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1 Introduction

Ever since the proposal of the duality between four-dimensional N = 4 SU(N) super-Yang-

Mills (SYM) and Type-IIB superstring theory on AdS5 × S5 [1–3], there have been innu-

merous tests on this conjecture. Here, we revisit the match of free energies of the two

theories. Considering the boundary geometry as S4 or S1 × S3, the free energy of the

N = 4 SYM gives the conformal a-anomaly or Casimir energy on S3 , respectively. These

quantities are protected from renormalization and given exactly by

F SU(N)
N=4 (S4) = (N2 − 1) log Λ ,

F SU(N)
N=4 (S1

β × S3) = (N2 − 1)
3

16
β +O(β0) , (1.1)

where Λ is the UV cut-off and β is the radius of the thermal cycle S1 . On the other hand,

the bulk free energy admits the loop expansion,

1

G
ΓIIB =

1

G
SIIB + Γ(1)

IIB +O(G) . (1.2)

With the dictionary 1/G = N2 , the leading order SIIB reproduces the N2 term of the

boundary free energy in the supergravity limit [4, 5]. Moving to the next order Γ(1)
IIB , one

needs to consider one-loop effects in type-IIB string theory in the bulk [6–8].

The excitations of type-IIB string in AdS5 × S5 can be organized into multiplets of

the supergroup PSU(2, 2|4) [9–14]. The 10d massless modes correspond to BPS ones —

the 5d N = 8 supergravity multiplet and infinite tower of massive Kaluza-Klein (KK)

multiplets [15] — whereas the 10d massive modes correspond to various non-BPS multiplets

whose masses are determined by the string tension. The contribution of the massive modes

to the one-loop free energy is expected to vanish as the boundary result (1.1) does not
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depend on the ’t Hooft coupling or string tension. In contrast, the contributions of the

massless modes do not vanish (they are studied first in [6, 7] and revised in [8]):

Γ(1)
KK,p(AdS5 × S5) = p logR ,

Γ(1)
KK,p(AdSβ

5 × S
5) = p

3

16
β +O(β0) , (1.3)

where p− 1 is the KK level and R is the IR cut-off of the radial coordinate in AdS5 which

maps to the boundary UV cut-off Λ . AdSβ
5 is the thermal AdS5 with S1

β × S3 boundary.

Therefore, with the assumption that the contributions of 10d massive states vanish, the

full one-loop free energy,

Γ(1)
IIB(AdS5 × S5) = A logR ,

Γ(1)
IIB(AdSβ

5 × S
5) = A

3

16
β +O(β0) , (1.4)

is given with a divergent series A =
∑∞

p=2 p . An appropriate regularization scheme is

needed for a physically meaningful answer. The desirable result is A = −1 so that the

semi-classical and one-loop results sum up to reproduce exactly the N2 − 1 factor of the

boundary free energy.

Tensionless limit of type IIB string theory. With the assumption that the massive

10d string modes do not contribute to the one-loop free energy, we avoid the problem of

identifying such multiplets in the string spectrum. In the tensile case, this problem is

highly non-trivial as it amounts to calculating exact anomalous dimensions for all single-

trace operators. In the tensionless limit, the identification of all these single-trace operators

— hence, the string excitation modes — becomes available in principle. In this paper, we

calculate the one-loop free energy of the tensionless type IIB strings in a straightforward

and thorough manner, that is, by properly collecting the contributions of all single-particle

states in the string spectrum while making no a priori assumptions about the vanishing of

the massive mode contribution. As we shall show, our result reproduces the expression (1.4)

with A =
∑∞

p=2 p, but now each p contribution comes from all the states residing in the

(p− 1)-th “Regge trajectory”,1 which contains in fact the (p− 1)-th KK states.

Our work is motivated by the recent success of the dualities [16, 17] between higher

spin gravity [18] and vector model conformal field theories, where the single-particle/trace

states are simple enough to allow a direct evaluation of bulk one-loop free energy [19–21]

(see [22–30] for more recent works). To extend the success of vector models to adjoint

models, the authors of the current article have worked out two string-like bulk theories,

one dual to free scalar [31] and the other dual to free Yang-Mills [32] with SU(N) adjoint

symmetry. The key ingredient in our previous work is the use of Character Integral Rep-

resentation of Zeta function (CIRZ) devised in [31], which allows us to calculate the free

energy with the information encoded in the character only. Also in the current paper, the

CIRZ method enables us to perform the computation in a straightforward manner.

