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1 Introduction

Spacetimes obtained as solutions to classical general relativity contain many types of sin-

gularities — timelike, null and spacelike. Some lurk behind event horizons while others

such as bangs and crunches present themselves upfront. Recently singularities, called fire-

walls, were claimed to emerge in places, for example near black hole horizons, where they

seem absent within the classical approximation. One may expect that the deadlier ones

will be healed in a quantum theory of gravity such as string theory and indeed some time

like singularities have been resolved. One is even willing to entertain the idea that in a

quantum theory one may coexist with some classes of space like singularities [1–4]. The

framework of AdS/CFT and the accompanying bag of tools from QFT has helped make the

study of some of these cases more precise. In the context of black hole physics this enabled

to test some aspects of the firewall suggestion. It was noted on the bulk side that a new

very large time scale emerged, one which is associated with the growth of the volume of

the Einstein-Rosen bridge in the interior of an eternal black-hole in AdS. It grows mostly

linearly in time for a period exp(S), where S is the entropy of the system. This among

other considerations led to the conjecture that it is related on the boundary Quantum Field

Theory to a concept borrowed from quantum information theory-Quantum Complexity.

This recently added item to the dictionary of the holographic correspondence between

bulk and boundary is far from being defined sharply enough in either the Quantum Field

Theory or the bulk system. Complexity of a quantum state, somewhat loosely, is a measure

of how difficult it is to obtain that state starting from a reference state and acting on it

with a small number of quantum operators belonging to a pre-defined set. Up to now

there exists neither a universal definition of complexity nor a complete study of its possible

universality classes. Nevertheless some universal properties are believed to be satisfied

by this notion. In particular complexity is generically expected to continue to grow long

after the maximum entropy S of the system is reached at a time which is of polynomial

order in S. It is suggested [5, 6] by some to have a long period of linear growth until it

saturates at a maximum value of the order of exp(S), this by a time which itself is also

of the order of exp(S). We remark that the claim for the existence of a maximum value
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of the complexity resides in the attempt to reconcile the continuous structure of the space

of all quantum states with the manner by which each such state is reached by a discrete

and finite number of prescribed operations. This is done by assigning an arbitrary required

accuracy for declaring a particular approximation of the target state as successful. Without

such a cutoff the complexity defined in this way has no upper bound. Some authors, [5]

and references therein, have been flirting on and off with considering metrics and geodesics

on the space of states with which the system would have a universal maximum complexity,

however at this stage neither this nor a dynamical cutoff were identified. The need for

an arbitrary cutoff has not been removed and the states of a Quantum Field Theory have

indeed a maximum complexity for given values of the entropy and the cutoff. For other

recent developments on the definition of complexity in QFT see [9–12].

There are presently two suggestions, each with its own motivation, as to what the

complexity of a quantum boundary state should be given by in the bulk. One is that is

should be, up to some proportionality coefficient, the volume of the maximal spatial surface

extending into the bulk and terminating on the boundary at the spacial slice on which the

boundary quantum state is defined [6]. This is referred as the complexity proportional to

volume (C ∝ V) conjecture.
The other is [7, 8] is that the complexity is proportional to the classical value of the

action in a WdW patch. The so called (C ∝ A) conjecture. One takes the spatial slice on

the boundary on which the state is defined. Then one considers the union of all possible

spatial slices which extend into the bulk and terminates on the same spatial slice at the

boundary. The union forms a sub-set of the bulk called the Wheeler-de Witt (WdW) patch.

The Einstein-Hilbert (EH) action evaluated on this patch, with the inclusion of the proper

York-Gibbons-Hawking (YGH) boundary term, is conjectured to be proportional to the

complexity. The spatial slice of maximal volume considered for the C ∝ V conjecture is

contained in the WdW patch but now it does not play any preferential role with respect to

the others. Be the complexity of a state what it may be on the boundary CFT and be the

corresponding bulk quantity what it may be for the purpose of the study of singularities it

is one of its features, its time dependence, that is proposed as a diagnostic tool on its own.

It is on the universal features of this quantity that we focus on in this paper.

Based on examples [7, 8] it is argued that as long as the complexity of a state increases

in a black hole context no singularity is encountered. In addition it is claimed that this

result is robust and remains valid when small perturbations are added to fine tuned states

such as the thermofield double [13]. On the other hand if the complexity does decrease in

time the state may well encounter a singularity that one could associate with the formation

of a firewall like obstacle. However this evolution is claimed, on the basis of examples, not

to be robust, once small perturbations are added to such a system the potential formation

of a firewall type singularity is delayed for at least a time of the order exp(S). There are

other circumstances in which the complexity is expected to decrease [14]. The Poincare

recurrences which occur in QFTs, when they obey certain conditions, after the passage very

large times of order exp(exp(S)), bring down the complexity with them. This decrease need

not signal necessarily an approach to a singular configuration. This decay is indeed not

robust itself but once one decides on what the Hamiltonian and the state are these decays

will occur again and again with Poincare time intervals.
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In addition to the black hole case it was found, using the C ∝ V conjecture, that the

complexity does decrease as the system approaches some pre-engineered classes of time

dependent singularities [17]. These are intriguing singularities of the type one may be

able to coexist with. This result could be expected and is robust for BKL [15, 16] type

singularities but the generality of this feature is less clear and was obtained using the

extremal volume prescription to calculate the complexity.

Given the scarcity of the present knowledge on the nature of these singularities we

explore here if this feature depends on the well motivated, but particular, bulk quantity

which was conjectured to be associated with the QFT complexity. In this work we obtain

the complexity by using the C ∝ A prescription. This way of evaluating the complexity

presents its own challenges. The work will be largely of a technical nature. The result that

we find is qualitatively similar the one obtained with the C ∝ V , in particular complexity

always decreases toward the crunch. The quantitative details and in particular the specific

form of time-dependence of the complexity are instead different.

Complexity is a UV divergent quantity so its regularization is necessary, as we discussed

it is after the time dependence of the complexity that we are after. Both the C ∝ V and

C ∝ A conjectures are sensitive to this divergence and a way to deal with it is to introduce

a UV cutoff close to the boundary. For the C ∝ A there is computational difficulty.

