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1 Introduction

The D1-D5 system was the original example of black holes in string theory for which

microstates could be counted [1]. Following the AdS/CFT conjecture [2], the microscopic

counting was reinterpreted in terms of the AdS3/CFT2 duality. The D1-D5 black holes

under consideration are asymptotically flat but admit a decoupling region that is AdS3,

so AdS/CFT is applicable and the black hole microstates are understood as states of the

dual CFT.

Since the AdS/CFT correspondence is believed to be exact and the dual field theory is

unitary, holography implies that the dynamics of such black holes is unitary. This argument

shows that there is no information loss but it does not explain exactly how Hawking’s

arguments [3] fail nor does it shed light on the description of black hole microstates at

horizon and sub-horizon scales.

However, AdS/CFT implies much more. The holographic dictionary states that every

(stable) state in the conformal field theory should be described by a regular asymptotically

AdS geometry; these solutions will generically be stringy in the interior but asymptote to

AdS3. Encoded in the AdS asymptotics is information about the dual CFT microstate,

expressed in terms of expectation values of operators in that state. Since each of these

geometries have the same behaviour near the AdS boundary as the decoupling region of

the asymptotically flat black hole, one can re-attach the asymptotically flat region. One
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thus finds that associated with the black hole there are solutions that look like the black hole

up to the horizon scale, but differ from it in the interior: the interior regions are replaced

by these asymptotically AdS3 geometries. This is the fuzzball, or black hole microstate,

conjecture, originally formulated in the works of Mathur and collaborators [4–8]. Reviews

of this conjecture from different perspectives can be found in [9–12].

The D1-D5 system is the most studied setup for the black hole microstate conjecture.

While N = 4 SYM is often the prototype AdS/CFT correspondence, the N = 4 SYM mi-

crostates corresponding to black holes with macroscopic horizons remain mysterious, with

the microstate counting not even being protected by supersymmetric non-renormalisation

theorems. However, even though the counting of microstates for D1-D5 black holes is

straightforward, there are many challenges in understanding the bulk duals of individual

CFT2 microstates.

There is a long running programme to construct putative black hole microstates as

supergravity solutions. This began with the construction of 2-charge D1-D5 microstates [4,

8, 13–15]. In this case the corresponding black hole does not have a macroscopic horizon

but the 2-charge case is nonetheless a useful arena to construct microstates explicitly and

to make sharp identifications between geometries and the dual CFT states using precision

holography [15–17].

For three charge microstates, the original examples of supergravity solutions were

highly non-generic, with, for example, atypically large angular momentum. Early discus-

sions of (non-generic) microstates for macroscopic black holes can be found in [18–25].

Recent constructions of microstates illustrate more generic features, using concepts such as

superstrata, see for example [26–41]; there is ongoing study of what fraction of the black

hole microstates such constructions can represent.

Several generic lessons from the 2-charge system apply to 3-charge black holes with

macroscopic horizons. Firstly, for the supergravity description to be valid, one needs

coherent superpositions of microstates in which (single particle) chiral primaries acquire

expectation values. The reason is that single particle chiral primaries are dual to super-

gravity fields; we need the former to acquire expectation values for the interior supergravity

geometry of the asymptotically AdS region to carry information about the microstate.

Secondly, suppose that a given geometry is postulated to be dual to a particular su-

perposition of microstates |F ). The expectation values of single particle chiral primaries

O∆, of dimension ∆,

(F |O∆|F ) (1.1)

can then be read off from the asymptotics of the AdS3 region using Kaluza-Klein holog-

raphy [42]. The matching of not just conserved charges but of whole towers of operators

provides very strong evidence for the conjectured duality. This matching was carried out for

low dimension operators in the two charge geometries in [15–17] and in three charge geome-

tries in [32]. Holographic four point functions were discussed in [43, 44]. See also [42, 45] for

an example of matching involving the whole tower of Kaluza-Klein operators - the detailed

matching between distributed D3-brane supergravity solutions and the Coulomb branch of

N = 4 SYM.
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The matching of (1.1) between the bulk and field theory descriptions relies on being

able to compute these expectation values from the dual field theory side and hence, implic-

itly, uses either non-renormalisation theorems or integrability/bootstrap methods. In the

case of the D1-D5 system, one can explicitly compute correlation functions in the orbifold

limit of the dual CFT. Correlation functions involving chiral primaries are believed to be

non-renormalised as one deforms away from the orbifold point [46–49] although the match-

ing between CFT and supergravity is subtle. This non-renormalisation implies that (1.1)

is non-renormalised away from the orbifold point for 2 charge microstates and it also has

implications for expectation values of supergravity operators in 3 charge microstates.

To develop the precision holography programme for black hole microstates in the D1-

D5 system further, one would like to calculate (1.1) for general single particle operators

from both sides of the correspondence. However, to carry out such calculations from the

field theory side, we first need to fill in certain gaps in the literature on correlation functions

in the orbifold CFT.

Single particle chiral primaries of dimension ∆ are described in the orbifold theory in

terms of twist operators whose twist is related to the dimension. As we explain in section 3,

to access expectation values for generic dimension operators, we need as a building block

amplitudes involving twist n operators joining together n other twist operators. The goal

of this paper is to compute amplitudes for processes in the orbifold CFT involving a twist

n operator joining n operators, each of twist mi; we solve this problem for general n and

mi and our results are summarised in (4.102).

Correlation functions in the orbifold CFT have been analysed for a variety of ap-

plications previously. In what follows here, we will use heavily the pioneering work of

Lunin and Mathur on computing three point functions in (super)conformal orbifold theo-

ries [50, 51]. An important part of understanding the D1-D5 system is deforming the CFT

away from the orbifold limit, and the deformation process has been considered in a number

of works [31, 52–66]. The methodology used here is closely related to that of [59, 60],

although our motivations are somewhat different. Efficient methods for computing certain

extremal correlation functions in the orbifold theory and relations with spin chains were

presented in [67–69].

The plan of this paper is as follows. In section 2 we review key features of the D1-D5

orbifold SCFT. In section 3 we explain why processes involving a twist n operator joining

n other operators are essential to calculating expectation values (1.1) from the field theory

side. Section 4 contains the technical computation of the amplitude for such processes. In

section 5 we conclude by discussing implications and applications of our results.

2 Review of key features of the D1-D5 orbifold CFT

In this section we review essential features of the D1-D5 orbifold CFT; a more complete

review of the D1-D5 system can be found in [70]. Consider type IIB string theory com-

pactified on X × S1, with X being T4 or K3. Let N5 D5-branes wrap the five compact

dimensions and N1 D1-branes wrap the S1. We take X to be string scale and assume that

the scale of the S1 is much larger. D1-D5 black hole solutions in the supergravity limit
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are asymptotic to M4,1 × S1 × X. The geometry of the decoupled near horizon limit is

AdS3×S3×X, and there is supersymmetry enhancement (see [71] and references therein).

The CFT dual to the decoupling region geometry is a two-dimensional superconformal

CFT. In what follows, we will focus on the theory for X = T4, although much of our

later analysis also holds for K3, i.e. it does not rely on features specific to T4. For toroidal

compactifications, the SCFT is an N = (4, 4) superconformal sigma model with central

charges c = c̄ = 6N1N5; this theory can be viewed as a deformation of a free orbifold CFT

with target space (T4)N1N5/S(N1N5), where S(n) is the symmetric group.

In this paper we will be interested in calculating correlation functions involving chiral

primary operators in this theory. Note that the three point functions of chiral primaries

themselves are protected (see [46–49]) and will therefore agree with the corresponding

three point functions calculated in supergravity. The correlation functions we calculate

can also be used as building blocks for correlation functions involving less supersymmetric

operators. We will work in Euclidean signature on a cylinder which is parameterised as

w = τ + iσ (2.1)

where 0 ≤ σ < 2π and −∞ < τ <∞.

