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1 Introduction

Having a procedure for recovering bulk physics from the CFT is fundamental to our quest

to understand quantum gravity using AdS/CFT [1]. The Ryu-Takayanagi (RT) relation [2]

between the area of minimal surfaces anchored on the boundary (RT surfaces) and entan-

glement entropy in the CFT is one example of how bulk quantities can be computed from

the CFT. The first law of entanglement entropy has been used together with the RT and

HRT formulas [3] to derive the linearized Einstein equations in the bulk [4].

Natural bulk objects to consider are bulk field operators. Traditionally the program

of constructing bulk field operators in the CFT starts from knowledge of the bulk metric.

This information is used to compute smearing functions which provide the leading-order

expression (in 1/N) for a local bulk field in terms of a single-trace primary scalar operator

in the CFT [5–7].

Φ(0)(x, z) =

∫
dx′K

(
x, z|x′

)
O
(
x′
)

(1.1)

Φ(0) is a CFT operator which reproduces the correct bulk 2-point function when inserted in

a CFT correlator. However the expression for Φ(0) is not unique. Among the expressions
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we will be using are the complex coordinate representation (for Poincaré coordinates in

AdS3) [8]

Φ(0)(Z,X, T ) =
∆− 1

π

∫
y′2+t′2<Z2

dt′dy′
(
Z2 − y′2 − t′2

Z

)∆−2

O
(
T + t′, X + iy′

)
(1.2)

and the representation in terms of mode functions [9].

Φ(0)(Z,X, T ) =
2∆Γ(∆)

8π2

∫
|ω|>|k|

dωdk e−iωT eikXZ
(
ω2 − k2

)−ν/2
Jν

(
Z
√
ω2 − k2

)
O(ω, k)

(1.3)

1/N corrections to these expressions — for example to define CFT operators that will

reproduce the expected bulk 3-point functions — can be obtained purely from the CFT

using bulk locality as a guiding principle. Imposing bulk microcausality corresponds to

canceling unwanted singularities in correlation functions. To achieve this it is necessary to

correct the definition of the bulk field by adding to Φ(0) an infinite tower of higher-dimension

multi-trace operators. To restore locality in n-point functions it is necessary to add CFT

operators involving up to n−1 traces, all smeared with the appropriate smearing functions

as in (1.1). In this way the expressions relevant to bulk 3-point functions were obtained

in [10, 11], and the resulting bulk fields were shown to obey the correct bulk equations of

motion. The expressions needed to reproduce bulk 4-point functions were obtained in [12]

with the help of crossing symmetry. These results extend with some modifications to bulk

fields with spin [13–16]. However throughout this program the starting point, that is the

lowest-order smearing functions, were computed using knowledge of the bulk metric.1

In this paper we obtain the zeroth-order bulk operator Φ(0), up to a multiplicative co-

efficient,2 purely from CFT considerations. The basic idea is that the modular Hamiltonian

associated to a boundary region has the same action on bulk quantities as the associated

bulk modular Hamiltonian [19]. The RT surface (the minimal bulk surface homologous to

the boundary region) plays the role of a bifurcation surface in Rindler coordinates (the sur-

face where the past and future Rindler horizons intersect). Just as the bifurcation surface

is invariant under Rindler time evolution, the RT surface is invariant under the action of

the bulk modular Hamiltonian. This means CFT objects which are localized in the bulk

on an RT surface should commute with the corresponding boundary modular Hamiltonian.

To proceed it’s convenient to define an extended modular Hamiltonian which generates

a non-trivial flow everywhere in the bulk except on the RT surface. If a collection of RT

surfaces intersect at a point in the bulk, then CFT quantities which commute with all of

the corresponding extended modular Hamiltonians must be localized at the intersection

point. We can impose this as a condition to construct local observables in the bulk. The

construction is simplest in the case of 2-D CFT where RT surfaces are just lines.

Recently Φ(0) has been shown to be related to several natural CFT objects. In [20–

22] the integral of Φ(0) over an RT surface was found to be related to a conformal block

1An alternative construction for empty AdS is based on representation theory [17, 18].
2The requirement of locality only fixes bulk observables up to a multiplicative coefficient. The coefficient

could be chosen to depend on bulk space-time position. We will discuss this ambiguity more in section 3.
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operator.3 In [24–26] it was shown that Φ(0) creates a boundary cross-cap state in the

CFT. One of the motivations of the present paper was to understand the relation between

these different descriptions of Φ(0). The construction developed here makes the connection

much clearer.

An outline of this paper is as follows. In section 2 we review the modular Hamiltonian

appropriate to a segment of the boundary and extend it outside this region in a natural

way to obtain what we call the extended modular Hamiltonian. We use this to show that

bulk operators on the RT surface commute with the modular Hamiltonian in a variety

of contexts. In section 3 we turn the argument around and search for a CFT operator

that commutes with the extended modular Hamiltonians associated with two different

boundary segments. Provided the corresponding RT surfaces intersect we explicitly solve

this condition and find the correct smearing function for a local operator that lives on the

intersection. We do this for the vacuum state of the CFT on a line in three ways: using

complexified coordinates, using a derivative expansion, and in momentum space. The

latter recovers the Poincaré mode expansion of a bulk field from the CFT. We also do this

for a CFT on a line at finite temperature and recover the complexified smearing function

for a BTZ black hole. In appendix A we establish the relationship between conventional

and extended modular Hamiltonians, in appendix B we show that the extended modular

Hamiltonian has the same action on bulk operators which are off the RT surface as the

bulk Rindler Hamiltonian, and in appendix C we study geodesics in BTZ. For convenience

in all explicit computations we specialize to AdS3/CFT2.

2 Modular Hamiltonian in AdS3

We work in AdS3 / CFT2 in Poincaré coordinates. The bulk metric is

ds2 =
l2

Z2

(
−dT 2 + dZ2 + dX2

)
(2.1)

and the CFT metric is

ds2 = −dT 2 + dX2 (2.2)

We introduce boundary light-front coordinates

ξ = X − T, ξ̄ = X + T (2.3)

A space-like segment in a (1 + 1) dimensional CFT defines a causal diamond based on the

segment. The diamond D(x, y) is defined through its upper tip yµ and its lower tip xµ,

which we describe using the light-front coordinates

(u, ū) =
(
x1 − x0, x1 + x0

)
, (v, v̄) =

(
y1 − y0, y1 + y0

)
(2.4)

If we choose a diamond on the boundary whose left and right tips lie on the T = 0 slice at

points y1 and y2 then

yµ =

(
y2 − y1

2
,
y2 + y1

2

)
xµ =

(
y1 − y2

2
,
y2 + y1

2

)
(2.5)

3There is also a connection with geodesic Witten diagrams [23].
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so that

u = y2, v = y1, ū = y1, v̄ = y2 . (2.6)

For a CFT in its vacuum state the modular Hamiltonian can be written explicitly [27].