1The term “Regge trajectory” refers to the collection of particles with the same mass versus spin ratio,

and is useful to organize the string spectrum around flat spacetime. However, in tensionless string of

AdS5×S5 , the spectrum does not have this pattern, and we use the term “Regge trajectory” for another

way to organize the entire string spectrum. The precise definition will be given after the equation (2.2).
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2 Single-particle states/single-trace operators

In the tensionless limit (α′ → ∞ while LAdS finite) of type IIB string theory in the

bulk [33–47], the ’t Hooft coupling of the boundary N = 4 SYM goes to zero,

λ = N g2
YM =

(
L2

AdS

α′

)2

→ 0 , (2.1)

hence all the operators become free from any anomalous dimensions. In this case, the

spectrum of single-trace operators can be exactly identified by group theoretical and com-

binatorial methods [48–51]. Via the AdS/CFT correspondence, we identify this with the

spectrum of single-particle states in the bulk and consider the corresponding bulk theory,

following [52], as our working definition for tensionless string theory. By exploiting this

definition, one can collect and sum over the one-loop free energies of all single-particle

states in the string spectrum [31, 32].

For the group theoretical identification of the operators made by p insertions of field

in a single trace,

Tr(Φ1 · · ·Φp) , Φi : any field (or its derivative) of N = 4 SYM , (2.2)

we need to consider the p-th tensor product of the N = 4 Maxwell multiplet and project

it to the singlet under cyclic permutations. Each of the conformal primaries lying in this

tensor product space is identified via the AdS/CFT correspondence to a field in AdS5 as

mentioned above. Henceforth, for notational convenience, we define the (p − 1)-th Regge

trajectory to be the set of all such fields.

The issue of tensor products and decompositions can be conveniently analyzed in terms

of the so(2, 4) character. The cyclicity is required by the property of trace operation, and

handling the cyclic projection is equivalent to the combinatorial problem of counting the

number of different necklaces with p beads where each bead corresponds to a state — either

primary or descendant — of N = 4 Maxwell multiplet. Polya’s enumeration theorem solves

this problem by making use of the cyclic index.

Partition function of N = 4 Maxwell multiplet. The cyclic index can be used to

account the tensor products of so(2, 4) representation H, if the index variables are replaced

by TrH(gk) with g ∈ SO(2, 4) . In this way, the cyclic index of a bosonic system gives

nothing but the so(2, 4) character. For more general systems with fermionic degrees of

freedom, we should consider the weighted partition function [13, 53],

ZH(q, x1, x2) = TrH

(
(−1)F qM05 xM12

1 xM34
2

)
, (2.3)

where Mab are the generators of so(2, 4) and F is the fermion number. Even though we

refer to this as partition function following previous references, it should be distinguished

from the exponential of the one-loop free energy that we shall calculate in the next section.

It can be equally viewed as a generalized Witten index. For an irreducible representation

of so(2, 4) , it is proportional to the character up to a sign factor:

ZD(∆,[j+,j−]) = (−1)2(j++j−) χD(∆,[j+,j−]) , (2.4)

– 3 –



J
H
E
P
0
6
(
2
0
1
7
)
1
5
5

and for the N = 4 Maxwell multiplet, it is given by

ZN=4 = χ1 − 4χ 1
2

+ 6χ0 . (2.5)

Here, χs are the characters of massless spin s representations given in [54]

χ1(β, α1, α2) = χD(2,[1,0])(β, α1, α2) + χD(2,[0,1])(β, α1, α2)

=
e−β (coshβ − cosα1 − cosα2) + cosα1 cosα2

(cosα1 − coshβ)(cosα2 − coshβ)
, (2.6)

χ 1
2
(β, α1, α2) = χD( 3

2
,[ 12 ,0])

(β, α1, α2) + χD( 3
2
,[0, 12 ])(β, α1, α2)

=
2 cos α1

2 cos α2
2 sinh β

2

(cosα1 − coshβ)(cosα2 − coshβ)
, (2.7)

