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1 Introduction and summary

Maximally supersymmetric (N = 8) superconformal field theories in three dimensions

have received quite a bit of attention due to their interpretation as M2-brane theories

and due to the many new exact supersymmetric localization results that have allowed for

several precision tests of AdS/CFT. While some of these theories have several distinct

microscopic descriptions, they can all be described by a few infinite families of Chern-

Simons (CS) theories with a product gauge group coupled to two pairs of matter chiral

multiplets transforming in the bifundamental representation of the gauge group — see

figure 1. These families are:

• BLG theories: these are SU(2)k×SU(2)−k (denoted BLG′k) and (SU(2)k×SU(2)−k)/Z2

(denoted BLGk) gauge theories, which preserve manifest N = 8 supersymmetry for

any integer Chern-Simons level k. This description of the BLG theories is a refor-

mulation [1, 2] of the original work of Bagger, Lambert, [3–5] and Gustavsson [6]

(BLG). While these theories were originally believed to have an interpretation as

effective theories on 2 coincident M2-branes, and this is indeed true for certain small

values of k, their M-theory interpretation, if any, is still unknown for arbitrary k.
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Figure 1. The field content of the two-gauge group description of N = 8 SCFTs. The gauge group

is G1 × G2 with opposite Chern-Simons levels for the two factors. The matter content consists of

two pairs of bifundamental chiral multiplets whose bottom components are denoted by A1, A2 and

B1, B2. As explained in the main text, such theories have N = 8 SUSY at the IR fixed point only

for special values of k and/or for special gauge groups G1 and G2.

• ABJM or ABJ theories: these are U(N)k×U(M)−k gauge theories (denoted ABJMN,k

if N = M and ABJN,M,k if N 6= M), which are believed to flow to IR fixed points with

N = 8 supersymmetry only if the Chern-Simons level is k = 1 or 2 and |N −M | ≤ k.

The theories with M = N were first introduced by Aharony, Bergman, Jafferis, and

Maldacena (ABJM) in [7], and those with M 6= N by Aharony, Bergman, and Jafferis

(ABJ) in [8]. These theories can be interpreted as effective theories on N coincident

M2-branes placed at a C4/Zk singularity in the transverse directions. Due to the

dualities [7, 14]

ABJN+1,N,1
∼= ABJMN,1 ,

ABJN+2,N,2
∼= ABJMN,2 ,

(1.1)

the only independent theories in this family are the ABJMN,1, ABJMN,2, and

ABJN+1,N,2 theories.

The case of the ABJM1,1 theory is worth noting: this theory is equivalent to a free

theory of 8 massless real scalars and 8 massless Majorana fermions. This is the theory on

one M2-brane in flat space, where the 8 scalars parameterize the location of the brane in

the transverse space. The case ABJMN,1 for N > 1, which corresponds to a stack of N

M2-branes in flat space, flows to a product of two decoupled CFTs in the infrared (see

for instance [9]). One of these CFTs is free (and equivalent to the ABJM1,1 theory), and

corresponds to the center-of-mass motion of the stack of branes. The other CFT in the

product is interacting and strongly coupled.

In addition to the dualities between ABJM / ABJ theories already mentioned, there

are further dualities that relate the BLG and ABJM theories at certain small values of k.

For instance [14, 22]:

BLG1
∼= ABJM2,1 ,

BLG′2
∼= ABJM2,2 ,

BLG4
∼= ABJ2,3,2 .

(1.2)

Furthermore, it is possible to conjecture other dualities that come from the fact that the k =

1, 2 ABJM and the k = 2 ABJ theories can be thought of as the IR limits of the maximally
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supersymmetric Yang-Mills theory with gauge algebra u(N), so(2N), and so(2N + 1),

respectively [10–13]. At small N , there are various coincidental isomorphisms between these

Lie algebras, which themselves induce isomorphisms between the corresponding N = 8

SCFTs. For instance, since u(2) ∼= u(1) ⊕ so(3), one expects that the ABJM2,1 theory

should be isomorphic to the product between the ABJM1,1 theory and the ABJ2,1,1 theory.

The purpose of this paper is to present yet another duality between the ABJ(M) and

BLG theories that is not included in the list above. It is:

BLG3 ⊗ ABJM1,1
∼= ABJM3,1 . (1.3)

Recalling that the ABJM3,1 theory has a decoupled free sector isomorphic to ABJM1,1

theory as well as an interacting one, this duality can be rephrased as

BLG3
∼= interacting sector of ABJM3,1 . (1.4)

Thus, our new duality (1.3)–(1.4) provides an interpretation for the BLG theory at level

k = 3: it is the interacting sector of the theory on three coincident M2-branes. Quite

curiously, this duality casts the k = 3 BLG theory as a theory on three coincident M2-

branes, unlike the original intuition that BLG theories should be related to theories on two

M2-branes.

It is worth mentioning that the N = 8 SCFTs mentioned above may have other de-

scriptions that are not two-node gauge quivers. An important example is that the ABJMN,1

theory has the same IR fixed point as an N = 4 U(N) gauge theory with a fundamental

hypermultiplet and an adjoint hypermultiplet [9, 14]. In fact, it is this latter description

that we will use in some of our computations in the ABJM3,1 theory that we perform in

order to check (1.3)–(1.4).

As was checked in previous dualities, for our proposed duality we match the moduli

spaces and superconformal indices on each side of the duality. We also match the values of

the S3 partition functions of the two theories. In addition, we provide a new check using

the recently proposed supersymmetric localization of 3d N = 4 theories to a topological

1d sector [15]. Using this method, we calculate the two- and three-point functions of low-

lying half and quarter BPS operators, which we use to extract their OPE coefficients, listed

in (5.27), (5.28), and (B.1). For the OPE coefficients in the four point function of the stress

tensor, we compare these values to the conformal bootstrap bounds of [16] in figure 2. We

find that the exact values come close to saturating the lower bounds.

The paper is organized as follows. In section 2 we review ABJM3,1 and BLG3 theories

and demonstrate the explicit operator matching for low-lying BPS operators, including

matching the superconformal index. In section 3 we match the moduli spaces. In section 4

we compute and match the values of the S3 partition functions. In section 5 we study

certain 1d topological sectors of each theory, and extract the OPE coefficients of low-lying

BPS operators. In appendix A we discuss the four point function, and in appendix B we

list more OPE coefficients.
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Figure 2. Upper and lower bounds on λ̄22,2,2,2 and λ̄22,2,2,0 OPE coefficients in terms of the stress

tensor OPE coefficient λ̄22,2,1,1, where the orange shaded regions are allowed, and the plot ranges

from the supergravity limit λ̄2,2,1,1 → 0 (cT → ∞) to the free theory λ̄22,2,1,1 = 16. The red dots

denote the values for the interacting sector of the ABJM3,1 theory or for the BLG3 theory, given

in (5.30). The λ̄22,2,2,2 bounds can be mapped into the λ̄22,2,2,0 bounds using (A.6). These bounds

were computed following [16], except with the improved parameters jmax = 88 and Λ = 43.