Let us now briefly review the orbifold field theory description. The Hilbert space of

the orbifold theory decomposes into twisted sectors which are labelled by conjugacy classes

of the symmetry group S(N1N5) which consists of cyclic groups of various lengths; see

discussion in [72]. The conjugacy classes that occur and their multiplicity are subject to

the constraint ∑
i

nimi = N (2.2)

where mi is the length of the cycle (the twist), ni is the multiplicity of the cycle and

N = N1N5. There is a direct correspondence between the conjugacy classes and the

long/short string picture of the D1-D5 system [73]. The symmetry group of the SCFT is

SU(1, 1|2)× SU(1, 1|2), as is discussed in the review [70]. The symmetry that is identified

with the SO(4)E isometry of the S3 in the geometry is the SO(4) R-symmetry in the

N = (4, 4) superconformal algebra. The SCFT has another SO(4) symmetry which is

identified with the SO(4)I of the torus, when X = T4.

Chiral primaries can be precisely described at the orbifold point; they are associated

with the cohomology of X. The NS sector chiral primaries can be labeled as O(p,q)
m where

m is the twist and (p, q) labels the associated cohomology class. The weights (h, h̃) and R

charges (j3, j̃3) of such chiral primaries are given by

hNS = jNS
3 =

1

2
(p+m− 1); h̃NS = j̃NS

3 =
1

2
(q +m− 1). (2.3)

The complete set of chiral primaries is then built from products of the form∏
l

(O(pl,ql)
ml

)nl
∑
l

nlml = N (2.4)

with symmetrisation over N copies of the CFT implicit.
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Spectral flow maps chiral primaries in the NS sector to R ground states for which

hR = hNS − jNS
3 +

c

24
jR
3 = jNS

3 − c

12
(2.5)

where c is the central charge of the CFT and analogous expressions hold for the right

moving sector. Each of the NS sector chiral primaries is thus mapped by spectral flow to

a Ramond ground state operator∏
l

(O(pl,ql)
ml

)nl →
∏
l

(OR(pl,ql)
ml

)nl (2.6)

of definite R charge

jR
3 =

1

2

∑
l

(pl − 1)nl j̃R
3 =

1

2

∑
l

(ql − 1)nl. (2.7)

Note that the Ramond operators obtained from primaries associated with the (1, 1) coho-

mology have zero R charge.

The Ramond ground states are the microstates associated with the 2-charge D1-D5

black hole; the associated entropy is

S = 2π

√
C(X)N

6
(2.8)

where C(X) is determined by the cohomology (and C = 12 and 24 for K3 and T4). The

corresponding black holes do not have macroscopic horizons. The famous 3-charge black

holes with macroscopic horizons discussed in [1] correspond to exciting the left moving

sector with momentum P ; the resulting entropy is then

S = 2π

√
C(X)NP

6
(2.9)

(where implicitly we assume that P � N). We will not need the detailed description of

these microstates in this paper but all such states can be viewed as excitations over the

ground states i.e. the generic structure is

OP
∏
l

(OR(pl,ql)
ml

)nl (2.10)

where OP describes the excitation of momentum P . As discussed in early works such

as [73], most of the 3-charge microstates are associated with excitations over maximal and

near maximal twist ground states (“long strings”) as there are more ways to fractionate

the momentum over such states.

2.1 Explicit description in terms of free fields

In what follows we will for the most part not need to use an explicit description in terms of

free fields. In this section we therefore include only the aspects of the free field description

that are needed for the correlation function calculation; further details can be found in [70].

Our notation follows closely that of [32] and [33].

– 5 –



J
H
E
P
0
6
(
2
0
1
8
)
0
1
2

Let us first introduce appropriate notation. We denote the SO(4) symmetry associated

with the torus as SU(2)C×SU(2)A, and use the labels α, α̇ for the left and right R-symmetry,

Ȧ for SU(2)C and A for SU(2)A. We will use {+,−} for the α index, {+̇, −̇} for the α̇

index, {1, 2} for A and {1̇, 2̇} for Ȧ. A subindex (r), which runs from 1 to N1N5, is used

to label the copies of the torus. Fields and operators corresponding to the right moving

sector are denoted with a tilde.

At the orbifold point, the CFT has free fields(
XȦA

(r) (w, w̄), ψαȦ(r) (w), ψ̃α̇Ȧ(r) (w̄)
)
, (2.11)

that is, four bosons and four doublets of fermions. The mode expansion of the fermions in

the Ramond sector is then

ψαȦ(r) (w) =
∑
n∈Z

ψαȦn(r)e
−nw, ψ̃α̇Ȧ(r) (w̄) =

∑
n∈Z

ψ̃α̇Ȧn(r)e
−nw̄. (2.12)

The Hermitian properties of the fermions are ψ+1̇†
n(r) = −ψ−2̇

−n(r), ψ
+2̇†
n(r) = ψ−1̇

−n(r), and similarly

for the right-moving sector. The Ramond vacuum state |++〉(r) is defined by

ψ+1̇
0(r) |++〉(r) = ψ+2̇

0(r) |++〉(r) = 0, ψ̃+̇1̇
0(r) |++〉(r) = ψ̃+̇2̇

0(r) |++〉(r) = 0, (2.13)

and the R-symmetry currents can be expressed explicitly as

Jαβ(r) (w) =
1

2
ψαȦ(r) (w)εȦḂψ

βḂ
(r) (w), J̃ α̇β̇(r) (w̄) =

1

2
ψ̃α̇Ȧ(r) (w̄)εȦḂψ̃

β̃Ḃ
(r) (w̄), (2.14)

where the operators are normal-ordered with respect to the |++〉(r) ground state. The

generators are J3
(r) := −J+−

(r) + 1
2 , J+

(r) := J++
(r) and J−(r) := −J−−(r) . We define the other

ground states with their zero modes,

|−+〉(r) = J−0(r) |++〉(r) , |+−〉(r) = J̃−0(r) |++〉(r) , (2.15)

and the (0,0) spin one (under (J3
(r), J̃

3
(r))) as

|00〉(r) := lim
z→0
O−−̇00(r) |++〉(r) =

1√
2
ψ−Ȧ0(r)εȦḂψ̃

−̇Ḃ
0(r) |++〉(r) , (2.16)

where we have used the conformal map z = ew.

The operator that induces a cyclic permutation of κ ≥ 2 copies of elementary fields

is denoted by Σαα̇
κ . It generates the twisted states, the cycles of length κ; in other words,

it joins κ strings of winding one into a single string of winding κ. We define strands of

length κ as

|++〉κ := lim
z→0
|z|κ−1Σ

−κ−1
2
,−κ−1

2
κ (z, z̄)

κ∏
r=1

|++〉(r) , (2.17)

where Σ
−κ−1

2
,−κ−1

2
κ is the lowest weight state in the Σκ multiplet. It has spin (-κ−1

2 , -κ−1
2 ),

and these are the superindices that we have written, to make the spin explicit — they are

not the αα̇ indices of the operator, and that is why the second does not have a dot. Acting
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on the κ copies of the ground state generates the state |++〉κ in the Ramond sector, which

has spin (1
2 , 1

2) and winding κ.

To obtain independent fields we need to diagonalise the boundary conditions using

combinations

ψαȦρ (z) =
1√
κ

κ∑
r=1

e−2πi rρ
κ ψαȦρ(r)(z), with ρ = 0, 1, . . . , κ− 1. (2.18)

The total R charge of a strand (which is
∑κ

r=1 J
3
(r)) can then be changed using the zero

modes of ψαȦ0 . Hence,

|−+〉κ = J−0ρ=0 |++〉κ , |+−〉κ = J̃−0ρ=0 |++〉κ . (2.19)

For the spin zero ground states we act with the zero mode of
∑

rO22̇
(r),

|00〉κ = − i√
2
ψ−Ȧ0ρ=0εȦḂψ̃

−̇Ḃ
0ρ=0 |++〉κ . (2.20)

This gives explicitly constructions for all ground states associated with even cohomology

classes, which is all we will consider here. The correspondence between these ground states

and cohomologies is

OR(2,2)
κ ↔ |++〉κ OR(1,1)

κ ↔ |00〉κ OR(0,0)
κ ↔ |−−〉κ (2.21)

and similarly

OR(2,0)
κ ↔ |+−〉κ OR(0,2)

κ ↔ |−+〉κ (2.22)

In the following sections we will revert to the notation using cohomology, as this nota-

tion reflects the geometry of the target space and moreover illustrates more naturally the

connections with the corresponding supergravity operators.

