow to define an S-fold solution.

In order for this scenario to work their must exist M ∈ SL(2,R), J ∈ SL(2,Z) and

T > 0, such that the M -transformed extremal Janus solution is invariant by a translation

by T along x combined with the action of J . For the SL(2,R)-doublet (H3, F3), this

translates into the condition

M−1J−1M =

(
e−T 0

0 eT

)
. (2.7)

The simplest solutions are found by taking

J =

(
n 1

−1 0

)
:= Jn . (2.8)

A short analysis shows that there is a solution for n > 2,8

n = eT + e−T ↔ T = ln

(
1

2

(
n+

√
n2 − 4

))
,

M =

(
1

1+e−T
1

1−eT
−1

1+eT
1

1−e−T

)
.

(2.9)

7The explicit expression for the non-trivial 5-form can be worked out from the formula of [9, 10] in terms

of h1, h2.
8To be precise there is a continuous family of solutions M(λ), λ ∈ R∗ for a given n, which implement the

scalings of the extremal Janus solutions (c, ĉ)→ (λc, λ−1ĉ). They all correspond to the same supergravity

solution since this rescaling is equivalent to a translation along x.
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One can check that the transformed axio-dilaton τ ′ = M.τ obeys Jn.τ
′(x+T ) = τ ′(x). The

M -transformed solution is thus invariant under the action of T which is the combination

of a translation by T along x and the SL(2,Z) transformation Jn. It allows to define the

quotient of the M -transformed solution by T which we call the Jn-fold solution. The

resulting topology after the Z-quotient is that of AdS4 × S5 × S1.

Let us describe explicitly the M -transformed solution whose quotient defines the Jn-

fold solution. The metric and five-form are that of the extremal Janus solution and are

constructed from h1, h2 in (2.5) (see appendix A). The axio-dilaton τ ′ = χ′ + i e−2φ′ and

the three-forms are

τ ′ =
(1− e−T )−1i e−2φ − (1 + eT )−1

(1− eT )−1i e−2φ + (1 + e−T )−1
,(

H ′3
F ′3

)
= M

(
H3

F3

)
,

(2.10)

with e2φ, H3 and F3 constructed from h1, h2 in (2.5). In the Jn-fold solution we have

spatial periodicity (x, y) ∼ (x+T, y), so that Σ is topologically an annulus, and the gluing

conditions at x = T ∼ 0 involve a Jn transformation of the fields (i.e. Jn-twisted boundary

conditions or Jn monodromy). This Jn folding procedure is schematically depicted in

figure 1-b for a generic J-folding. This reproduces the S-fold solutions mentioned in [11].

One can also construct J−1
n -fold solutions in a similar way. In general one can obtain a

J−1-fold solution from a J-fold solution by taking the matrix M to be MJ−1(T ) = MJ(−T ).

Finally, global SL(2,Z) actions map a J-fold solution to a conjugate J ′−1JJ ′-fold solution.

Using such manipulations one can construct a close cousin to the Jn-fold solution: a J̄n-fold

solution with J̄n = −J−n.

Before moving to other J-fold solutions we first study the holography of the Jn-fold so-

lutions.

2.2 CFT duals

We now describe the 3d N = 4 field theories dual of the Jn-fold supergravity solutions. To

start with, the Janus supergravity solution (2.1) is dual to the Janus interface CFT [18, 19],

which is the 4d N = 4 SYM theory with complex coupling τ jumping across a 3d interface

from a value τ− = ie−2φ− to a value τ+ = ie−2φ+ .9 It is useful to think about this theory

as the infrared limit of 4d N = 4 SYM with a smoothly varying coupling along a space

direction parametrized by x′, with limx′→±∞ τ(x′) = τ±. The exact profile of τ(x′) is

irrelevant in the low-energy limit. The configuration is constructed so that it preserves 3d

N = 4 supersymmetry.

Sine the Jn solution is a circle compactification of the (extremal) Janus solution with a

Jn twist, it is natural to conjecture that their 3d CFT duals are obtained as the low-energy

limit of a circle compactification of the Janus 4d theory with Jn twisted boundary condi-

tions. We thus look for a Janus configuration which is periodic up to a Jn transformation,

namely an N = 4 Janus solution with Jn.τ(x′ + T ′) = τ(x′), for some T ′ > 0. The N = 4

9We use abusively the same name τ to denote both the SYM coupling and the type IIB axio-dilaton.
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preserving profiles of τ(x′) are given by [19]

τ(x′) = a+Deiψ(x′) , (2.11)

where a ∈ R and D ∈ R≥0 are arbitrary constants and ψ(x) is any function such that τ(x′)

stays in the upper half plane. This means that the trajectories τ(x′) must stay on a circle

in the upper half-plane. We must look for such profiles which satisfy −1
τ(x′+T ′)+n = τ(x′).

We already have candidate solutions which do satisfy this equation. These are simply the

τ ′(x, y) profiles of the axio-dilaton in the Jn-fold solutions (2.10) for any fixed value of y,

which satisfy Jn.τ
′(x + T, y) = τ ′(x, y). So we can try to pick the varying SYM coupling

to be

τ(x′) =
(1− e−T )−1i λ e2x′ − (1 + eT )−1

(1− eT )−1i λ e2x′ + (1 + e−T )−1
, (2.12)

with any λ ∈ R∗ and T ′ = T = ln[1
2(n+

√
n2 − 4)]. For this to be a solution to our problem

we must show that it can be written in the form (2.11). We find that it is indeed the

case, with

a = −1

2

(
eT + e−T

)
, D =

1

2

(
eT − e−T

)
, eiψ(x′) =

1− eT − iλ(1 + e−T )e2x′

1− eT + iλ(1 + e−T )e2x′
. (2.13)

With λ < 0, τ(x′) is in the upper half plane. The parameter λ is here again irrelevant

since it can be fixed to one (or minus one) by a shift in x′. A larger class of solutions is

obtained by replacing λ with any negative periodic function λ(x′) with period T ′. One

can show that this covers all solutions to the problem. The solutions (2.12) are somewhat

degenerate Janus configurations in the sense that the coupling τ ′(x) becomes real at x′ =

±∞, corresponding to infinite Yang-Mills coupling. Of course this is completely analogous

to the gravity construction.

These specific 4d Janus theories admit a quotient by the combined action of a trans-

lation by T ′ and a Jn S-duality action. They lead to a 4d N = 4 theory on a circle with

Jn-twisted boundary conditions, which preserves 3d N = 4 supersymmetry. The infrared

limit of such a configuration is a 3d N = 4 SCFT which we propose as the CFT dual of

the Jn-fold supergravity solutions. On physical grounds, we do not expect the 3d limit to

depend on the explicit choice of profile λ(x′) along the x′ circle. The infrared limit should

only depend on the monodromy Jn. The resulting 3d N = 4 SCFTs are thus labeled by n

and the rank N only, matching the gravity data. We will call these 3d CFTs Jn theories.

This construction of 3d theories from Janus configurations on a circle with duality-twisted

boundary conditions was already discussed in [13].10

The twist of the boundary conditions by an SL(2,Z) element J has no (known) descrip-

tion in terms of gluing conditions on local fields.11 The 3d interface is only the boundary

of a patch (of a non-trivial SL(2,Z) bundle) and does not carry local degrees of freedom

and we are free to move the location of the interface without affecting the theory.

10A related construction of duality surface defects in N = 4 SYM with SL(2,Z) monodromies was studied

in [24, 25] (see also [26]).
11Except for J = T k duality interfaces, which have all fields continuous across the interface and a 3d

Chern-Simons term at level k on the 3d interface.
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It is possible to obtain a quasi-Lagrangian UV description of the Jn theories. In the

description as 4d N = 4 SYM on a circle with Jn twisted boundary conditions, we can

choose a convenient profile by adjusting the periodic function λ(x′) in (2.12), since this

should not affect the 3d limit. In particular we can tune the τ profile until it becomes

almost constant along x′ with the variation confined to a tiny region close to the jump at

x′ = T ∼ 0. We obtain a configuration which can be described in the UV as 4d N = 4 SYM

on a circle coupled to a 3d theory with a quasi-Lagrangian description. Such constructions

were studied in [12], and the 3d theory associated to the monodromy Jn = −STn is the

T [U(N)] theory with a non-abelian Chern-Simons term at level n for one of its two U(N)

flavor groups. The 3d Chern-Simons term preserves only N = 3 supersymmetry but, since

the Janus setup preserves N = 4, the supersymmetry must be enhanced at low-energies.

The T [U(N)] theory was introduced in [12] as the IR SCFT of a linear quiver theory

with a chain of unitary gauge nodes of increasing rank, from U(1) to U(N − 1), and

with N fundamental hypermultiplets in the U(N − 1) node. The UV global symmetry

U(1)N−1 × SU(N) is enhanced to SU(N) × SU(N) in the infrared SCFT. In addition, in

the T [U(N)] theory one regards the global symmetry as U(N)×U(N) with the two diagonal

U(1) factors acting trivially on the theory and one adds a level N N = 4 background mixed

Chern-Simons term, or N = 4 BF term at level N (see [27]), for the two corresponding

U(1) background vector multiplets. This does not modify the 3d theory but it becomes

important when we gauge the U(N) global symmetry as we explain now.12

This 3d interface theory — the T [U(N)] theory plus a level n CS term for one flavor

U(N) — is then coupled to the 4d “bulk” theory by gauging one U(N) global symmetry

with the 4d U(N) bulk vector multiplet living on one side of the 3d defect and the other

U(N) global symmetry with the 4d U(N) bulk vector multiplet living on the other side. The

reason why this description is not fully Lagrangian is that the two U(N) global symmetries

are not both present in the UV Lagrangian description of T [U(N)]. As we flow to the

infrared the theory becomes three-dimensional and the “bulk” vector multiplets on both

sides of the 3d interface get identified. The resulting 3d theory is shown in figure 2. It has

a single U(N) gauge node with a supersymmetric Chern-Simons coupling at level n and a

“self-coupling” to the T [U(N)] theory.

There is a subtlety about the gauging procedure of the T [U(N)] global symmetries that

deserves a comment. We are identifying (and gauging) the two U(N) global symmetries of

T [U(N)], however there are two possibilities for doing so, namely breaking the symmetry

to U(N)+ = diag(U(N)×U(N)) or U(N)− = diag(U(N)×U(N)†). A natural convention

is to associate these two choices to duality interfaces labeled by S and −S respectively.