2 Operator spectrum and the superconformal index

2.1 Low-lying BPS operator spectrum

Let us start by introducing the two N = 8 theories we argue are dual in more detail and

compare their operator spectra. These theories belong to the family of N = 6 Chern-

Simons-matter theories [7] that have gauge group U(N)×U(N) or (SU(N)× SU(N))/ZN
with Chern-Simons coefficients k and −k for the two gauge groups. In N = 2 notation,

the matter content consists of chiral multiplets with scalar components A1, A2 and B1, B2

that transform under the product gauge group as (N,N) and (N,N), respectively. The

theories have a quartic superpotential

W =
2π

k
εabεȧḃ Tr (AaBȧAbBḃ) , (2.1)

which preserves an SU(2) × SU(2) flavor symmetry under which Aa transforms as (2,1)

and Bȧ transforms as (1,2). These theories also have a manifest SU(2)R symmetry (corre-

sponding to N = 3 SUSY) under which (Aa, B
†
ȧ) form doublets, a U(1)R subgroup of which

being the N = 2 R-symmetry under which Aa and Bȧ have canonical R-charge 1/2. The

SU(2) × SU(2) flavor symmetry combines with the SU(2)R symmetry to form an SU(4)R
R-symmetry, as appropriate for N = 6 SUSY.

The theories with U(N) × U(N) gauge group have an additional topological U(1)T
symmetry under which only monopole operators are charged. When k = 1 or 2, one can

find additional R-symmetry generators, which together with SU(4)R and U(1)T combine

into an SO(8)R symmetry; these theories thus have N = 8 SUSY. We will of course be

interested only in the case N = 3, k = 1. The theories with (SU(N)× SU(N))/ZN gauge

group in general do not have a similar R-symmetry enhancement. When N = 2, however,

one can show that because Aa and Bȧ now transform in the same gauge representation,

the superpotential (2.1) has an SU(4) flavor symmetry (which contains the SU(2)× SU(2)
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flavor symmetry as well as a baryonic symmetry U(1)t under which the Aa have charge +1

and the Bȧ have charge −1), which combines with the SU(2)R symmetry mentioned above

to form an SO(8)R R-symmetry. Such an enhancement occurs for any k, but we will focus

on the case k = 3.

We would like to compare the operator spectra of the U(3)1 × U(3)−1 (ABJM3,1)

and (SU(2)3 × SU(2)−3)/Z2 (BLG3) theories. We will do so by explicitly constructing

various operators in short representations of the superconformal algebra, so let us review

briefly what kinds of representations are possible. (For more details, see [17].) In any

N = 8 SCFT, operators transform in unitary representations of the superconformal algebra

osp(8|4). These representations are of two types, customarily denoted by A and B, a

number between 0 and 3 or a sign: the A-type ones are (A, 0), (A, 1), (A, 2), (A, 3), (A,+),

(A,−) and the B-type ones are (B, 0), (B, 1), (B, 2), (B, 3), (B,+), (B,−). In addition,

we also need to specify the SO(8)R representation of the superconformal primary, whose

Dynkin labels we write as a superscript. The representations of B-type are shorter than

the corresponding A representations. The longest representations are of (A, 0) type and do

not obey any shortening condition; the shortest representations (1/2-BPS) are of (B,+) or

(B,−) type. One of the latter, after choosing the SO(8)R triality convention, can be taken

to be (B,+)[0020], which contains the stress-energy tensor and must be present in all local

N = 8 SCFTs. Here [0020] are the Dynkin labels of the 35c irrep of SO(8)R, in which

the superconformal primary of the stress tensor representation transforms. (Our choice of

SO(8)R triality is uniquely specified by requiring that the eights supercharges transform

in the 8v and that the superconformal primary of the stress tensor multiplet transforms

in the 35c.)

We will exhibit a few operators that belong to these representations. In order to

construct operators, we can use the fields in the Lagrangian, as well as monopole operators.

The monopole operators Mn1,...,nN
ñ1,...,ñN

create diag {n1, . . . , nN} and diag {ñ1, . . . , ñN} units

of magnetic flux through the two gauge groups, respectively. Here, we take both the nr
and ñr to be in descending order. If the gauge groups are U(N), then the equations of

motion imply that ∑
r

nr =
∑
r

ñr = −2QT , (2.2)

where QT is the charge under the U(1)T symmetry mentioned above, quantized in half-

integer units.1 If the gauge groups are SU(N), then the nr and ñr must each sum to zero.

We will only be considering BPS monopole operators, with zero R-charge. In general, the

R-charge is

E =

N∑
r,s=1

[
|nr − ñs| −

1

2
|nr − ns| −

1

2
|ñr − ñs|

]
, (2.3)

as was first proposed in [18] and derived in [9, 10, 19]. It is easy to see from (2.3) that

E = 0 only for nr = ñr. In order to avoid clutter, we denote such operators simply by

1The conserved current associated to this charge is Jµ = − 1
16π

εµνρ
(

TrFνρ + Tr F̃νρ
)

. The other linear

combination of gauge field strengths vanishes by the equations of motion.
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Mn1,...,nN . For k 6= 0 these monopole operators transform nontrivially under the gauge

group in a way to be described shortly. To form gauge-invariant operators, the monopole

operators Mn1,...,nN need to be dressed with the matter fields. Let us show this explicitly

for the lowest few multiplets.

2.1.1 ABJM3,1

For the ABJM3,1 theory, the monopole operators Mn1,n2,n3 transform under the U(3)×U(3)

gauge group as

U(3)×U(3) irrep:
(
Υν ,Υ−ν

)
, Υ =

n1−n3︷ ︸︸ ︷
︸ ︷︷ ︸
n2−n3

, ν =
∑
r

nr , (2.4)

where we have denoted a U(3) irrep by Υν , where Υ is an SU(3) Young diagram and ν

is the charge under the diagonal U(1), normalized such that the fundamental of U(3)

is �1. In (2.4), Υ denotes the conjugate tableau to Υ. In particular, we can write

Mn1,n2,n3 more explicitly as a symmetric traceless tensor with n1 − n2 fundamental and

n2−n3 anti-fundamental indices under the first gauge group, and n1−n2 anti-fundamental

and n2 − n3 fundamental indices under the second gauge group. Using a notation in

which U(3) fundamental indices are upper and anti-fundamental indices are lower, this is

(Mn1,n2,n3)
α1...αn1−n2 β̇1...β̇n2−n3
β1...βn2−n3 α̇1...α̇n1−n2

.

We can construct gauge invariant BPS states with nonzero QT by dressing Mn1,n2,n3

with appropriate products of CI = (A1, A2, B
†
1, B

†
2) and C†I , where upper/lower I = 1, 2, 3, 4

is a fundamental/anti-fundamental index for SU(4)R. In the notation above, the CI trans-

form in the gauge irrep (Υν ,Υ−ν), with Υ = � and ν = 1. Including explicit gauge indices,

we would write (CI)αα̇ and (C†I )
α̇
α.

Using a single matter field, we find that C†IM
1,0,0 and CIM0,0,−1 (with the gauge

indices contracted in the only possible way, namely (C†I )
α̇
α(M1,0,0)αα̇ and (CI)αα̇(M0,0,−1)α̇α)

are the only gauge-invariant combinations. They transform under SU(4)R ×U(1)T as 4− 1
2

and 4− 1
2
, respectively. These operators have scaling dimension ∆ = 1

2 , and are thus free.

They are part of the free sector of ABJM theory, which also contains all operators that

appear in the OPE of C†IM
1,0,0 and CIM0,0,−1. The lowest few scalar operators in this free

sector are given schematically in table 1.2 The hallmark of the free sector is the OSp(8|4)

irrep (B,+)[0010] whose scalar operators were mentioned above. Another feature is the

presence of a stress tensor multiplet (B,+)[0020].