Hmod = 2π

∫ u

v
dξ

(u− ξ)(ξ − v)

u− v
Tξξ(ξ) + 2π

∫ v̄

ū
dξ̄

(
v̄ − ξ̄

) (
ξ̄ − ū

)
v̄ − ū

T̄ξ̄ξ̄
(
ξ̄
)

(2.7)

We define coordinates η and η̄ by

dη =
(u− v)

(u− ξ)(ξ − v)
dξ

dη̄ =
(v̄ − ū)

(v̄ − ξ̄)(ξ̄ − ū)
dξ̄ (2.8)

which are solved by

eη =
ξ − v
u− ξ

eη̄ =
ξ̄ − ū
v̄ − ξ̄

(2.9)

These Rindler-like null coordinates (η, η̄) cover the diamond. In terms of dimensionless

time and space coordinates

η = φ− t̂, η̄ = φ+ t̂ (2.10)

the diamond is covered by −∞ < t̂, φ <∞.

Under the change of coordinates ξ → η and ξ̄ → η̄ we have4

Tηη(η) =

(
dξ

dη

)2

Tξξ −
c

24π
S(ξ, η)

Tη̄η̄(η̄) =

(
dξ̄

dη̄

)2

Tξ̄ξ̄ −
c̄

24π
S(ξ̄, η̄) (2.11)

where

S(ξ, η) =

dξ
dη

d3ξ
dη3 − 3

2

(
d2ξ
dη2

)2

(
dξ
dη

)2 (2.12)

For the change of coordinates in (2.8) one finds S(ξ, η) = S(ξ̄, η̄) = −1
2 . Thus we can write

the modular Hamiltonian (2.7) as

Hmod = 2π

∫ ∞
−∞

dφ(Tηη(φ)+Tη̄η̄(φ))− c

24

∫ y2

y1

dξ
y2 − y1

(y2−ξ)(ξ−y1)
− c̄

24

∫ y2

y1

dξ̄
y2 − y1(

y2−ξ̄
)(
ξ̄−y1

)
(2.13)

In Poincaré coordinates a bulk geodesic γ on the T = 0 slice connecting the points y1 and

y2 on the boundary is given by the semicircle

(X − y1)(y2 −X) = Z2 (2.14)

4This is more commonly written in terms of T (ξ) = −2πTξξ and T̄ (ξ̄) = −2πTξ̄ξ̄.
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Proper length along this geodesic is

ds =
l

2

y2 − y1

(X − y1)(y2 −X)
dX (2.15)

Using this and c = c̄ = 3l
2G the last two terms in (2.13) can be seen to be

− 1

4G

∫
γ
ds (2.16)

This is just the RT term, i.e. the area of the minimal surface. So in fact

2π

∫ ∞
−∞

dφ(Tηη(φ) + Tη̄η̄(φ)) = Hmod +
A

4G
(2.17)

The authors of [19] identified the left-hand side of (2.17) with the boundary modular

Hamiltonian and interpreted Hmod as a bulk modular Hamiltonian which generates bulk

time evolution in the appropriate bulk Rindler wedge plus fluctuations of the RT surface

(see also [28]). The computations of this paper will, among other things, confirm that

Hmod acts on CFT operators which represent bulk quantities in the manner expected for

a bulk Rindler Hamiltonian.

2.1 CFT quantities invariant under the modular Hamiltonian

We start with the expression for a local bulk operator in Rindler coordinates [7],

Φ(0)(r, φ, t) =
(∆− 1)2∆−2

πr∆
+

×
∫
dxdy

 r

r+

cos y −

√
1−

r2
+

r2
coshx

∆−2

ORindler

(
φ+ i

ly

r+
, t+

l2x

r+

)
(2.18)

where the AdS3 metric is

ds2 = −
r2 − r2

+

l2
dt2 +

l2

r2 − r2
+

dr2 + r2dφ2 (2.19)

Here l is the AdS radius, r+ is the horizon radius and the region of integration is

cos y >

√
1−

r2
+

r2
coshx. (2.20)

The Rindler operator in the CFT is normalized according to limr→∞ r
∆Φ(0)(r, φ, t) =

ORindler(φ, t). We understand the analytic continuation to complex boundary coordinates

to be defined by

ORindler

(
φ+ i

ly

r+
, t+

l2x

r+

)
=

∫
dωdk e

−iω
(
t+ l2x

r+

)
e
ik
(
φ+i ly

r+

)
ORindler(ω, k) (2.21)

As r → r+ the integration region becomes −∞ < x <∞ and −π
2 < y < π

2 . Thus

Φ(0)(r+, φ, t) =
(∆− 1)2∆−2

πr∆
+

∫ π
2

−π2
dy cos∆−2 y

∫
dωdke−iωte

ik
(
φ+i lyr+

)
ORindler(ω, k)

∫ ∞
−∞

dxe
−iω l2xr+

(2.22)
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The integral over x sets ω to zero. Then using∫ π
2

−π
2

dy cos∆−2 y e−kly/r+ =
Γ(∆)

2∆−1(∆− 1)

1∣∣∣Γ(∆
2 + ikl

2r+

)∣∣∣2 (2.23)

and defining

Φ(0)(r+, k, t) =
1

2π

∫ ∞
−∞

dφe−ikφΦ(0)(r, φ, t) (2.24)

we get

Φ(0)(r+, k, t) =
Γ(∆)

lr∆−1
+

1∣∣∣Γ(∆
2 + ikl

2r+

)∣∣∣2ORindler(ω = 0, k) (2.25)

This shows that zero frequency modes relative to the boundary Rindler Hamiltonian

live on the bulk RT surface, and due to (2.17), that bulk objects on the RT surface commute

with Hmod. Setting k = 0 in (2.25) gives

1

2π

∫ ∞
−∞

dφΦ(0)(r, φ, t) =
Γ(∆)

lr∆−1
+ Γ2

(
∆
2

)ORindler(ω = 0, k = 0) (2.26)

where the left-hand side is up to a constant the integral of the bulk field over the RT surface

which serves as the horizon of the bulk Rindler wedge.

In fact (2.26) follows from results in the literature. The integral of a bulk field operator

over an RT surface γ was identified in [20, 22] with a particular CFT expression. In

two dimensions, for a primary operator with dimensions h = h̄ = 1
2∆O, the appropriate

identification was found to be

Q(O;u, ¯u; v, v̄) =
Cblk

8πGN

∫
γ
dsΦ(0)

= CO

∫
D(x,y)

dξdξ̄

(
(u− ξ)(ξ − v)

(u− v)

)h−1
((

v̄ − ξ̄
) (
ξ̄ − ū

)
(v̄ − ū)

)h̄−1

O
(
ξ, ξ̄
)

(2.27)

where Cblk and CO are normalization constants. To see what the right hand side of (2.27)

represents, we make a conformal transformation ξ → η and ξ̄ → η̄ as in (2.9) and define a

Rindler operator OR as the conformal transformation5 of O

OR
(
φ, t̂
)

=

(
(u− ξ)(ξ − v)

(u− v)

)h((v̄ − ξ̄) (ξ̄ − ū)
(v̄ − ū)

)h̄
O
(
ξ, ξ̄
)

(2.28)

Then we see that

Q (O;u, ū; v, v̄) = CO

∫ ∞
−∞

∫ ∞
−∞

dt̂dφOR
(
t̂, φ
)

= COOR(ω = 0, k = 0) (2.29)

which up to constants agrees with (2.26).