Given these Ramond ground states, one can add momentum excitations by, for exam-

ple, acting with raising modes of the currents(
J+
−nκ

κ

)mκ
|00〉κ (2.23)

with nκ and mκ integers. The excitations should be such that the total momentum added to

the state is integral. Clearly the larger the twist, the greater the number of possibilities for

distributing the excitations, and this is why most of the 3-charge microstates are associated

with long strings. The specific states corresponding to superstrata solutions are discussed

in [30–34].

3 Twist operator amplitudes

In this paper we will focus on processes in which a twist operator of twist n joins n operators

of twists (m1,m2, · · · ,mn), to form a single operator of twist M := (m1+· · ·mn). Following

the usual correspondence between twist operators and strings, we illustrate these operators

via strings with winding equivalent to the twist. The process of interest is illustrated

in figure 1.
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m
1

m
n

m
1

m
n

O

M=       + ... + 

Figure 1. Joining of n component strings to form one single string.

Let us consider the following example of such a process, expressed first in NS sector

language. Let each component string be generated by a chiral primary i.e.

O(pi,qi)
mi |0〉mi . (3.1)

Let the operator of twist n joining these component strings be a primary, which we denote as

O(p,q)
n . (3.2)

The joining process then acts as

O(p,q)
n |

n∏
i=1

O(pi,qi)
mi 〉 → |χ〉. (3.3)

Here the state |χ〉 by construction has R charges

jNS3 =
1

2

(
p+

n∑
i=1

pi

)
+

1

2
M − 1

2
j̃NS3 =

1

2

(
q +

n∑
i=1

qi

)
+

1

2
M − 1

2
. (3.4)

We begin by considering processes in which(
p+

n∑
i=1

pi

)
= P ≤ 2

(
q +

n∑
i=1

qi

)
= Q ≤ 2 (3.5)

for which

|χ〉 = eOc |O(P,Q)
M 〉 (3.6)

where eOc describes coherent excitations of zero R charge over the NS chiral primary.

By construction the one point function

〈O(P,Q)
M |O(p,q)

n (I)M−n|
n∏
i=1

O(pi,qi)
mi 〉 (3.7)
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is thus (generically) non-zero. In this expression we include explicitly the factor of (M −n)

copies of the identity operator, to emphasise that this correlation function is computed in

M copies of the CFT.

The one point function (3.7) is not a “physical” one point function in the orbifold CFT

as we have imposed neither M = N nor symmetrisation over copies of the CFT, and we

have not specified the full state. However, (3.7) is an important building block for physical

one point functions of interest in the context of D1-D5 holography. For example, the one

point function contribution (3.7) is relevant to the computation of one point functions of

single trace chiral primary operators in Ramond ground states. Spectral flow of (3.7) gives

〈OR(P,Q)
M |OR(p,q)

n |
n∏
i=1

OR(pi,qi)
mi 〉. (3.8)

The basis of Ramond ground states in the orbifold CFT was described previously. Since

each Ramond ground state is an eigenstate of J3 and J̃3, the expectation of a single trace

chiral primary (with non zero R charge) is necessarily zero. However, R ground states that

admit holographic supergravity duals can be expressed in terms of projections of coherent

superpositions [15, 17] i.e. as

|ORc 〉 =
∑
A

cA|ORA〉 (3.9)

where A labels the complete set of Ramond ground states and the coefficients cA are

inherited from projections of coherent superpositions.

More precisely, there is a direct correspondence between the curves describing the

holographic supergravity solutions and these coherent superpositions, described in detail

in [15, 17]. In brief, the curves F(v) describing the supergravity solutions can be decom-

posed into Fourier modes

F(v) =
∑
n>0

1√
n

(
αne

−inv + α∗ne
inv
)
. (3.10)

Now introduce auxiliary harmonic oscillators as operators, ân, and define coherent states

associated with these operators as

ân |αn) = αn |αn) . (3.11)

There is thus a coherent state associated with the curve

|F) =
∏
n

|αn) (3.12)

The coherent states can be expressed in terms of Fock states in the standard way as

|αn) = exp

(
−|αn|

2

2

)∑
k

αkn
k!

(â†n)k |0〉 (3.13)

and we can then project from |F) the Fock states that satisfy the constraint∏
(â†nl)

ml |0〉
∑
l

nlml = N1N5. (3.14)

– 9 –
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The final step is to retain only these terms from |F) and map the auxiliary harmonic

oscillators to CFT R operators. The Ramond ground state operators are in one-to-one

correspondence with the cohomology of the target space for the orbifold CFT; thus the

number of independent curves defining the supergravity geometries is given by the sum

of the Hodge numbers of this target space. The result indeed gives a linear superposi-

tion of Ramond ground states (3.9) with superposition coefficients cA inherited from the

defining curves.

An important feature of the superposition (3.9) is that it is not in general an eigenstate

of R symmetry. This implies that charged operators can acquire expectation values in

this state. One can extract these expectation values from the supergravity solutions via

holographic renormalisation. For the D1-D5 ground states, non-renormalisation theorems

are believed to exist, implying that these expectation values match between supergravity

and the CFT in the orbifold limit (although the required matching between supergravity

and CFT operators is subtle [49]).

Hence in a generic superposition the expectation of a single trace operator is

〈Oc|Op,qn |Oc〉 =
∑
A,B

c∗AcB〈ORA|Op,qn |ORB〉. (3.15)

It is now apparent that (3.8) is a building block for computing such one point functions:

non-vanishing terms in this one point function are associated with the twist n operator

joining component strings.

Computation of (3.15) for general twist n operators would allow precision holography

for two charge microstates to be tested further, using the methods of [15–17]. A good

understanding of (3.15) is also needed to calculate one point functions of supergravity

operators (single particle chiral primaries) in three charge microstates. A typical 3-charge

microstate is built out of superpositions of Ramond ground states excited by left moving

momenta as in (2.23). The one point functions will then reduce to sums of amplitudes of

the type

〈OPAO
R
A|Op,qn |OPBO

R
B〉 (3.16)

where OPA and OPB denote the operators exciting left moving momenta over the ground

states. For excitations such as (2.23) one can then use commutation relations to reduce

this calculation to (3.15); this will be discussed in future work. Note that it is the one

point functions of single particle chiral primaries (single strings) that are of most interest in

matching holographically with microstate geometries, as it is these values that are captured

by the asymptotics of the interior AdS3 regions.

4 Computation of twist operator expectation value

In this section we will focus on the computation of

〈OR(P,Q)
M |OR(p,q)

n |
n∏
i=1

OR(pi,qi)
mi 〉. (4.1)
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Our methods will follow the approach pioneered by [50, 51] and used in the case of a twist

two operator in [59, 60].

The one point function is computed on the cylinder, with the operator inserted at the

location w0 i.e. the explicit computation that is required is

〈OR(P,Q)
M |OR(p,q)

n (w0)|
n∏
i=1

OR(pi,qi)
mi 〉. (4.2)

Note that this one point function should be independent of the insertion point w0: the

Ramond ground states are eigenstates of L0 and L̄0 and thus one can freely use translations

to move the insertion point around the cylinder. In practice we calculate this one point

function by lifting to a covering space, and computing the appropriate (n+2) point function.

We begin by discussing the required maps to covering spaces.

4.1 Maps to covering space

We begin by working on a cylinder with coordinate w. The cylinder is mapped to the

complex plane using the standard exponential map z = exp(w). The CFT fields are

however multi-valued on the z plane due to the presence of the twist fields. We thus map

to a covering space with coordinate t where the fields are single valued. The twist operators

are punctures on the t plane.