Since Jn = (−S)Tn we will think of the Jn theory as defined with U(N)− gauging and

with CS level n > 2. In the previous section we mentioned the existence of a J̄n solution

with J̄n = −J−n = ST−n. The CFT dual of that solution would have a T [U(N)] theory

with U(N)+ gauging and CS level −n < −2. This discussion will have a counterpart in

localization computations in the next section.13

12In most of the literature on the topic, the theory is referred to as T [SU(N)] and the presence or not of

such background Chern-Simons terms is irrelevant.
13Such a distinction between U(N) gauging procedures was already discussed in [28].
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J
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N D3
N T[U(N)]

n

Figure 2. Quiver description of the Jn theories and their brane realization. The subscript n is the

Chern-Simons level of the U(N) node.

The UV description of the Jn theory has a Chern-Simons term at level n. Chern-Simons

terms naively break the supersymmetry to N = 3, however in certain circumstances the

supersymmetry enhances to N = 4 or more in the infrared limit [19, 29]. Since we were

able to construct the Jn theory in an N = 4 preserving fashion, as a compactification of a

half-BPS Janus theory, we know that the infrared SCFT has indeed N = 4 supersymmetry.

This is confirmed by the gravity dual solution, which has this amount of supersymmetry

as well.

The SU(2)R R-symmetry of the 3d N = 3 UV theory must be enhancemed at low

energies to the SU(2)× SU(2) R-symmetry of an N = 4 SCFT, represented in the gravity

dual solution as the isometries of the two 2-spheres. Besides the SU(2)R symmetry, the UV

theory has a U(1)T topological symmetry with current j = ?TrF , where F is the U(N) field

strength, acting on monopole operators of the U(N) node. It has been observed, first in

the ABJM theory [16, 30, 31], that such topological symmetries can participate in infrared

R-symmetry enhancement as additional Cartan generators. We therefore conjecture that

UV description of the Jn theories have the R-symmetry enhancement SU(2)R × U(1)T →
SU(2)×SU(2) in the infrared limit. We leave this analysis for future work. It is interesting

to notice that the Jn SCFTs have no continuous global symmetries besides the R-symmetry.

One may regard them as minimal SCFTs with N = 4 supersymmetry in this respect.

Correspondingly the supergravity dual backgrounds are very simple, in the sense that do

not have five-brane sources.

The 3d SCFTs and their gravity duals are supposed to be two low-energy descriptions

of a very simple brane configuration in type IIB string theory, where we have a stack of N

D3-branes wrapping a circle with Jn duality twist, as shown in figure 2.

2.3 Test of holography

To test the holographic correspondence we compare the on-shell action of the Jn-fold Janus

solution to the free energy of the Jn theories in the limit where the gravity approximation

is valid, which turns out to be the usual large N limit.

The regularized on-shell action was evaluated in [15, 22] in terms of the harmonic

functions h1, h2, using a consistent truncation to pure gravity. It is given by the remarkably

simple formula (in the convention α′ = 4)

SIIB = − 1

(2π)3

∫
Σ
dxdy h1h2∂z∂z̄(h1h2)

= − 1

(2π)3

∫ T

0
dx

∫ π
2

0
dy h1h2∂z∂z̄(h1h2) .

(2.14)
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The SL(2,R) transformation M used to define the Jn solution does not change the on-shell

action, therefore we can directly use the above formula with the h1, h2 functions of the

extremal Janus solution (2.5). We obtain

SIIB =
L8T

213π2
=

1

2
N2 ln

(
1

2

(
n+

√
n2 − 4

))
. (2.15)

We would like to know in which regime this result can be compared with the field theory

free energy. The type IIB action does not receive quantum or string corrections at the two

derivative order. For the higher derivative corrections to the IIB action to be suppressed we

require that R(s) and gµν(s)∇µφ∇νφ be small, where the index (s) indicates that we use the

string frame metric, g(s)µν = gµνe
φ. We have the relation gµν(s)∇µφ∇νφ = gµν∇µe−

φ
2∇νe−

φ
2 .

The idea behind these conditions is the following. The string theory action has various

terms Sk,i with k > 2 derivatives. Each of these consists of a combination of curvature and

derivatives of φ, with a function of the string coupling fk,i(e
φ) in front, which receive both

perturbative and non-perturbative contributions. If R(s) and gµν(s)∇µφ∇νφ are smaller than

ε, we expect Sk,i < fk,iε
k. Almost all of the fk,i are unknown, but unless their convergence

radius gets smaller and smaller with increasing k, there will be an ε small enough that

fk,iε
k will be small for all k. Flux terms work in the same fashion.

The metric of the Jn solution scales as gµν ∼ L2 ∼
√
N and the inverse dilaton

e−2φ = Im(τ ′) is independent of N . We find that both higher derivative terms are bounded

gµν(s)∇µφ∇νφ, R(s) . C
(

sinhT
N

)1/2
, with C a positive constant. Thus both are small in the

limit of large N and finite T , and the IIB supergravity approximation should be valid in

this regime.

The result (2.15) should be compared with the large N free energy F = − ln |Z|, with

Z the three-sphere partition function of the Jn theory. The sphere partition function Z

can be computed exactly by supersymmetric localization [32, 33] and the final result is

expressed as a matrix model whose integrand is a product of contributions from different

ingredients of the theory. We briefly review the results of the localization computation in

appendix B. We also explain there how to account for the coupling to the T [U(N)] theory

in the matrix model. For the Jn theory the matrix model is14

Z =
1

N !

∫
dNσ ZCS(σ)Zvec(σ)ZT [U(N)](σ,−σ)

=
1

N !

∫
dNσ eiπn

∑N
i=1 σ

2
i

N∏
i<j=1

sh2(σij)

∑
τ∈SN (−1)τe−2πi

∑N
i=1 σiστ(i)∏N

i<j=1 sh2(σij)

=
1

N !

∑
τ∈SN

(−1)τ
∫
dNσ eiπn

∑N
i=1 σ

2
i e−2πi

∑N
i=1 σiστ(i) .

(2.16)

Remarkably the matrix model becomes very simple (gaussian in fact). In appendix C we

use matrix model techniques to evaluate this matrix model. It is sufficiently rare to be

emphasized that we are able to evaluate exactly, at finite N , the sphere partition function

14Here we ignore the overall phase of Z which does not play a role in our computation.
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Z. Miraculously the parameter T of (2.9) pops up in the computation and the final result,

up to a phase, is (C.15)

Z =
e
NT
2∏N

j=1 (ejT − 1)
=

e
−N2T

2∏N
j=1 (1− e−jT )

. (2.17)

The free energy is then

F =
N2

2
T +

N∑
j=1

ln
(
1− e−jT

)
=

1

2
N2T +O(N0, e−T ) . (2.18)

The leading order term matches the supergravity on-shell action (2.15) in the supergravity

limit that we found above, i.e. large N and finite T , providing a very non-trivial test of the

holographic duality that we proposed. We observe that the two results also match in the

limit of large T and finite N . In the CFT dual theory, it corresponds to the limit of large

Chern-Simons level n and finite N . This suggests that the limit is also a long-wavelength

approximation, although this does not follow from our simple analysis. A more complete

treatment of the supergravity higher derivative corrections would be needed to explain

this observation.

2.4 Other J-fold theories

We can find other solutions (J,M(J), T (J)) to (2.7), allowing for the definition of new

compactifications of the extremal Janus solution with twisting by other J ∈ SL(2,Z).

Taking the trace of (2.7) yields the relation

Tr J = eTJ + e−TJ , (2.19)

(with TJ ≡ T (J)) which implies the constraint

Tr J > 2 . (2.20)

This excludes for instance S and T k as duality elements to perform the quotient. Ele-

ments satisfying |Tr J | > 2 are called hyperbolic, therefore the condition (2.20) restricts to

hyperbolic elements with positive trace.

We can try to solve for the matrix M in (2.7) for a given J . We find that the condi-

tion (2.20) is enough to find a solution M(J). This means that there is an S-fold solution

for all J ∈ SL(2,Z) satisfying (2.20) and the period TJ is given by the relation (2.19).

Explicitly, with J =

(
j1 j2
j3 j4

)
and j1 + j4 = eTJ + e−TJ ,

M(J) =

 λ
1+e−TJ

j2
λ(1−eTJ )

λj3
(1+eTJ )(1−j4e−TJ )

(1−j4e−TJ )

λ(1−e−TJ )

 , (2.21)

for any λ ∈ R∗.
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Note that (infinitely) many J elements have the same trace and therefore the same pe-

riod T . They are related by SL(2,R) transformations (this follows from the relation (2.7)),

but are not dual in the full string theory, unless the transformation is in SL(2,Z).

Once again the 3d dual SCFT can be engineered as the low-energy of a 4d U(N) Janus

configuration with pseudo-periodicity J.τ(x′ + TJ) = τ(x′), compactified on a circle with

J-twisted boundary conditions. The profile of the complexified Yang-Mills coupling τ(x′)

is the same as in the supergravity dual solution,

τ(x′) =

(1−j4e−TJ )

(1−e−TJ )
i λ′ e2x′ + j3

(1+eTJ )(1−j4e−TJ )

j2
(1−eTJ )

i λ′ e2x′ + 1
1+e−TJ

, (2.22)

λ′ ∈ R∗, and is of the form (2.11) with a = 1
2

(
j3

eTJ−j4
− eTJ−j4

j2

)
, D = 1

2

(
j3

eTJ−j4
+ eTJ−j4

j2

)
and eiψ(x) = 1−eT−iλ′j2e2x

′
(1+e−TJ )

1−eT+iλ′j2e2x
′ (1+e−TJ )

, preserving 3d N = 4 supersymmetry.