5The relation between ORindler and O is usually taken to be ORindler = limr→∞(rZ)∆O. See (39) in [8].

This normalization gives an extra factor of r∆
+ compared to (2.28), so that ORindler = r∆

+OR.
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It will be useful below to show directly that Q commutes with Hmod. In Lorentzian

CFT the commutator of the energy-momentum tensor with a primary field is

2π[Tww(w),O] = 2πi (h∂ξδ(ξ − w)O + δ(ξ − w)∂ξO)

2π[Tw̄w̄(w̄),O] = −2πi
(
h̄∂ξ̄δ

(
ξ̄ − w̄

)
O + δ

(
ξ̄ − w̄

)
∂ξ̄O

)
Now we can compute the action of the modular Hamiltonian on a CFT operator. We start

with the modular Hamiltonian for a segment (y1, y2) on the T = 0 time slice, Hmod =

H
(R)
mod +H

(L)
mod where

H
(R)
mod = 2π

∫ y2

y1

(w − y1)(y2 − w)

y2 − y1
Tww(w) (2.30)

H
(L)
mod = 2π

∫ y2

y1

(w̄ − y1)(y2 − w̄)

y2 − y1
Tw̄w̄(w̄)

We find[
H

(R)
mod,O

(
ξ, ξ̄
)]

= Θ((ξ−y1)(y2−ξ))
2πi

y2−y1
(h(y2+y1−2ξ)+(ξ−y1)(y2−ξ)∂ξ)O

(
ξ, ξ̄
)
(2.31)[

H
(L)
mod,O

(
ξ, ξ̄
)]

= −Θ
((
ξ̄−y1

)(
y2−ξ̄

)) 2πi

y2−y1

(
h
(
y2+y1−2ξ̄

)
+
(
ξ̄−y1

)(
y2−ξ̄

)
∂ξ̄
)
O
(
ξ, ξ̄
)

One can then easily check that Q(O;u, ¯u; v, v̄) commutes with Hmod. In fact Q is the

unique expression which commutes with both H
(R)
mod and H

(L)
mod. To see this act on (2.27)

using (2.31) and integrate by parts.

In fact there are generalizations of (2.29). A mode of the boundary Rindler operator

with zero frequency but non-zero momentum Qk ≡ OR(ω = 0, k) can be written as

Qk =

∫
D(x,y)

dξdξ̄

(
(ξ − v)

(
ξ̄ − ū

)
(u− ξ)

(
v̄ − ξ̄

))ik
2 ((u− ξ)(ξ − v)

(u− v)

)h−1
((
v̄ − ξ̄

)(
ξ̄ − ū

)
(v̄ − ū)

)̄h−1

O
(
ξ, ξ̄
)

(2.32)

This commutes with the sum H
(R)
mod + H

(L)
mod but obeys [H

(R)
mod − H

(L)
mod, Qk] = 2πkQk.

From (2.25) Qk is related to the integral of Φ(0) over the RT surface with a particu-

lar weight.

2.2 Extended modular Hamiltonian

In what follows we will want to compare the action of two modular Hamiltonians based

on different segments of the boundary. To make this comparison it is very convenient

to define what we call an extended modular Hamiltonian H̃mod.6 The extended modular

Hamiltonian agrees with the usual modular Hamiltonian within its defining segment, but

it extends in a natural way to be non-zero outside the segment. Thus the action of H̃mod

on operators inside the diamond D(x, y) based on the segment will be the same as the

6This quantity has appeared before in the literature. In [19, 29] H̃mod was referred to as the total

modular operator K, and in [30] it was referred to as the full modular operator K̂.
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action of the usual modular Hamiltonian, but Hmod and H̃mod act differently on operators

outside the diamond.

A convenient definition of the extended modular Hamiltonian for a segment (y1, y2) of

the boundary at T = 0 is just

H̃
(R)
mod = 2π

∫ ∞
−∞

(w − y1)(y2 − w)

y2 − y1
Tww(w)

H̃
(L)
mod = 2π

∫ ∞
−∞

(w̄ − y1)(y2 − w̄)

y2 − y1
Tw̄w̄(w̄) (2.33)

Compared to the usual definition (2.30) all we’ve done is extend the limits of integration.

This definition of the extended modular Hamiltonian has a natural interpretation. As we

show in appendix A, H̃mod can be identified with the modular Hamiltonian for an interval

A on the boundary minus the modular Hamiltonian for its complement Ā.7

H̃mod,A = Hmod,A −Hmod,Ā (2.34)

This has the nice feature that H̃mod,A generates a non-trivial flow everywhere in the bulk,

except on the RT surface associated with A which it leaves invariant. This means operators

which commute with H̃mod must be localized on the RT surface. It follows from the

definition that[
H̃

(R)
mod,O

(
ξ, ξ̄
)]

=
2πi

y2 − y1
(h(y2 + y1 − 2ξ) + (ξ − y1)(y2 − ξ)∂ξ)O

(
ξ, ξ̄
)

(2.35)[
H̃

(L)
mod,O

(
ξ, ξ̄
)]

= − 2πi

y2 − y1

(
h
(
y2 + y1 − 2ξ̄

)
+
(
ξ̄ − y1

)(
y2 − ξ̄

)
∂ξ̄
)
O
(
ξ, ξ̄
)

(2.36)

The action of the extended total modular Hamiltonian H̃
(L)
mod + H̃

(R)
mod on a primary field is[

H̃mod,O(ξ, ξ̄)
]

=
2πi

y2−y1

((
ξ̄−ξ

)
∆−y1y2

(
∂ξ−∂ξ̄

)
+(y1+y2)

(
ξ∂ξ−ξ̄∂ξ̄

)
+ξ̄2∂ξ̄−ξ2∂ξ

)
O

(2.37)

Compared to the action of the usual modular Hamiltonian (2.31), the only change is that

there are no step functions.