The interacting sector, whose lowest few scalar operators are given schematically in

table 2, consists of all operators that decouple from the free sector. For instance, the first

operator in table 2, C†(IC
†
J)M

1,1,0, can be written more explicitly as:

εαβγεα̇β̇γ̇C
†
(I

[α̇
[αC
†
J)
β̇]
β]M

γ̇
γ . (2.5)

2The relegation of operators to the free, mixed, and interacting sectors is schematic, as there may be

mixing between operators in the same representations.
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O ∆ SU(4)R ×U(1)T OSp(8|4) irrep

C†IM
1,0,0 1

2 4− 1
2 (B,+)[0010]

CIM0,0,−1 1
2 4 1

2

C†(IC
†
J)M

2,0,0 1 10−1

C(ICJ)M0,0,−2 1 101 (B,+)[0020]

C†IC
JM1,0,−1 1 150

C†(IC
†
JC
†
K)M

3,0,0 3
2 20′′− 3

2

C(ICJCK)M0,0,−3 3
2 20

′′
3
2 (B,+)[0030]

CIC†(JC
†
K)M

2,0,−1 3
2 36− 1

2

C†IC
(JCK)M1,0,−2 3

2 36 1
2

Table 1. BPS operators with ∆ ≤ 3
2 in the free sector of the ABJM3,1 theory.

O ∆ SU(4)R ×U(1)T OSp(8|4) irrep

C†(IC
†
J)M

1,1,0 1 10−1

C(ICJ)M0,−1,−1 1 101 (B,+)[0020]

C†IC
J 1 150

C†(IC
†
JC
†
K)M

1,1,1 3
2 20′′− 3

2

C(ICJCK)M−1,−1,−1 3
2 20

′′
3
2 (B,+)[0030]

CIC†(JC
†
K)M

1,0,0 3
2 36− 1

2

C†IC
(JCK)M0,0,−1 3

2 36 1
2

Table 2. BPS operators with ∆ ≤ 3
2 in the interacting sector of the ABJM3,1 theory.

Note that the flavor indices are symmetrized, because the gauge indices for both gauge

groups are simultaneously anti-symmetrized, and thus this operator transforms in the 10 of

SU(4)R and has U(1)T charge −1. Also note the presence of another stress tensor multiplet

(B,+)[0020], which is different from the one appearing in the free sector. Thus, this ABJM

theory has two N = 8 stress tensor multiplets, each corresponding to a decoupled sector.

Lastly, there is a mixed sector whose lowest few scalar operators are given in table 3,3

which consists of all operators built using both free and interacting sector operators. Note

that there are no free or stress tensor multiplets in the mixed sector, as expected, but there

are now both (B,+) and (B, 2) operators with dimension 3
2 .

3The appearance of CIC†(JC
†
K)M

1,0,0 in both the mixed and interacting sector is because there are two

singlets in the product 3 ⊗ 3 ⊗ 3̄ ⊗ 3̄ of gauge irreps, and thus two inequivalent ways of contracting the

gauge indices.
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O ∆ SU(4)R ×U(1)T OSp(8|4) irrep

C†(IC
†
JC
†
K)M

2,1,0 3
2 20′′− 3

2

C(ICJCK)M0,−1,−2 3
2 20

′′
3
2 (B,+)[0030]

CIC†(JC
†
K)M

1,1,−1 3
2 36− 1

2

C†IC
(JCK)M1,−1,−1 3

2 36 1
2

C†(IC
†
[J)C

†
K]M

2,1,0 3
2 20− 3

2

C(IC [J)CK]M0,−1,−2 3
2 20 3

2

CIC†(JC
†
K)M

1,0,0 3
2 36− 1

2

C†IC
(JCK)M0,0,−1 3

2 36 1
2 (B, 2)[0110]

CIC†[JC
†
K]M

1,0,0 3
2 20− 1

2

C†IC
[JCK]M0,0,−1 3

2 20 1
2

CIC†[IC
†
J ]M

1,0,0 3
2 4− 1

2

C†IC
[ICJ ]M0,0,−1 3

2 4 1
2

Table 3. BPS operators with ∆ ≤ 3
2 in the mixed sector of ABJM3,1 theory.

2.1.2 BLG3

A similar construction holds for the BLG3 theory. One difference between this theory and

the ABJM3,1 example we studied above is that the BLG3 theory has a different set of

monopole operators with E = 0, labeled by only a single positive half-integer GNO charge

n. They transform in the SU(2) × SU(2) gauge irrep

SU(2)× SU(2) irrep: (6n + 1,6n + 1) . (2.6)

(For the BLGk theory with arbitrary k, the gauge irrep is (2kn + 1,2kn + 1).) These

monopole operators must be combined with the matter fields CI and C†I , each of which

transform as (2,2) under the gauge group.

The lowest dimension gauge invariant operators are quadratic in CI and C†I and do

not require monopole operators. The next lowest are cubic in the CI and C†I and require

the monopole operator with n = 1/2. See table 4. These operators are in one-to-one

correspondence with operators from the interacting sector of the ABJM3,1 theory given in

table 2. We take this match to be the first piece of evidence for the duality (1.3)–(1.4)

between the two theories.
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O ∆ SU(4)R ×U(1)t OSp(8|4) irrep

C†(IC
†
J) 1 10−1

C(ICJ) 1 101 (B,+)[0020]

C†IC
J 1 150

C†(IC
†
JC
†
K)M

1/2 3
2 20′′− 3

2

C(ICJCK)M1/2 3
2 20

′′
3
2 (B,+)[0030]

CIC†(JC
†
K)M

1/2 3
2 36− 1

2

C†IC
(JCK)M1/2 3

2 36 1
2

Table 4. BPS operators with ∆ ≤ 3
2 in the BLG3 theory.

2.2 Superconformal index

As an alternative to the explicit construction given in the previous section, one can use

the superconformal index. The superconformal index, to be defined more precisely shortly,

captures information about protected representations of the superconformal algebra. Its

advantage over the explicit construction of the previous section is that it can be rigorously

computed using supersymmetric localization. Its disadvantage is that the information it

encodes does not unambiguously identify all the osp(8|4) representations.

In order to define the superconformal index, it is convenient to view an N = 8 SCFT

as an N = 2 SCFT with SU(4) flavor symmetry. One can then consider a supercharge

Q within the N = 2 superconformal algebra such that {Q,Q†} = ∆ − R − j3, where ∆

is the scaling dimension, j3 is the third component of the angular momentum, and R is

the U(1)R charge. (There is a unique such supercharge, and it has ∆ = 1/2, R = 1, and

j3 = −1/2.) The superconformal index with respect to Q is defined as the trace over the

S2 × R Hilbert space

I(x, zf ) = Tr

(−1)Fx∆+j3

3∏
f=1

z
Ff
f

 , (2.7)

where F = (−1)2j3 is the fermion number and Ff are the charges under the Cartan of the

SU(4) flavor symmetry. Standard arguments imply that the only states contributing to the

trace in (2.7) obey ∆ = R+ j3; all others cancel pairwise.