χ0(β, α1, α2) = χD(1,[0,0])(β, α1, α2) =
sinhβ

2(cosα1 − coshβ)(cosα2 − coshβ)
. (2.8)

We thus obtain

ZN=4(β, α1, α2) (2.9)

=
e−β(coshβ − cosα1 − cosα2) + cosα1 cosα2 − 8 cos α1

2 cos α2
2 sinh β

2 + 3 sinh β

(cosα1 − coshβ)(cosα2 − coshβ)
,

where the variables β, α1, α2 are related to the ones in (2.3) by q = e−β , x1 = ei α1 and

x2 = ei α2 .

Partition function of the (p − 1)-th Regge trajectory of tensionless type IIB

string. As mentioned before, the partition function (2.3) takes the fermionic statistics

properly into account in making cyclic projection [13, 53]. This quantity is computed over

the cyclic tensor product of N = 4 Maxwell multiplet is given by

Zcyc(p)
N=4 (q, x1, x2) =

1

p

∑
k|p

ϕ(k)
(
ZN=4(q

k, xk1, x
k
2)
) p
k

= ZIIB(p)(q, x1, x2) =
∑

∆,j+,j−

N IIB(p)

D(∆,[j+,j−])ZD(∆,[j+,j−])(q, x1, x2) . (2.10)

Here, ϕ(k) is the Euler totient function, which counts the number of relative primes of k

in {1, 2, . . . , k} , and N IIB(p)

D(∆,[j+,j−]) is the number of the D(∆, [j+, j−]) representation in the

(p− 1)-th Regge trajectory of the type IIB string theory in the tensionless limit.

3 One-loop free energy of tensionless type IIB string

The one-loop free energy of type IIB string in AdS5 × S5 background is simply the sum

of the individual free energies for all string states. Therefore, as a matter of principle, it

is possible to obtain the full quantity in the tensionless limit since the information about

the exact multiplicities N IIB(p)

D(∆,[j+,j−]) is encoded in the partition function (2.10). However,

in practice, it is not possible to extract analytic expressions for all these multiplicities,

needless to mention about the eventual resummation.
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3.1 Character Integral Representation for Zeta function

To overcome this problem, a new method of computing one-loop free energy has been

devised in [31]. This method, referred to as Character Integral Representation of Zeta

function (CIRZ), makes it possible to obtain the spectral zeta function associated to the

one-loop free energy as a certain integral of the so(2, 4) character. In this way, we can handle

the contributions of all single-particle states without identifying their actual content. We

refer [31] for the detailed derivation of this method. In our previous works [30–32], we have

considered only bosonic systems, hence the method involved the so(2, 4) character. In

order to generalize the method to incorporate fermionic states, it is sufficient to replace the

so(2, 4) character by the partition function (2.3) since the one-loop free energies of bosons

and fermions in odd-dimensional AdS are given in a completely analogous form but only

with an overall minus sign factor. In below, we summarize the result of the CIRZ method.

AdS5 with S4 boundary. The one-loop free energy of a spectrum H in AdS5 with S4

boundary is

Γ(1) ren

H (AdS5) = logR
(
γH|2 + γH|1 + γH|0

)
. (3.1)

Here, R is the IR cut-off for the radial coordinate in AdS5 [55] and γH|n are given by

∫ ∞
0

dβ

(
β
2

)2(z−1−n)

Γ(z − n)
fH|n(β) = −2 γH|n +O(z) , (3.2)

where fH|n(β) are determined by the partition functions ZH as

fH|2(β) =
sinh4 β

2

2
ZH(β, 0, 0) ,

fH|1(β) = sinh2 β

2

[
sinh2 β

2

3
− 1− sinh2 β

2

(
∂2
α1

+ ∂2
α2

)]
ZH(β, α1, α2)

∣∣∣∣
αi=0

,

fH|0(β) =

1 +
sinh2 β

2

(
3− sinh2 β

2

)
3

(
∂2
α1

+ ∂2
α2

)

−
sinh4 β

2

3

(
∂4
α1
− 12 ∂2

α1
∂2
α2

+ ∂4
α2

)ZH(β, α1, α2)

∣∣∣∣
αi=0

.