The boundary of the WdW patch is a light-like sub-manifold with joints. Both issues,

being light-like and having joints, means that the YGH boundary term must be properly

defined. This problem has been recently discussed in [18–20]. For the present paper we

take a different approach to this problem (see also [8, 21]). Since we have anyhow to UV

regularize the WdW patch, we use this opportunity to introduce a particular regularization

that makes the WdW boundary time-like and also smooths-out the joints. In this way we

can compute the YGH term with no ambiguities.

There are two distinct types of time-dependent backgrounds. For the first type time

dependence is explicit in the UV part of the metric. This case corresponds to some time

dependent marginal operator in the dual field theory. The Kasner metric and the topolog-

ical crunch are two examples of this type and we will study them in detail. In those cases

also in the UV divergent part of the complexity is time-dependent. For the second class

the UV metric has no explicit time dependence but the whole bulk metric does. The de

Sitter crunch model is the specific example of this type that we will consider here. In those

last cases the divergent piece of the complexity is free from any time dependence and the

time derivative of the complexity is a finite quantity.

The paper is organized as follows. In section 2 we consider the cases of time dependence

on the boundary. In section 3 we consider the bulk time dependence. We conclude in

section 4.

2 Time dependence in the boundary metric: Kasner and Topological

crunch

In this section we perform a comparative calculation and study of the complexity and its

time dependence as obtained according to two of its different bulk definitions. This for
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two cases engineered in such a way that the world volume of the boundary theory itself is

singular. For each definition and each class of metrics we obtain the leading and next to

leading terms. The result will coincide with those of [17] for the leading term when the

volume prescription is adopted, this for both types of metrics.

We do this by studying two cases in which the metric on the world-volume of the dual

field theory has the form

ds2 =
L2

z2
(
−dt2 + dz2 + hij(t, x)dxidxj

)
(2.1)

with i, j = 1, . . . , d. The UV boundary is set at z = 0 and the world-volume frame where the

CFT is realized is ds2CFT = −dt2+hij(t, x)dxidxj . All cases we consider satisfy everywhere

R− 2Λ = −2(d+ 1)

L2
(2.2)

where Λ = −d(d+1)
2L2 is the cosmological constant. This is true whenever the world-volume

frame is Ricci flat.

The first specific example is that of the Kasner metric. The Kasner metric is of the

form (2.1) with

hij(t, x) = diag

((
t

l

)2p1

, . . . ,

(
t

l

)2pd
)

(2.3)

with the relation ∑

i

pi =
∑

i

p2i = 1 . (2.4)

and l is a dimensional scale. The second specific example is that of the so called topological

crunch. The topological crunch, close to the boundary, is of the form (2.1) with

hij(t, x)dxidxj = l2
(
dΩ2

d−1 + cos2
(
t

l

)
dφ2

)
. (2.5)

Both the Kasner metric and that of the topological crunch satify (2.2). The crunch happens

when the CFT world-volume goes to zero, and this is t = 0 for Kasner and t = ±lπ2 for the

topological crunch case. The latter is called topological because locally the metric (2.1)

with (2.5) is always the same as AdSd+2. We will perform the computations using the

generic form (2.1) and then adapt to the specific cases at the end.

Complexity, in any of its forms, has always a divergent term that is due to the contri-

bution coming from close to the UV boundary. This can be regularized by introducing a

UV cutoff ΛUV related to a minimal value of the z coordinate

ΛUV =
1

zUV
. (2.6)

The first definition of complexity is C ∝ V where V is the spatial slice with maximal

volume whose boundary is at a fixed time t = t∗. We consider any possible spatial slice

defined by

t = f(z, xi) (2.7)

– 4 –



J
H
E
P
0
6
(
2
0
1
8
)
0
1
6

with the property

lim
z→0

f(z, xi) = t∗, ∀xi . (2.8)

Since the spaces we are considering are homogeneous in xi, we can always restrict to the

case ∂if = 0 everywhere, so from now on we take f(z) to be just a function of z. The

induced metric on this space slice is

ds2 =
L2

z2
(
(1− (∂zf)

2)dz2 + hij(f, x)dxidxj
)

(2.9)

and the space volume is then

V =

∫
dzdVx

Ld+1

zd+1

√
(1− (∂zf)2) h(f(z), x) (2.10)

where we indicate

dVx = dx1 . . . dxd and h(t, x) = dethij(t, x) . (2.11)

The expansion of the metric determinant is

h(t, x) ≃ h(t∗, x) + (t− t∗)h(t∗, x)hij(t∗, x)∂thij(t
∗, x) + . . . (2.12)

Note that for spaces homogeneous in x the quantity hij(t, x)∂thij(t, x) does not depend on

x so we will denote it simply as hij∂thij(t).

The Euler-Lagrange equation for f(z), after some simplification, becomes

∂2
zf =

(
1− (∂zf)

2
)((1 + d)∂zf

z
− 1

2
hij∂thij(f(z))

)
(2.13)

By expanding near z = 0 and solving the equation in a power series of z we find that f(z)

goes to t∗ with zero derivative

f(z) = t∗ + α(t∗)z2 + . . . . (2.14)

The space volume is dominated by the following UV divergent term:

V ≃
∫

1/ΛUV

dz

∫
dVx

Ld+1

zd+1

√
h(t∗, x)

≃ Λd
UVL

d+1

d

∫
dVx

√
h(t∗, x) . (2.15)

Note that the leading divergence is proportional to Λd
UV and does not depend on α(t∗)

or any of the sub-leading terms in the expansion of (2.14). Note also that this term is

proportional to the boundary space volume
∫
dVx

√
h(t∗, x) and this is what provides the

dependence with respect to anchored time t∗.

We next turn to the sub-leading divergencies which are affected by the coefficient α(t∗)

in (2.14). Continuing the power expansion of the equation (2.13) it can be found, for d > 1

α(t∗) =
hij∂thij(t

∗)

4d
. (2.16)
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Note that α(t∗) is uniquely determined once the first constant of integration t∗ is decided.

The second constant of integration appears at orders higher than z2 in the power expansion

for f(z). The sub-leading divergent term of the volume depends only on α(t∗) and is

V = O(Λd
UV) + Λd−2

UV

Ld+1(d− 1)(hij∂thij(t
∗))2

8d2(d− 2)

∫
dVx

√
h(t∗, x) + . . . (2.17)

where O(Λd
UV) is the leading term (2.15) while the sub-leading term is of order O(Λd−2

UV ).

