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1 Introduction

Study of soft graviton theorem has a long history, both in quantum field theories [1–31]

and in (super)string theories [32–44]. The recent interest in soft graviton theorem has its

origin in the connection between soft theorems and BMS symmetry [45–53].

Our goal in this paper will be to prove certain soft graviton theorems for the tree

amplitudes in heterotic and type II string theories — collectively called superstring theory

— possibly compactified on certain manifolds. We shall use the language of superstring

field theory [54] in which the amplitudes of superstring theory are given as sum of Feynman

diagrams just as in ordinary quantum field theories. However we shall not use many details

of the theory, and for this reason our analysis will apply also to quantum field theories.

The general strategy for computing an amplitude with soft insertions will be as follows.

First we need to identify the Feynman diagrams that give the desired contribution. Then

in order to evaluate these Feynman diagrams we have to find the interaction vertices that

couple a soft graviton to the rest of the fields. Once the interaction vertices are found we

then use them to evaluate the relevant diagrams. The main simplification in our analysis

will be in the second step. We follow the following procedure for determining the coupling

of a soft graviton to the rest of the fields.

1. Let µ, ν denote the coordinate index along the flat non-compact directions. We take

the metric gµν to be sum of three parts: the background ηµν , the finite energy part

2hµν and the soft part 2Sµν .

2. In our analysis we treat the finite energy and the soft parts of the metric differently.

This is certainly possible for tree amplitudes since soft gravitons appear only as

external particles and in any Feynman diagram there is a clear distinction between

which lines are soft and which lines carry finite energy.1

1For loop amplitudes we can first compute the gauge invariant one particle irreducible (1PI) effective

action without this decomposition into soft and finite energy parts and then, while computing the full
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3. We first set Sµν to zero and expand the action in powers of hµν and other fields

around the vacuum solution. The resulting action has manifest Lorentz invariance

but not manifest general coordinate invariance.

4. We gauge fix this action by using a Lorentz covariant gauge fixing condition.

5. In the resulting action we now replace ηµν by ηµν + 2Sµν , and all derivatives by

covariant derivatives computed using the Christoffel connection of the metric ηµν +

2Sµν . By expanding the resulting action to first order in Sµν we determine the

coupling of the soft graviton to the rest of the fields.2

6. This generates the coupling of the soft graviton to the rest of the fields, including

finite energy components of the metric, up to first order in the derivatives but misses

the terms involving two or more derivatives of Sµν from possible couplings via the

Riemann tensor computed from ηµν + 2Sµν . Therefore our results are valid to first

subleading order in the momentum of the soft particle.

7. This action is invariant under general coordinate transformation of Sµν . But since

Sµν will only appear as external line, we do not need to fix any gauge for Sµν . Indeed

we only make use of part of this action containing terms linear in Sµν and not the

full action.

8. We can now replace Sµν by εµνe
ik.x to determine the coupling of a soft graviton of

momentum k and polarization ε. Since the coupling is determined by replacing ηµν
by ηµν + 2Sµν , it makes computing the effect of soft graviton coupling simple. For

example if we consider part of an amplitude that has a finite limit when the momen-

tum of the soft graviton goes to zero, and if we want to compute just the leading

term of this component in the power series expansion in k, we simply have to study

the effect of replacing ηµν by ηµν +2 εµν . Instead of studying its effect on each vertex

and internal propagator, we can determine the result by making this replacement in

the final expression for the original amplitude without the soft graviton.

Using this method, we prove that at tree level the subleading soft graviton theorem

given in [6, 45, 46] holds for one soft graviton and arbitrary number of finite energy external

states coming from the NS sector in the heterotic string theory and the NSNS sector

in the type II string theory. There is no restriction on the mass and spin of the finite

energy external states in either analysis. We also generalize the leading order result to

the case where there are multiple soft gravitons. We believe that it should be possible to

use the method suggested here to prove the subleading soft graviton theorem for string

loop amplitudes and Ramond sector external states as well. We discuss in section 5 the

Green’s functions by summing over tree amplitudes using the 1PI effective action, use this decomposition. As

long as the number of non-compact dimensions is sufficiently high so that infrared and collinear divergences

are absent, this is a well defined procedure. However there are other difficulties with loop amplitudes as

discussed in section 5, and for this reason we postpone discussion of loop amplitudes to a future publication.
2Since we shall apply this procedure on the gauge fixed action, this makes the gauge fixing terms for the

finite energy fields covariantized with respect to the soft graviton.
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main technical difficulty in proving this general result. However, since this method misses

terms involving Riemann tensor of the soft graviton, which contains two powers of the soft

momentum, it cannot be used to express the subsubleading soft graviton amplitude just in

terms of the amplitude without the soft graviton. We must separately take into account the

effect of the extra terms proportional to the Riemann tensor of the soft graviton, and such

terms vary from one theory to another. This is consistent with the fact that subsubleading

soft graviton amplitudes are known to be non-universal [43] due to non-minimal coupling

of the metric via the Riemann tensor.