Let us now look at a local bulk operator in the Poincaré patch and show that it

commutes with the extended modular Hamiltonian appropriate for a segment whose RT

surface passes through the bulk point. The bulk operator in Poincaré coordinates can be

written using the complexified smearing function as

Φ(Z,X, T ) =
∆− 1

π

∫
y′2+t′2<Z2

(
Z2 − y′2 − t′2

Z

)∆−2

O(T + t′, X + iy′) (2.38)

We understand the complexified spatial coordinate as corresponding to the formal expression

Φ(Z,X, T = 0) =
∆− 1

π

∫
y′2+t′2<Z2

(
Z2 − y′2 − t′2

Z

)∆−2

eiy
′ d
dXO(t′, X) (2.39)

7We are grateful to Michal Heller for suggesting this connection.
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Then (ξ = X − t′, ξ̄ = X + t′)

[
H̃mod,Φ

]
=

2i(∆− 1)

y2 − y1

∫
y′2+t′2<Z2

(
Z2 − y′2 − t′2

Z

)∆−2

e
iy′

(
d
dξ

+ d
dξ̄

)
((
ξ̄ − ξ

)
∆− y1y2(∂ξ − ∂ξ̄) + (y1 + y2)

(
ξ∂ξ − ξ̄∂ξ̄

)
+ ξ̄2∂ξ̄ − ξ2∂ξ

)
O
(
ξ, ξ̄
)

(2.40)

We now define q = ξ + iy′ and p = ξ̄ + iy′, so the above expression is

[
H̃mod,Φ

]
=

2i(∆− 1)

y2 − y1

∫
Z2+(q−X)(p−X)>0

(
Z2 + (q −X)(p−X)

Z

)∆−2

(
(p− q)∆− y1y2(∂q − ∂p) + (y1 + y2)(q∂q − p∂p) + p2∂p − q2∂q

)
O(q, p)

(2.41)

Now we can integrate by parts and after a little algebra we find that[
H̃mod,Φ(Z,X, T = 0)

]
= 0 (2.42)

provided that

Z2 − (y1 + y2)X + y1y2 +X2 = 0 (2.43)

This is simply the condition that the bulk point (Z,X, T = 0) lies on a spacelike geodesic

whose endpoints hit the boundary at (T = 0, y1) and (T = 0, y2). See (2.14).

2.3 Finite temperature

In this section we extend the previous discussion to treat a modular Hamiltonian which is

not constructed from the ground state of the CFT. Instead we consider a CFT at finite

temperature.

For a CFT on a line at finite temperature β−1 = r+
2πl2

the modular Hamiltonian for a

region (−R,R) is given by [31, 32]

Hmod = c

(∫ R

−R

(
cosh

r+R

l2
− cosh

r+ξ

l2

)
Tξξ(ξ) +

∫ R

−R

(
cosh

r+R

l2
− cosh

r+ξ̄

l2

)
Tξ̄ξ̄
(
ξ̄
))

(2.44)

with c = 2l2

r+
sinh r+R

l2
. The extended modular Hamiltonian for the same region is then

given by

H̃mod = c

(∫ ∞
−∞

(
cosh

r+R

l2
− cosh

r+ξ

l2

)
Tξξ(ξ) +

∫ ∞
−∞

(
cosh

r+R

l2
− cosh

r+ξ̄

l2

)
Tξ̄ξ̄
(
ξ̄
))

(2.45)

The action of the extended Hamiltonian on a primary scalar operator of dimension 2h is[
H̃mod,O

]
= c

[
− r+h

l2
sinh

r+ξ

l2
+
r+h

l2
sinh

r+ξ̄

l2
(2.46)

+

(
cosh

r+R

l2
− cosh

r+ξ

l2

)
∂ξ −

(
cosh

r+R

l2
− cosh

r+ξ̄

l2

)
∂ξ̄

]
O
(
ξ, ξ̄
)
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We want to show that this modular Hamiltonian commutes with a local bulk operator

on the corresponding RT surface. The bulk operator has a representation using complexified

coordinates as in (2.18),

Φ(0)(r, φ, t = 0) ∼
(
r

r+

)∆−2 ∫
dxdy

cos y −

√
1−

r2
+

r2
coshx

∆−2

O
(
φ+

ily

r+
,
l2x

r+

)
(2.47)

where both x, y are real and the region of integration is cos y >

√
1− r2

+

r2 coshx. We

understand the operator at complex boundary coordinates to be defined by

O
(
φ+

ily

r+
,
l2x

r+

)
= e

i ly
r+

d
dφO

(
φ,
l2x

r+

)
. (2.48)

Using (2.45) and (2.48) we get (q = lφ− l2x
r+

+ i l
2y
r+

and p = lφ+ l2x
r+

+ i l
2y
r+

)[
H̃mod,Φ

(0)(r, φ, t = 0)
]

(2.49)

∼ c

(
r

r+

)∆−2 ∫
dxdy

(
cosh

(
r+

l2
p+ q − 2lφ

2

)
−
√

1−
r2
+

r2
cosh

(
r+

l2
p− q

2

))∆−2

×(
r+

l2
h
(

sinh
r+

l2
p− sinh

r+

l2
q
)

+

(
cosh

r+R

l2
− cosh

r+q

l2

)
∂q−

(
cosh

r+R

l2
− cosh

r+p

l2

)
∂p

)
O(q, p)

After integrating by parts and a little algebra one finds that[
H̃mod,Φ

(0)(r, φ, t = 0)
]

= 0 (2.50)

provided √
1−

r2
+

r2
=

cosh r+
l φ

cosh r+
l2
R

(2.51)

As shown in appendix C, this condition is satisfied provided the bulk point (r, φ, t = 0)

lies on a spacelike geodesic connecting the two boundary points (t = 0, lφ = −R) and

(t = 0, lφ = R).

3 Bulk operators from intersecting modular Hamiltonians

We saw that a bulk operator Φ living on the RT surface associated with a segment of

the boundary commutes with the modular Hamiltonian appropriate to that segment. Of

course this does not imply that Φ is local in the bulk. But if there is another segment on

the boundary whose RT surface intersects the RT surface of the first one at a point, then

we can demand that Φ commutes with both modular Hamiltonians. In this case Φ must

be a local bulk operator living on the intersection point.

To make a connection to other work, note that on a formal level the action of the

extended modular Hamiltonian appropriate for the vacuum state of a CFT on a CFT

primary given in (2.37) identifies it as

H̃mod =
2π

y2 − y1
(Q0 + y1y2P0 + (y1 + y2)M01) (3.1)
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Here Q0, P0, M01 are generators of the conformal group.

Q0 = i
(
L̄1 − L1

)
P0 = i

(
L̄−1 − L−1

)
, M01 = i

(
L̄0 − L0

)
(3.2)

So given two segments of the boundary (y1, y2) and (y3, y4), the condition for a bulk

operator to live on the intersection of the corresponding RT surface becomes

[(Q0 + y1y2P0 + (y1 + y2)M01),Φ] = 0 , [(Q0 + y3y4P0 + (y3 + y4)M01),Φ] = 0 (3.3)

In [24, 26], similar conditions were obtained for the special case of a bulk operator in the

center of AdS by symmetry considerations.