Sub-leading divergent terms are present whenever hij∂thij 6= 0.

For the case of the Kasner metric we have
∫

dVx

√
h(t∗, x) =

V t

l
(2.18)

where V is an IR cutoff for the spatial volume in xi. Moreover for the Kasner metric we

have hij∂thij =
2
t . The volume is then

V = Λd
UV

Ld+1V t

dl
+ Λd−2

UV

Ld+1(d− 1)V

2d2(d− 2)lt
+ . . . (2.19)

For the leading divergence we recover the result of [17]. Note that the leading order

divergent term is linear in t and it is decreasing in time till it would have vanished at

the singularity t → 0. The validity of the approximation breaks down as one reaches

to Planckian and string scale distances tUV ≃ 1
ΛUV

. This is also the time by which the

sub-leading divergent term becomes of the same order of the leading one. The complexity

decreases at a rate linear in time as long as the approximation is valid. A linear dependence

of the complexity on time was obtained in the eternal black hole case among other ones [6,

7], although in the latter case it was for a non-divergent piece of the complexity. In the

Kasner case the linear dependence follows directly from the relation (2.4) and is not a

universal feature as we are going to see next.

For the specific case of the topological crunch we have

∫
dVx

√
h(t∗, x) = 2πldVSd cos

(
t

l

)
(2.20)

and hij∂thij = −2
l tan

(
t
l

)
. The volume is then

V = Λd
UV

Ld+12πldVSd cos
(
t
l

)

d
+ Λd−2

UV

Ld+1π(d− 1)ldVSd sin2
(
t
l

)

d2(d− 2)l2 cos
(
t
l

) + . . . (2.21)

For the leading divergence we again recover the result of [17]. As in the Kasner metric case

the complexity vanishes towards and close to the crunch, but the time dependence is no

longer linear in this case. The considerations to be applied in constraining the proximity

of the time to the singularity while retaining the validity of the approximation are similar

to those presented for the Kasner metrics.

We will now spend a moment on an issue of the C ∝ V not discussed previously.

When we have only one boundary for the CFT frame, a quantum state is defined once

– 6 –
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Figure 1. Solutions to the maximal volume equation (2.13) for the case of the Kasner metric for

d = 2 and t∗ = 1.

we specify one number, the time t∗ when we take the spatial slice. The maximal volume

equation (2.13) on the other hand is a second order differential equation and needs two

conditions to select a particular volume that extends in the bulk. This second boundary

condition, for d > 1, appears in the expansion (2.14) to higher order than O(z2), so it does

not affect either the leading (2.15) or the sub-leading (2.17) divergences of the volume.

Nevertheless, if we want to make sense of the C ∝ V conjecture we need to specify this

condition and select one particular volume. If we take hij constant, the generic solution

of (2.13) with f(0) = t∗ is

f(z) = t∗ + zψ
(
βzd+1

)
= t∗ +

1

d+ 2
βzd+2 + . . . (2.22)

where ψ is some known function expressed in terms of an hypergeometric function and β is

the second integration constant which appears only at order zd+2 in the expansion. All of

those solutions are locally maximal volume surfaces and the union of all of them gives the

WdW patch. If we want to select a particular one, in order to associate it to the complexity

of the boundary state, a natural choice would be the constant solution, β = 0, equal to

t∗ everywhere. When hij depends of time this choice becomes less obvious. Let’s take for

example the case of Kasner and we plot in figure 1 various solutions of the maximal volume

equation (2.13) with f(0) = t∗. As before the union of all the solutions gives the WdW

patch. All solutions, save one, become asymptotically null at large z like f(z) = z + const

or f(z) = −z + const. The special one that divides the two types of solutions is a natural

candidate to be associated at the boundary state. Its slope at z → ∞ in neither 1 nor

−1 and in general depends on the anchored time t∗. For the purpose of the present paper

this is not an urgent issue since all those solutions share the same quadratic expansion and

thus have the same leading and sub-leading divergences. So we will not discuss this issue

any further here.

We now turn to obtain the complexity as given by the definition C ∝ A where A is the

action of the WdW patch anchored at t = t∗ on the UV boundary. We need to regularize

the action and to this end we smoothen-out the boundary of the patch. Our choice is to

– 7 –
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WdW patch

t

t∗
z

1

ΛUV

Figure 2. Regularization of the WdW patch.

take, as in figure 2, the region of space-time delimited by the following hyperbole

z2 − (t− t∗)2 =
1

Λ2
UV

. (2.23)

As ΛUV → ∞ we recover the full WdW patch. This regularization achieves two goals simul-

taneously. First it regularize the UV divergence. Second the boundary of the regularized

patch is now a smooth time-like boundary with no joints: this allows the computation of

the boundary gravitation action without any ambiguities.

The total action is given by the Einstein-Hilbert (EH) term with the cosmological

constant plus the boundary York-Gibbons-Hawking (YGH) term

A = AEH +AYGH

=
1

16πG

∫

WdW

√−g (R− 2Λ) +
ǫ

8πG

∫

∂WdW

√
|γ|K (2.24)

where ǫ = ±1 according if the boundary is time-like or space-like. The boundary of the

WdW is a null hypersurface, but we will consider it as a limit of a time-like submani-

fold (2.23). So from now on we will assume ǫ = +1 and |γ| = −γ.

The EH term evaluated on the regularized patch is

AEH =
1

16πG

∫
dt

∫ ∞
√

1+Λ2
UV

(t−t∗)2

ΛUV

dz

∫
dVx

Ld+2

zd+2

√
h(t, x)(R− 2Λ)

=
1

16πG

∫
dt

∫
dVx

Ld+2Λd+1
UV

(d+ 1)
(
1 + Λ2

UV(t− t∗)2
) d+1

2

√
h(t, x)(R− 2Λ) (2.25)

We are interested in capturing the dominant divergent piece of the action. So we take g to

be equal to its boundary value at t = t∗:

AEH ≃ − 1

8πG

Λd
UVL

d√πΓ
(
d
2

)

Γ
(
d+1
2

)
∫

dVx

√
h(t∗, x) . (2.26)
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Note that this term is proportional to the boundary space volume and the divergence is

proportional to Λd
UV. The sign of AEH is negative because of the sign of R − 2Λ , but it

will be overcome by the boundary term which turns out to be positive. To see to the final

answer the reader can go directly to (2.35) and (2.36). In the following we present the

technical details needed for obtaining AYGH.