The 3d N = 4 SCFT dual theories can be described in a more practical way as the

infrared limit of a 3d quiver using the approach of [12]. First we need to express the duality

element J as a product15,16

J = ±(−STn1)(−STn2) · · · (−STnp) = ±Jn1Jn2 · · · Jnp , (2.23)

where ni are positive integers. The overall sign ± should be fixed by the requirement

Tr J > 2.17

The 3d CFT is then the infrared limit of a quiver-like circular theory with p U(N)

nodes with Chern-Simons terms at levels ni, coupled together via T [U(N)] gaugings. To

be precise when coupling a T [U(N)] theory to two U(N) gauge nodes we can identify

the U(N) × U(N) nodes with the global symmetries U(N) × U(N) or U(N) × U(N)† of

T [U(N)] (i.e. S or −S interfaces), leading to many choices. However due to the freedom

in redefining what we mean by U(N) and U(N)†, there are only two globally inequivalent

choices corresponding the choice of ± in (2.23). If the sign is + we pick all gaugings

with U(N)× U(N)† and if the sign is − we pick one gauging with U(N)× U(N) and the

others with U(N) × U(N)†.18 In the abelian case N = 1, these theories reduce to the

Chern-Simons quivers that were studied in [13].

An example with three nodes is shown in figure 3.

Here again the SCFT has naively only N = 3 supersymmetry due to the presence

of the Chern-Simons terms, however the supersymmetry must be enhanced to N = 4 in

the infrared limit, since we constructed it from a compactification of a 4d Janus config-

uration preserving N = 4 supersymmetry, and the gravity dual solution has indeed the

corresponding 16 Killing spinors.

15This is the most general form of an SL(2,Z) element up to conjugation by T k and S.
16Despite the conflicting notation, the SL(2,Z) matrix T , should not be confused with the period T

appearing in the J-fold solution.
17The constraint on the trace also restricts the possible values of n1, n2, · · · , np. It is also possible to take

na ≥ 2, i.e. exclude na = 1, since TSTST = −S.
18Note that with the U(N)× U(N)† gauging, the level N BF term which is part of the definition of the

T [U(N)] theory becomes a level −N BF term for the diagonal U(1)s of the two gauge nodes connected by

the T [U(N)] link.
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Figure 3. Quiver description of a J theory, with J = Jn1Jn2Jn3 , and its brane realization.

Subscripts of gauge nodes indicate Chern-Simons levels.

Our construction does not provide holographic dual solutions for J-fold theories with

J elliptic (|Tr J | < 2) or parabolic (|Tr J | = 2). For the parabolic case J = T k, the 3d

theory is simply N = 3 U(N) Chern-Simons theory, which after integrating out auxiliary

fields is a pure Chern-Simons theory, with no local degrees of freedom. For elliptic elements

there are no known gravity duals.19 It could be that these theories do not flow to SCFTs.

Holographic test. The evaluation of the on-shell supergravity action is identical to that

of the Jn theory with the period T := TJ > 0 defined by Tr J := eTJ + e−TJ ,

SIIB =
1

2
N2TJ +O(N0) . (2.24)

On the CFT side, the sphere partition function ZJ(N), for J = Jn1 · · · Jnp , is computed by

the matrix model20

ZJ =
1

N !

∑
τ∈SN

(−1)τ
∫ ( p∏

a=1

dNσa e
iπna

∑
i σ

2
a,i

)(
p−1∏
a=1

e−2πi
∑
i σa,iσa+1,i

)
e−2πi

∑
i σp,iσ1,τ(i) .

(2.25)

For J = −Jn1 · · · Jnp , the last factor in the integrand becomes its complex conjugate

e2πi
∑
i σp,iσ1,τ(i) , accounting for the different U(N)×U(N) gauging of one T [U(N)] factor,

as explained above. Once again we discard a possible phase factor of the matrix model.

Let us consider J = J[2] = Jn1Jn2 . The condition on the trace is Tr J[2] = n1n2−2 > 2.

The partition function is

Z[2] =
1

N !

∑
τ∈SN

(−1)τ
∫
dNσ1d

Nσ2 e
iπn1

∑N
i=1 σ

2
1,ieiπn2

∑N
i=1 σ

2
2,i e−2πi

∑N
i=1(σ1,i+σ1,τ(i))σ2,i .

(2.26)

Integrating out σ2,i and rescaling σ1,i =
√
n2 σi, we obtain

Z[2] =
e
iπN
4

N !

∑
τ∈SN

(−1)τ
∫
dNσ eiπ(n1n2−2)

∑N
i=1 σ

2
i e−2πi

∑N
i=1 σiστ(i) , (2.27)

19A construction of 4d SYM Janus configurations on a circle with topological twist involving elliptic

elements was presented in [34–36].
20This form of the matrix model arises after the cancellation between the vector multiplet factors (B.2)

and the denominators of the T [U(N)] factors (B.5). Moreover the p sums over SN permutations arising

from the p ZT [U(N)] factors simplify to a single sum by redefinitions of the eigenvalues.
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matching the partition function of the Jn1n2−2-fold theory (up to a possible phase). The

free energy is thus

F[2] = − lnZ[2] = − lnZ[Jn1n2−2] =
1

2
N2TJn1n2−2 +O(N0) =

1

2
N2TJ[2] +O(N0) , (2.28)

where we used TJn1n2−2 = TJ[2] , due to Tr J[2] = Tr Jn1n2−2 = n1n2− 2. We find agreement

with the on-shell action evaluation (2.24).

We can compute the general Z[p] ≡ ZJ for J = Jn1Jn2 · · · Jnp as follows. Introduce

the matrix

Q =



n1 −1 0 · · · 0 −1

−1 n2 −1 · · · 0

0 −1 n3
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . . −1

−1 · · · 0 −1 np


, (2.29)

and call M ≡ Min11Q ≡ (Mab)a=2,··· ,p
b=2,··· ,p

, where we use Minab to denote the matrix obtained

by deleting the a-th row and b-th column, without additional signs. Moreover we will call

minab = det Minab. Now we can write

Z[p] =
∑
τ∈SN

(−1)τ

N !

∫
dNσ1 . . . d

Nσp e
iπ(n1σ2

1+Mabσa·σb−2σa·(δa2σ1+δapστ1 )) , (2.30)

with the notations σ2
a =

∑N
i=1 σ

2
a i, σa.σb =

∑N
i=1 σa iσb i and στi = στ(i). By perform-

ing the integral over σ2, . . . , σp, discarding a phase e
iπ(p−1)N

4 , and rescaling σ1 with σ1 =

(detM)1/2σ we obtain

Z[p] =
∑
τ∈SN

(−1)τ

N !

∫
dNσ1

(detM)N/2
eiπ(n1σ2

1−(δa2σ1+δapστ1 )M−1
ab (δb2σ1+δbpστ1 ))

=
∑
τ∈SN

(−1)τ

N !

∫
dNσ eiπ(detM(n1−M−1

pp −M−1
22 )σ2−2(detM)M−1

2p σ·στ )

=
∑
τ∈SN

(−1)τ

N !

∫
dNσ eiπ(((detM)n1−minppM−min22M)σ2−2(−1)kmin2pMσ·στ )

=
1

N !

∑
τ∈SN

(−1)τ
∫
dNσ eiπ((detQ+2)σ2−2σ·στ ) . (2.31)

The identities we used in the last steps are straightforward (if a little involved) applications

of the usual formulas for determinants. The last expression can be recognized as the

partition function of the Jq theory with q = detQ+ 2, which we evaluated in appendix C,

Z[p] = Z[Jq] =
1

2
N2TJq +O(N0) , (2.32)
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with TJq defined by the relation Tr Jq ≡ q = eTJq + e−TJq . To complete the computation

we need to show TJq = TJ , or equivalently Tr Jq = Tr J . Explicitly we need to show

detQ+ 2 = TrJn1 . . . Jnp . (2.33)

Both the left- and the right-hand-side of this identity are manifestly cyclic polynomials

in n1, . . . , np: they have the property that P (n1, n2, . . . , np) = P (n2, . . . , np, n1). Such a

polynomial is uniquely determined by its restriction to equal values P (ñ, . . . , ñ). Thus we

only have to prove (2.33) when n1 = . . . = np = ñ. In fact in this case Q is equal to Cp,ñ,

the matrix we used in (C.7) to compute the partition function in the p = 1 case. (In that

context the matrix was acting on a variable σ with ` components). So we can use (C.10),

using again the trick of writing ñ = eT̃ +e−T̃ . We obtain 2+detQ|n1=...=np=ñ = epT̃ +e−pT̃ .

On the other hand, Jñ has eigenvalues e±T̃ , so Tr(Jñ)p = epT̃ + e−pT̃ . We have thus

proven (2.33). Going back to (2.32) we obtain

ZJ ≡ Z[p] =
1

2
N2TJ +O(N0) (2.34)

with J = Jn1 . . . Jnp . A similar computation holds for the choice J = −Jn1 . . . Jnp .

We obtain a beautiful agreement with the supergravity on-shell action (2.24) at largeN .

We notice a posteriori that the appearance of the matrix Q (2.29) in the computation

should not be a surprise. Indeed this is the matrix of abelian Chern-Simons terms in

the J-fold theory, up to a multiplicative factor N : naN are the CS levels of the diagonal

U(1) ⊂ U(N) at each node and −N is the level of the mixed CS term between adjacent

gauge nodes, due to the T [U(N)] links. The matrix Q encodes the data of the quiver theory

with T [U(N)] links in an efficient way.

3 S-flip quiver SCFTs

We now turn to the construction of a different class of S-fold solutions, which we call S-flips.

They are obtained as the quotient of N = 4 solutions dual to circular quiver theories by

the S element of SL(2,Z). The corresponding 3d dual SCFTs will have reduced N = 3

supersymmetry and will be circular quiver theories with a T [U(N)] ‘link’. To construct

holographic dual pairs it will be useful to consider the brane realization of 3d N = 4

quiver gauge theories, which involves D3-branes wrapping a circle and crossing NS5 and

D5-branes [37]. Explicitly we will take the D3s along x0123 with x3 compact, the NS5s along

x012456 and the D5s along x012789. Such brane setups preserve eight supercharges and the

low energy theory on the D3-branes has 3d N = 4 supersymmetry. The extra ingredient

needed to construct the S-flip theories is an S-interface associated with the T [U(N)] link,

and will be responsible for breaking the supersymmetry to N = 3.

3.1 Half-ABJM theory

The simplest example of such an S-flip 3d quiver theory is the circular quiver with gauge

group U(N)×U(N), with a bifundamental hypermultiplet and with a T [U(N)] link between

the two nodes, namely a T [U(N)] theory (as described in section 2.2) with its U(N)×U(N)
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Figure 4. a) Half-ABJM quiver and its brane realization. b) Half-ABJM mirror and its brane re-

alization.

global symmetries gauged by the two U(N) gauge nodes.21 It is mirror dual22 to the theory

with a single gauge node U(N) with one fundamental hypermultiplet and a T [U(N)] link

connecting to the same U(N) node. The two quivers are shown in figure 4. We will call

these theories half-ABJM and half-ABJM mirror, for reasons that will be clear shortly.