The indices for the theories we are interested in have been computed using supersym-

metric localization in [20], following the general computation in [10]. It can be shown that

IABJM3,1 = IBLG3Ifree, where IABJM3,1 is the index of the ABJM3,1 theory, IBLG3 is that

of the BLG3 theory, and Ifree is that of the ABJM1,1 theory, which is free. For instance,

keeping only one fugacity z corresponding to the Cartan element of SU(4) given by either
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U(1)T or U(1)t, we have4

IABJM3,1 = 1 + 8x+ 71x2 + 320x3 + 2z
(
x1/2 + 12x3/2 + 78x5/2

)
+ z2

(
6x+ 56x2 + 295x3

)
+ z3(14x3/2 + 114x5/2) +O(z4, x7/2) +

(
z ↔ z−1

)
,

Ifree = 1 + 4x+ x2 + 4x3 + 2z
(
x1/2 + 2x3/2

)
+ z2

(
3x+ 4x2

)
+ 4z3

(
x3/2 + x5/2

)
+O(z4, x7/2) +

(
z ↔ z−1

)
,

IBLG3 = 1 + 4x+ 12x2 + 24x3 + 2z
(

3x3/2 + 11x5/2
)

+ z2
(
3x+ 8x2 + 27x3

)
+ 2z3(2x3/2 + 10x5/2) +O(z4, x7/2) +

(
z ↔ z−1

)
.

(2.8)

One can indeed check that these expressions obey IABJM3,1 = IBLG3Ifree up to the order

given. We regard this match of the indices as the second piece of evidence supporting our

conjectured duality (1.3)–(1.4).

3 Moduli space

We now show how to relate the (classical) moduli space of vacua of the ABJM3,1 theory to

that of the BLG3 theory. The moduli space can be found by modding out the zero locus of

the scalar potential by the gauge transformations. For both theories, one can check that

the scalar potential vanishes provided that [1, 7]

〈Aα̇aβ〉 = aβaδ
α̇
β , 〈Bβ

ȧα̇〉 = bβȧδ
α̇
β , (3.1)

where aβa, b
β
ȧ are complex numbers, and where we used part of the gauge symmetry to put

Aα̇aβ and Bβ
ȧα̇ in diagonal form. For a gauge group of rank N , the moduli space is thus

parameterized by 4N complex numbers zr = {ar1, ar2, br1, br2} for r = 1, . . . , N , modulo

residual gauge transformations.

The residual gauge symmetry gives further relations on zr. For the ABJM3,1 theory,

these relations are [7]

zr ∼ zσ(r) , σ ∈ S3 , (3.2)

where r = 1, 2, 3 and S3 is the symmetric group of order six. The moduli space is thus

(C4)3/S3. From the M-theory perspective, this is the moduli space of three M2-branes in

flat space, where the S3 corresponds to permuting the indistinguishable branes.

For the BLG3 theory, for which we denote the corresponding coordinates by z′r instead

of zr, the relations are [21–23]

z′1 ∼ z′2 , z′1 ∼ e2πi/3z′1 , z′2 ∼ e−2πi/3z′2 . (3.3)

The first relation comes from permuting the identical gauge groups, while the last two come

from identifications that depend on the Chern-Simons coupling. These relations define the

4We fix a typo in [20] for the coefficient of z2x3 in the expression for IABJM3,1 .
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moduli space (C4)2/D3, where D3 is the dihedral group of order six. We wish to identify

this with the interacting sector of ABJM3,1. To distinguish between the free and interacting

sector of the latter, consider the reparameterization

w1 = e−2πi/3z1 + e2πi/3z2 + z3 , w2 = e2πi/3z1 + e−2πi/3z2 + z3 , w3 = z1 + z2 + z3 .

(3.4)

The parameter w3 is invariant under S3 and thus parameterizes the moduli space of the

free theory. The interacting sector is parameterized by w1, w2, which transform under the

permutations (12), (123) ∈ S3 as

(12) : w1 ∼ w2 ,

(123) : w1 ∼ e2πi/3w1 , w2 ∼ e−2πi/3w2 ,
(3.5)

where (12) permutes z1 ↔ z2 and (123) permutes z1 → z2 , z2 → z3 , z3 → z1. These

relations are the same as (3.3), which establishes the isomorphism

(C4)3/S3
∼= (C4)2/D3 × C4 , (3.6)

where C4 corresponds to the free sector of the ABJM3,1 theory, and (C4)2/D3 corre-

sponds to the interacting sector as well as to the BLG3 theory. We regard the match

between the moduli spaces (3.6) as the third piece of evidence supporting our conjectured

duality (1.3)–(1.4).

4 The S3 partition function

We will now compare the S3 partition functions of the two theories. The partition function

for the ABJMN,k theory can be written as the following finite dimensional integral [24]:

ZABJMN,k
=

1

(N !)2

∫
dNσdN σ̃ eπik

∑N
α=1(σ

2
α−σ̃

2
α)

(∏
α<β 2 sinh(π(σα−σβ))2 sinh(π(σ̃α−σ̃β))∏

α,β 2 cosh(π(σα − σ̃β))

)2

,

(4.1)

where σα, σ̃α are integration variables that can be interpreted as the eigenvalues of the

scalars in the vector multiplets associated with the two U(N) gauge groups. For k = 1 and

N = 1, 3 we find

ZABJM3,1 =
π − 3

64π
, ZABJM1,1 = Zfree =

1

4
, (4.2)

where recall that the ABJM1,1 theory is free.

The partition function of the BLGk theory can be derived from the ABJMN,k partition

function (4.1) by setting N = 2, imposing the constraints σ1 + σ2 = σ̃1 + σ̃2 = 0, and

multiplying by 2 to take into account the Z2 quotient in the (SU(2) × SU(2))/Z2 gauge

group. The result is

ZBLGk =
1

64π2

∫
d2σ± e

2kiσ+σ−
π

(
sinh(σ+ + σ−) sinh(σ+ − σ−)

cosh2(σ+) cosh2(σ−)

)2

, (4.3)
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where we have made the change of variables σ± = π(σ1 ± σ̃1). For k = 3, we find that

ZBLG3 =
π − 3

16π
=
ZABJM3,1

Zfree
, (4.4)

as we expect from our duality. We regard (4.4) as our fourth piece of evidence supporting

the conjectured duality (1.3)–(1.4).

5 One-dimensional topological sector

Lastly, let us attempt to make a more detailed check of the duality (1.3)–(1.4) at the level

of correlation functions of BPS operators. As explained in [25–27], abstract arguments

based on the superconformal algebra show that all three-dimensional N ≥ 4 SCFTs have

two one-dimensional topological sectors (defined either on a line in flat space or on a great

circle within S3), one associated with the Higgs branch and the other with the Coulomb

branch. More precisely, these topological sectors arise as follows. All N = 4 SCFTs have

an SU(2)H × SU(2)C R-symmetry. In general, there can be two types of 1/2-BPS scalar

operators in these theories: “Higgs branch operators” that are invariant under SU(2)C and

have scaling dimension ∆ equal to the SU(2)H spin jH , and “Coulomb branch operators”

that are invariant under SU(2)H and have scaling dimension ∆ equal to the SU(2)C spin

jC . The operators belonging to the Higgs (Coulomb) branch topological sector are linear

combinations of the first (second) class of 1/2-BPS operators above with specific position-

dependent coefficients. These operators, when inserted on a line in flat space or on a

great circle on S3, have topological correlation functions because they represent non-trivial

cohomology classes of a nilpotent supercharge with respect to which translations along the

line / circle are exact. Concretely, in the case where the 1d Higgs branch theory is defined

on a great circle parameterized by ϕ ∈ [−π/2, π/2) that sits within a round S3 of radius

r, the 1d operators are

O(ϕ) = Oi1...i2jH (ϕ)ui1(ϕ) . . . ui2jH (ϕ) , ui(ϕ) ≡

(
cos(ϕ/2)

sin(ϕ/2)

)
, (5.1)

where Oi1...i2jH (ϕ) is a 3d operator with ∆ = jH and jC = 0, written as a symmetric,

rank-2jH tensor of SU(2)H . For more details, see [15] as well as [25–27].