(3.3)

The variables β, α1, α2 are related to the ones in (2.3) by q = e−β , x1 = ei α1 and x2 = ei α2 .

When the functions fH|n do not have any singularity apart from poles at origin, we can

deform the integral (3.2) to a contour one and obtain

γH|n = − (−4)n n!

∮
dβ

2πi

fH|n(β)

β2(n+1)
, (3.4)

where the contour encircles the origin in the anticlockwise direction.
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Thermal AdS5 with S1×S3 boundary. When the background is the thermal AdSβ
5

with S1
β × S3 boundary (β is the radius of S1) the one-loop free energy reads

Γ(1) ren

H (AdSβ
5) = β EH +O(β0) , (3.5)

where EH is the Casimir energy given by∫ ∞
0

dβ βz−1

Γ(z)
ZH(β, 0, 0) = 2 EH +O(z + 1) . (3.6)

If ZH(β, 0, 0) does not have any singularity apart from poles at the origin, we can deform

the integral such that we obtain the Casimir energy as

EH = −1

2

∮
dβ

2π i β2
ZH(β, 0, 0) , (3.7)

where the contour is again an anticlockwise circle around the origin.

We now compute the one-loop free energies (3.1) and (3.5) for the tensionless string.

To begin with, we organize the string states according to the level of Regge trajectories

and compute the one-loop free energy at each trajectory.

3.2 One-loop free energy of the (p− 1)-th Regge trajectory

The partition function of the (p− 1)-th Regge trajectory is

ZIIB(p)(β, α1, α2) =
1

p

∑
k|p

ϕ(k) [ZN=4(k β, k α1, k α2)]
p
k , (3.8)

where the partition function of N = 4 Maxwell multiplet has the form of

ZN=4(β, α1, α2) = (3.9)

=
e−β(coshβ − cosα1 − cosα2) + cosα1 cosα2 − 8 cos α1

2 cos α2
2 sinh β

2 + 3 sinh β

(cosα1 − coshβ)(cosα2 − coshβ)
.

We first note that both one-loop free energies (3.1) and (3.5) of the (p− 1)-th Regge

trajectory are given by a few series coefficients of ZIIB(p)(β, 0, 0) or fIIB(p)|n(β) because the

latter do not have any singularity near origin hence the residue theorem can be applied to

the contour integrals (3.4) and (3.7). Since the latter is a bit more involved, let us begin

with the former case, that is, the Casimir energy. We first consider the series expansion of

the partition function ZN=4(β, 0, 0) :

ZN=4(β, 0, 0) =
2 + 6 e

β
2

(1 + e
β
2 )3

= 1 + a β +O(β3) , a = −3

8
. (3.10)

It is worth to remark the speciality of the above expression: the partition function of a

generic multiplet consisting of n1 spin 1, n 1
2

spin 1/2 and n0 spin 0 has the series expansion,

Z{n1,n 1
2
,n0}(β, 0, 0) =

=
2n0 − 4n 1

2
+ 4n1

β3
+
n 1

2
− 4n1

2β
+ n1 −

4n0 + 17n 1
2

+ 88n1

480
β +O(β3) , (3.11)
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hence involves the β−3 and β−1 terms. Note that the β−3 term vanishes in any supersym-

metric theory, but its physical meaning is not clear to the authors. When the SUSY is

the maximal N = 4 one, not only the β−3 term but also the β−1 term (hence all negative

powers) vanish. In this case, we find a drastic simplification in the expansion formula for

[ZN=4(k β, 0, 0)]
p
k :

[ZN=4(k β, 0, 0)]
p
k = 1− 3

8
p β +O(β2) , (3.12)

which appear in the partition function of the cyclic tensor product (3.8). Moreover,

since (3.12) is independent of k , we can perform the summation over k in (3.8) by us-

ing the identity,
1

p

∑
k|p

ϕ(k) = 1 . (3.13)

Finally, we find that the series expansion of ZIIB(p)(β, 0, 0) itself is given by the right hand

side of (3.12). Hence, the thermal AdS5 one-loop free energy is

Γ(1) ren

IIB(p)(AdSβ
5 × S

5) = −1

2
p a β +O(β0) =

3 p

16
β +O(β0) , (3.14)

for the tensionless string states in the (p − 1)-th Regge trajectory. This result coincides

with that of the (p− 1)-th KK level (1.3).