The type IIB brane realizations of the half-ABJM theory and its mirror are also shown

in figure 4. They involve N D3-branes wrapping the x3 circle and intersecting an NS5-

brane and an S interface, or a D5-brane and an S-interface, respectively. The S-interface

is a monodromy wall in 10d across which the theory undergoes an S-duality action and

spacetime is glued with the rotation RS : (x456, x789)→ (x789,−x456) (an order four invo-

lution). The action of S-duality (or mirror symmetry) can be implemented by letting the

S-interface wind once around the x3 circle, changing the type of five-brane from NS5 to

D5 or vice-versa. Equivalently we can act on the whole brane configuration with a global

S-duality action and the reflection RS , exchanging NS5 and D5, and leaving the S-interface

invariant (since S−1SS = S).

A useful point of view is to consider these brane realizations as arising from an S-

quotient of a more traditional brane configuration. In this case we can start with the brane

configuration with N D3s crossing one NS5 and one D5-branes. This is a type IIB brane

realization of the ABJM theory at CS level k = 1 (or rather a brane realization of a mirror

dual theory). This brane setup is invariant under the combined action of S duality and a

translation along the x3 circle by a half period. We can then quotient by this action and

the resulting brane configuration is that of the half-ABJM theory or its mirror, depending

on how we perform the quotient, as shown in figure 5.

21As explained in section 2.2, there are two inequivalent gaugings of the T [U(N)] global symmetries,

leading to two different theories. Here, however, the two theories are related by a parity transformation

(which reverses the sign of CS and FI terms in the T [U(N)] theory) and are therefore equivalent. (A parity

transformation maps the Jn theory of section 2 to the J̄n = −J−n theory.)
22We use the denomination mirror dual abusively here, since as we will discuss these theories have only

N = 3 supersymmetry and there is no notion of Higgs and Coulomb branch exchange, however this duality

is still implemented by S duality in the type IIB brane realization, as for the mirror symmetry duality of

3d N = 4 theories.
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Figure 5. A mirror quiver of the ABJM theory at level k = 1. The S-quotient of its brane

realization leads to the brane realization of the half-ABJM theory.

The infrared SCFT resulting from the S-quotient procedure has only N = 3 supersym-

metry. This is not immediately obvious from the quiver description of figure 4-a, because

the quiver theory and the T [U(N)] theory preserve N = 4 supersymmetry. The T [U(N)]

coupling, described by gauging the two U(N) global symmetries with two U(N) quiver

nodes, also involves an N = 4 BF coupling [27] between the two diagonal U(1) ⊂ U(N)

factors. Such a BF coupling preserves N = 4 supersymmetry in an unusual way, exchanging

the roles of the R symmetry factors SU(2)C and SU(2)H for the two U(1) vector multiplets;

namely, it preserves N = 4 supersymmetry when coupling together a twisted and an un-

twisted vector multiplet. However, in the present situation the theory is a circular quiver,

so that the two U(1) vector multiplets involved in the BF term are also coupled through

the rest of the quiver (here through a bifundamental hypermultipet), therefore they are

both untwisted vector multiplets from the viewpoint of the circular quiver theory. We thus

have a BF term which couples two untwisted vector multiplets and thus preserves only

N = 3 supersymmetry (as any N = 3 Chern-Simons term). This implies that SU(2)C and

SU(2)H are identified and that the R symmetry is only SU(2). This is also visible in the

brane construction where the S-interface includes a twist by the space rotation RS . This

twist breaks the rotation invariance to SO(3) = diag(SO(3)456 × SO(3)789).

Similar observations about the supergravity dual solution will confirm that the 3d

SCFT has N = 3 supersymmetry.

3.2 Supergravity dual background

To find the type IIB supergravity solution dual to the half-ABJM theory, we start with

that of the (dual of the) ABJM theory at level one, which is part of the class of solutions

described in [15] as the holographic dual backgrounds of 3d N = 4 circular quivers. In

this class of IIB solutions, the metric is a warped product AdS4 × S2 × S2 × Σ, with Σ a

Riemann surface with the topology of an annulus. The solutions are given by the two real
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harmonic functions h1, h2 on Σ,

h1(z, z̄) = −γ ln

[
ϑ1

(
π
2 + i(z − δ)

∣∣ it
π

)
ϑ2

(
π
2 + i(z − δ)

∣∣ it
π

)]+ c.c. ,

h2(z, z̄) = −γ̂ ln

ϑ1

(
−i(z − δ̂)

∣∣ it
π

)
ϑ2

(
−i(z − δ̂)

∣∣ it
π

)
+ c.c. ,

(3.1)

where we used the Jacobi Theta functions23

ϑ1(z|τ) = 2q
1
4 sin(z/2)

∞∏
n=1

(1− q2n)(1− q2neiz)(1− q2ne−iz) ,

ϑ2(z|τ) = 2q
1
4 cos(z/2)

∞∏
n=1

(1− q2n)(1 + q2neiz)(1 + q2ne−iz) .

(3.2)

The complex coordinate z = x + iy on the annulus has periodicity z ∼ z + 2t, with

t ∈ R>0 and range 0 ≤ y ≤ π
2 along the vertical axis. The parameters of the solution

are all quantized by the flux quantization conditions. In the case at hand we have a D5

singularity on the upper boundary with one unit of D5 flux and no D3 flux emanating from

it, and an NS5 singularity on the lower boundary with one unit of NS5 flux and no D3 flux

emanating from it, leading to24

ND5 = 1 = γ , N̂NS5 = 1 = γ̂ ,

ND3→D5 = N̂D3→NS5 = 0→ δ − δ̂ = t ,
(3.3)

using the non-standard convention α′ = 4 (following [15]). Common shifts of the δ and δ̂

along x, translating five-brane stacks, are immaterial, and we fix δ = −δ̂ = t
2 . In addition

there are N units of D3 flux wrapping the annulus, with the relation

N =
2

π

∑
n≥0

(2n+ 1) arctan
(
e−2(n+1/2)t

)
, (3.4)

which fixes t as a function of N . Thus the solution reads

h1(z, z̄) = − ln

[
ϑ1

(
π−it

2 + iz
∣∣ it
π

)
ϑ2

(
π−it

2 + iz
∣∣ it
π

)]+ c.c. ,

h2(z, z̄) = − ln

[
ϑ1

(
−i(z + t

2)
∣∣ it
π

)
ϑ2

(
−i(z + t

2)
∣∣ it
π

)]+ c.c. .

(3.5)

The action of S-duality on such a type IIB solution is implemented essentially by

the exchange of the two harmonic functions S : (h1, h2) → (h2, h1). To go back to the

convention where D5 singularities are on the upper boundary of Σ and NS5 singularities

23We use the convention q = eπiτ .
24The D3 fluxes in such geometries are subject to ambiguities, related to large gauge transformations of

the B2 and C2 form fields. The discussion here implies a certain choice of gauge for these fields (see [15]).
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on the lower boundary, one can combine the S action with the symmetry z → iπ
2 − z on Σ.

The corresponding S′-duality action is then

S′ : h1(z)→ h2

(
iπ

2
− z
)

h2(z)→ h1

(
iπ

2
− z
)
.

(3.6)

In the flat brane picture this transformation can be associated with S-duality combined

with a reflection x3 → −x3 of the circle direction. This is not quite the S action that we

are looking for. There is another way to define an S-duality action for the solutions on

the annulus Σ, which combines the S action with the symmetry z → iπ
2 + t+ z̄, namely a

reflection in the y direction and a translation by a half period t along x,

S : h1(z)→ h2

(
iπ

2
+ t+ z̄

)
h2(z)→ h1

(
iπ

2
+ t+ z̄

)
.

(3.7)

This S duality action is suitable for our purposes, because it has no fixed points on Σ

and thus allows for taking the quotient without introducing singularities. Thus this is the

notion of S action on the supergravity solution that we retain. It is also naturally identified

with the S action on the flat brane configuration that we discussed above, which involves

a translation along the circle direction (here identified with the direction x).

It is not hard to see that the solution (3.5) is invariant under S, as expected from the

analysis of the brane configuration. This invariance allows us to consider the quotient of

the solution by S, which according to the simple discussion above should be the gravity

solution dual to the half-ABJM theory.

To describe the Z2 quotient solution we need to choose a fundamental domain of the

S action in the surface Σ. There are various choices, but a simple one is to take the

fundamental domain Σ′ = {z = x + iy | 0 ≤ x < t, 0 ≤ y ≤ π
2 }, with the identification

x ∼ x+ t (half the period of the initial solution). The local solution is still given by (3.5)

on the patch Σ′, and the values on the vertical boundary x = t ∼ 0 are related by an

S-duality transformation (h2, h1)(t, π2 − y) = (h1, h2)(0, y). The global solution is therefore

given by the pair (h1, h2) being a section of a non-trivial S-bundle (Z2 bundle). This is our

first construction of an S-flip solution.

Notice that the S-gluing at x = t ∼ 0 involves a reflection along the y axis y → π
2 − y

and consequently Σ′ has the topology of a Möbius strip. In particular Σ′ has a single

boundary. This will be generic in S-flip solutions, which can be associated to the solutions

with internal Riemann surface Σ having the topology of a Möbius strip.

There is an additional subtlety related to the geometric action on the two S2. In the

S action we exchange the two harmonic functions h1, h2. This turns out to correspond

to the action of S-duality on the three-form fluxes H3, F3, which transform as a doublet,
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Figure 6. On the left: the Σ annulus (yellow) with a D5 (red) and an NS5 (blue) singularity,

corresponding to the initial ABJM (k = 1) supergravity solution. On the right: the Σ′ Möbius strip

with a single D5 singularity and an S-interface (green dashed line), corresponding to the solution

quotiented by S in (3.7).

combined with the exchange of the two S2.25 This implies that the action of S on the

geometry includes both the transformation z → iπ
2 +t+ z̄ discussed above and the exchange

of the two S2. Then, in the S-fold geometry the gluing conditions at x = t ∼ 0 include

the permutation of the two S2. This implies that the SO(3) × SO(3) rotation symmetry

is broken to the diagonal SO(3) in the S-fold solution. The isometries of the solution are

identified with the R-symmetry of the dual 3d CFT, therefore the dual half-ABJM SCFT

has only N = 3 supersymmetry, corresponding to a single SU(2) R-symmetry, paralleling

nicely the gauge theory analysis.