In this section we will solve (3.3) in coordinate space to recover the smearing function

for a local bulk operator in the complex coordinate representation. We will do the same

thing in momentum space and recover the bulk Poincaré modes which make up a local

bulk operator. In addition we will solve the appropriate equations for a CFT at finite

temperature and recover a local bulk operator in the BTZ background. This provides a

new way of constructing the zeroth-order bulk operator and deriving bulk modes without

knowing anything about the bulk geometry.

Note however that the conditions for bulk locality (3.3) only determine the bulk opera-

tor up to a coefficient. The coefficient could depend on bulk position, so in fact we can only

generically recover Φ(0) up to a function of the bulk space-time coordinates. In states where

the CFT has an unbroken spacetime translation symmetry the function can only depend

on the bulk radial coordinate. In this case dimensional analysis fixes Φ(0) up to an overall

constant. But in general locality is not enough to fix the function. Even with this freedom

we get quite a lot of information. For example, given the two-point function of a local bulk

operator with another local bulk or boundary operator we can identify the singularities

and deduce the bulk causal structure.8 Also the program of perturbatively correcting the

zeroth-order bulk operator to take interactions into account only relies on the singularity

structure, so up to a multiplicative coefficient an interacting local bulk operator could be

constructed. Moreover this multiplicative freedom cancels in any ratio of correlation func-

tions involving a fixed bulk operator with any number of boundary operators, so one could

determine these ratios unambiguously. As another example of an unambiguous quantity,

along the way we will see that the construction generates the equations which describe

bulk spacelike geodesics.

3.1 Recovering smearing functions for the vacuum state

We start with an ansatz for an object that commutes with the modular Hamiltonian

Φ(X) =

∫
dt′dy′g(p, q)O(q, p) (3.4)

where q = X − t′ + iy′, p = X + t′ + iy′. In the ansatz t′ and y′ are taken to be real and

X is left as a free real variable. From (2.41) the action of the modular Hamiltonian for a

8One can use this information to reconstruct the bulk metric, up to a conformal factor, by the method

of light-cone cuts [33].
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segment (y1, y2) on Φ is given by[
H̃12

mod,Φ(X)
]

=
2πi

y2 − y1

∫
dt′dy′g(p, q)× (3.5)(

(p− q)∆− y1y2(∂q − ∂p) + (y1 + y2)(q∂q − p∂p) + p2∂p − q2∂q
)
O(q, p)

We take two such modular Hamiltonians with parameters (y1, y2) and (y3, y4) and demand

(y2 − y1)
[
H̃12

mod,Φ
(
ξ, ξ̄
)]

= 0, (y4 − y3)
[
H̃34

mod,Φ
(
ξ, ξ̄
)]

= 0 (3.6)

It’s convenient to first look at the difference of the equations in (3.6),∫
dt′dy′g(p, q) ((y3y4 − y1y2) (∂q − ∂p) + (y1 + y2 − y3 − y4) (q∂q − p∂p))O(q, p) = 0

(3.7)

After integration by parts this gives an equation for g(q, p),

((X0 − q)∂q − (X0 − p)∂p) g(q, p) = 0 (3.8)

where X0 = y1y2−y3y4

y1+y2−y3−y4
. The solution to this equation is

g(q, p) = f((p−X0)(q −X0)) (3.9)

where f is an arbitrary function. We now use this form and solve the equation

[H̃12
mod,Φ(X)] = 0. Following the same steps as before we get an equation for f(

(∆−2)(p−q)+y1y2(∂q−∂p)− (y1 +y2)(q∂q−p∂p)+q2∂q−p2∂p

)
f((q−X0)(p−X0)) = 0

(3.10)

whose solution is

f = c∆

(
Z2 + (p−X0)(q −X0)

)∆−2
(3.11)

where

Z2 = (y1 + y2)X0 − y1y2 −X2
0 (3.12)

The two parameters appearing in the solution X0, Z can be identified as the coordinates

of the local operator in the bulk. Note, for example, that as y1, y3 → y2 we have Z → 0

and X0 → y2. Comparing (3.12) to (2.14), note that we have recovered from the CFT the

equation which describes a spacelike geodesic in the bulk.

For the integration by parts to work without any boundary terms we need the integra-

tion region to be bounded by Z2 + (p −X0)(q −X0) = 0. For this to be possible for real

(t′, y′) we see that we must have X = X0. So finally we get

Φ(Z,X0) = c∆

∫
t′2+y′2<Z2

dt′dy′
(
Z2 − t′2 − y′2

)∆−2O
(
t′, X0 + iy′

)
. (3.13)

Since the vacuum state is translation invariant we expect correlation functions of local bulk

fields to be translation invariant as well. From this we can deduce that the coefficient c∆

is a function of Z only, which could be determined from a normalization condition such as

Φ(Z → 0, X) → Z∆

2∆−dO(X). In this way we have recovered the bulk operator written in

the complex coordinate representation.
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3.1.1 Derivative representation

Another possible representation for a bulk operator is

Φ(Z, ξ, ξ̄) =

∞∑
n,m=0

anm∂
n
ξ ∂

m
ξ̄ O(ξ, ξ̄) (3.14)

In this case formally we can impose locality using the usual modular Hamiltonian and we

do not need the extended modular Hamiltonian.

We wish to impose the conditions (3.6), that Φ commutes with two modular Hamil-

tonians. As before we start by looking at the difference of the two equations in (3.6)

which gives
∞∑

n,m=0

anm∂
n
ξ ∂

m
ξ̄

(
(ξ −X0)∂ξ +

(
X0 − ξ̄

)
∂ξ̄
)
O(ξ, ξ̄) (3.15)

Without loss of generality we take

Φ(X0) =

∞∑
n,m=0

anm∂
n
ξ ∂

m
ξ̄ O(ξ, ξ̄)ξ=ξ̄=X0

(3.16)

Using this in (3.15) and setting the coefficients of ∂nξ ∂
m
ξ̄
O(ξ = X0, ξ̄ = X0) to zero gives

(n−m)anm = 0 (3.17)

So in fact Φ must have the form

Φ(X0) =

∞∑
m=0

am(∂ξ∂ξ̄)
mO(ξ, ξ̄)ξ=ξ̄=X0

(3.18)

Now demanding that [
H̃12

mod,Φ(X0)
]

= 0 (3.19)

gives the condition∑
n

am

(
m(∆ +m− 1)∂mξ ∂

m−1
ξ̄

−m(∆ +m− 1)∂m−1
ξ ∂mξ̄

+Z2∂m+1
ξ ∂mξ̄ − Z

2∂mξ ∂
m+1
ξ̄

)
O(ξ, ξ̄)ξ=ξ̄=X0

= 0

(3.20)

where Z2 = −y1y2 + (y1 + y2)X0 −X2
0 . This implies the recursion relation

am = − Z2

m(∆ +m− 1)
am−1 (3.21)

whose solution is

am = a0
(−1)mZ2m

Γ(m+ 1)Γ(∆ +m)
(3.22)

As before time and space translation invariance restrict a0 to be a function of Z. The

expression for a bulk operator in Poincaré coordinates (2.38) can be expanded in deriva-

tives [21].