We need to compute some useful geometrical quantities before the evaluation of the

boundary YGH action. The components of the connection we will use later are:

Γz
zz = −1

z
, Γt

zt = Γt
tz = Γz

tt = −1

z
, Γz

ij =
1

z
hij , Γt

ij =
1

2
∂thij . (2.27)

The boundary (2.23) is a time-like sub-manifold and we can choose to parameterize it with

the coordinates xa : t, xi. It is defined by the following embedding:

xa : (t, xi) −→ xµ :

(
t, z =

1

ΛUV

√
1 + Λ2

UV(t− t∗)2, xi

)
. (2.28)

The Jacobian of the embedding eµa = ∂xµ

∂xa is

ett = 1 ezt =
ΛUV(t− t∗)√

1 + Λ2
UV(t− t∗)2

eit = 0

etj = 0 ezj = 0 eij = δij . (2.29)

The induced metric γab on the boundary manifold xa is

ds2 =
L2

z2

(
− 1

(t− t∗)2Λ2
UV + 1

dt2 + hij(t, x)dxidxj

)
. (2.30)

The outward unit normal is

nt =
LΛ2

UV(t− t∗)√
1 + Λ2

UV(t− t∗)2
nz = −LΛUV (2.31)

with eµanµ = 0 and nµnµ = 1. The final result will not depend on the specific way nµ is

extended outside the boundary. The covariant derivative is ∇µnν = ∂µnν −Γρ
µνnρ, and the

components are

∇tnt = ∂tnt +
nz

z
∇znt = ∇tnz =

nt

z

∇znz =
nz

z
∇inj = −1

2
∂thijnt −

1

z
hijnz . (2.32)

We can now compute the extrinsic scalar curvature of the boundary sub-manifold

K = γabeµae
ν
b∇µnν

=
1

L

(
d− 1

2
hij∂thij(t− t∗)

)√
1 + (t− t∗)2Λ2

UV . (2.33)
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The YGH boundary term is then

AYGH =
1

8πG

∫
dt

∫
dVx

Ld+1Λd+1
UV(

(t− t∗)2Λ2
UV + 1

) d
2
+1

√
h(t, x)K . (2.34)

As before, to extract the dominant divergent term we take g to be equal to its boundary

value at t = t∗:

AYGH ≃ 1

8πG

∫
ds

LdΛd+1
UV d

(
s2Λ2

UV + 1
) d+1

2

∫
dVx

√
h(t∗, x)

≃ 1

8πG

LdΛd
UVd

√
πΓ

(
d
2

)

Γ
(
d+1
2

)
∫

dVx

√
h(t∗, x) . (2.35)

The final result for the dominant divergent term of the action is then the sum of (2.26)

and (2.35):

A ≃ LdΛd
UV

8πG

√
πΓ

(
d
2

)
(d− 1)

Γ
(
d+1
2

)
∫

dVx

√
h(t∗, x) . (2.36)

The coefficient is always positive for d > 1 despite the EH being negative, the positive

YGH term is always the dominant contribution. The result for the leading UV divergence

of the complexity is thus the same obtained for the C ∝ V in (2.15). In both cases the

complexity decreases towards the singularity in the region of validity of the approximation.

We next study the sub-leading divergences. For this we need the expansion of the

metric determinant up to the second order around t∗

h(t, x) ≃ h(t∗, x)

(
1 + (t− t∗)H1(t) +

1

2
(t− t∗)2H2(t) + . . .

)
(2.37)

where H1(t) and H2(t) are given by

H1(t) = hij∂thij , H2(t) = hij∂2
t hij − hjl∂thlkh

ki∂thij +H2
1 . (2.38)

The expansion for the EH terms (2.25) gives

AEH ≃ O
(
Λd
UV

)
− LdΛd−2

UV

128πG

√
πΓ

(
d
2 − 1

)

Γ
(
d+1
2

)
(
2H2 −H2

1

) ∫
dVx

√
h(t∗, x) (2.39)

where O(Λd
UV) is the leading term (2.26). The expansion for the YGH terms (2.34) gives

AYGH ≃ O
(
Λd
UV

)
+

LdΛd−2
UV

128πG

√
πΓ

(
d
2 − 1

)

Γ
(
d+1
2

)
(
2dH2 − (d+ 2)H2

1

) ∫
dVx

√
dethij(t∗, x)

(2.40)

where O(Λd
UV) is the leading term (2.35). The final result is

A ≃ O
(
Λd
UV

)
+

LdΛd−2
UV

128πG

√
πΓ

(
d
2 − 1

)

Γ
(
d+1
2

)
(
2(d− 1)H2 − (d+ 1)H2

1

) ∫
dVx

√
dethij(t∗, x)

(2.41)

where O(Λd
UV) is the leading term (2.36).
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For the Kasner metric H1 =
2
t , H2 =

2
t2

and the action is then

A ≃ LdΛd
UVV t

8πGl

√
πΓ

(
d
2

)
(d− 1)

Γ
(
d+1
2

) − LdΛd−2
UV V

16πGlt

√
πΓ

(
d
2 − 1

)

Γ
(
d+1
2

) . (2.42)

In this case, due to the fact that
√
h is linear in t, we essentially recover the same result

we had for the volume prescription (2.19). For the case of topological crunch instead we

see some difference in the subleading divergence because
√
h is not linear in time. In the

latter case we have H1 = −2
l tan

(
t
l

)
, H2 =

2
l2

(
tan2

(
t
l

)
− 1

)
and the action is

A ≃ LdΛd
UVl

dVSd cos
(
t
l

)

4G

√
πΓ

(
d
2

)
(d− 1)

Γ
(
d+1
2

) +

−LdΛd−2
UV ld−2VSd cos

(
t
l

) (
2 tan2

(
t
l

)
+ d− 1

)

16G

√
πΓ

(
d
2 − 1

)

Γ
(
d+1
2

) . (2.43)

We see that the subleading divergence is different from the one obtained with the volume

prescription (2.21).