We can regulate the single component string insertions using the following map from

the z plane to the t plane, in analogy to the map used in [59, 60]:

z = tm1(t− a2)m2(t− a3)m3 · . . . · (t− an)mn . (4.3)

On the cylinder the initial components strings are at w → −∞, which corresponds to z = 0

on the z plane. On the t plane a string of winding mi is mapped to position ai; we set

a1 = 0 for simplicity, without loss of generality in what follows. The final component string

is at w →∞ on the cylinder, which maps to t→∞ on the plane. The twist n operator is

inserted at w0 on the cylinder which corresponds to exp(w0) on the z plane.

A priori the parameters ai are not fixed in terms of the original parameter w0 on the

cylinder. However, the ramification map should be such that dz/dt has a zero of order

(n − 1) at the location of the twist n operator. Let t0 be the location of the twist n

operator; then
dz

dt
= (t− t0)n−1PM−n(t) (4.4)

with PM−n(t) a polynomial of order (M − n) with no zero at t0. We can understand this

as follows. The map (4.3) is a polynomial of order M with M non-distinct zeros: it has

a zero of order ma at t = 0 and so on. Thus its first derivative is a polynomial of order

(M − 1). Now dz/dt has a total of (M − n) zeros at locations ai: it has a zero of order

(m1 − 1) at t = 0, a zero of order (m2 − 1) at t = a2 etc. By the fundamental theory of

algebra, dz/dt has an additional (n− 1) zeros, and these are located at the position of the

twist n operator.
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The original map (4.3) has (n − 1) parameters (a2, . . . , an). These parameters are

determined by the condition that dz/dt has a zero of order (n− 1) at the location t0. Note

that t0 is related to the original insertion point on the cylinder via the map

exp(w0) = tm1
0 (t0 − a2(t0))m2(t0 − a3(t0))m3 · . . . · (t0 − an(t0))mn (4.5)

where here we indicate that the positions ai can be expressed as functions of t0.

Let us first illustrate these general discussions in the context of n = 3; the case of

n = 2 is discussed in detail in [59, 60]. For n = 3 the ramification map is

z = tm1(t− a2)m2(t− a3)m3 (4.6)

and thus

dz

dt
= tm1−1(t− a2)m2−1(t− a3)m3−1 (m1(t− a2)(t− a3) +m2t(t− a3) +m3t(t− a2)) .

(4.7)

The requirement that this takes the form (4.4) imposes

a2 = ā2t0 a3 = ā3t0 (4.8)

where (ā2, ā3) satisfy

ā2ā3 =
M

m1
; ā2

(
1− m2

M

)
+ ā3

(
1− m3

M

)
= 2. (4.9)

These equations can be solved to give

ā2

(
1− m2

M

)
= 1± i

√
m2m3

m1M
ā3

(
1− m3

M

)
= 1∓ i

√
m2m3

m1M
. (4.10)

With these solutions we can relate w0 and t0 as

exp(w0) = tM0 (1− ā2)m2(1− ā3)m3 . (4.11)

Clearly the relation between t0 and w0 is not unique; we will clarify this issue below in the

case of general n.

We can now immediately generalise to arbitrary n ≥ 2. The ramification map is

z = tm1

n∏
i=2

(t− ai)mi (4.12)

and the requirement that t = t0 is a zero of dz/dt of order (n − 1) (4.4) imposes (n − 1)

relations on the ai: ai = āit0 with

n∏
i=2

āi =
M

m1
n ≥ 2 (4.13)
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together with (n− 2) further conditions

n∑
i=2

āi

(
1− mi

M

)
= (n− 1) n ≥ 3

n∑
i=1

mi

∑
l 6=n 6=i

ānāl = M
(n− 1)(n− 2)

2
n ≥ 4 (4.14)

and so on. For example, for n ≥ 5 we would in addition need the cubic relation between

the āi. Note that for n = 2 we can immediately read off ā2 = M/m1 from the expression

above, which is in agreement with the ramification map used in [59, 60].

In analogy to the n = 3 case, it is natural to write the solutions of these equations as(
1− mi

M

)
āi = (1 + ā exp(iφi)) (4.15)

where the phases φi satisfy
n∏
i=2

exp(iφi) = 1 n ≥ 3 (4.16)

and

n∑
i=2

exp(iφi) = 0 n ≥ 3∑
i 6=j

exp(i(φi + φj)) = 0 n ≥ 4

∑
i 6=j 6=k

exp(i(φi + φj + φk)) = 0 n ≥ 5, (4.17)

and so on. Solutions for these phases are:

(n−1)∈ 2Z : φi =
(i−1)π

n−1
, φi+1 =−(i−1)π

n−1
, i∈ 2Z, i≥ 2 (4.18)

n∈ 2Z : φ2 = 0, φi =
(i−1)π

n−1
, φi+1 =−(i−1)π

n−1
, (i−1)∈ 2Z, i≥ 3.

Note that these solutions are not unique i.e. any permutation of the phases will also solve

the equations. One can also shift all of the phases by an equal amount i.e. φi → φ̃i = φi+λ,

satisfying (4.17) but now instead of (4.16) one has

n∏
i=2

exp(iφi) = exp(i(n− 1)λ). (4.19)

This shift can trivially be absorbed into the parameter ā in (4.15) and thus we can always

set λ = 0 without loss of generality.

The parameter ā in (4.15) satisfies

1 + ān−1 =
M

m1

n∏
i=2

(
1− mi

M

)
. (4.20)

– 13 –



J
H
E
P
0
6
(
2
0
1
8
)
0
1
2

We can solve this equation as follows. First note that

m1 = M −
n∑
i=2

mi (4.21)

and introduce the notation νi := mi/M , where clearly 0 < νi < 1. Then

ān−1 =

∏n
i=2 (1− νi)

(1−
∑n

i=2 νi)
− 1. (4.22)

Now for n > 2
n∏
i=2

(1− νi) >

(
1−

n∑
i=2

νi

)
. (4.23)

This follows from induction: if one assumes that the identity holds for n then for (n+ 1)

n+1∏
i=2

(1− νi) = (1− νn+1)

n∏
i=2

(1− νi)

> (1− νn+1)

(
1−

n∑
i=2

νi

)
>

(
1−

n+1∑
i=2

νi

)
. (4.24)

The identity is true for n = 3 as

(1− ν2) (1− ν3) > (1− ν2ν3) (4.25)

and therefore by induction (4.23) holds for all n ≥ 3.

Hence we may write

ān−1 =: Q =
1

ν1

n∏
i=2

(1− νi)− 1 (4.26)

where Q ∈ Q+. The (n− 1) roots of this equation are

ā = Q
1

n−1 exp

(
2πik

n− 1

)
, (4.27)

with k = 0, 1, . . . , (n − 2). We can however fix k = 0 so that ā is real: other choices of k

are equivalent to rotations of the phases φi.

Thus for general n we have concluded that the map between w0 and t0 (4.5) takes

the form

exp(w0) = tM0

n∏
i=2

(1− āi)mi (4.28)

where

āi =
(1 + ā exp(iφi))

(1− νi)
(4.29)

with ā given by (4.27) and the phases φi are given by (4.18). It is useful to illustrate the

structure of this ramification map as follows. If we consider the combinations

Ai = āi(1− νi) (4.30)

then the Ai are located at the vertices of a regular n-sided polygon, with centre one, as

shown in figure 2.
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Figure 2. Illustration of structure of ramification map; the crosses denote Ai.

4.2 Computation of one point function

In this section we explain how the required one point function (4.2) can be computed in

terms of a correlation function in the t plane. The methodology follows closely [59, 60],

which in turn exploited the techniques for computing orbifold CFT correlation functions

developed in [50, 51].