The Z2 quotient is described in figure 6. In the resulting S-flip solution, there is a

single D5 singularity on the boundary and an S-interface. By moving the S-interface along

the x axis by a period t, the D5 singularity gets traded for an NS5 singularity, similarly to

what happened when moving the S-interface around the x3 circle in the flat brane picture.

This can be understood as the action of 3d mirror symmetry in the gauge theory. In the

supergravity solution it is a simple change of S-duality frame.

3.3 Solutions for S-flip quivers

The construction of the previous section can be generalized, starting from circular quiver

theories whose supergravity solution is invariant under the action S (3.7) and quotienting

by S. The 3d N = 3 SCFTs dual to these S-fold solutions will comprise the IR limit of all

‘good’ circular quivers with a T [U(N)] link connecting two nodes of minimal rank.

Good quivers refer to quiver theories where the number of fundamental flavors at each

node bigger or equal to twice the number of colors, Nf,i ≥ 2Ni.
26 They were labeled in [15]

by a triple (ρ, ρ̂, N), where ρ, ρ̂ are two ordered partitions of an integer Ñ satisfying ρT ≥ ρ̂

25More precisely the volume forms ωi=1,2 on the two S2 are transformed as (ω1, ω2)→ (−ω2, ω1). Together

with the reflection along y, this geometric action preserves the orientation in the full geometry. This

combined geometric action is the ‘near horizon limit’ of the rotation RS in the flat brane picture.
26The other quiver theories with unitary gauge nodes (‘bad’ theories) a priori do not admit new fixed

point SCFTs and therefore there is no supergravity solution associated to them (see [38, 39] for a recent

discussion on the fixed points of bad theories).
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and N > 0.27 The corresponding infrared fixed points were dubbed Cρρ̂ (SU(Ñ), N). In this

description N is the lowest rank among the gauge nodes in the quiver and (ρ, ρ̂) repackage

the data of the remaining node ranks and the numbers of fundamental hypermultiplets

for each node. We refer to [15] for a precise dictionary between the gauge theory data

and the triple (ρ, ρ̂, N). In the supergravity solution associated to Cρρ̂ (SU(Ñ), N), the

partition ρ describes the D3 fluxes emanating from D5-brane stacks on the upper boundary

of the annulus Σ and ρ̂ describes the D3 fluxes emanating from NS5-brane stacks on the

lower boundary of Σ. The data of the two partitions (ρ, ρ̂) is encoded in the supergravity

solution in two sets of parameters (γa, δa) and (γ̂b, δ̂b), associated to D5 stacks and NS5

stacks. The integer N is the D3 flux wrapping the annulus and is given as a function of the

γa, δa, γ̂b, δ̂b parameters and the annulus half-period t. We review the dictionary between

gauge theory data and the supergravity parameters in appendix D. One important point

is that the triples (ρ, ρ̂, N) are defined up to certain shift ambiguities associated to large

gauge transformations which affect the D3 fluxes (see (D.6), (D.7)). This phenomenon is

related to the Hanany-Witten D3-brane creation/annihilation effect in the flat brane setup,

which arises as one moves five-branes around the x3 circle.

Explicitly the supergravity solution associated to the SCFT Cρρ̂ (SU(Ñ), N) is given by

the real harmonic functions on the annulus Σ,

h1(z, z̄) = −
p∑
a=1

γa ln

[
ϑ1

(
π
2 + i(z − δa)

∣∣ it
π

)
ϑ2

(
π
2 + i(z − δa)

∣∣ it
π

)]+ c.c. ,

h2(z, z̄) = −
p̂∑
b=1

γ̂b ln

ϑ1

(
−i(z − δ̂b)

∣∣ it
π

)
ϑ2

(
−i(z − δ̂b)

∣∣ it
π

)
+ c.c. ,

(3.8)

where the real parameters δa, δ̂b are defined up to an overall real shift. p and p̂ are the

number of D5 and NS5 stacks respectively. The parameters γa and γ̂b are positive and equal

respectively to the number of D5-branes in the stack a and to the number of NS5-branes

in the stack b (in the convention α′ = 4).

Circular quivers invariant under S can be characterized by the fact that there exists a

certain gauge28 where the partitions ρ, ρ̂ are of the form

ρ = (`1, `2, · · · , `k) , `1 ≥ `2 ≥ · · · ≥ `k ,
ρ̂ = (−`k, · · · ,−`2,−`1) := −ρ .

(3.9)

In this gauge the partitions sum to zero,
∑

i `i = 0, meaning that the total D3 flux em-

anating from the D5 or NS5 singularities is vanishing. An example of a brane configu-

ration realizing such a circular quiver is shown in figure 7. The condition (3.9) can be

re-expressed as

ρ = (ρ1,−ρ2) , ρ̂ = (ρ2,−ρ1) , (3.10)

27Here ρ and ρ̂ are viewed as Young tableaux and the inequality means that the sum of the boxes in the

first n rows of ρT is bigger than or equal to the sum of the boxes in the first n rows of ρ̂, for all n.
28This specific gauge is not the one chosen in [15] to express the constraints ρT ≥ ρ̂ and N > 0. In this

other gauge ρ, ρ̂ are really partitions, namely they are sets of positive integers, which is not the case here.
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Figure 7. A brane realization of a circular quiver invariant under the action of S (translation

+ S-duality). The gauge theory data are read from the linking numbers of the five-branes: ρ =

(2, 1,−1,−1,−1), ρ̂ = (1, 1, 1,−1,−2). N is the number of D3s stretched between the D5s and

NS5s at the top, here N = 4. On the right is the associated good circular quiver.

with ρ1, ρ2 two partitions of an integer M ≥ 0 with positive or zero coefficients. In the

example of figure 7 these partitions are ρ1 = (2, 1), ρ2 = (1, 1, 1). Note that this is the

criterion for S invariance, but it is not the criterion for the usual S invariance implemented

by the S′ action (3.6), which corresponds to the condition that there exists a gauge where

ρ = ρ̂. Both criteria lead to gauge theories which are self-dual under mirror symmetry.29

Here we are concerned only with quivers with partitions of the form (3.9).

Consistently with our discussion we find that the criterion (3.9) implies that the su-

pergravity solution is invariant under the S action (3.7). In particular this means p = p̂

and (γa, δa) = (γ̂a, δ̂a + tmod 2t), for a = 1, · · · , p, where it is understood that a labels the

D5 stacks and the NS5 stacks from left to right along the x axis.30 An S-invariant solution

is therefore of the form

h1(z, z̄) = −
p∑
a=1

γa ln

[
ϑ1

(
π
2 + i(z − δa)

∣∣ it
π

)
ϑ2

(
π
2 + i(z − δa)

∣∣ it
π

)]+ c.c. ,

h2(z, z̄) = −
p∑
a=1

γa ln

[
ϑ1

(
−i(z − δa − t)

∣∣ it
π

)
ϑ2

(
−i(z − δa − t)

∣∣ it
π

)]+ c.c. .

(3.11)

The solution quotiented by S in (3.7) is then described by the same harmonic functions

(h1, h2) restricted (for instance) to the domain 0 ≤ x < t, with an S-interface at x = t ∼ 0,

which combines the actions of S-duality, S2 exchange and y reflection. The resulting

topology of Σ is again that of the Möbius strip. Here as well the quotient preserves only

3d N = 3 supersymmetry. An example of a quotient by S is depicted in figure 8.

If the S-flip quiver is realized with n D5s and m NS5s, it can be constructed as the

S-quotient of a circular quiver with n+m D5s and n+m NS5s. In figure 9-a we show an

example of an S-flip quiver theory and we describe the associated brane configuration with

an S-interface. We also show a canonical rearrangement of the five-branes from which one

can read the two partitions ρ1, ρ2. Such an S-flip quiver can be obtained as the S-quotient

29The half-ABJM theory discussed in section 3.1 is an example of a theory with a gravity solution invariant

under both types of S actions. This is not a generic example.
30This is not the same convention as in [15].
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Figure 8. An example of S-folding. The resulting S-flip solution has an S monodromy cut (green

dashed line).
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Figure 9. a) An S-flip quiver and its brane realization. On the right: a canonical brane realization

after Hanany-Witten moves, giving the quiver data ρ1 = (1, 1, 0), ρ2 = (1, 1), N = 3 (number of

D3s at the top). b) The parent circular quiver and its brane realization. On the right: the same

brane configuration after Hanany-Witten moves, and the quotient by S.

of a good circular quiver theory and the corresponding S-fold supergravity solution can

be constructed from the solution of the ‘parent’ quiver theory. In figure 9-b we describe

the parent circular quiver with S invariance, its brane configuration and the same brane

configuration after Hanany-Witten moves with separated five-branes.

This construction applies to any S-flip quiver which is a good circular quiver with a

T [U(N ′)] link connecting two gauge nodes of minimal rank N ′ in the quiver. We obtain

a holographic map for a class of S-flip quivers labeled by two partitions with positive or

zero coefficients and a positive integer, (ρ1, ρ2, N
′), or alternatively by a zero-sum partition

ρ = (ρ1,−ρ2) (i.e. an array of positive and negative integers summing to zero) and an

integer N , with N = N ′ + M and M =
∑

i ρ1,i =
∑

i ρ2,i. Reciprocally, it is not hard to

show that any good circular quiver invariant under S gives rise after choosing the S-quotient

appropriately to an S-flip theory with the T [U(N ′)] link connecting nodes of minimal rank.
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The S-flip solutions appear naturally parametrized by two partitions ρ1, ρ2 and an

integer N ′. However not all partitions describe an S-flip quiver theory. To ensure that

the gauge node ranks in the quiver description are positive, one should take N ′ > 0 and

restrict to partitions satisfying the Young tableaux inequalities31

ρT1 ≥ ρ2 . (3.12)

We thus obtain a holographic dictionary for a class of 3d N = 3 S-flip theories labeled

by (ρ1, ρ2, N
′) (or (ρ,N)) satisfying the constraints (3.12).32 As a holographic check one

should find that these constraints are satisfied by the partitions written in terms of the

supergravity data. It is not very hard to find that these inequalities are implied by the

inequalities ρT ≥ ρ̂ of the parent good circular quiver. Since the holographic map is

consistent with these inequalities for the parent theories, we deduce that the holographic

map is also consistent for the S-flip theories.