In the next part of the paper we will test if the result we have found in this section,

that the main features of the complexity for space like singularities, are independent on

the choice among the two bulk prescriptions, is valid also for the de Sitter case.

3 Time dependence in the bulk: De Sitter crunch

We next turn to cases in which a Big Crunch occurs semi-classically in the bulk. This

can be represented by either a boundary theory, with particular time dependent relevant

deformations, living on a time independent world volume which exists for only a finite time

(denoted EF) or by a conformally related time independent boundary system living on an

expanding de Sitter world volume (denoted by dSF). This duality was studied in [1, 3]. In

this case the time derivative of the complexity is a finite quantity, both for the volume and

the action prescriptions. It does not depend on the UV regularization.

We first make a more generic analysis in the absence of divergent terms in the time

derivative of the complexity. Consider a metric is of the form

ds2 =
L2

z2
(
dz2 + hµν(t, x)dx

µdxν
)

(3.1)

with µ, ν = 0, 1, . . . , d and the UV boundary is at z = 0. The expansion of the metric near

the boundary is in general of the following form

hµν = h(0)µν + z2h(2)µν + · · ·+ zdh(d)µν + zd log z2h(d)µν + . . . (3.2)

For the EF case one has h
(0)
µν equal to the EF metric and the entire time dependence is

due to a domain wall moving in the bulk. We thus consider the case in which h
(0)
µν is static

while sub-leading terms in the expansion (3.2) may contain information about the time
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dependence. Let’s assume for generality that h
(2k)
µν (t, x) is the first term to contain a time

dependence, then the contribution to the complexity from the term (2.41) is

A ≃ O
(
Λd
UV

)
+O

(
Λd−4k
UV

)(
∂th

(2k)
)2

(3.3)

So, for small enough dimension d < 5 we do not have any divergent terms.1 In this case

to compute the time dependence of the complexity, which is a finite term, we have to

consider the full metric and also the precise shape of the WdW patch; considering only the

asymptotic form of the metric close to the UV is not enough. This leads us to perform the

computations on a case-by-case basis.

We now consider in detail the de Sitter crunch in the case that the thin wall ap-

proximation is valid. This occurs when the boundary field theory in its dSF coordinates

contains a negative relevant operator whose coefficient is much larger than its expansion

rate [1, 3]. The metric in the UV is AdS+ with curvature length l+ = 1 which we fix to

one for convenience

ds2 = dρ2 + sinh2 (ρ)
(
−dτ2 + cosh2 (τ)dΩ2

d

)
(3.4)

This is valid for ρ > ρW where ρW is the position of the domain wall. The metric on the

other side of the wall ρ < ρW is AdS− with a smaller curvature length l− < 1. In order

to match the two metrics at the same value of ρ we need to perform some rescaling of the

standard form. The expression for the interior metric is

ds2 = l2−α
2dρ2 + l2− sinh2 (αρ)

(
−dτ2 + cosh2 (τ)dΩ2

d

)
(3.5)

with

α =
1

ρW
arcsinh

(
sinh (ρW )

l−

)
> 1 (3.6)

This is valid for ρ < ρW . In this coordinate choice the two metrics are patched so that

they are continuous at ρ = ρW . The position of the wall ρW is constant in the time τ .

In the dual field theory this correspond to an RG flow between two different CFT’s. The

limit we are discussing is that of the thin-wall approximation.

Now we focus on the exterior region, the one that extends to the UV. By changing

coordinates to

r = sinh (ρ) cosh (τ) cos (t) =
cosh (ρ)√

1 + sinh2 (ρ) cosh2 (τ)
(3.7)

the metric (3.4) becomes

ds2 =
dr2

(1 + r2)
−
(
1 + r2

)
dt2 + r2dΩ2

d (3.8)

1Rember that d is the number of space dimensions on the boundary, for example d = 3 for AdS5. For

d ≥ 5, so from AdS7 onward, a bulk time dependence of the metric can in general provide a time-dependent

divergent piece in the action trough its tail at z → 0. We will not consider those cases in the present paper.
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and the wall is not static but follows the trajectory

r(t)W =

(
cosh2 (ρW )

cos2 (t)
− 1

) 1
2

(3.9)

At the time t → π
2 where r(t)W → ∞ we have a bulk crunch. We will work in this EF

frame where the metric does not depend on time, although it exists only for a finite time,

and the bulk crunch is visible on the boundary. Note that the metric time dependence is

only through the wall trajectory. In the UV the metric is constant.

We then have consider the interior part AdS− with L = l−. We first rewrite (3.5) the

metric as

ds2 = l2−
(
dρ̃2 + sinh2 (ρ̃)

(
−dτ2 + cosh2 (τ)dΩ2

d

))
(3.10)

where

ρ̃ = αρ (3.11)

The domain wall is then at ρ̃W = αρW . Then we change coordinates to

r̃ = sinh (ρ̃) cosh (τ) cos
(
t̃
)
=

cosh (ρ̃)√
1 + sinh2 (ρ̃) cosh2 (τ)

(3.12)

and the metric becomes

ds2 = l2−

(
dr̃2

1 + r̃2
−
(
1 + r̃2

)
dt̃2 + r̃2dΩ2

d

)
(3.13)

The wall trajectory is these coordinates is

r̃(t̃)W =

(
cosh2 (αρW )

cos2
(
t̃
) − 1

) 1
2

(3.14)

The metric is AdS− in the region r̃ ≤ r̃(t̃)W . The crunch is at t̃ → π
2 where r̃(t̃)W → ∞.