For the particular case of N = 8 SCFTs, the Higgs and Coulomb topological sectors

are isomorphic, so without loss of generality we will study the Higgs one. In [15], it

was shown that for N = 4 SCFTs described by a Lagrangian with a vector multiplet

with gauge algebra g and a hypermultiplet in representation R of g, it is possible to use

supersymmetric localization to obtain an explicit description of the 1d sector associated

with the Higgs branch. When the 1d topological sector is defined on a great circle within

S3 parameterized by ϕ, as above, its explicit description takes the form of a Gaussian 1d

theory coupled to a matrix model:

Z =

∫
Cartan of g

dσ det′adj(2 sinh(πσ))

∫
DQDQ̃ e4πr

∫
dϕ (Q̃∂ϕQ+Q̃σQ) . (5.2)
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Here, σ is the matrix degree of freedom that has its origin in the 3d vector multiplet and

was diagonalized to lie within the Cartan of the gauge algebra. The 1d fields Q(ϕ) and

Q̃(ϕ) have their origin in the 3d hypermultiplet and transform in the representations R
and R, respectively. Their definition in terms of the hypermultiplet scalars is as in (5.1),

with O replaced by the hypermultiplet scalars transforming in the fundamental of SU(2)H .

Upon integrating out Q and Q̃ one obtains the Kapustin-Willett-Yaakov matrix model [24]

for the S3 partition function of the N = 4 SCFT:

Z =

∫
Cartan of g

dσ
det′adj(2 sinh(πσ))

detR(2 cosh(πσ))
. (5.3)

The description (5.2) can be used to calculate arbitrary n-point functions of operators

belonging to the 1d sector, so this result opens up the possibility of performing more

detailed tests of our proposed duality (1.3)–(1.4) involving correlation functions captured

by the 1d sector. Unfortunately, the ABJM and BLG theories we are interested in do

not have Lagrangian descriptions in terms of just vector multiplets and hypermultiplets

(one cannot accommodate non-zero Chern-Simons levels with just vector multiplets and

hypermultiplets), so the result (5.2) quoted above does not directly apply to these theories.

Fortunately, there is a way around this difficulty. The right-hand side of (1.3)–(1.4), or

more generally the ABJMN,1 theory, has a dual description as an N = 4 U(N) gauge theory

coupled to an adjoint hypermultiplet and a fundamental hypermultiplet [7, 14, 28]. So if

we worked with this dual description we could use (5.2) to compute correlation functions

in the Higgs branch topological sector, and we will do so in the case of interest N = 3.

For the BLG theories no such dual description is available, but we will conjecture that

a modification of (5.2) will allow us to compute some of the correlation functions in the

Higgs branch sector. Our conjecture is that to the integrand of (5.2) we should insert

eiπk trσ2
(5.4)

for every gauge group factor that has a Chern-Simons level k, where the trace is taken in

the fundamental representation of that gauge group factor and in the trivial representation

of the rest. This conjecture is motivated by the fact that this is the correct prescription

in the matrix model (5.3). Importantly, it allows us to compute correlation functions

of gauge-invariant operators built from Q and Q̃. However, unlike when k = 0, these

operators are not the most general operators in the 1d theory; some of the operators in

the 1d theory descend from 3d monopole operators, and these are not captured by (5.2)

supplemented by (5.4). Nevertheless, we will still be able to compute correlation functions

of non-monopole operators in the BLG3 theory and compare them with the analogous

correlators in the ABJM3,1 theory. As we will see, the results of these computations are

consistent with our proposed duality in (1.3)–(1.4).

From the N = 8 perspective, the operators in the Higgs branch topological theory are

specific linear combinations of at least 1/4-BPS short representations [25]. To be concrete,

let us consider an SU(2)H × SU(2)C × SU(2)F × SU(2)F ′ subgroup of the N = 8 SO(8)R
R-symmetry, where, from the N = 4 point of view, SU(2)H × SU(2)C is interpreted as the
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R-symmetry and SU(2)F ×SU(2)F ′ as a flavor symmetry. One can consider this embedding

such that the fundamental representations of SO(8) have the following decompositions:

[1000] = 8v → (2,2,1,1)⊕ (1,1,2,2) ,

[0010] = 8c → (2,1,2,1)⊕ (1,2,1,2) ,

[0001] = 8s → (2,1,1,2)⊕ (1,2,2,1) .

(5.5)

A careful analysis [25] shows that the only operators in the 1d theory come from the

superconformal primaries ofN = 8 multiplets that are at least 1/4-BPS — in our case, these

will be the (B,+)[00m0] and (B, 2)[0nm0] representations. The superconformal primaries

of these multiplets are scalars with scaling dimension ∆ = n + m/2 and SO(8)R irrep

with Dynkin labels [0nm0]. They give 1d operators that are singlets of SU(2)F ′ and that

transform in the spin-m/2 representation of SU(2)F :

(B,+)[00m0] : O(∆,jF )
a1...a2jF

(ϕ) ∆ = jF =
m

2
,

(B, 2)[0nm0] : O(∆,jF )
a1...a2jF

(ϕ) ∆ = jF + n =
m

2
+ n ,

(5.6)

where we have denoted the 1d operators as O(∆,jF )
a1...a2jF

(ϕ), writing them explicitly as rank-

2jF symmetric tensors of the SU(2)F . This SU(2)F is thus a global symmetry of the 1d

topological theory.

As in [25], in order keep track of the SU(2)F indices more efficiently, we introduce

polarization variables ya, a = 1, 2, and denote the operators in the 1d theory by

O(∆,j)(ϕ, y) = O(∆,j)
a1...a2j (ϕ, y)ya1 · · · ya2j , (5.7)

where in order to avoid clutter we simply denote jF = j. We consider a basis of 1d operators

with diagonal two-point functions, normalized such that

〈O(∆,j)(ϕ1, y1)O(∆,j)(ϕ2, y2)〉 = 〈y1, y2〉2j ( sgnϕ21)2∆ ,

〈O(∆1,j1)(ϕ1, y1)O(∆2,j2)(ϕ2, y2)〉 = 0 if O(∆1,j1) 6= O(∆2,j2) ,
(5.8)

where ϕ21 ≡ ϕ2 − ϕ1, and the product between SU(2)F polarizations is defined as

〈y1, y2〉 ≡ εabya1yb2 , (ε12 ≡ −ε12 ≡ 1) . (5.9)

The form of the three point functions is fixed by the SU(2)F symmetry up to an overall

coefficient that we denote by λ(∆1,j1),(∆2,j2),(∆3,j3):

〈O(∆1,j1)(ϕ1, y1)O(∆2,j2)(ϕ2, y2)O(∆3,j3)(ϕ3, y3)〉 = λ(∆1,j1),(∆2,j2),(∆3,j3) (5.10)

× 〈y1, y2〉j123 〈y2, y3〉j231 〈y3, y1〉j312 (sgn ϕ21)∆123(sgn ϕ32)∆231(sgn ϕ13)∆312 ,

where jk1k2k3 ≡ jk1 + jk2 − jk3 . Eq. (5.10) is correct as long as j1, j2, and j3 obey the

triangle inequality. If this requirement is not fulfilled, the r.h.s. of (5.10) vanishes.
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5.1 ABJM3,1

Let us now apply the formalism introduced above to the U(3)1 ×U(3)−1 ABJM theory in

its dual description as a U(3) gauge theory with both an adjoint and fundamental N = 4

hypermultiplet. The result (5.2) reads in this case

ZABJM3,1 =
1

3!