3.4 Large N free energy and holographic test

In this section we perform a holographic test by computing the large N three-sphere free

energy of S-flip theories and comparing it to the regularized on-shell action of the dual

gravity solution. As we shall see, a difficulty arises in the computation because the free

energy is not easy to study in the regime of parameters where the supergravity approxima-

tion is valid. We will present only partial results here, postponing to future work a more

complete analysis.

3.4.1 Free energy

The matrix model computing the exact three-sphere partition function of the S-flip quiver

theories are found using the rules described in appendix B. In particular it includes a factor

ZT [U(N)](σ, σ̃) (B.5) for the T [U(N)] link in the quiver. For instance for the half-ABJM

theory of section 3.1 we obtain, after simplifications, the matrix model

Zhalf−ABJM =
1

N !

∫
dNσdN σ̃

∏
i<j sh(σij)sh(σ̃ij)∏
i,j ch(σi − σ̃j)

e2πi
∑
i σiσ̃i . (3.13)

The matrix model for the mirror of the half-ABJM theory is instead

Zhalf−ABJM mirror =
1

N !

∑
τ∈SN

(−1)τ
∫
dNσ

e2πi
∑
i σiστ(i)∏

i chσi
. (3.14)

Since the two theories are dual, their sphere partition function should be equal (up to finite

counter-term ambiguities). This is easy to verify by using the Cauchy determinant formula∏
i<j sh(σij)sh(σ̃ij)∏
i,j ch(σi − σ̃j)

=
∑
τ∈SN

(−1)τ
1∏N

i=1 ch(σi − σ̃τ(i))
(3.15)

31This follows from a reasoning identical to that of [15] leading the Young tableau inequality ρT ≥ ρ in

that paper.
32There is a redundancy in the parametrization with ρ1 and ρ2 because of the zeros in the partitions

which can be transferred from ρ1 to ρ2 and vice-versa without changing the theory.
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N

S

N

T[U(N)]

NS5

N D3
D5

M
N N

S

N D3D5

D5

N T[U(N)]

K

Figure 10. Quiver with gauge group U(N)M̂+1, M fundamental hypermultiplets and a T [U(N)]

link. The corresponding brane realization has M̂ NS5s, M D5s and an S interface. After moving

the S interface we can reach a description with K = M +M̂ D5s, corresponding to a simpler quiver

theory (pure D5 dual theory).

in the half-ABJM matrix model and then integrating over the σi eigenvalues, with∫
dx e2πixy

ch(x−z) = e2πizy

ch y . This match is already a consistency check of our holographic con-

struction.

We now generalize to an S-flip quiver theory with M̂ + 1 gauge nodes and with M

fundamental hypermultiplets distributed in various nodes. When all the gauge node ranks

are of the same order N much larger than the differences between these ranks, we expect

that the leading term in the free energy is only sensitive to N , to the total number of

gauge nodes M̂ + 1, and to the total number of fundamental hypermultiplets M , thus it

is enough for our purposes to consider the circular quivers with gauge group U(N)M̂+1,

with M fundamental hypermultiplets in one node and with a T [U(N)] link between two

nodes, as shown in the upper part of figure 10. The corresponding brane realization has

M̂ NS5-branes, M D5-branes and an S interface. The zero-sum partition describing such

a quiver is simply a collection of M + M̂ zeros.

The description of the theory can even be further simplified by going to a dual descrip-

tion obtained by moving the S interface in the brane realization along the x3 circle until

it reduces to M̂ +M D5-branes and an S interface, as in the lower part of figure 10. The

corresponding dual theory has a single gauge node U(N) with K ≡ M̂ + M fundamental

hypermultiplets and a self-T [U(N)] link. We will refer to this alternative field theory de-

scription as the “pure D5” dual description.33 From this argument we understand that the

large N free energy should only depend on N and K.

33Of course, there are many other dual descriptions obtained by moving the S interface at different

positions along x3. They form an orbit of “mirror dual” theories.
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As a non-trivial test of this proposal we can show that the sphere partition functions

of the dual theories match. This computation was already done in [28] and we reproduce

it in appendix E. Since the three-sphere partition function of the initial theory and that

of the pure D5 theories are equal, we can use the latter to study the large N free energy.

The matrix model of the pure D5 theory reads

Z =
1

N !

∑
τ∈SN

(−1)τ
∫
dNσ

e2πiσ.στ∏
i ch(σi)K

. (3.16)

We are not able to evaluate this seemingly simple matrix model, however we can study

more easily its large K limit. Taking K large, the leading contribution comes from the

region σj ∼ 1√
K

and the matrix model can be approximated by

Z ' 1

N !

∑
τ∈SN

(−1)τ
∫
dNσ

1

2KN
e2πiσ.στ e−

π2

2
K

∑N
j=1 σ

2
j . (3.17)

This is essentially the same matrix model as for the partition function of Jn theories (up

to complex conjugation), which we evaluated in appendix C. We find (up to a phase)

Z =
e
NT ′
2

2KN
∏N
j=1 ((−1)jejT ′ − 1)

, (3.18)

with eT
′
+ e−T

′
= iπK

2 , eT
′

= iπK
4

(
1 +

√
1 + 16

π2K2

)
. This leads to the free energy

F = KN ln 2 +
1

2
N2 lnK +O(K0) , (3.19)

at large K. In this derivation we have kept N finite and taken K large. However, to

compare with the supergravity on-shell action we will need to assume large N and it is

not clear whether our evaluation holds in this limit. Let us look in some more detail at

the approximation above. We can define aj = π
√
Kσj and expand the ch(. . .) functions

(≡ 2 cosh(π(. . .))) at large K and fixed aj ,

1

ch(σj)K
=

1

2K cosh(πσj)K
=

1

2K cosh(aj/
√
K)K

= e−
a2j
2

+
a4j
12K

+O( 1
K2 )

= e−
a2j
2

(
1 +

a4
j

12K
+O

(
1

K2

))
.

(3.20)

Plugging the expansion in Z we get

Z =
1

N !

∑
τ∈SN

(−1)τ
∫
dNa

e
2i
πK

∑
i aiaτ(i)

πNKN/22KN
e−

1
2

∑N
i=1 a

2
i

(
1 +

1

12K

N∑
i=1

a4
i +O

(
1

K2

))
.

(3.21)

The approximation that we did consists in dropping the terms in the parenthesis after the

1. The next term after 1 is 1
12K

∑N
i=1 a

4
i and its contribution to Z scales with a factor N

K
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compared to the first contribution, therefore it is subleading only if K � N . This indicates

that our approximation is valid only when K � N . Since we are interested in the free

energy which is the logarithm of Z, we can even trust our approximation for F when the

correction is of the same order as the leading term (since it only corrects F by a constant).

We conclude that our approximation is valid when N . K,

K � 1 and N . K : F = KN ln 2 +
1

2
N2 lnK . (3.22)

We notice that when K � N , the first term KN ln 2 dominates, while for K ∼ N � 1 the

second term 1
2N

2 lnK dominates, so there seems to be a phase transition at K ∼ N .

3.4.2 On-shell action and holography

The SCFT free energy must be compared with the large N on-shell action of the dual

supergravity solution. This solution is very similar to the half ABJM solution. It has a

single stack of D5-branes (or a single stack of NS5-branes in another S-duality frame). It

is obtained by starting from the “double cover” circular quiver theory with one stack of

K D5s and one stack of K NS5s (this corresponds to ρ = ρ̂ = (0, 0, · · · , 0) with K zeros),

and doing the quotient by S. The operation on the brane setups and the corresponding

supergravity solutions are shown in figure 11.

The supergravity solution is the same as for the half-ABJM theory, with harmonic

functions multiplied by K,

h1(z, z̄) = −K ln

[
ϑ1

(
π−it

2 + iz
∣∣ it
π

)
ϑ2

(
π−it

2 + iz
∣∣ it
π

)]+ c.c. ,

h2(z, z̄) = −K ln

[
ϑ1

(
−i(z + t

2)
∣∣ it
π

)
ϑ2

(
−i(z + t

2)
∣∣ it
π

)]+ c.c. ,

(3.23)

on the Möbius strip (x, y) ∼ (x+ t, π2 −y) with S duality gluing conditions. The parameter

t is now given in terms of N by the relation (3.4), which has an extra factor of K2 due the

presence of the five-brane stacks [15],

N =
2

π
K2
∑
n≥0

(2n+ 1) arctan
(
e−2(n+1/2)t

)
. (3.24)

The regularized on-shell action is evaluated as before with using the formula (2.14). There

are two natural limits one can study: small t or large t.

Small t limit (or fat Möbius strip). In the small t limit we have

N =
K2

2t2

∫ +∞

0
duu

2

π
arctan(e−u) +O(t0) =

π2

32t2
K2 +O(t0) . (3.25)

It corresponds in terms of field theory data to having N � K2,

t� 1 ↔ N � K2 . (3.26)
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K NS5
N D3

K D5

S

S-fold

N N

K
N N

N T[U(N)]

K

0-t t t

S

S

K D5

K NS5

K D5

0

S-fold

K D5

Figure 11. S-quotient leading to the pure D5 theory. The double cover theory has K U(N) nodes

and K fundamental hypermultiplets in one node. The double cover supergravity solution has single

stacks of K D5s and K NS5s.

In this limit the five-brane stacks gets smeared along the upper and lower boundaries of Σ

(see [15]). Using the asymptotics of Jacobi theta functions one finds

h1(z, z̄) = − iπK
2t

z + c.c.+O(t) ,

h2(z, z̄) =
iπK

2t

(
z − iπ

2

)
+ c.c.+O(t) ,

(3.27)

leading to

SIIB =
π4

24

K4

(2t)3
=

π

3
√

2
KN

3
2 , (3.28)

at leading order at large N .

In this small t limit, it is not clear whether higher derivative corrections to the super-

gravity action may not be neglected. The dilaton goes from ∞ at y = 0 to −∞ at y = π/2.

The curvature R(s) and dilaton factors (∇φ)2 are suppressed by 1/
√
N factors but they

are functions of y over Σ and have both divergences at y = 0 and y = π
2 , which are the

location of the smeared five-branes. Therefore these corrections are not small in the full

geometry and it is not clear whether the supergravity computation above is valid or not.