In what follows we will use two different coordinate systems: for the exterior (3.8)

and for the interior (3.13). The two patches are connected at the wall trajectory which is

different in the two coordinates systems, respectively (3.9) and (3.14). This is the price we

pay in order to have the two metrics writen in a simple form. When passing from one patch

to the other we have to change also coordinates. A point on the domain wall in AdS+ at

time t and radius r(t)W in the AdS− patch will be seen at time and radius

t̃ = arccos


 cos (t) cosh (αρW )√

cos2 (t) + sinh (αρW )
sinh (ρW )

(
cosh2 (ρW )− cos2 (t)

)


 , r̃ =

r

l−
. (3.15)

We work in the thin wall approximation. In general we can construct a wall with

a scalar field and a suitable potential with two minima, the values at the two minima

correspond to the cosmological constant at the two sides of the wall. We can then scale

the microscopic parameters and send the wall thickness to zero while keeping the tension

fixed. Assuming that the curvature in the middle of the wall remains of the same order
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of the cosmological constants, the thin wall limit allows us to neglect the terms from the

action coming from the wall itself.

The space volume anchored at t = t∗ in the UV part is

V+ =

∫ ΛUV

rW (t∗)
dr

rd√
1 + r2

VSd (3.16)

The space volume anchored at t∗(t∗) (the relation is given by (3.15)) in the IR part is

V− =

∫ r̃W (t∗)

0
dr

ld+1
− rd√
1 + r2

VSd (3.17)

The total volume is then

V = V+ + V− = VSd

(
ld+1
−

∫ r̃W (t∗)

0
dr

rd√
1 + r2

+

∫ ΛUV

rW (t∗)
dr

rd√
1 + r2

)
(3.18)

The derivative with respect to t∗ is free from UV divergence and, using (3.15), it becomes

dV
dt∗

= VSd

drW
dt

rW (t∗)d


 1√

1 + rW (t∗)2/l2−

− 1√
1 + rW (t∗)2


 (3.19)

This is always negative for l− < 1 and t > 0 which means that complexity(volume) is

decreasing going toward the crunch. For t∗ → π
2 we have

dV
dt∗

= VSd

coshd (ρw)(−1 + l−)(
π
2 − t∗

)d+1
(3.20)

which is negative and becomes larger and larger close to the crunch as ∝ 1

(π
2
−t∗)

d+1 .

We now calculate the Complexity using the WdW prescription. For this task it is

convenient to change again coordinates

r = cot(z) (3.21)

with 0 ≤ z ≤ π
2 . The metric (3.8) becomes

ds2 =
(
1 + cot2(z)

)(
−dt2 + dz2 +

cot2(z)

1 + cot2(z)
dΩ2

d

)
(3.22)

The domain wall trajectory is

zW (t) =
π

2
− arctan r(t)W (3.23)

Close to the crunch

zW (t) ≃
π
2 − t

cosh (ρW )
(3.24)

In these coordinates the WdW patch is delimited by

z = |t− t∗| (3.25)
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B

A

t

z

t∗zW (t)

AdS+

Figure 3. The region AdS+ enclosed between the UV boundary and the wall trajectory. We also

show the WdW patch anchored at t∗ enclosed in this region and the intersections zA(t
∗) and zB(t

∗).

Intersection with the domain wall trajectory is at (tA(t
∗), zA(t

∗)) and (tB(t
∗), zB(t

∗)) with

tB(t
∗) > tA(t

∗) and

zA(t
∗) > zB(t

∗) for t∗ > 0 (3.26)

In general we cannot solve analytically for zA(t
∗) and zB(t

∗). Close to the crunch the two

intersections are

tA(t
∗) ≃ cosh (ρW )t∗ − π

2

cosh (ρW )− 1
zA(t

∗) ≃
π
2 − t∗

cosh (ρW )− 1

tB(t
∗) ≃ cosh (ρW )t∗ + π

2

cosh (ρW ) + 1
zB(t

∗) ≃
π
2 − t∗

cosh (ρW ) + 1
(3.27)

The geometry of AdS+ with the WdW patch is pictured in figure 3.

Now we compute the action of the WdW patch anchored at the UV boundary t∗. The

EH term is

AEH+ =
1

16πG

∫

WdW

√−g(R− 2Λ)

= −(d+ 1)VSd

8πG

∫ tB

tA

dt

∫ zW (t)

|t−t∗|
dz cotd(z)

(
1 + cot2(z)

)
(3.28)

where we used R− 2Λ = −2(d+ 1). The derivative with respect to t∗ is

dAEH+

dt∗
=

VSd

8πG

(
cotd+1(zB)− cotd+1(zA)

)
(3.29)

The boundary YGH term is obtained next . The metric (3.41) is

ds2 = g(z)
(
−dt2 + dz2

)
+ f(z)hij(x)dx

idxj (3.30)

with

g(z) = 1 + cot2(z) f(z) = cot2(z) (3.31)
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and hij the metric of Sd. The component of the connection of the metric that we need are:

Γz
zz =

g′(z)

2g(z)
Γt
zt = Γt

tz = Γz
tt =

g′(z)

2g(z)
Γz
ij = − f ′(z)

2g(z)
hij . (3.32)

We use the same time-like hyperboloid as before and then send the cutoff to infinity to

obtain the light-like boundary of WdW. The boundary is defined by (2.28). The induced

metric γab on xa is

ds2 = − g(z)

(t− t∗)2Λ2
UV + 1

dt2 + f(z)hij(t, x)dxidxj (3.33)

The Jacobian of the embedding eµa = ∂xµ

∂xa is the same as in (2.29). The outward unit

normal is

nt =
√

g(z)ΛUV(t− t∗) nz = −
√
g(z)

(
1 + Λ2

UV(t− t∗)2
)
. (3.34)

The components of the covariant derivative different from zero are

∇tnt = ∂tnt −
g′(z)

2g(z)
nz ∇znt = ∂znt −

g′(z)

2g(z)
nt

∇tnz = ∂tnz −
g′(z)

2g(z)
nt ∇znz = ∂znz −

g′(z)

2g(z)
nz

∇inj =
f ′(z)

2g(z)
hijnz (3.35)

and the extrinsic curvature is then

K = γabeµae
ν
b∇µnν = − ΛUV

g(z)
1
2

− dzΛUVf
′(z)

2f(z)g(z)
1
2

− ΛUVzg
′(z)

2g(z)
3
2

. (3.36)

Putting all these together allows to be obtain the YGH boundary term:

AYGH+ =
1

8πG

∫

∂WdW

√−γK

=
VSd

8πG

∫
dt

g(z)
1
2 f(z)

d
2

(
(t− t∗)2Λ2

UV + 1
) 1

2

K (3.37)