∫
d3σ

∏
α<β

4 sinh2(πσαβ)

∫
DQαDQ̃α

∫
DXα

βDX̃ β
α e−SABJM3,1 (5.11)

with

SABJM3,1 =− 4πr

∫ π

−π
dϕ
[
Q̃αQ̇

α + X̃ β
α Ẋα

β + σαQ̃αQ
α + σ12(X̃ 2

1 X
1
2 − X̃ 1

2 X
2
1)

+ σ23(X̃ 3
2 X

2
3 − X̃ 2

3 X
3
2) + σ31(X̃ 1

3 X
3
1 − X̃ 3

1 X
1
3)
]
,

(5.12)

where α, β = 1, 2, 3. The 1d fields Xα
β and X̃ β

α correspond to the adjoint hypermultiplet,

Qα and Q̃α correspond to the fundamental hypermultiplet, and σα are the matrix degrees

of freedom in the Cartan of the U(3).

The D-term relations of the 3d theory allow us to rewrite the Q’s in terms of the X’s, so

we will only use the latter to construct operators. Correlation functions of such operators

can be computed by performing Wick contractions at fixed σ with the propagator

〈Xα
β(ϕ1, y1)X̃ δ

γ (ϕ2, y2)〉
σ

= −δαγδδβ
sgn ϕ12 + tanh(πσαβ)

8πr
e−σαβϕ12 . (5.13)

and then integrating over σ:

〈O1(ϕ1, y1) · · · On(ϕn, yn)〉 =
1

ZABJM3,1

∫
d3σ ZσABJM3,1

〈O1(ϕ1, y1) · · · On(ϕn, yn)〉σ ,

ZσABJM3,1
=

1

26 · 3!

tanh2(πσ12) tanh2(πσ13) tanh2(πσ23)

cosh(πσ1) cosh(πσ2) cosh(πσ3)
, (5.14)

where 〈· · ·〉σ is the correlation function for the Gaussian theory in (5.12) at fixed σ computed

using (5.14).

Being a 1d sector of an N = 8 SCFT, the theory (5.11) must have a flavor SU(2)F
symmetry. Indeed, it is not hard to see that the fields (X̃,XT ) transform as a doublet

under SU(2)F . It is thus convenient to define

X (ϕ, y) = y1X̃(ϕ, y) + y2XT (ϕ, y) , (5.15)

where the ya are the same polarization variables introduced earlier in (5.7).

5.1.1 Free sector

As explained above, the ABJM3,1 theory has a decoupled free sector. Consequently, the

1d theory (5.11) also has a decoupled free sector. It is generated by the gauge invariant

operator

O( 1
2
, 1
2

)

free (ϕ, y) = trX (ϕ, y) , (5.16)
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which has its origin in the free multiplet (B,+)[0010], whose superconformal primaries are

scalars of scaling dimension ∆ = 1/2.

Since trX and tr X̃ only appear in the kinetic term of (5.12), we can simply read off

the propagator

〈O( 1
2
, 1
2

)

free (ϕ1, y1)O( 1
2
, 1
2

)

free (ϕ2, y2)〉 =
3

8πr
〈y1, y2〉 sgnϕ21 . (5.17)

All other 1d operators belonging to the free sector are powers of O( 1
2
, 1
2

)

free (ϕ, y):

O(j,j)
free (ϕ, y) = [O( 1

2
, 1
2

)

free (ϕ, y)]2j . (5.18)

It follows that all free theory correlations functions can be computed using Wick contrac-

tions with the propagator (5.17). For the two and three point functions, we find

〈O(j1,j1)
free (ϕ1, y1)O(j2,j2)

free (ϕ2, y2)〉 = δj1,j2(2j1)!

(
3

8πr
〈y1, y2〉 sgn (ϕ21)

)2j1

(5.19)

and, when j1, j2, j3 obey the triangle inequality,

〈O(j1,j1)
free (ϕ1, y1)O(j2,j2)

free (ϕ2, y2)O(j3,j3)
free (ϕ3, y3)〉 = j123!j231!j321!

(
2j1
j123

)(
2j2
j231

)(
2j3
j312

)
×
(

3

8πr
sgn ϕ32 〈y1, y2〉

)j123 ( 3

8πr
sgn ϕ32 〈y2, y3〉

)j321 ( 3

8πr
sgn ϕ13 〈y3, y1〉

)j312
.

(5.20)

Rescaling the O(j,j)
free by a positive factor in order to match (5.8) and comparing with (5.10),

we extract the OPE coefficients

λfree
(j1,j1),(j2,j2),(j3,j3) =

j123!j231!j321!√
(2j1)!(2j2)!(2j3)!

(
2j1
j123

)(
2j2
j231

)(
2j3
j312

)
. (5.21)

5.1.2 Interacting sector

Let us now discuss operators in the interacting sector in increasing order of the number

of X ’s they are built from. The interacting sector cannot have any operators linear in X ,

because such operators would have originated from ∆ = 1/2 operators in 3d, which are

free. So, the first non-trivial operator in the interacting sector must involve two X ’s. It

must also be orthogonal to the free theory operator that is quadratic in X , namely O(1,1)
free

defined in (5.18). From this, one can show that such an operator is proportional to

O(1,1)
int (ϕ, y) = ( trX 2)(ϕ, y)− 1

3
( trX )2(ϕ, y) . (5.22)

Next, we consider operators with three X ’s. It can be shown that the interacting sector

contains only one such operator, which by assumption must be orthogonal to the operator

O( 3
2
, 3
2)

free of the free sector as well as the operator O( 1
2
, 1
2)

free O
(1,1)
int of the mixed sector. It follows

that this operator in the interacting sector is proportional to

O( 3
2
, 3
2)

int (ϕ, y) = ( trX 3)(ϕ, y)−
(

trX 2 trX
)

(ϕ, y) +
2

9
( trX )3(ϕ, y) . (5.23)
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Next, we can construct operators with four X ’s. It can be shown that the interacting

sector contains two such operators. One of them has j = 2 and is O2,2
int = (O(1,1)

int )2. The

other has j = 0, and is given by:

O(2,0)
int (ϕ) = εacεbdO(1,1)

int,ab(ϕ)O(1,1)
int,cd(ϕ)− 3(2π − 7)

2(π − 3)(4πr)2
, (5.24)

where here we have used explicit SU(2)F indices. The second term in the above expression

ensures that this operator is orthogonal to the unit operator. It is straightforward to

continue and construct operators with more than four X ’s.

We can now use the propagator (5.13) and the matrix model partition function (5.14)

to compute two and three point functions. For instance, for O(1,1)
int (ϕ, y) we compute the

two point function

〈O(1,1)
int (ϕ1, y1)O(1,1)

int (ϕ2, y2)〉 =
〈y1, y2〉2

ZABJM3,1(4πr)2

∫
d3σ ZσABJM3,1

1 +
∑
α<β

sech2(πσαβ)


=

10π − 31

2(π − 3)(4πr)2
〈y1, y2〉2 . (5.25)

A similar calculation gives the three point function

〈O(1,1)
int (ϕ1, y1)O(1,1)

int (ϕ2, y2)O(1,1)
int (ϕ3, y3)〉 =

10π − 31

(π − 3)(4πr)3

× sgn ϕ21 sgn ϕ32 sgn ϕ13 〈y1, y2〉 〈y2, y3〉 〈y3, y1〉 .
(5.26)

Rescaling O(1,1)
int by a positive factor in order to match (5.8) and comparing with (5.10), we

extract the OPE coefficient

λ(1,1),(1,1),(1,1) =

√
8(π − 3)

10π − 31
. (5.27)

Two other Higgs branch operators appear in the O(1,1)
int × O(1,1)

int OPE: O(2,0)
int and O(2,2)

int .