Φ(Z,X, T ) = Γ(∆)Z∆
∞∑
m=0

(−1)mZ2m

Γ(m+ 1)Γ(ν +m+ 1)
(∂ξ∂ξ̄)

mO(ξ, ξ̄) (3.23)

Comparing this to (3.18) and (3.22) we see that we have recovered the local bulk operator

Φ(Z,X, T = 0).
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3.2 Recovering bulk modes

In this section we wish to recover the momentum space representation for a bulk op-

erator, i.e. the bulk modes. We start with the extended modular Hamiltonian for the

segment (y1, y2)[
H̃mod,O(ξ, ξ̄)

]
=

2πi

y2−y1

((
ξ̄−ξ

)
∆−y1y2(∂ξ−∂ξ̄)+(y1+y2)

(
ξ∂ξ−ξ̄∂ξ̄

)
+ξ̄2∂ξ̄−ξ2∂ξ

)
O

(3.24)

We define k+ = k+ω
2 , k− = ω−k

2 and

O(k+, k−) =
1

4π2

∫
dξdξ̄e−ik+ξ+ik−ξ̄O(ξ, ξ̄) (3.25)

Using (3.24) one finds[
H̃mod,O(k+, k−)

]
=

2πi

y2 − y1

(
(y1 + y2)

(
d

dk−
k− −

d

dk+
k+

)
− 2ih

(
d

dk+
+

d

dk−

)
+

d2

d2k+
ik+ −

d2

d2k−
ik− − y1y2(ik+ + ik−)

)
O(k+, k−) (3.26)

We now look for operators Φ which commute with the extended modular Hamiltonians

for two segments (y1, y2) and (y3, y4).

(y2 − y1)
[
H̃12

mod,Φ
]

= 0, (y4 − y3)
[
H̃34

mod,Φ
]

= 0 (3.27)

We make the ansatz

Φ =

∫
dk+dk− g(k+, k−)O(k+, k−) (3.28)

We first require that Φ satisfy the difference of the two equations in (3.27). This gives∫
dk+dk− g(k+, k−)

(
(y1 + y2 − y3 − y4)

(
d

dk−
k− −

d

dk+
k+

)
−(y1y2 − y3y4)(ik+ + ik−)

)
O(k+, k−) = 0

(3.29)

Upon integration by parts we get an equation for g(k+, k−),(
k+

d

dk+
− k−

d

dk−

)
g(k+, k−) = iX0(k+ + k−)g(k+, k−) (3.30)

where X0 = y1y2−y3y4

y1+y2−y3−y4
. The general solution to this equation is

g(k+, k−) = f(k+k−)ei(k+−k−)X0 (3.31)

where f is an arbitrary function of k+k−.

Having imposed that Φ commutes with the difference (y2 − y1)H̃12
mod − (y4 − y3)H̃34

mod,

we now require that Φ commute with H̃12
mod itself. We start with the ansatz

Φ(X0) =

∫
dk+dk−f(k+k−)ei(k+−k−)X0O(k+, k−) (3.32)
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The first equation in (3.27) becomes a condition on f . After integration by parts and some

algebra we find (x = k+k− = 1
4(ω2 − k2))

x
d2f

d2x
+ 2h

df

dx
+
(
(y1 + y2)X0 − y1y2 −X2

0

)
f = 0 (3.33)

The solution is

f(ω, k) = c0

(
Z2(ω2 − k2)

)−ν/2
Jν

(
Z
√
ω2 − k2

)
(3.34)

with ∆ = ν + 1 and Z2 = (y1 + y2)X0 − y1y2 −X2
0 . Time and space translation invariance

restrict c0 to be a function of Z. Then (3.32) becomes9

Φ(X0) = c0

∫
dωdk eikX0

(
Z2(ω2 − k2)

)−ν/2
Jν

(
Z
√
ω2 − k2

)
O(k+, k−) (3.35)

which is the bulk operator Φ(Z,X0, T = 0) given in (1.3).

If we had imposed the second equation in (3.27) we would have gotten the same result

with Z2 = (X0−y3)(y4−X0). But in fact these two expressions for Z are the same. As long

as the parameters (y1, y2, y3, y4) assign a real value to Z we have a solution where the point

(T = 0, Z,X0) is the bulk point located at the intersection of the two boundary-anchored

geodesics.

3.3 Time dependence

For completeness we show that the construction of local bulk operators based on intersect-

ing modular Hamiltonians also captures the correct time dependence of bulk fields.

To do this we look at the modular Hamiltonian for a diamond that is shifted in time

by an amount T . In light-front coordinates (2.4) such a diamond is characterized by

u = y2 − T, ū = y1 + T, v = y1 − T, v̄ = y2 + T (3.36)

The extended modular Hamiltonian acting in momentum space is given by[
H̃L

mod(T ),O(k+, k−)
]

=
1

y2 − y1

(
(y1 + y2 − 2T )(h− d

dk+
k+) (3.37)

−2ih
d

dk+
+

(
d2

d2k+
−
(
y1y2 − T (y1 + y2) + T 2

))
ik+

)
O(k+, k−)

[
H̃R

mod(T ),O(k+, k−)
]

=
1

y2 − y1

(
−(y1 + y2 + 2T )

(
h− d

dk−
k−

)
(3.38)

−2ih
d

dk−
+

(
d2

d2k−
−
(
y1y2 + T (y1 + y2) + T 2

))
ik−

)
O(k+, k−)

We look for operators that commute with H̃total
mod = H̃L

mod + H̃R
mod. We make an ansatz

Φ(X) =

∫
dk+dk− g(k+, k−)O(k+, k−) (3.39)

9We could choose the coefficient c0 so that Φ has the right limit as Z → 0. Also note that the boundary

operator only has modes with |ω| > |k|.
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If we take two different boundary segments (y1, y2) and (y3, y4) at time T then the condi-

tions we wish to impose are

(y2 − y1)
[
H̃12

mod,Φ
]

= 0, (y4 − y3)
[
H̃34

mod,Φ
]

= 0 (3.40)

Taking the difference results in an equation for g(k+, k−),(
k+

d

dk+
− k−

d

dk−

)
g(k+, k−) =

(
(X0 − T )ik+ + (X0 + T )ik−

)
g(k+, k−) (3.41)

with X0 = y1y2−y3y4

y1+y+2−y3−y4
. The solution to this equation is

g(k+, k−) = f(k+k−)ei(k+−k−)Xe−i(k++k−)T (3.42)

with f an arbitrary function of k+k−. Thus our ansatz is now

Φ(X0, T ) =

∫
dk+dk− f(k+k−)ei(k+−k−)Xe−i(k++k−)TO(k+, k−) (3.43)

Having imposed the difference, the remaining condition[
H̃12

mod(T ),Φ(X0, T )
]

= 0 (3.44)

is solved (after some algebra) by

f(k+k−) ∼
(
Z2(ω2 − k2)

)−∆−1
2 J∆−1

(
Z
√
ω2 − k2

)
(3.45)

where

Z2 = (y1 + y2)X0 − y1y2 −X2
0 (3.46)

Thus we’ve recovered the full Poincaré bulk mode, including its time dependence, purely

from CFT considerations. This shows that we can get the complete zeroth-order expression

for a local bulk field using intersecting modular Hamiltonians.