The one point function (4.2) is calculated by first lifting to the z plane to give:

〈OR(P,Q)
M |OR(p,q)

n (z0)|
n∏
i=1

OR(pi,qi)
mi 〉 = 〈OR(P,Q)

M (∞)OR(p,q)
n (z0)

n∏
i=1

OR(pi,qi)
mi (0)〉 (4.31)

The conformal weight of the twist n operator gives a Jacobian factor under this conformal

map. Recall that the weights of the insertion operator are

h =
1

2
(p+ n− 1) h̄ =

1

2
(q + n− 1) (4.32)

and thus the Jacobian factor induced is(
dz

dw

)h
|w0

(
dz̄

dw̄

)h̄
|w̄0

, (4.33)

which can immediately be written as

exp(hw0) exp(h̄w̄0). (4.34)

To rewrite this expression in terms of t0, we need to use (4.28). Here we will be primarily

interested in calculating correlation functions for which p = q = 0 and thus the Jacobian

factor gives

|t0|M(n−1)

(
n∏
i=2

(1− āi)mi
)n−1

(4.35)

where the āi are defined in (4.29).
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Next we can express (4.31) in terms of a normalised correlation function:

〈OR(P,Q)
M (∞)OR(p,q)

n (z0)
n∏
i=1

OR(pi,qi)
mi (0)〉 = lim

|z|→∞

〈OR(P,Q)
M (z)OR(p,q)

n (z0)
∏n
i=1O

R(pi,qi)
mi (0)〉

〈OR(P,Q)
M (z)OR(P,Q)†

M (0)〉
.

(4.36)

Here we use the notation

OR(P,Q)†
M (4.37)

to denote the conjugate operator (with conjugate R charges).

Following [50, 51], the key point is then that this normalised correlation function

factorises into a bare twist part (associated with a Liouville action) and a spin field part i.e.

lim
|z|→∞

〈OR(P,Q)
M (z)OR(p,q)

n (z0)
∏n
i=1O

R(pi,qi)
mi (0)〉

〈OR(P,Q)
M (z)OR(P,Q)†

M (0)〉
= lim
|z|→∞

〈Σn+2(z, z0)〉
〈Σ2(z)〉

〈Sn+2(t, t0)〉
〈S2(t)〉

. (4.38)

Here the bare twist part is

〈Σn+2(z, z0)〉 := 〈σM (z)σn(z0)

n∏
i=1

σmi(0)〉 (4.39)

with

〈Σ2(z)〉 := 〈σM (z)σM (0)〉. (4.40)

The spin field correlators are calculated on the t plane:

〈Sn+2(t, t0)〉 := 〈S(P,Q)
M (t(z))S(p,q)

n (t0(z0))

n∏
i=1

S(pi,qi)
mi (ai)〉 (4.41)

and

〈S2(t)〉 := 〈S(P,Q)
M (t(z))S

(P,Q)†
M (0)〉. (4.42)

We will discuss below how the operator/state R charges (indicated in the labelling of these

spin fields) relate to the spins of the spin fields. In the rest of this section we collect all the

contributions required to compute the correlation function.

4.3 Twist operator correlator

In this section we will calculate the bare twist operator contribution, namely

Lim|z|→∞
〈Σn+2(z, z0)〉
〈Σ2(z)〉

(4.43)

where the twist operator correlators are defined in (4.39) and (4.40).

Following [50, 51] we will work in a path integral formulation and regularise each twist

operator inserted at a finite value of z by cutting out a hole of radius ε� 1. The regularised

twist operator σεm is related to the original twist operator as

σm =
1√

σεm(0)σεm(1)
σεm, (4.44)
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and thus when working with such regularised operators we need to take into account the

appropriate normalisation factors. If a twist operator is inserted at infinity, we need to

cut out a hole at infinity with radius 1/δ � 1; we denote the corresponding regularised

operator as σδM .

Thus we need to calculate

Lim|z|→∞
〈Σn+2(z, z0)〉
〈Σ2(z)〉

= Nε
〈σδM (∞)σεn(z0)

∏n
i=1 σ

ε
mi(0)〉

〈σδM (∞)σεM (0)〉
, (4.45)

where the normalisation factor is

Nε =

√
〈σεM (0)σεM (1)〉

〈σεn(0)σεn(1)〉
∏n
i=1〈σεmi(0)σεmi(1)〉

. (4.46)

Note that normalisation terms cancel for the operator inserted at infinity.

The two point functions of regularised twist operators at finite separation are given

by [50, 51]

〈σεm(0)σεm(y)〉 = y−(m− 1
m

)

(
m2e−

(m−1)2

m

)
Q1−m (4.47)

where Q depends on the regularization. Factors of Q cancel in the normalisation fac-

tor (4.46). Thus the overall normalisation factor is

Nε =
M

n
∏
imi

ε
− (M−1)2

2M
+

(n−1)2

2n
+
∑
i
(mi−1)2

2mi . (4.48)

The correlation functions of the regularised twist operators are calculated using the

Liouville action associated with the conformal map from the z plane to the t plane. This

conformal map changes the metric by a factor of exp(φ) where

φ = log

∣∣∣∣dzdt
∣∣∣∣2 . (4.49)

Under this map the Liouville contribution to the path integral reduces to boundary con-

tributions

SL =
c

96π

(
i

∫
∂Σt

φ∂tφ+ c.c.

)
(4.50)

where the boundaries are the images in the t plane of the circular holes cut out in the z

plane to regularise the operators. Here the central charge c = 6.

Let us now calculate the Liouville contribution associated with the twist mi operator,

for which the insertion point in the t plane is t = ai. In the neighbourhood of t = ai the

ramification map is

z ≈ (t− ai)mi
∏
i 6=j

(ai − aj)mj (4.51)

and thus

(t− ai) ≈

(
z∏

i 6=j(ai − aj)mj

) 1
mi

. (4.52)
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Thus the Liouville field in the vicinity of t = ai is given by

φ ≈ 2 log

mi|t− ai|mi−1
∏
i 6=j
|ai − aj |mj

 (4.53)

with

∂tφ ≈
mi − 1

(t− ai)
. (4.54)

The contribution to the Liouville action from this point is given by (4.50), with the integral

evaluated using

z ≈ εeiθ, (t− ai) ≈

(
ε∏

i 6=j(ai − aj)mj

) 1
mi

eiθ
′
, θ′ =

θ

mi
, (4.55)

where the range of θ′ is 2π. Thus the contribution from t = ai is

SaiL = −1

2
(mi − 1) log

miε
mi−1

mi

∏
i 6=j
|ai − aj |

mj
mi

 . (4.56)

We now consider the contribution from the point associated with the twist n operator. In

the neighbourhood of the insertion point

z − z0 ≈ bn(t− t0)n (4.57)

where the coefficient bn will be calculated in the next subsection. Following the same logic

as above, we can immediately write down the associated contribution to the Liouville action

St0L = − 1

2n
(n− 1) log

(
nn|bn|εn−1

)
. (4.58)

For the insertion at infinity

z ≈ tM (4.59)

and the Liouville action contribution is

S∞L =
1

2
(M − 1) log

(
Mδ−

M−1
M

)
. (4.60)

Note that the opposite sign relative to the previous contributions follows from the direction

of the boundary normal.

Collecting together all of these contributions we obtain

S
(4)
L = −

∑
i

1

2
(mi − 1) log

miε
mi−1

mi

∏
i 6=j
|ai − aj |

mj
mi


− 1

2n
(n− 1) log

(
nn|bn|εn−1

)
+

1

2
(M − 1) log

(
Mδ−

M−1
M

)
. (4.61)

The regularised four point function is now calculated as

〈σδM (∞)σεn(z0)

n∏
i=1

σεmi(0)〉 = eS
(4)
L . (4.62)
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The calculation of the regularised two point function

〈σδM (∞)σδM (0)〉 = eS
(2)
L (4.63)

is very similar. The Liouville contribution from the insertion at infinity is given by (4.60)

and the contribution at zero is

S∞L = −1

2
(M − 1) log

(
Mε−

M−1
M

)
. (4.64)

Thus the total Liouville action contribution to the two point function is

S
(2)
L =

1

2
(M − 1) log

(
Mδ−

M−1
M

)
− 1

2
(M − 1) log

(
Mε−

M−1
M

)
. (4.65)

Collecting all of the holomorphic and anti-holomorphic contributions together we ulti-

mately obtain

M
1
2

(M+1)n−
1
2

(n+1)|bn|−
(n−1)
2n

n∏
i=1

m
− 1

2
(mi+1)

i

∏
i 6=j
|ai − aj |

−
mj(mi−1)

2mi , (4.66)

where implicitly we set a1 = 0. Note that all contributions depending on the regulators ε

and δ cancel, as required.