Let us now move on to the one-loop free energy in AdS5 with S4 boundary. In this case,

the partition function ZIIB(p)(β, α1, α2) enters in the computation through the functions

fIIB(p)|n(β) defined in (3.3). From the residue theorem, the γIIB(p)|n coefficient (3.4) of the

one-loop free energy (3.1) depends only on the β2n+1 coefficient of fIIB(p)|n(β) . However,

since the latter combines ZIIB(p)(β, α1, α2) with hyperbolic functions, one may expect that

the one-loop free energy depends on higher series coefficients of the partition function

ZIIB(p)(β, α1, α2). However, as we shall show now, this kind of complications do not happen

due to the speciality of the N = 4 partition function. About the series expansion in α1 and

α2, only the terms up to O(α6) are relevant, hence for the building block ZN=4(β, α1, α2) ,

it is sufficient to consider the series expansion to the same order:

ZN=4(β, α1, α2) =
2 + 6 e

β
2

(1 + e
β
2 )3

+
sinh4 β

4

sinh5 β
2

(
α2

1 + α2
2

)
− 3 + coshβ

2048 sinh3 β
4 cosh7 β

4

α2
1 α

2
2

+
5− cosh β

2

3072 sinh β
4 cosh7 β

4

(
α4

1 + α4
2

)
+O(α6) . (3.15)

We can expand the above in β to get

ZN=4(β, α1, α2) = 1 + a β +O(β3) +
(
b β +O(β3)

) α2
1 + α2

2

β2

+
(
c β +O(β3)

) α2
1 α

2
2

β4
+O(β3)

α4
1 + α4

2

β4
+O(α6) , (3.16)

where a, b, c are constants given by

a = −3

8
, b =

1

8
, c = −1

8
. (3.17)
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Again the absence of negative β powers in ZN=4(β, 0, 0) allows us to obtain a compact

series expansion formula for [ZN=4(k β, k α1, k α2)]
p
k :

[ZN=4(k β, k α1, k α2)]
p
k = 1 + p a β +O(β2) +

(
p b β +O(β2)

) α2
1 + α2

2

β2

+
(
p c β +O(β2)

) α2
1 α

2
2

β4
+O(β2)

α4
1 + α4

2

β4
+O(α6) . (3.18)

Moreover, the k dependence disappears again in the above expression and the summation

over k in ZIIB(p)(β, α1, α2) (3.8) can be performed with the identity (3.13). As a result, the

partition function ZIIB(p)(β, α1, α2) has exactly the same series expansion as the right hand

side of (3.18). Even though fIIB(p)|n(β) involves a few hyperbolic functions, eventually the

coefficients γIIB(p)|n are all determined from the series coefficients of ZIIB(p) that we have

just identified. In the end, we obtain

γIIB(p)|2 = −p a , γIIB(p)|1 = −p (a+ b) , γIIB(p)|0 = −p (a+ b+ c) , (3.19)

and combining these, the AdS5 one-loop free energy is obtained as

Γ(1) ren

IIB(p)(AdS5 × S5) = −p (3 a+ 2 b+ c) logR = p logR , (3.20)

for the tensionless string states in the (p− 1)-th Regge trajectory. Again, this result

coincides with that of the (p− 1)-th KK level (1.3).

3.3 Full one-loop free energy

In the previous section, we have calculated the one-loop free energies Γ(1) ren

IIB(p) of the tension-

less type IIB string in a given Regge trajectory. The full one-loop free energy is their sum

over trajectories,

Γ(1) ren
IIB =

∞∑
p=2

Γ(1) ren

IIB(p) . (3.21)

With the results (3.20) and (3.14), the above gives (1.4) with the divergent series A =∑∞
p=2 p. In order to reproduce the physically desirable result, there should exist an appro-

priate regularization scheme giving rise to

∞∑
p=1

p = 0 . (3.22)