3.4 Recovering BTZ bulk operators

In this section we follow the same procedure to construct local bulk scalar fields in a BTZ

background. We start with the extended modular Hamiltonian appropriate to a (1 + 1)-

dimensional CFT at finite temperature. The extended modular Hamiltonian for a segment

has two parameters, the size of the segment 2L and the position of the center of the

segment φ0.

H̃mod,L,φ0 = c

∫ ∞
−∞

(
cosh

r+L

l2
− cosh

r+(ξ − φ0)

l2

)
Tξξ(ξ)

+c

∫ ∞
−∞

(
cosh

r+L

l2
− cosh

r+

(
ξ̄ − φ0

)
l2

)
Tξ̄ξ̄
(
ξ̄
) (3.47)

We will consider two extended Hamiltonians

H̃mod,L,φ0 and H̃mod,R,φ0=0 (3.48)
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and wish to find a CFT operator Φ that satisfies[
H̃mod,L,φ0 ,Φ

]
= 0,

[
H̃mod,R,φ0=0,Φ

]
= 0 (3.49)

The action of the extended Hamiltonian on a primary scalar operator of dimension

2h is [
H̃mod,L,φ0 ,O

]
= c

(
− r+h

l2
sinh

r+(ξ − φ0)

l2
+
r+h

l2
sinh

r+

(
ξ̄ − φ0

)
l2

(3.50)

+

(
cosh

r+L

l2
− cosh

r+(ξ − φ0)

l2

)
∂ξ

−

(
cosh

r+L

l2
− cosh

r+

(
ξ̄ − φ0

)
l2

)
∂ξ̄

)
O
(
ξ, ξ̄
)

We define the variables as before

q = lφ− l2x

r+
+ i

l2y

r+
, p = lφ+

l2x

r+
+ i

l2y

r+
(3.51)

where φ is a free parameter, and we define rescaled variables

q̃ =
r+

l2
q, p̃ =

r+

l2
p, L̃ =

r+

l2
L, φ̃0 =

r+

l
φ0 (3.52)

Starting with the general ansatz

Φ =

∫
dp̃dq̃ g(p̃, q̃)O(p̃, q̃) (3.53)

the condition [
H̃mod,L,φ0 ,Φ

]
= 0 (3.54)

becomes upon integration by parts10((
cosh L̃− cosh

(
q̃ − φ̃0

))
∂q̃ −

(
cosh L̃− cosh

(
p̃− φ̃0

))
∂p̃

)
g (p̃, q̃)

= (h− 1)
(

sinh
(
p̃− φ̃0

)
− sinh

(
q̃ − φ̃0

))
g(p̃, q̃) (3.55)

We first impose the condition [H̃mod,R,φ0=0,Φ] = 0. To do this we set φ̃0 = 0 and

L̃ = R̃ in (3.55). Then using the method of characteristics, the most general solution

to (3.55) is

g(p̃, q̃) = c0f(x)Kh−1

x =
sinh

(
R̃+q̃

2

)
sinh

(
R̃+p̃

2

)
sinh

(
R̃−q̃

2

)
sinh

(
R̃−p̃

2

)
K = sinh

(
R̃+ q̃

2

)
sinh

(
R̃+ p̃

2

)
sinh

(
R̃− q̃

2

)
sinh

(
R̃− p̃

2

)
(3.56)

10We will choose the region of integration to ensure that there are no boundary terms.
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where f is an arbitrary function and c0 is a constant. Since we also want Φ to obey[
H̃mod,L,φ0 ,Φ

]
= 0 (3.57)

we re-insert the solution (3.56) into (3.55). This now gives an equation for f(x). After

some algebra the equation can be recast as

df

dx
=
h− 1

x

x− α
x+ α

f

α =
sinh φ̃0 sinh R̃+ cosh φ̃0 cosh R̃− cosh L̃

sinh φ̃0 sinh R̃− cosh φ̃0 cosh R̃+ cosh L̃
(3.58)

with solution

f(x) = c1

(
(x+ α)2

x

)h−1

(3.59)

The parameter α can be seen to depend on only two parameters by defining

tanh φ̃∗ =
1

sinh φ̃0

(
cosh φ̃0 −

cosh L̃

cosh R̃

)
(3.60)

and noting that

α =
cosh φ̃∗ sinh R̃+ sinh φ̃∗ cosh R̃

cosh φ̃∗ sinh R̃− sinh φ̃∗ cosh R̃
(3.61)

We can set the free parameter φ in (3.51) to be φ = φ∗ so that g(p̃, q̃) becomes

g(p̃, q̃) = c2

(
cosh

(
p̃+q̃

2
−φ̃∗

)
− cosh φ̃∗

cosh R̃
cosh

(
p̃−q̃

2

))∆−2

= c2

(
cos y− cosh φ̃∗

cosh R̃
coshx

)∆−2

(3.62)

The two parameters of the solution φ̃∗ and cosh φ̃∗
cosh R̃

can be identified as the coordinate parallel

to the boundary and the radial coordinate, respectively, by looking at the limit L̃ → 0,

φ̃0 → R̃. In this limit φ̃∗ → R̃ and cosh φ̃∗
cosh R̃

→ 1 as expected.

The region of integration is fixed by requiring that there are no boundary terms when

we integrate by parts. This determines the region of integration to be

cos y >
cosh φ̃∗

cosh R̃
coshx (3.63)

On an equal-time geodesic stretching from −R̃ to R̃, we show in appendix C that the

boundary coordinate φ and the bulk coordinate r are related by√
1−

r2
+

r2
=

cosh φ̃

cosh R̃
(3.64)

Thus (3.62) is the smearing function for a bulk scalar operator Φ(r, φ∗, t = 0) in a BTZ

background [7]. In appendix C we show that φ∗ in (3.60) is just the φ coordinate where

the bulk geodesics intersect. Thus again we have recovered the bulk space-like geodesics

from the CFT.
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4 Conclusions

In this paper we have shown that CFT operators which mimic local bulk operators commute

with the modular Hamiltonian appropriate for a boundary segment whose RT surface passes

through the bulk point. If two RT surfaces intersect at a point in the bulk then a bulk

observable localized on the intersection must commute with both modular Hamiltonians.