Performing the analogous calculation for these other operators yields the OPE coefficients

λ(1,1),(1,1),(2,2) =

√
2(π − 3)(840π − 2629)

5(10π − 31)2
,

λ(1,1),(1,1),(2,0) =

√
3888 + π(420π − 2557)

3(10π − 31)2
.

(5.28)

As a consistency check, these OPE coefficients satisfy the relations

3λ2
(1,1),(1,1),(1,1) − 5λ2

(1,1),(1,1),(2,2) + 6λ2
(1,1),(1,1),(2,0) + 6 = 0 , (5.29)

which were derived in [25]5 by applying crossing symmetry to the four point function of

the 1d theory, which we review in appendix A. We can convert these OPE coefficients to

5The normalization of the OPE coefficients here differs from that in [25]. See appendix A for the relation

between the two.
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the conventions of [16] as described in appendix A, to find

λ̄2
2,2,1,1 =

16(π − 3)

10π − 31
,

λ̄2
2,2,2,2 =

16(π − 3)(840π − 2629)

15(10π − 31)2
,

λ̄2
2,2,2,0 = 16

3888 + π(420π − 2557)

3(10π − 31)2
.

(5.30)

We have used these coefficients in figure 2 to compare to an improved version of the

conformal bootstrap bounds of [16].

We also computed the OPE coefficients for Higgs branch operators in the O(1,1)
int ×O

(2,2)
int

and O(2,2)
int ×O

(2,2)
int OPEs. These expressions are more complicated, so we relegate them to

appendix B.

5.2 BLG3

As explained above, the 1d theory corresponding to the BLG theory requires a general-

ization of [15]. If we are not interested in correlation functions of operators arising from

monopole operators in 3d, we conjecture that we can simply insert (5.4) into (5.2) and

compute correlation functions of gauge-invariant operators built from Q and Q̃. For the

BLG3 theory, this conjecture produces the 1d theory

ZBLG3 =
1

16π2

∫
d2σ±e

6iσ+σ−
π

(
sinh(σ+ + σ−) sinh(σ+ − σ−)

cosh(σ+) cosh(σ−)

)2 ∫
DQ̃ β̇

α DQ
α
β̇
e−SBLG3 ,

(5.31)

with

SBLG3 = −4r

∫ π

−π
dϕ
[
πQ̃ β̇

α ∂ϕQ
α
β̇

+ σ−Q̃
1̇

1 Q
1

1̇
− σ+Q̃

2̇
1 Q

1
2̇

+ σ+Q̃
1̇

2 Q
2

1̇
− σ−Q̃ 2̇

2 Q
2

2̇

]
,

(5.32)

where α, β and α̇, β̇ are fundamental indices for each gauge group, Q α
β̇

and Q̃ β̇
α correspond

to the bifundamental hypermultiplets, and σ± are the same integration variables as in (4.3).

(Eq. (4.3) is obtained after integrating out Q and Q̃ in (5.31).)

We can rewrite the action in terms of the mass matrix-like quantity

M β̇
α =

(
σ− −σ+

σ+ −σ−

)
, (5.33)

to read off the propagator

〈Q α
β̇

(ϕ1, y1)Q̃ δ̇
γ (ϕ2, y2)〉

σ
= −δ δ̇

β̇
δ α
γ

sgn ϕ12 + tanh(πM β̇
α )

8πr
e−M

β̇
α ϕ12 , (5.34)

where there is no sum over the gauge indices. We then compute correlation functions as

〈O1(ϕ1, y1) · · · On(ϕn, yn)〉 =
1

ZBLG3

∫
d2σ± Z

σ
BLG3

〈O1(ϕ1, y1) · · · On(ϕn, yn)〉σ ,

ZσBLG3
=
e

6iσ+σ−
π

64π2

(
sinh(σ+ + σ−) sinh(σ+ − σ−)

cosh2(σ+) cosh2(σ−)

)2

,

(5.35)
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where 〈O1(ϕ1, y1) · · · On(ϕn, yn)〉σ is the correlation function for the Gaussian theory (5.32)

at fixed σ, given in (5.34).

Since the 1d theory (5.32) arises from an N = 8 SCFT, it must have a flavor

SU(2)F symmetry. Indeed, it can be checked that such a symmetry is present and that

(Qβ̇
α, εαγεβ̇δ̇Q̃γ

δ̇) form a doublet. It is thus convenient to combine the 2 × 2 matrices Q

and Q̃ into the matrix

Q(ϕ, y) =

(
Q 1

1̇
y1 − Q̃ 2̇

2 y
2 Q 2

1̇
y1 + Q̃ 1̇

2 y
2

Q 1
2̇
y1 + Q̃ 2̇

1 y
2 Q 2

2̇
y1 − Q̃ 1̇

1 y
2

)
, (5.36)

where ya are our usual SU(2)F polarization variables.

Let us see what gauge-invariant operators we can construct using an increasing number

of Q’s. There are no gauge-invariant operators built from only one Q. With two Q’s we

can construct operators, which taken together have SU(2)F spin j = 1 and can be written

compactly as

O(1,1)
BLG3

(ϕ, y) = det Q(ϕ, y) . (5.37)

With three Q’s we again cannot construct any gauge-invariant operators. With four Q’s

we can construct two operators: one with j = 2, namely O(2,2)
BLG3

= (O(1,1)
BLG3

)2, and one with

j = 0, namely

O(2,0)
BLG3

(ϕ) = εacεbdO(1,1)
BLG3,ab

(ϕ)O(1,1)
BLG3,cd

(ϕ)− 3(2π − 7)

2(π − 3)(4πr)2
, (5.38)

where here we have again used explicit SU(2)F indices and have included a second term to

ensure that it is orthogonal to the unit operator. It is straightforward to proceed further

using five Q’s and higher.

The operators constructed so far, namely O(1,1)
BLG3

, O(2,2)
BLG3

, and O(2,0)
BLG3

, match a subset

of the operators we constructed in section 5.1.2 for the interacting sector of the ABJM3,1

theory, namely O(1,1)
int , O( 3

2
, 3
2

)

int , O(2,2)
int , O(2,0)

int . We were not able to construct the BLG3

analog of O( 3
2
, 3
2

)

int using only the Q’s because this operator requires monopole operators.

Nevertheless, we can use the propagator (5.34) and the matrix model partition func-

tion (5.35) to compute two and three point functions of the operators we were able to

construct in the 1d theory (5.32), and compare them to the analogous expressions from

the interacting sector of the ABJM3,1 theory. For instance, for O(1,1)
BLG3

(ϕ, y) we compute

the two point function

〈O(1,1)
BLG3

(ϕ1, y1)O(1,1)
BLG3

(ϕ2, y2)〉 =
〈y1, y2〉2

4ZBLG3(4πr)2

∫
d2σ± Z

σ
BLG3

( sech2(σ−) + sech2(σ+))

=
10π − 31

8(π − 3)(4πr)2
〈y1, y2〉2 .