Moreover the contribution of the D5-brane action could also compete with SIIB.
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Long wavelength limit (or long Möbius strip). The alternative limit t � 1 may

be more appropriate to the holographic test. In this limit the fields of the supergravity

solution vary slowly with x in the bulk geometry. In terms of field theory data we now have

N =
2

π
K2e−t , (3.29)

so the large t limit corresponds to N � K2,

t� 1 ↔ N � K2 . (3.30)

In this limit the harmonic functions reduce to

0 < x <
t

2
: h1(z) = −2iKe−

t
2

+z + c.c. ,

h2(z) = 2Ke−
t
2
−z + c.c. ,

t

2
< x < t : h1(z) = 2iKe

t
2
−z + c.c. ,

h2(z) = 2Ke−
3t
2

+z + c.c. .

(3.31)

This is the same local geometry as in the extremal Janus solution with appropriate factor

identification.

To study the validity of the supergravity approximation it is enough to focus on the

region with 0 ≤ x ≤ t
2 , since the region t

2 ≤ x ≤ t is related to it by a reflection. For the

higher derivative corrections to the IIB supergravity action to be suppressed we require

that R(s) and gµν(s)∇µφ∇νφ be small, as discussed in section 2.3.

In the region 0 < x < t
2 we have gµν ∼ Ke−t/2 ∼

√
N and e2φ ∼ e−2x. We find

gµν(s)∇µφ∇νφ ∼ ex/
√
N and R(s) ∼ ex/

√
N . The maximal values are obtained at x = t/2

and are of order et/2/
√
N ∼ K/N .

Putting things together we find that the supergravity approximation is a priori valid

in the regime

K . N � K2 , (3.32)

where we allowed the limiting case K ∼ N for which R(s) and (∇φ)2 become order one

only in a thin region around x = t. The range of validity can be recast as N1/2 � K . N .

We also assume that the contributions from the five-brane effective actions is subleading

in this limit. The evaluation of the on-shell action proceeds as before and gives at leading

order at large t,

S =
2

π2
K4e−2tt =

1

2
N2 ln

(
K2

N

)
. (3.33)

Holographic match. We can now compare the result with our evaluation of the free

energy (3.22) for the dual CFT for ranges of N and K for which both computations are

reliable. The range of validity of the two computations are almost non-overlapping and

indeed the two evaluations are not the same. However there is still a borderline situation
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where both computations should be reliable and this is when K and N are of the same

order, K ∼ N . In that case both computations agree with

K ∼ N � 1 : F =
1

2
N2 lnN . (3.34)

This is quite a non-trivial match, confirming the proposed holographic duality.

Beyond the supergravity regime. As we commented after (3.28), in the small t regime

the backreaction of the branes is felt all over the geometry, and it is not clear that the

supergravity approximation is valid. One might be curious to see what happens to the field

theory computation in this regime, which as we saw in (3.26) corresponds to N � K2.

As an extreme test, we can take K = 1, which corresponds to the original half-ABJM

theory, whose matrix model we wrote in (3.13). Its saddle configurations have σ = σ̃; a

numerical study reveals that both the real and imaginary parts of σ scale with N1/3 in the

large N limit, and that they follow a linear pattern in the complex plane. One can study

this more precisely with the techniques of [17, 40], rewriting the matrix model in terms of

a local action for a single continuum field σ(x). This local action turns out to be formally

identical to [17, (8.2)], and leads to FK=1 ∼ (3π)5/3

10 e−iπ/6N5/3. This N5/3 scaling is typical

of massive IIA solutions [41]. Its appearance in our IIB context is intriguing, and might be

suggestive of a IIA dual in this limit. T-duality is not obviously applicable, because not all

the fields are x-independent, but one can speculate that our solution is the back-reacted

form of an object that does have a nontrivial IIA T-dual. (T-duality of non-perturbative

objects is sometimes challenging in supergravity, and often requires some smearing.)

Acknowledgments

We thank Costas Bachas, Yuji Tachikawa and Alberto Zaffaroni for fruitful discussions at

various stages of the project. A.T. is supported in part by INFN and by the ERC Starting

Grant 637844-HBQFTNCER.

A Local supergravity solutions and SL(2,R) action

The general local solutions of IIB supergravity with OSp(4|4) invariance were found in [9].

They are parametrized by two harmonic functions h1, h2 on a Riemann surface Σ. One

first introduces auxiliary functions

W = ∂∂̄(h1h2) , Nj = 2h1h2|∂hj |2 − h2
jW . (A.1)

The Einstein frame metric is given by

ds2 = f 2
4 ds

2
AdS4

+ f 2
1 ds

2
S2
1

+ f 2
2 ds

2
S2
2

+ 4ρ2dzdz̄ , (A.2)

with warp factors

f 8
4 = 16

N1N2

W 2
, f 8

1 = 16h8
1

N2W
2

N3
1

, f 8
2 = 16h8

2

N1W
2

N3
2

, ρ8 =
N1N2W

2

h4
1h

4
2

. (A.3)

– 32 –



J
H
E
P
0
6
(
2
0
1
8
)
0
1
9

The solution is written in an SL(2,R) gauge where the axion field vanishes. The axio-

dilaton takes the (purely imaginary) form

τ = χ+ ie−2φ = i

√
N1

N2
. (A.4)

Note that we use an unconventional normalization for the dilaton φ. In addition there are

3-form and 5-form backgrounds. To specify the corresponding gauge potentials we need to

introduce dual harmonic functions hD1 , h
D
2 ,

h1 = −i(A1 − Ā1) → hD1 = A1 + Ā1 ,

h2 = A2 + Ā2 → hD2 = i(A2 − Ā2) .
(A.5)

The dual harmonic functions are defined up to constant shifts corresponding to large gauge

transformations of the background. The NS-NS and R-R 3-forms are expressed by

H3 = ω45 ∧ db1 , F3 = ω67 ∧ db2 , (A.6)

where ω45 and ω67 are the volume forms of the unit-radius spheres S2
1 and S2

2, and

b1 = 2ih1
h1h2(∂h1∂̄h2 − ∂̄h1∂h2)

N1
+ 2hD2 ,

b2 = 2ih2
h1h2(∂h1∂̄h2 − ∂̄h1∂h2)

N2
− 2hD1 .

(A.7)

The expression for the self-dual 5-form is a little more involved and we refer to the original

papers [9, 10] for its expression.

The choice of harmonic functions h1, h2 is constrained by a number of conditions

ensuring the regularity of the solution. In particular the boundary of Σ must be divided

into regions where one harmonic function obeys (vanishing) Dirichlet boundary conditions

while the other obeys Neumann boundary conditions.

Other solutions can be generated by SL(2,R) transformations of the above background,

which act on the axio-dilaton and 3-form fields as follows,

τ ′ =
dτ + c

bτ + a
,

(
H ′3
F ′3

)
=

(
a b

c d

)(
H3

F3

)
. (A.8)

The Einstein-frame metric and the 5-form are invariant under SL(2,R).

With this choice of conventions, the SL(2,Z) subgroup is generated by the elements

S =

(
0 −1

1 0

)
, T =

(
1 0

1 1

)
, (A.9)

satisfying S2 = −1 and (ST )3 = 1, and acting on τ by S.τ = −1/τ , T.τ = τ + 1.
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B Sphere partition function and matrix models

The (undeformed) three-sphere partition function Z of a 3d N ≥ 2 supersymmetric La-

grangian gauge theory can be computed exactly via supersymmetric localization, as first

shown in [32] following the seminal work of Pestun [42]. The final evaluation of the sphere

partition function is expressed as a matrix model,34

Z =

∫
dσ

|W |
Zvec(σ)Zchiral(σ)ZCS(σ)ZFI(σ) , (B.1)

where σ = {σi} are the (real) “eigenvalues” taking values in the Cartan subalgebra of

the gauge group, |W | is the order of the Weyl group, and the integrand is a product of

contributions associated to the vector multiplet, chiral multiplets, Chern-Simons terms and

FI terms. The factors appearing in the integrand simplify for an N ≥ 3 theory. For a U(N)

gauge group with fundamental matter we have N eigenvalues σi=1,··· ,N , |W | = N ! and the

vector multiplet and fundamental hypermultiplet factors

ZN=4
vec (σ) =

N∏
i<j=1

sh2(σij) , Zhyper(σ) =
N∏
i=1

1

ch(σi −m)
, (B.2)

with the notation sh(x) ≡ 2 sinh(πx), ch(x) ≡ 2 cosh(πx) and σij ≡ σi − σj . The pa-

rameter m above is a real mass for the hypermultiplet. The factor for a bifundamental

hypermultiplet of U(N)×U(Ñ) is

Zhyper(σ, σ̃) =

N∏
i=1

Ñ∏
j=1

1

ch(σi − σ̃j −m)
. (B.3)

Finally the contributions of a supersymmetric U(N) Chern-Simons term at level k ∈ Z and

an FI term with parameter η are

ZCS(σ) = eiπk
∑N
i=1 σ

2
i , ZFI(σ) = e2iπη

∑N
i=1 σi . (B.4)

The coupling to a T [U(N)] theory by gauging its U(N)×U(N) global symmetry is encoded

in a contribution ZT [U(N)](σ, σ̃) to the matrix integrand, where σi=1,··· ,N , σ̃i=1,··· ,N are the

eigenvalues of the two U(N) symmetries. This contribution is nothing but the sphere par-

tition function of the T [U(N)] theory which was computed via supersymmetric localization

in [43]. It is given by

ZT [U(N)](σ, σ̃) =

∑
τ∈SN (−1)τe2πi

∑N
i=1 σiσ̃τ(i)∏

i<j sh(σij)
∏
i<j sh(σ̃ij)

. (B.5)

The identification of this factor as describing an S duality interface contribution was first

described in [44] and further studied in [28].

34Here and later we suppress pure phase factors of the matrix model which play no role in the computation

of the large N free energy.
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We explained in section 2.2 that there are two possible ways to couple the T [U(N)]

theory, by gauging U(N)×U(N) or U(N)×U(N)†. One gauging corresponds to inserting

the above factor in the matrix model, while the other gauging corresponds to inserting

ZT [U(N)](σ,−σ̃). The relevant gauging for the Jn theory is associated to the insertion of

ZT [U(N)](σ,−σ) in the matrix model as in (2.16).