The terms is simplified by removing the cutoff, that is sending ΛUV → ∞

AYGH+ = − VSd

16πG

∫ tB

tA

dtf(z)
d−2
2

(
2f(z)

z
+ df ′(z) +

f(z)g′(z)

g(z)

)
(3.38)

where z = |t− t∗|. The time derivative takes contributions only from the boundary of the

boundary since the bulk of AdS+ in time independent and is

dAYGH+

dt∗
= − VSd

16πG

(
dzB
dt∗

f(zB)
d−2
2

(
2f(zB)

zB
+ df ′(zB) +

f(zB)g
′(zB)

g(zB)

)

+
dzA
dt∗

f(zA)
d−2
2

(
2f(zA)

zA
+ df ′(zA) +

f(zA)g
′(zA)

g(zA)

))
. (3.39)
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z̃W ( ˜
t)
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AdS−

Figure 4. The region AdS− enclosed between the wall trajectory and the IR region. We also show

the WdW patch.

Next we evaluate the WdW action in AdS− interior. It is convenient to change coor-

dinates as

r̃ = cot (z̃) (3.40)

and the metric (3.13) is then

ds2 = l2−
(
1 + cot2(z̃)

)(
−dt̃2 + dz̃2 +

cot2(z̃)

1 + cot2(z̃)
dΩ2

d

)
(3.41)

The domain wall trajectory is

z̃W (t̃) =
π

2
− arctan r̃(t̃)W (3.42)

Intersection with the domain wall trajectory is at
(
t̃A, z̃A

)
and

(
t̃B, z̃B

)
to be obtained

using (3.15) and (3.40) from the corresponding values in AdS+ which are (tA(t
∗), zA(t

∗))

and (tB(t
∗), zB(t

∗)). In these coordinates the WdW patch is again delimited by

z̃ = −t̃+ t̃A + z̃A z̃ = t̃− t̃B + z̃B (3.43)

together with z̃W (t̃). The minimun and maximum values of t̃ are

t̃min = t̃A + z̃A − π

2
t̃max = t̃B − z̃B +

π

2
(3.44)

The geometry of AdS− is pictured in figure 4.

The action of the WdW patch that anchored at UV boundary t∗. The EH term is

AEH−
=

1

16πG

∫

WdW

√−g(R− 2Λ)

= −(d+ 1)VSd ld−
8πG

(∫ t̃A

t̃min

dt̃

∫ π/2

−t̃+t̃A+z̃A

dz̃ +

∫ t̃B

t̃A

dt̃

∫ π/2

z̃W (t̃)
dz̃ +

∫ t̃max

t̃B

dt̃

∫ π/2

t̃−t̃B+z̃B

dz̃

)

cotd(z̃)
(
1 + cot2(z̃)

)
(3.45)
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where we used R− 2Λ = −2(d+1)
l2
−

. The derivative respect to t∗ is

dAEH−

dt∗
= −VSd ld−

8πG

(
d
(
t̃B − z̃B

)

dt∗
cotd+1(z̃B)−

d
(
t̃A + z̃A

)

dt∗
cotd+1(z̃A)

)
(3.46)

The YGH boundary term is

AYGH−
= −VSd ld−

16πG

(∫ t̃A

t̃min

+

∫ t̃max

t̃B

)
dt̃

f (z̃)
d−2
2

(
2f (z̃)

z̃
+ df ′ (z̃) +

f (z̃) g′ (z̃)

h′ (z̃)

)
(3.47)

The time derivative is

dAYGH−

dt∗
=

VSd ld−
16πG

(
dz̃B
dt∗

f (z̃B)
d−2
2

(
2f (z̃B)

z̃B
+ df ′ (z̃B) +

f (z̃B) g
′ (z̃B)

h′ (z̃B)

)

+
dz̃A
dt∗

f (z̃A)
d−2
2

(
2f (z̃A)

z̃A
+ df ′ (z̃A) +

f (z̃A) g
′ (z̃A)

h′ (z̃A)

))
(3.48)

Finally we can now sum all contributions to the derivative of the action

dA
dt∗

=
dAEH

dt∗
+

dAYGH

dt∗
(3.49)

which is the sum of the four terms (3.29), (3.39), (3.46), and (3.48).

We present a numerical evaluation of dA
dt∗ in figure 5. The plots are done for the specific

values of d = 2, l− = .9 and ρW = .5. We also plot the asymptotic formula close to the

crunch (3.50). The time derivative is negative and becomes larger close to the singularity.

That is qualitatively the same behaviour as obtained for the volume prescription (3.20)

dA
dt∗

∝ 1
(
π
2 − t∗

)d+1
(3.50)

The degree of approach to the singularity is not same as is shown in figure 6 where we plot

the ratio dV
dt∗ /

dA
dt∗ . However the origin of the negative sign is the same in both cases, it follows

because l−, the curvature length in the IR, is smaller than l+ = 1 which is the curvature

length at the UV. This allows one to identify that the source of the decrease in complexity

is the result of the renormalization group flow, there are less degrees of freedom in the IR

than in the UV. Thus both definitions suggested for the Holographic complexity capture

the same physical aspects as far the decrease of complexity in these classes of singular cases.

4 Conclusion

Different motivations lie behind each of the two suggestions for the bulk quantity which

corresponds to the quantum holographic complexity of the boundary state. Given that

one does not have yet a precise and universal definition of complexity in quantum field

theory itself, both can be considered as suggestive holographic probes for the notion of

how complex is a quantum state. There is no a priori reason for them to coincide in a
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Figure 5. dA

dt∗
for the specific values d = 2, l− = .9 and ρW = .5. On the right, for the same

parameters, the logarithmic plot of log (− dA

dt∗
) vs. − log

(
π

2
− t∗

)
which shows the validity of (3.50).