(5.39)

A similar calculation gives the three point function

〈O(1,1)
BLG3

(ϕ1, y1)O(1,1)
BLG3

(ϕ2, y2)O(1,1)
BLG3

(ϕ3, y3)〉 =
10π − 31

4(π − 3)(4πr)3

×sgn ϕ21 sgn ϕ32 sgn ϕ13 〈y1, y2〉 〈y2, y3〉 〈y3, y1〉 .
(5.40)
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By comparing to (5.8) and (5.10) (we rescale O(1,1)
BLG3

by a positive factor in order to

match (5.8)), we extract the OPE coefficient

λ(1,1),(1,1),(1,1) =

√
8(π − 3)

10π − 31
, (5.41)

which agrees with (5.27) for the interacting sector of the ABJM3,1 theory. We can similarly

check that the OPE coefficients of all the other Higgs branch operators that appear in the

O(1,1)
BLG3

× O(2,2)
BLG3

, O(1,1)
BLG3

× O(2,2)
BLG3

, and O(1,1)
BLG3

× O(2,2)
BLG3

OPEs match those of ABJM3,1

theory, given in (5.28) and (B.1).
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A Four point function

When ϕ1 < ϕ2 < ϕ3 < ϕ4 and j1 ≥ j2, the four point function of (B,+)[00(2j)0] operators

O(j,j)(ϕ, y) can be decomposed in the s-channel as

〈O(j1,j1)(ϕ1, y1)O(j2,j2)(ϕ2, y2)O(j3,j3)(ϕ3, y3)O(j4,j4)(ϕ4, y4)〉 = 〈y1, y2〉j1+j2 〈y3, y4〉j3+j4

×
[
〈y1, y4〉
〈y2, y4〉

]j12 [〈y1, y3〉
〈y1, y4〉

]j34 j1+j2∑
∆=j1−j2

∆∑
j=j1−j2

tj(w)

4∆
λ̄2j1,2j2,∆,j λ̄2j3,2j4,∆,j , (A.1)

where w is the SU(2)F cross-ratio

w =
〈y1, y2〉 〈y3, y4〉
〈y1, y3〉 〈y2, y4〉

, (A.2)

and we have normalized the OPE coefficients λ̄ as in [16]. For j1 = j2 we have the

extra constraint ∆ + j ∈ Even, because scalar Higgs branch operators can only appear

in the symmetric product of identical operators. The function tj(w) obeys the eigenvalue

equation:

(1− w)w2d
2tj
dw2

+ (j34 − j12 − 1)w2dtj
dw

+ j12j34wtj = j(j + 1)tj . (A.3)

Up to normalization, the regular solution can be written in terms of the Jacobi polynomials

P
(a,b)
n (x) as

tj(w) = wj34P
(j12−j34,−j12−j34)
j+j34

(
2

w
− 1

)
. (A.4)

Note that when this expression is plugged into (A.1), the total expression is a polynomial

in the y’s. The OPE coefficients λ̄ in (A.1) are related to λ in (5.10) by

λ(j1,j1),(j2,j2),(∆,j)λ(j3,j3),(j4,j4),(∆,j) = lim
w→0

wjtj(w)

4∆
λ̄2j1,2j2,∆,j λ̄2j3,2j4,∆,j , (A.5)

where here we do not sum over repeated indices.
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We can also write the four point function in the t-channel by exchanging (1 ↔ 3)

in (A.1). Equating the s- and t-channels yields the following finite set of crossing equations

〈1111〉 : 4λ̄2
2,2,1,1 − 5λ̄2

2,2,2,2 + λ̄2
2,2,2,0 + 16 = 0 .

〈2222〉 :

{
64λ̄2

4,4,1,1 + 48λ̄2
4,4,2,2 + 4λ̄2

4,4,3,1 − 16λ̄2
4,4,3,3 + 3λ̄2

4,4,4,2 − 60λ̄2
4,4,4,4 = 0 ,

32λ̄2
4,4,2,2 + 2λ̄2

4,4,4,2 + 9λ̄2
4,4,4,4 − 16λ̄2

4,4,2,0 − 20λ̄2
4,4,3,3 − λ̄2

4,4,4,0 − 256 = 0 .

〈1212〉 : 16λ̄2
2,4,1,1 + 4λ̄2

2,4,2,1 + 4λ̄2
2,4,2,2 + λ̄2

2,4,3,1 + λ̄2
2,4,3,2 − 14λ̄2

2,4,3,3 = 0 .

〈2112〉 :



5λ̄2
2,4,3,1 + 80λ̄2

2,4,1,1 + 20λ̄2
2,4,2,1 − 12λ̄2,2,2,0λ̄4,4,2,0 + 72λ̄2,2,1,1λ̄4,4,1,1

−42λ̄2,2,2,2λ̄4,4,2,2 − 192 = 0 ,

3λ̄2
2,4,3,2 + 12λ̄2

2,4,2,2 − 14λ̄2,2,2,2λ̄4,4,2,2

−8λ̄2,2,1,1λ̄4,4,1,1 + 4λ̄2,2,2,0λ̄4,4,2,0 + 64 = 0 ,

15λ̄2
2,4,3,3 − 4λ̄2,2,2,2λ̄4,4,2,2 − 16λ̄2,2,1,1λ̄4,4,1,1 − 4λ̄2,2,2,0λ̄4,4,2,0 − 64 = 0 .

(A.6)

B OPE coefficients in O(1,1) ×O(2,2) and O(2,2) ×O(2,2)

In sections 5.1 and 5.2 we described how to compute OPE coefficients of Higgs branch oper-

ators that lie in the 1d topological sector of the ABJM3,1 and BLG3 theories, respectively.

In (5.27) and (5.28) we list the OPE coefficients of Higgs branch operators that appear in

the O(1,1) × O(1,1) OPE. By a similar calculation, we can compute the OPE coefficients

of Higgs branch operators that appear in the O(1,1) × O(2,2) and O(2,2) × O(2,2) OPEs for

either theory. We find

λ(2,2),(2,2),(1,1) =

√
32(π − 3)

10π − 31
,

λ(2,2),(2,2),(2,2) =

√
40(521767− 166320π)2(π − 3)

49(840π − 2629)3
,

λ(2,2),(2,2),(3,3) =

√
14400(π − 3)(9520π − 29877)

7(2629− 840π)2
,

λ(2,2),(2,2),(4,4) =

√
30(π − 3)(4583040π − 14394049)

7(2629− 840π)2
,

λ(2,2),(2,2),(4,2) =

√
960(π − 3)(4447712646 + 35π(12972960π − 81205777))

49(840π − 2629)3
,

λ(2,2),(2,2),(4,0) =

√
4(π−3)(π(8530357644 + 35π(8648640π − 79544233))− 8707129344)

(2629− 840π)2(3888 + π(420π − 2557))
,

λ(2,2),(2,2),(3,1) =

√
64(π − 3)(2675592 + 5π(55440π − 344503))

(2629− 840π)2(10π − 31)
,
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λ(2,2),(2,2),(2,0) =

√
(847584 + π(90720π − 554797))2

3(2629− 840π)2(3888 + π(420π − 2557))
,

λ(1,1),(2,2),(1,1) =

√
2(π − 3)(840π − 2629)

5(31− 10π)2
,

λ(1,1),(2,2),(2,2) =

√
32(π − 3)

10π − 31
,

λ(1,1),(2,2),(3,3) =

√
45(π − 3)(9520π − 29877)

7(10π − 31)(840π − 2629)
,

λ(1,1),(2,2),(3,1) =

√
4(π − 3)(2675592 + 5π(55440π − 344503))

5(31− 10π)2(840π − 2629)
.

(B.1)

As a consistency check, these OPE coefficients satisfy the crossing relations (A.6) after we

convert from λ to λ̄ using (A.5).
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