In [8], it has been shown that the standard zeta function regularization is compatible

with the insertion of e−εM05 inside the trace. With the latter regularization, if we take

the contribution of the entire KK towers of 10d supergravity keeping the regularization

parameter ε finite and send ε to zero in the final stage, then we recover the result which

is consistent with the scheme (3.22). Here, the key idea is that the extraction of the finite

part from the regulator dependent quantity should be done after the summation over KK

levels. Coming back to the standard zeta function regularization which the current paper

is relying on, we can also attempt to extract the finite part of the result after performing

– 8 –
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the summation over the entire Regge trajectories. In our method of CIRZ, this would

correspond to consider the full partition function,

ZIIB =

∞∑
p=2

ZIIB(p) , (3.23)

before performing various integrals. In fact, by using the re-summation,

∞∑
p=1

∑
k|p

(
· · ·
)

=
∞∑
k=1

∞∑
n=1

(
· · ·
)

[p = k n] , (3.24)

we can consider the partition function ZIIB as a different series [52],

ZIIB(β, α1, α2) = −ZN=4(β, α1, α2)−
∞∑
k=1

ϕ(k)

k
log[1−ZN=4(k β, k α1, k α2)] , (3.25)

as a result of the summation over n, which can be viewed as an effective sum over the

Regge trajectories.

Now let us apply the CIRZ method to the formula (3.25). We know already the con-

tribution of −ZN=4 to Γ(1) ren
IIB hence move to the series part. Dealing with the summation

over k is technically prohibitive, but since the summand with fixed k contains the contri-

butions from the entire Regge trajectories, this alternative organization of spectrum (3.25)

may have a better chance to provide a convergent series for one-loop free energy.2 With

this idea in mind, we proceed to the computation for each summand with help of CIRZ

method. Again, all the relevant information is again encoded in the series expansion of the

summand,

log[1−ZN=4(kβ, kα1, kα2)] = log
3

8
+ log(kβ) +O(β2) +

(
−1

3
+O(β2)

)
α2

1 + α2
2

β2

+

(
2

9
+O(β2)

)
α2

1 α
2
2

β4
+

(
− 1

18
+O(β2)

)
α4

1+α4
2

β4
+O(α4) .

(3.26)

Following the contour integral prescription and taking the β2n+1 coefficient from the func-

tion fH|n , we can check that the above, that is the summand in (3.25) with fixed k, does

not give any contribution to the one-loop free energy. Therefore in this prescription, the

full one-loop free energy is given by minus times that of N = 4 Maxwell multiplet:

Γ(1) ren
IIB = −Γ(1) ren

N=4 = −FU(1)
N=4 , (3.27)

which reproduces perfectly the −1 of the factor N2 − 1 in (1.1).

2Note however the reorganization (3.24) does not admit a precise physical interpretation. In fact, the

integrand with fixed k cannot be considered as the partition function over a certain vector space. Hence,

the role of symmetries (conformal symmetry or supersymmetry) on a fixed k is not clear.
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Branch cut contribution. One may wonder why we could simply neglect the log(k β)

term even though its branch cut prevents the use of the contour integral description in the

CIRZ method. In the following, we shall prove that the log(k β) term is actually irrelevant.

To show that, we first subtract

Zmod,k(β) = log[tanh(k β)] , (3.28)

from log[1−ZN=4(k β, k α1, k α2)] in order to remove the log(k β) term in the expan-

sion (3.26). To compensate what is subtracted, we have to put back the contribution

of Zmod,k(β). Since the latter is a relatively simple function, one can explicitly check that

it does not contribute to the full one-loop free energy.

Let us consider first the one-loop free energy in thermal AdS5 background with S1
β×S3

boundary. Due to the branch cut of the logarithm in (3.28), we need to consider the real

line integral representation (3.6),

χ̃mod,k(z) =

∫ ∞
0

dβ βz−1

Γ(z)
log[tanh(k β)] , (3.29)

instead of the contour one. The one-loop free energy gets the contribution of 1
2 χ̃mod,k(−1) β

but since

χ̃mod,k(z) = −(4 k)−z ζ

(
z + 1,

1

2

)
= O(z + 1) , (3.30)

this does not affect the result of the one-loop free energy.