4.4 Spin field correlator

In this section we calculate

Lim|z|→∞
〈Sn+2(t(z), t0(z0))〉
〈S2(t(z))〉

, (4.67)

where the correlators are defined in (4.41) and (4.42).

The relationship between the R charge assignments of the original operator/states and

the spin field labels is as follows. The operator creating a component string of twist m is

mapped to

OR(p,q)
m → S(p,q)

m σm (4.68)

where σm is the bare twist m operator and S
(p,q)
m has SU(2)L and SU(2)R charges

1

2
(p− 1)

1

2
(q − 1). (4.69)

For the twist n operator, the mapping is

OR(p,q)
n → S(p,q)

n σn (4.70)

with the SU(2)L and SU(2)R charges of S
(p,q)
n being

1

2
(p+ n− 1)

1

2
(q + n− 1). (4.71)

Note that the correlation function calculations in [51] are applicable to universal opera-

tors common to both the T 4 and K3 CFTs, i.e. operators associated with the (0, 0) and

(2, 2) cohomology.
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As a warm up we will consider an example of twist three operator joining three com-

ponents; the case of a twist two operator joining two components can be found in [60]. We

consider R charge assignments such that we need to calculate

〈S5(t, t0)〉 := 〈S( 1
2
, 1
2

)

M (t(z))S
(1,1)
3 (t0(z0))

3∏
i=1

S
(− 1

2
,− 1

2
)

mi (ai)〉 (4.72)

and

〈S2(t)〉 := 〈S( 1
2
, 1
2

)

M (t(z))S
(− 1

2
,− 1

2
)

M (0)〉. (4.73)

Thus, the original one point function involves only operators associated with the (0, 0)

cohomology.

We begin by collecting the normalisation factors for the spin fields. For a spin field

associated with a twist m operator, the ramification map by construction takes the form

(z − zm) = bm(t− tm)m (4.74)

near the insertion point zm (mapped to tm). The corresponding (holomorphic) normalisa-

tion factor for the spin field insertion is then

b
− j

2
3
m

m , (4.75)

where j3 is the SU(2)L charge of the spin field. Here and throughout this section we

explain in detail the holomorphic contributions; we then combine the holomorphic and

anti-holomorphic factors to obtain the full result.

For the component strings this results in normalisation factors

bm1 = (−a2)m2(−a3)m3 b
− 1

4m1
m1 = (−a2)

− m2
4m1 (−a3)

− m3
4m1

bm2 = am1
2 (a2 − a3)m3 b

− 1
4m2

m2 = a
− m1

4m2
2 (a2 − a3)

− m3
4m2

bm3 = am1
3 (a3 − a2)m2 b

− 1
4m3

m3 = a
− m1

4m3
3 (a3 − a2)

− m2
4m3 . (4.76)

Taking the product of these factors we obtain

t
3
4
−M

4

(
1
m1

+ 1
m2

+ 1
m3

)
0 (−ā2)

− m2
4m1 (−ā3)

− m3
4m1 ā

− m1
4m2

2 (ā2 − ā3)
− m3

4m2 ā
− m1

4m3
3 (ā3 − ā2)

− m2
4m3 . (4.77)

For the twist three operator joining these component strings we find that

b3 =
M

3
tM−3
0 (1− ā2)m2−1(1− ā3)m3−1 (4.78)

and thus this spin operator normalisation is

t
1−M

3
0

(
M

3
(1− ā2)m2−1(1− ā3)m3−1

) 1
3

. (4.79)
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The normalisation factors from the twist M operator are trivial in both the five point

function and the two point function since bM = 1. The combination of (4.77) and (4.79)

results in a term proportional to:

t
7
4
−M

(
1
3

+ 1
4

∑
i

1
mi

)
0 . (4.80)

The complete normalisation factor is obtained by combining both the holomorphic and

anti-holomorphic parts, leading to a term proportional to:

|t0|
7
2
−M

(
2
3

+ 1
2

∑
i

1
mi

)
. (4.81)

Having studied the case of three strings being joined, it is straightforward to generalise

to the joining of n strings. The normalisation factors give a contribution of

b
− (n−1)2

4n
n

n∏
i=1

b
− 1

4mi
mi (4.82)

where

bmi =
∏
j 6=i

(ai − aj)mj . (4.83)

In (4.82) we have used the fact that the R charge of the twist n operator is (n−1)/2. Thus

the complete normalisation factor from holomorphic and anti-holomorphic parts gives

|bn|−
(n−1)2

2n

n∏
i=1

∏
j 6=i
|ai − aj |

−
mj
2mi . (4.84)

We can calculate bn explicitly as follows. From the definition of bn in (4.57) it is clear that

close to t0 (
dz

dt

)
≈ nbn(t− t0)n−1. (4.85)

Differentiating the ramification map directly gives(
dz

dt

)
≈
∏
i

(t0 − ai)mi−1
(
Mtn−1 + · · ·

)
. (4.86)

Comparing (4.85) and (4.86) gives

bn =
M

n
tM−n0

∏
i

(1− āi)mi−1, (4.87)

where we use the dimensionless quantities āi to make the t0 dependence of bn manifest.

Let us now move to the spin field correlators. Each of the spin fields factorises into

holomorphic and antiholomorphic fields i.e. we can write

S(p,q)
m = S(j3)(t)S̄(j̄3)(t̄) (4.88)

where the SU(2)L/R charges are given in (4.69) and (4.71).
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As above, let us consider first the case in which three component strings are joined,

before moving on to the general case. For operators associated with the (0, 0) cohomology

in the holomorphic sector we therefore need to calculate

〈S( 1
2

)(t)S(1)(t0)S(− 1
2

)(0)S(− 1
2

)(a2)S(− 1
2

)(a3)〉
〈S( 1

2
)(t)S(− 1

2
)(0)〉

(4.89)

in the limit that t→∞. This correlation function can be computed following the methods

of [51].

Using bosonisation we can write the spin fields as

S
k
2 (t) = exp

(
ik

2
(φ1(t)− φ2(t))

)
. (4.90)

The OPE for these fields is

exp (ik1φ(t)) exp
(
ik2φ(t′)

)
∼ exp

(
ik1φ(t) + ik2φ(t′)

)
(t− t′)k1k2 . (4.91)

Using this OPE to compete the two point function and five point function (with appropriate

ordering) we then obtain

〈S( 1
2

)(t)S(− 1
2

)(0)〉 =
1

t
1
2

(4.92)

〈S( 1
2

)(t)S(1)(t0)S(− 1
2

)(0)S(− 1
2

)(a2)S(− 1
2

)(a3)〉 =
(t− t0)(−a2)

1
2 (−a3)

1
2 (a2 − a3)

1
2

t
1
2 (t− a2)

1
2 (t− a3)

1
2 t0(t0 − a2)(t0 − a3)

.

Thus as t→∞

〈S( 1
2

)(t)S(1)(t0)S(− 1
2

)(0)S(− 1
2

)(a2)S(− 1
2

)(a3)〉
〈S( 1

2
)(t)S(− 1

2
)(0)〉

→ (−ā2)
1
2 (−ā3)

1
2 (ā2 − ā3)

1
2

t
3
2
0 (1− ā2)(1− ā3)

. (4.93)

Combining holomorphic and anti-holomorphic contributions we obtain

Lim|z|→∞
〈S5(t(z), t0(z0))〉
〈S2(t(z))〉

〈S̄5(t̄(z̄), t̄0(z̄0))〉
〈S̄2(t̄(z̄))〉

=
|ā2||ā3||ā2 − ā3|

|t0|3|1− ā2|2|1− ā3|2
(4.94)

as the final result for the spin field correlator contribution.

The generalisation to twist n operators joining n component strings is now immediate.