Figure 6. The ratio dV

dt∗
/ dA

dt∗
for the same values of figure 5.

generic situation and indeed, while we have shown that the degree of divergence is the

same, we have shown also that there are quantitative differences. In some cases only

for the next to leading term and in other cases for both the leading and next to leading

term. The quantitative behaviour itself, even when the same for both suggestions, differed

according the type of singular background. However both deliver the same verdict as far

as the manner in which the complexity of several classes of time-dependent holographic

backgrounds, which have crunch singularities, evolves. The complexity decreases. Another

universal feature that we have found that the time derivative of the complexity contains

a UV divergent part if the boundary metric depends explicitly on time while it is finite

otherwise. Another pattern emerged from the action calculation. For the cases in which the

time dependence character was driven mainly from a divergent term , it was the boundary

YGH term which determined the sign of the time derivative while for the case where the

time dependence was driven by a finite term in the evaluation of the complexity it was

the EH volume term which dictated the final sign. The universality we have found adds

credence to the identification of the physical source of Complexity decrease given in [17].

This leaves us with yet one more indication that for some probes space like singularities

may less of a bite than expected.

– 19 –



J
H
E
P
0
6
(
2
0
1
8
)
0
1
6

Acknowledgments

We thank J. Barbon and J. Martin for useful discussions. We thanks Jie Ren for collabora-

tion in the early stage of this project. S. B. work is supported by the INFN special research

project grant GAST (“Gauge and String Theories”). The work of E. R. was partially sup-

ported by the American-Israeli Bi-National Science Foundation. The work of E. R. and

S. R. was partially supported by the Israel Science Foundation Center of Excellence and

the I Core Program of the Planning and Budgeting Committee and The Israel Science

Foundation The Quantum Universe. The work of S. R. is supported by the IIT Hyderabad

seed grant SG/IITH/F171/2016-17/SG-47.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.L.F. Barbon and E. Rabinovici, Holography of AdS vacuum bubbles, JHEP 04 (2010) 123

[arXiv:1003.4966] [INSPIRE].

[2] J. Maldacena, Vacuum decay into Anti de Sitter space, arXiv:1012.0274 [INSPIRE].

[3] J.L.F. Barbon and E. Rabinovici, AdS Crunches, CFT Falls And Cosmological

Complementarity, JHEP 04 (2011) 044 [arXiv:1102.3015] [INSPIRE].

[4] J.L.F. Barbón and E. Rabinovici, Conformal Complementarity Maps, JHEP 12 (2013) 023

[arXiv:1308.1921] [INSPIRE].

[5] A.R. Brown and L. Susskind, Second law of quantum complexity,

Phys. Rev. D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].

[6] L. Susskind, Computational Complexity and Black Hole Horizons,

Fortsch. Phys. 64 (2016) 24 [Addendum ibid. 64 (2016) 44] [arXiv:1402.5674] [INSPIRE].

[7] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity

Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

[8] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and

black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[9] R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory,

JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].

[10] S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of

Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602

[arXiv:1707.08582] [INSPIRE].

[11] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as

Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT,

JHEP 11 (2017) 097 [arXiv:1706.07056] [INSPIRE].

[12] M. Moosa, Divergences in the rate of complexification, Phys. Rev. D 97 (2018) 106016

[arXiv:1712.07137] [INSPIRE].

– 20 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP04(2010)123
https://arxiv.org/abs/1003.4966
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.4966
https://arxiv.org/abs/1012.0274
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.0274
https://doi.org/10.1007/JHEP04(2011)044
https://arxiv.org/abs/1102.3015
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.3015
https://doi.org/10.1007/JHEP12(2013)023
https://arxiv.org/abs/1308.1921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1921
https://doi.org/10.1103/PhysRevD.97.086015
https://arxiv.org/abs/1701.01107
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.01107
https://doi.org/10.1002/prop.201500092
https://arxiv.org/abs/1402.5674
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5674
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07876
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04993
https://doi.org/10.1007/JHEP10(2017)107
https://arxiv.org/abs/1707.08570
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08570
https://doi.org/10.1103/PhysRevLett.120.121602
https://arxiv.org/abs/1707.08582
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08582
https://doi.org/10.1007/JHEP11(2017)097
https://arxiv.org/abs/1706.07056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07056
https://doi.org/10.1103/PhysRevD.97.106016
https://arxiv.org/abs/1712.07137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07137


J
H
E
P
0
6
(
2
0
1
8
)
0
1
6

[13] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries,

Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

[14] L. Susskind, The Typical-State Paradox: Diagnosing Horizons with Complexity,

Fortsch. Phys. 64 (2016) 84 [arXiv:1507.02287] [INSPIRE].

[15] V.A. Belinski and I.M. Khalatnikov, Effect of Scalar and Vector Fields on the Nature of the

Cosmological Singularity, Sov. Phys. JETP 36 (1973) 591 [INSPIRE].

[16] V.a. Belinsky, I.m. Khalatnikov and E.m. Lifshitz, A General Solution of the Einstein

Equations with a Time Singularity, Adv. Phys. 31 (1982) 639 [INSPIRE].

[17] J.L.F. Barbon and E. Rabinovici, Holographic complexity and spacetime singularities,

JHEP 01 (2016) 084 [arXiv:1509.09291] [INSPIRE].

[18] L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null

boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

[19] D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity,

JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].

[20] A. Reynolds and S.F. Ross, Divergences in Holographic Complexity,

Class. Quant. Grav. 34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].

[21] K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A Boundary Term for the

Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94

[arXiv:1501.01053] [INSPIRE].

– 21 –

https://doi.org/10.1103/PhysRevD.90.126007
https://arxiv.org/abs/1406.2678
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2678
https://doi.org/10.1002/prop.201500091
https://arxiv.org/abs/1507.02287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02287
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,36,591%22
https://doi.org/10.1080/00018738200101428
https://inspirehep.net/search?p=find+J+%22Adv.Phys.,31,639%22
https://doi.org/10.1007/JHEP01(2016)084
https://arxiv.org/abs/1509.09291
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.09291
https://doi.org/10.1103/PhysRevD.94.084046
https://arxiv.org/abs/1609.00207
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00207
https://doi.org/10.1007/JHEP03(2017)118
https://arxiv.org/abs/1612.00433
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00433
https://doi.org/10.1088/1361-6382/aa6925
https://arxiv.org/abs/1612.05439
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05439
https://doi.org/10.1007/s10714-016-2093-7
https://arxiv.org/abs/1501.01053
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.01053

	Introduction
	Time dependence in the boundary metric: Kasner and Topological crunch
	Time dependence in the bulk: De Sitter crunch
	Conclusion