Moving now to the case of the AdS5 background with S4 boundary, we first find that

Zmod,k does not depend on α1, α2 , hence the functions fmod,k|n have simple form,

fmod,k|2(β) =
sinh4 β

2

2
log[tanh(k β)] ,

fmod,k|1(β) = sinh2 β

2

(
sinh2 β

2

3
− 1

)
log[tanh(k β)] ,

fmod,k|0(β) = log[tanh(k β)] . (3.31)

In order to extract the coefficients γmod,k|n from the above, we need to consider the real line

integral (3.2) because the branch cut of the above functions prevent us to use the contour

integral (3.4). They can be recast in terms of

Ik(z, a) =

∫ ∞
0

dβ

(
β
2

)2(z−1)

Γ(z)
e−a β log[tanh(k β)] , (3.32)
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as follows:

∫ ∞
0

dβ

(
β
2

)2(z−1)

Γ(z)
fmod,k|0(β) = Ik(z, 0) , (3.33)

∫ ∞
0

dβ

(
β
2

)2(z−2)

Γ(z − 1)
fmod,k|1(β) =

=
5

8
Ik(z − 1, 0)− Ik(z − 1, 1) + Ik(z − 1,−1)

3
+
Ik(z − 1, 2) + Ik(z − 1,−2)

48
, (3.34)

∫ ∞
0

dβ

(
β
2

)2(z−3)

Γ(z − 2)
fmod,k|2(β) =

=
3

16
Ik(z − 2, 0)− Ik(z − 2, 1) + Ik(z − 2,−1)

8
+
Ik(z − 2, 2) + Ik(z − 2,−2)

32
. (3.35)

The integral Ik(z, a) is divergent for a < −2k in the large β region. This can be interpreted

as IR divergence and can be regularized by analytic continuation in a . We can evaluate

Ik(z, a) by series expanding the log[tanh(k β)] term in e−2k β as

Ik(z, a) = −42−3z k1−2z

Γ(z)

∞∑
m=0

Γ(2z +m− 1) ζ(2z +m, 1
2)

m!

(
− a

4 k

)m
. (3.36)

Series expanding the above around z = 0,−1,−2, we find

Ik(z, a) =

(
1

z
+ γ − 2 log(2 k)

)
a+O(z) , (3.37)

Ik(z − 1, a) = −8 k2

3
a− 2

3

(
1

z
+ γ − 2 log(2 k)− 1

)
a3 +O(z) , (3.38)

Ik(z − 2, a) =
224 k4

45
a+

32 k2

9
a3 +

4

15

(
1

z
+ γ − 2 log(2 k)− 3

2

)
a5 +O(z) , (3.39)

where γ is the Euler-Mascheroni constant. Since the above are all odd functions in a, the

integrals (3.33), (3.34) and (3.35) all vanish up to O(z) terms. Therefore, we find that

the modification part Zmod,k(β) (3.28) does not give any contribution to the one-loop free

energy in AdS5 with S4 boundary and the result (3.27) still stands.

4 Conclusion

In this paper, we have calculated the one-loop free energy of tensionless type-IIB string

theory in AdS5 × S5 background by making use of the CIRZ method and the partition

function of the boundary N = 4 theory whose ’t Hooft coupling vanishes. For a fixed but

arbitrary Regge trajectory, we could analytically calculate the one-loop free energy thanks

to the special form of the partition function of the N = 4 Maxwell multiplet. At the first

place, we showed that the result is proportional to the trajectory number, hence the full

quantity leads to a linearly divergent series. For a proper treatment of this divergence, we
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changed the organization of string states such that we can first perform the effective tra-

jectory sum before sending the regularization parameter to zero. In this way, we obtained

a finite result which is consistent with the prediction of the holographic conjecture.

We finally note that the simplifications observed in this paper for free energy com-

putations for the AdS5 superstring are somewhat in contrast to the generic situation in

higher-spin theory where supersymmetry is not often useful. Indeed even in resolving the

tensionless limit of string theory, supersymmetry has been of limited use. Nonetheless, the

computations here are analytically possible only when the CFT spectrum coincides with

the N = 4 Maxwell multiplet, thanks to the cancellation of the negative β powers in (3.11).

It would be interesting to understand this occurrence better as it might shed new light on

the interplay between higher-spin symmetry and supersymmetry.
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