Following (4.72) we choose R charge assignments such that

〈Sn+2(t, t0)〉 := 〈S( 1
2
, 1
2

)

M (t(z))S
( 1
2

(n−1), 1
2

(n−1))
n (t0(z0))

n∏
i=1

S
(− 1

2
,− 1

2
)

mi (ai)〉 (4.95)

(with a1 = 0). Then

〈Sn+2(t, t0)〉 =
(t− t0)

1
2

(n−1)∏n
i=1

∏
i<j(ai − aj)

1
2∏n

i=1(t− ai)
1
2 (t0 − ai)

1
2

(n−1)
(4.96)
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and thus the normalised correlator is

〈Sn+2(t, t0)〉
〈S( 1

2
)(t)S(− 1

2
)(0)〉

=

∏n
i=1

∏
i<j(ai − aj)

1
2∏n

i=1(t0 − ai)
1
2

(n−1)
. (4.97)

Combining holomorphic and anti-holomorphic contributions we obtain

Lim|z|→∞
〈Sn+2(t(z), t0(z0))〉
〈S2(t(z))〉

〈S̄n+2(t̄(z̄), t̄0(z̄0))〉
〈S̄2(t̄(z̄))〉

=

∏n
i=1

∏
i<j |āi − āj |

|t0|
1
2
n(n−1)∏n

i=2 |1− āi|(n−1)
(4.98)

for the spin field correlator associated with the given R charge assignments.

4.5 Final answer for one point function

The final answer for the one point function is obtained by combining (4.35), (4.66), (4.84)

and (4.98). First note that combining (4.66) and (4.84) gives

M
1
2

(M+1)n−
1
2

(n+1)|bn|−
1
2

(n−1)
n∏
i=1

m
− 1

2
(mi+1)

i

∏
i 6=j
|ai − aj |−

mj
2 (4.99)

which can be rewritten as

M
1
2

(M+1)n−
1
2

(n+1)|bn|−
1
2

(n−1)|t0|−
1
2
M(n−1)

n∏
i=1

m
− 1

2
(mi+1)

i

∏
i 6=j
|āi − āj |−

mj
2 . (4.100)

Substituting the expression for bn from (4.87), the t0 dependence is

|t0|
1
2
n(n−1)−M(n−1). (4.101)

Since the t0 dependence of (4.35) is |t0|M(n−1) and the t0 dependence of (4.98) is |t0|−
n(n−1)

2 ,

all factors of t0 cancel from the final result, as expected.

Combining the remaining terms in (4.35), (4.66), (4.84) and (4.98) gives

〈OR(0,0))
M |O(0,0)

n |
n∏
i=1

OR(0,0)
mi 〉 = (4.102)

M
1
2

(M+2−n)

n

∏
i

|1− āi|
1
2

(mi−1)(n−1)
∏
j

m
− 1

2
(mj+1)

j

∏
j 6=k
|āj − āk|

1
2

(1−mk),

where

āi =
1 + āeiφi

1− mi
M

, ā =

(
M

m1

n∏
i=2

(
1− mi

M

)
− 1

) 1
n−1

(4.103)

and the phases are

(n−1)∈ 2Z : φi =
(i−1)π

n−1
, φi+1 =−(i−1)π

n−1
, i∈ 2Z, i≥ 2 (4.104)

n∈ 2Z : φ2 = 0, φi =
(i−1)π

n−1
, φi+1 =−(i−1)π

n−1
, (i−1)∈ 2Z, i≥ 3.
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4.6 Special cases: n = 2 and n = 3

In this section we consider the limit of this correlation function in special cases. We begin

with the case of n = 2, which was already studied in [60]. In this case the correlation

function reduces to the simple expression

〈OR(0,0))
M |O(0,0)

2 (w0)|OR(0,0)
m1

OR(0,0)
m2

〉 =
M

2m1m2
, (4.105)

in agreement with [60].

Now let us turn to the case of n = 3. The correlator (4.102) can in this case be

written as

1

3
M

1
2

(M−1)(1− ā2)m2−1(1− ā3)m3−1m
− 1

2
(m1+1)

1 m
− 1

2
(m2+1)

2 m
− 1

2
(m3+1

3 (4.106)

|ā2|1−
1
2

(m1+m2)|ā3|1−
1
2

(m1+m3)|ā2 − ā3|1−
1
2

(m2+m3).

Note that this expression appears asymmetric between the twist mi operators only because

we have set ā1 = 0; the expression could trivially be symmetrised by reinstating the

ā1 terms.

This expression looks extremely complicated but in fact it simplifies to give a very

concise result. Using

|ā2| =
M

1
2

m
1
2
1 (m1 +m3)

√
m1M +m2m3

|ā3| =
M

1
2

m
1
2
1 (m1 +m2)

√
m1M +m2m3 (4.107)

and

|1− ā2| =
m

1
2
2

m
1
2
1 (m1 +m3)

√
m3M +m1m2

|1− ā3| =
m

1
2
3

m
1
2
1 (m1 +m2)

√
m2M +m1m3 (4.108)

and

|ā2 − ā3| =
M

1
2

m
1
2
1 (m1 +m2)(m1 +m3)

√
m3M +m1m2

√
m2M +m1m3 (4.109)

together with relations such as

(m1M +m2m3) = (m1 +m2)(m1 +m3) (4.110)

we can show that the correlator simplifies to

〈OR(0,0))
M |O(0,0)

3 (w0)|OR(0,0)
m1

OR(0,0)
m2

OR(0,0)
m3

〉 =
M

3m1m2m3
. (4.111)

This expression is manifestly symmetric over the mi; furthermore, all dependence on factors

of the type (mi +mj) cancels out.
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Given the special cases considered in this section, it would be natural to conjecture

that the result for the general case is

〈OR(0,0))
M |O(0,0)

n (w0)|
∏
i

OR(0,0)
mi 〉 =

M

n
∏
imi

, (4.112)

but this is not supported by the results below.

4.7 Case of equal mi

In this section we consider the case in which the n strings are of equal length i.e. mi = M/n.

In this case the general expression (4.102) simplifies considerably to

M1−nn
1
2
M+ 1

2
n−1

n∏
i=2

|1− āi|
1
2

(M
n
−1)(n−1)

n∏
j=1

∏
j 6=k
|āj − āk|

1
2(1−M

n ). (4.113)

The zeroes of the ramification map are located at:

āi =
n

(n− 1)
(1 + ā exp(iφi)) , i ≥ 2 (4.114)

where

ān−1 = n

(
1− 1

n

)n−1

− 1 (4.115)

and the phases are given as before by (4.18). Using the properties of the phases we can

then immediately show that

n∏
j=2

|āj |
1
2

(1−M
n

) = n
1
2(1−M

n ) (4.116)

and hence we can write (4.113) as

M1−nn
1
2
M+ 1

2
n−M

n

n∏
i=2

|1− āi|
1
2

(M
n
−1)(n−1)

n∏
j=2

∏
j 6=k
|āj − āk|

1
2(1−M

n ), (4.117)

i.e. we can immediately evaluate the products involving a1 = 0. (Note that this evaluation

gives (4.116) squared.)

To evaluate (4.117) we make use of

(1− āi) = − 1

(n− 1)
(1 + nā exp(iφi)) (4.118)

and

āi − āj =
nā

(n− 1)
(exp(iφi)− exp(iφj)) . (4.119)

Note that the latter expression has a geometric interpretation: the (n − 1) ramification

zeroes {ai} are located at the vertices of a regular (n − 1) polygon in the complex plane.

The expression

vij := (exp(iφi)− exp(iφj)) (4.120)
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Figure 3. Polygon representing the location of the ramification zeroes. We represent with dotted

lines all the diagonals of one vertex, and with thicker lines its two adjacent sides.

can thus be interpreted vectorially in terms of vectors connecting the vertices of such a

regular (n − 1) polygon, in which the vertices are unit distance from the origin of the

complex plane. We represent this in figure 3.