Turning this around, we used this as a new way to construct local bulk observables in the

CFT, by constructing CFT quantities which commute with intersecting extended modular

Hamiltonians. Along the way we recovered bulk space-like geodesics from the CFT.

The computations done in this paper were for AdS3 / CFT2, but the generalization to

higher dimensions is clear. The only complication is that AdSD requires D−1 intersecting

RT surfaces to define a bulk point.

It seems clear that at least in principle the construction can be carried out for CFT

states which are not the vacuum. Indeed in this paper the finite temperature case was

treated successfully. Explicit expressions may be difficult to obtain since we have little

control over the modular Hamiltonian for non-vacuum states. Moreover in general the

modular Hamiltonian will be non-local, so (unlike the examples treated in this paper) for

generic states the approach will not lead to a system of local differential equations for the

smearing functions. But in principle the same logic applies and should determine local

bulk operators in the appropriately-deformed bulk background geometry.

Another, perhaps related, generalization of the construction in this paper would be to

include interactions and make contact with the perturbative procedure developed in [10–

12]. It would also be interesting to understand if there is a connection to the ideas proposed

in [34, 35].

In this paper we only considered scalar operators. It would be interesting to extend the

construction to bulk fields with spin. For massive vector fields this seems straightforward.

Bulk fields with gauge redundancy pose an additional challenge, since due to constraints

they aren’t local objects in the bulk even at the free field level.11 Moreover even for bulk

scalars gravitational dressing arises as an interaction effect, and once this is taken into

account one cannot localize bulk scalar observables to the intersection of RT surfaces.

This means that for free bulk gauge fields, and for interacting bulk scalars, one cannot

simply demand that bulk observables commute with intersecting modular Hamiltonians.

Whether there is an extension of the approach to deal with these issues is an interesting

and important question.

The construction developed in this paper raises more speculative issues as well. For

example it seems clear that the construction puts constraints on CFT states which are dual

to classical bulk geometries. This comes about because a classical bulk geometry requires

that an infinite family of equations, stating that different modular Hamiltonians commute

with a smeared CFT operator, must all have a common solution. This restricts the form

of the modular Hamiltonians and hence presumably the CFT states that can be dual to

classical geometries. It would be interesting to make these restrictions more precise.

11For a recent treatment of observables for gauge fields see [36].
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A Extended modular Hamiltonian

Here we show that given an interval A and its complement Ā, the extended modular

Hamiltonian for the region A can be identified as

H̃mod,A = Hmod,A −Hmod,Ā (A.1)

This generalizes the usual extension of a Rindler time translation outside the Rindler wedge

and is analogous to defining a thermofield Hamiltonian.

It’s straightforward to show (A.1) for the vacuum state of a CFT on a line. In [32]

the modular Hamiltonian for a region was constructed using a conformal transformation

with an analogy to electrostatics. Given the appropriate conformal transformation f(z)

the modular Hamiltonian for a region A was given by

H
(R)
mod = 2π

∫
A

Tzz(z)

f ′(z)
dz (A.2)

and similar for H
(L)
mod. If we take the region B to be the union of the segments (−∞, y1)

and (y2,∞), then the appropriate f(z) is just f(z) = ln
(
y2−z
z−y1

)
and similar for f̄(z̄).12

This gives the right-moving part of the modular Hamiltonian for this region to be

H
(R)
mod,B = −2π

∫ y1

−∞

(y2 − z)(z − y1)

y2 − y1
Tzz(z)− 2π

∫ ∞
y2

(y2 − z)(z − y1)

y2 − y1
Tzz(z). (A.3)

Together with (2.30) and (2.33) this establishes (A.1) for the vacuum state.

B Action of H̃mod on operators off the RT surface

We make the ansatz

Φ12(X,T = 0) =

∫
dk+dk− f(k+k−)ei(k+−k−)XO(k+, k−) (B.1)

where f solves

k+k−
d2f

d(k+k−)2
+ 2h

df

dk+k−
+
(
(y1 + y2)X − y1y2 −X2

)
f = 0 (B.2)

This is the condition (3.33) that Φ12 commutes with the extended modular Hamiltonian of

the segment (y1, y2). Now consider the extended modular Hamiltonian H̃34
mod for a different

12For a general region consisting of two segments this is not a correct procedure since f ′(z) vanishes

somewhere in the complex plane. See the discussion section in [32]. However for the two semi-infinite

segments we are considering this problem does not arise.
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segment (y3, y4). We wish to compute the commutator of this new modular Hamiltonian

with Φ12. A simple computation gives[
H̃34

mod,Φ12(Z,X, T = 0)
]

=
2πi

(y4 − y3)

(
(y3 + y4 − y1 − y2)X − y3y4 + y1y2

)
×∫

dk+dk− f(k+k−)i(k+ + k−)ei(k+−k−)XO(k+, k−)

(B.3)

which is just[
H̃34

mod,Φ12(Z,X, T = 0)
]

=
2πi

(y4−y3)

(
(y3 + y4 − y1 − y2)X − y3y4 + y1y2

)
∂TΦ(X,T = 0)

(B.4)

Defining y4 − y3 = 2Z0, y4 + y3 = 2X∗ we get[
H̃34

mod,Φ12(Z,X, T = 0)
]

= − iπ
Z0

(
(Z2

0 − Z2 − (X −X∗)2
)
∂TΦ(Z,X, T = 0) (B.5)

which is the correct action of the bulk Rindler Hamiltonian associated with the segment

(X∗ − Z0, Z0 +X∗), i.e. it generates a Rindler time translation.

C Geodesics in BTZ

The BTZ metric is

ds2 = −
r2 − r2

+

l2
dt2 +

l2

r2 − r2
+

dr2 + r2dφ2 (C.1)

We look for geodesics r(φ) which extremize the action

∫
dφ

√
r2 +

l2

r2 − r2
+

(
dr

dφ

)2

(C.2)

Since nothing depends explicitly on φ there is a constant of motion which we call rmin.

rmin =
r2√

r2 + l2

r2−r2
+

(
dr
dφ

)2
(C.3)

If we choose r(φ0) = rmin and require φ(r →∞) = ±L/l the solution after a little algebra is

cosh r+
l (φ− φ0)

cosh r+
l2
L

=

√
1−

r2
+

r2
(C.4)

Thus two geodesics, one stretching from −R to R and the other from φ0 − L to φ0 + L,

intersect in the bulk at a point whose φ coordinate obeys

tanh
r+

l
φ =

1

sinh r+
l φ0

(
cosh

r+

l
φ0 −

cosh r+
l2
L

cosh r+
l2
R

)
(C.5)
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