C Sphere partition function of Jn theories

In this appendix we evaluate the matrix model (2.16) computing the partition function

Z(N). We will be able to compute it axactly, namely at fintie N . For computational

convenience we add an overall phase e−
iπN
4 to the matrix model.

The matrix model (with the extra phase) has the form of a Fermi gaz partition func-

tion [45]

Z(N) =
1

N !

∑
τ∈SN

(−1)τ
∫
dNσ

N∏
i=1

〈σi|ρ̂|στ(i)〉 , (C.1)

with density operator

〈σ̃|ρ̂|σ〉 = e−
iπ
4 eiπnσ̃

2
e−2πiσ̃σ := ρ(σ̃, σ) . (C.2)

It is convenient to change ensemble and to define the grand canonical partition function

Θ(z) = 1 +
∑
N≥1

Z(N)zN := eJ(µ) , z := eµ . (C.3)

The grand canonical potential J(µ) then takes the form

J(µ) = −
∑
`≥1

(−1)`

`
Z` e

µ` , (C.4)

with

Z` = Tr (ρ̂`) =

∫
dσ〈σ|ρ̂`|σ〉 =

∫
d`σ ρ(σ`, σ1)

`−1∏
a=1

ρ(σa, σa+1)

= e−
iπ`
4

∫
d`σ eiπnσ

2
` e−2πiσ`σ1

`−1∏
a=1

eiπnσ
2
ae−2πiσaσa+1 .

(C.5)

The evaluation of Z(N) can be extracted from eJ(µ) by an inverse Legendre transform and

the problem is reduced to computing Z` (which is simpler that Z(N)) and performing the

inverse Legendre transform.

To evaluate Z`, we write

Z` = e−iπ`/4
∫
d`σ exp[iπσtC`,nσ] = (detC`,n)−1/2 , (C.6)

where σ = (σ1, . . . , σ`)
t and the matrix

C`,n = n1` − P − P t , (C.7)
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with P is the matrix realizing the permutation (23 . . . `1). C`(n) is a cyclic matrix. The

eigenvalues of C`,n are n − ωi − ω−1
i , where ωi are the `-th roots of unity, ω`i = 1. Hence

its determinant is

detC`,n =
`−1∏
i=0

(n− ωi − ω−1
i ) . (C.8)

Now consider the meromorphic function

f(z) ≡
`−1∏
i=0

(z + z−1 + ωi + ω−1
i ) = eiπ(1−`)

`−1∏
i=0

(1 + zωi)(1 + z−1ωi) . (C.9)

It is Z`-invariant: f(ωiz) = f(z). Hence its Laurent series can only contain integer powers

of z`. From its definition as a product it is clear that it can in fact only contain z`, z−`

and a constant, and in fact that f(z) = z` + z−` + f0, with f0 a constant. To fix f0,

consider the case z = −1. We have f(−1) = (−)` detC`,−2; but C`,−2 is minus the Cartan

matrix of an affine Lie algebra, which is known to have zero determinant. Hence we have

0 = f(−1) = 2(−1)` + f0, leading to f(z) = z` + z−` − 2(−1)`. Now notice that, if we

define T such that n = eT + e−T as in (2.9),

detC`,n = (−1)`f(−eT ) = e`T + e−`T − 2 = (e`T/2 − e−`T/2)2 . (C.10)

From (C.6) it now follows

Z` =
1

e
`T
2 − e−

`T
2

. (C.11)

From here the grand potential J(µ) can be computed as follows

J(µ) = −
∑
`≥1

(−1)`

`

1

e
`T
2 − e−

`T
2

eµ`

= −
∑
`≥1

∑
m≥0

(−1)`

`
e−`T (m+1/2) eµ`

=
∑
m≥0

ln
(

1 + eµ−T (m+1/2)
)
,

(C.12)

leading to the grand canonical partition function

Θ(z) =
∏
m≥0

(
1 + z e−T (m+1/2)

)
= (−z e−T/2; e−T )∞ , (C.13)

where we used the Pochhammer symbol in the last expression. The partition function

Z(N) is recovered by the residue computation

Z(N) =

∫
dz

2πizN+1
Θ(z) =

∫
dz

2πizN+1

∏
m≥0

(
1 + z e−T (m+1/2)

)
=

∑
m1>m2>···>mN≥0

e−NT/2e−T
∑N
i=1mi .

(C.14)
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The sum over mi are simple geometric series which can be performed one by one leading

to the remarkably simple final expression

Z(N) =
e
NT
2∏N

j=1 (ejT − 1)
. (C.15)

D Fluxes in elliptic solutions and quiver data

In this appendix we briefly review the dictionary between the triples (ρ, ρ̂, N) describ-

ing good circular quiver theories and the data (γa, δa, γ̂b, δ̂b, t) of the elliptic supergravity

solutions dual to their fixed point SCFTs, as described in [15].

The triple (ρ, ρ̂, N) is obtained by considering the brane realization of the circular

quiver, with D3s, D5s and NS5s, and by moving the five-branes along the circle direction

x3 until all D5s are on one side and all NS5s are on the other side. Because of Hanany-

Witten brane creation effects one obtains a configuration with various D3s ending on both

types of five-branes. The net number of D3s35 ending on a given five-brane is called its

linking number. The partition ρ is the array of D5s linking numbers, the partition ρ̂ is the

array of NS5s linking numbers and N is the total number of D3-branes at a chosen position

in x3. There is large redundancy in the choice of triples (ρ, ρ̂, N) which describe a given

good circular quiver. The holographic dictionary proposed in [15] uses a ‘gauge’ with

ρ = (`1, `2, · · · , `k) , `1 ≥ `2 ≥ · · · ≥ `k ≥ 0 ,

ρ̂ = (ˆ̀
1, ˆ̀

2, · · · , ˆ̀̂
k) ,

ˆ̀
1 ≥ ˆ̀

2 ≥ · · · ≥ ˆ̀̂
k ≥ 0 ,

(D.1)

satisfying the constraint ρT ≥ ρ̂. To compare with the supergravity data, one should

re-label the partitions in terms of ‘stacks’,

ρ = (`(1), · · · , `(1)︸ ︷︷ ︸
N(1)

, · · · , `(p), · · · , `(p)︸ ︷︷ ︸
N(p)

) ,

ρ̂ = (ˆ̀(1), · · · , ˆ̀(1)︸ ︷︷ ︸
N̂(1)

, · · · , ˆ̀(p), · · · , ˆ̀(p)︸ ︷︷ ︸
N̂(p̂)

) .
(D.2)

The number γa, resp. γ̂b of D5-branes, resp. NS5-branes, in a stack is given by

γa = N (a) , a = 1, · · · , p ,

γ̂b = N̂ (b) , b = 1, · · · , p̂ .
(D.3)

The linking numbers are mapped to the D3 flux emanating from a given five-brane stack,

averaged over the number of five-branes in the satck. They are related to the data of the

supergravity solution by

`(a) =

p̂∑
b=1

N̂ (b)

[ ∞∑
n=0

f(δ̂b − δa − 2nt)−
∞∑
n=1

f(−δ̂b + δa − 2nt)

]
,

ˆ̀(b) = −
p∑
a=1

N (a)

[ ∞∑
n=1

f(−δ̂b + δa − 2nt)−
∞∑
n=0

f(δ̂b − δa − 2nt)

]
.

(D.4)

35For D5s, this is the number of D3s ending on its left minus the number of D3s ending on its right. For

NS5s it is the opposite number.
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with f(x) = 2
π arctan(ex). Finally the paramter N is identified with the D3 flux going

through the annulus with

N =

p∑
a=1

p̂∑
b=1

N (a)N̂ (b)
∞∑
n=1

n
[
f(δ̂b − δa − 2nt) + f(δa − δ̂b − 2nt)

]
. (D.5)

Changes of gauge affect the above formulas. They correspond to moving five-brane

stacks around the x3 circle in the flat brane picture. The basics moves are

(`1, `2, · · · , `k) → (`2, · · · , `k, `1 − k̂)

(ˆ̀
1, ˆ̀

2, · · · , ˆ̀̂
k) → (ˆ̀

1 − 1, ˆ̀
2 − 1, · · · , ˆ̀̂

k − 1)

N → N + k̂ − `1 ,

(D.6)

and
(`1, `2, · · · , `k) → (`1 − 1, `2 − 1, · · · , `k − 1)

(ˆ̀
1, ˆ̀

2, · · · , ˆ̀̂
k) → (ˆ̀

2, · · · , ˆ̀̂
k,

ˆ̀
1 − k)

N → N + k − ˆ̀
1 ,

(D.7)

as well as the reverse moves.

E Equivalence of S3 partition functions

The matrix model computing the three-sphere partition function of the initial theory

U(N)M̂+1 with M fundamental in one node is, after some simplification,

Z =

∫ M̂+1∏
a=1

dNσ(a)

N !

∏
i<j

sh2(σ
(a)
ij )

 M̂∏
a=1

1∏
i,j ch(σ

(a)
i − σ

(a+1)
j )

1∏
i ch(σ

(1)
i )M

N !e2πiσ(M̂+1).σ(1)∏
i<j sh(σ

(M̂+1)
ij )

∏
i<j sh(σ

(1)
ij )

,

(E.1)

with the notation σij = σi−σj , σ.σ̃ =
∑N

i=1 σiσ̃i. The standard trick to simplify the matrix

model expression is to use the Cauchy identity∏
i<j sh(σij)

∏
i<j sh(σ̃ij)∏

ij ch(σi − σ̃j)
=
∑
ρ∈SN

(−1)ρ∏
i ch(σi − σ̃ρ(i))

. (E.2)

After simplifications we end up with

Z =

∫ M̂+1∏
a=1

dNσ(a) 1

N !

∑
ρ∈SN

(−1)ρ
e2πiσ(M̂+1).σ

(1)
ρ∏

i ch(σ
(1)
i )M

M̂∏
a=1

1∏
i ch(σ

(a)
i − σ

(a+1)
i )

. (E.3)

Using the identity
1

ch(y)
=

∫
dx
e2πixy

ch(x)
, (E.4)
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one can reach the following form of the matrix model

Z =

∫
dNσ

1

N !

∑
ρ∈SN

(−1)ρ
e2πiσ.σρ∏

i ch(σi)M+M̂
, (E.5)

corresponding to the matrix model of the pure D5 dual theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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