The first product of (4.117) can be written as

n∏
i=2

(1− āi) =
(−1)n−1

(n− 1)(n−1)

(
1 + nā

n∑
i=2

exp(iφi) + · · ·+ (nā)n−1
n∏
i=2

exp(iφi)

)
. (4.121)

Using the properties of the phases (4.18) we can then show that this reduces to

n∏
i=2

(1− āi) =
(−1)n−1

(n− 1)(n−1)

(
1 + nn−1ān−1

)
(4.122)

and thus
n∏
i=2

|1− āi| =
1

(n− 1)(n−1)

(
1 + n(n− 1)(n−1) − n(n−1)

)
. (4.123)

Hence we can evaluate the following contribution to the one point function:

n∏
i=2

|1− āi|
1
2

(M
n
−1)(n−1) = (n− 1)−

1
2

(M
n
−1)(n−1)2

(
1 + n(n− 1)(n−1) − n(n−1)

) 1
2

(M
n
−1)(n−1)

.

(4.124)

It is more subtle to find a closed form expression for

n∏
j=2

∏
j 6=k
|āj − āk| =

(
nā

(n− 1)

)(n−1)(n−2) n∏
j=2

∏
j 6=k
| exp(iφj)− exp(iφk)| (4.125)
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as this requires
n∏
j=2

∏
j 6=k
| exp(iφj)− exp(iφk)|, (4.126)

i.e. the square of the product of the side lengths and all the diagonals of the regular polygon.

The polygon side length is given by

2 sin

(
π

(n− 1)

)
(4.127)

while the lengths of the diagonals are given by

2 sin

(
jπ

(n− 1)

)
2 ≤ j ≤ (n− 2). (4.128)

Now consider a specific vertex of the regular polygon. For this vertex the total product of

side lengths and diagonals is, using the two previous results

2(n−2)

(n−2)∏
j=1

sin

(
jπ

(n− 1)

)
= (n− 1), (4.129)

where in evaluating this expression we use standard trigonometry identities.

The polygon has in total (n− 1) vertices and thus we obtain

n∏
j=2

∏
j 6=k
| exp(iφj)− exp(iφk)| = (n− 1)(n−1). (4.130)

Collecting together all the contributions we obtain

〈OR(0,0))
M |O(0,0)

n |
(
OR(0,0)
M/n

)n
〉 =

M1−nn
M
2

+n
2
−M
n

(
(n− 1)2(nā)(n−2)Λ−1

) 1
2

(n−1)(1−M
n )

(4.131)

where we introduced the notation

Λ =
(

1 + n(n− 1)(n−1) − nn−1
)
. (4.132)

Note that this does not take the simple form conjectured above (4.112), except for n = 2

and n = 3.

It is useful to work out the expressions explicitly for low values of n. For n = 3,

|1− ā2| = |1− ā3| = 1 (4.133)

and

|ā2 − ā3| =
√

3. (4.134)

Combining the factors, the correlation function thus reduces to

〈OR(0,0))
M |O(0,0)

3 (w0)|OR(0,0)
M
3

OR(0,0)
M
3

OR(0,0)
M
3

〉 =

(
M

3

)−2

, (4.135)

in agreement with the direct limit of the expression (4.102).
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Now let us consider n = 4. The regular polygon used to calculate (4.126) is an

equilateral triangle with circumradii equal to one. Elementary geometry gives the length

of the triangle side as
√

3 and thus (4.126) reduces to 33, in agreement with (4.130). In

this case

ā3 =
11

16
(4.136)

and thus

〈OR(0,0))
M |O(0,0)

4 (w0)|
(
OR(0,0)

M
4

)4

〉 =

(
4

M

)3

5
3M
8
− 3

2 111−M
4 . (4.137)

The conjecture (4.112) would instead give

〈OR(0,0))
M |O(0,0)

4 (w0)|
(
OR(0,0)

M
4

)4

〉 =

(
4

M

)3

(4.138)

and therefore this simple form for the one point function cannot be correct for n > 3.

We can also take the large n limit of (4.131). In the limit of n� 1

Λ ≈ nn (4.139)

while

ān−1 ≈ n

e
. (4.140)

The latter follows from the limit (
1− 1

n

)n−1

→ 1

e
(4.141)

for large n. Then

〈OR(0,0))
M |O(0,0)

n (w0)|
(
OR(0,0)

M
n

)n
〉 ≈

( n
M

)n
n−

M
2n e

1
2

(M−n). (4.142)

In this expression we do not make any assumptions about the twist of the component

strings, i.e. the ratio M/n, beyond the fact that it is a positive integer.

5 Conclusions and outlook

The main result of this paper is a general expression for the amplitude for joining n strings

using a twist operator (4.102). As discussed in section 3, this amplitude can be used to

compute one point functions for supergravity operators in 2-charge and 3-charge black hole

microstates. While the black hole microstate programme was the main motivation for the

current work, correlation functions in the orbifold SCFT are interesting in a number of

other contexts.

In the early days of AdS/CFT, the spectrum and cubic couplings for six-dimensional

N = 4b supergravity were calculated [74, 75]; these allowed the spectrum of chiral primary

operators and three point functions of chiral primaries to be calculated. The correlation

functions discussed here could be matched with higher point functions from the supergrav-

ity side, although this would require higher point supergravity interactions to be computed.
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The holographic duality for AdS3 × S3 × S3 × S1 was for a long time mysterious,

with conjectures for the corresponding SCFT with large N = 4 supersymmetry discussed

in [76, 77]. There has recently been considerable progress on this subject, see [78–81],

with the holographic duals being conjectured to be symmetric orbifolds of minimal models.

The supergravity spectrum was computed in detail in [79], to match with the dual SCFT.

Integrability was also used to study the spectrum in [82]. The techniques of this paper

would be relevant to computing correlation functions in the orbifold CFT to match the

holographic correlation functions.
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spectrum in AdS3/CFT2 from worldsheet integrability, JHEP 04 (2017) 091

[arXiv:1701.03501] [INSPIRE].

– 33 –

https://doi.org/10.1016/S0550-3213(00)00147-4
https://arxiv.org/abs/hep-th/9907144
https://inspirehep.net/search?p=find+EPRINT+hep-th/9907144
https://doi.org/10.1016/0550-3213(96)00323-9
https://doi.org/10.1016/0550-3213(96)00323-9
https://arxiv.org/abs/hep-th/9604042
https://inspirehep.net/search?p=find+EPRINT+hep-th/9604042
https://doi.org/10.1016/S0550-3213(98)00555-0
https://arxiv.org/abs/hep-th/9804166
https://inspirehep.net/search?p=find+EPRINT+hep-th/9804166
https://doi.org/10.1103/PhysRevD.63.044024
https://arxiv.org/abs/hep-th/0007061
https://inspirehep.net/search?p=find+EPRINT+hep-th/0007061
https://doi.org/10.4310/ATMP.1999.v3.n3.a5
https://arxiv.org/abs/hep-th/9904073
https://inspirehep.net/search?p=find+EPRINT+hep-th/9904073
https://doi.org/10.4310/ATMP.2005.v9.n3.a3
https://arxiv.org/abs/hep-th/0403090
https://inspirehep.net/search?p=find+EPRINT+hep-th/0403090
https://doi.org/10.1007/JHEP07(2016)113
https://doi.org/10.1007/JHEP07(2016)113
https://arxiv.org/abs/1604.03964
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03964
https://doi.org/10.1007/JHEP03(2017)124
https://arxiv.org/abs/1701.03552
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.03552
https://doi.org/10.1007/JHEP08(2017)111
https://arxiv.org/abs/1707.02705
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.02705
https://doi.org/10.1007/JHEP07(2017)090
https://doi.org/10.1007/JHEP07(2017)090
https://arxiv.org/abs/1704.08665
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.08665
https://doi.org/10.1007/JHEP04(2017)091
https://arxiv.org/abs/1701.03501
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.03501

	Introduction
	Review of key features of the D1-D5 orbifold CFT
	Explicit description in terms of free fields

	Twist operator amplitudes
	Computation of twist operator expectation value
	Maps to covering space
	Computation of one point function
	Twist operator correlator
	Spin field correlator
	Final answer for one point function
	Special cases: n=2 and n=3
	Case of equal mi

	Conclusions and outlook