Our method can also be generalized to derive the soft photon theorem [55] using the

same principle: the coupling of a soft photon to the rest of the fields is determined by

making all derivatives into covariant derivatives using the soft photon field. In this case

only the leading soft photon theorem is universal since subleading coupling of soft photons

can be modified via non-minimal coupling involving field strength.

The rest of the paper is organized as follows. In section 2 we consider a scalar field

theory coupled to gravity in arbitrary dimensions with arbitrary interactions, and show how

in this theory we can derive the subleading soft graviton theorem for tree level amplitudes

with one external soft graviton and arbitrary number of finite energy external scalars. In

section 3 we generalize this method to prove subleading soft graviton theorem for tree

amplitudes in superstring theory with one external soft graviton and arbitrary number

of finite energy external states from the NS sector. In section 4 we extend the result of

section 3 to the case where there are multiple soft gravitons, but work only to the leading

order in the soft momentum. In section 5 we extend the results to leading soft photon

theorem, and also discuss the possible ways of extending the results to loop amplitudes in

superstring theory.

2 Warm up with scalar field coupled to gravity

In this section we shall consider a theory of a scalar field φ coupled to gravity in D space-

time dimensions, providing a proof of soft graviton theorem that is slightly different from

the one given e.g. in [13, 14]. The scalar field can be massive or massless. Furthermore,

we shall not put any restriction on the interactions, except the requirement of invariance

under general coordinate transformation. We shall use the convention that an external or

internal massless particle in a Feynman diagram will be called soft if all the components

of its momentum are small in the center of momentum frame. On the other hand if an

internal particle carries a momentum p that has one or more components large but p2+M2,

where M denotes the mass of the particle, is small then it will be called a nearly on-shell

particle. Finally if p2 +M2 is of order unity or larger, then it will be called a hard particle.

Let us now consider a tree amplitude where one external soft graviton carrying mo-

mentum k is attached to a graph with N external on-shell scalar particles carrying finite

momenta p1, . . . , pN . All external momenta will be taken to be ingoing in the Feynman

diagram, i.e. outgoing particles will carry negative p0. Our goal will be to compute the k

dependence of the amplitude to order unity. The leading contribution to this amplitude,

of order k−1, comes from the diagram shown in figure 1. In this figure the thick lines
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Γ
pi pi + k

k

p1

pi−1

pN

· ·

· ·

pi+1

Figure 1. Source of the leading contribution to the amplitude with one external soft graviton.

p1

p2 ·
·

pN

k

Γ̃

Figure 2. Source of the subleading contribution to the amplitude with one external soft graviton.

Here Γ̃ denotes tree amplitudes with external propagators removed, and also diagrams of the type

given in figure 1, where the soft graviton attaches to one of the external finite energy lines, removed.

denote either external on-shell finite energy particles or internal nearly on-shell particles,

whereas the thin line denotes the external soft particle. Γ denotes amputated tree level

Green’s function — Green’s functions from which the external propagators are removed.

If M denotes the mass of the scalar field, then for small k the internal propagator carrying

momentum pi + k can generate a large factor proportional to

{(pi + k)2 +M2}−1 = (2pi · k)−1 . (2.1)

It is easy to see that the diagrams given in figure 1 are the only ones that can produce

a soft factor in the denominator. At the first subleading order, i.e. at order unity, the

contribution to the amplitude comes from the subleading contributions from figure 1, as

well as the leading contribution from the diagram shown in figure 2.

In order to compute soft graviton amplitudes, we need the know the coupling of a soft

graviton to the rest of the fields. For this we follow the strategy outlined in section 1:

1. First we write the metric as ηµν + 2hµν and expand the action in a power series in

hµν and φ. We shall use the Feynman rules derived from this action to compute

amplitudes involving finite energy external particles but not external soft particles.

For the analysis of this section we shall take the external states to be φ particles.
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2. In order to compute the amplitude involving a soft graviton of momentum k and

polarization εµν satisfying3

ηµνε
µν = 0, εµν = ενµ, kµε

µν = 0, kνε
µν = 0 , (2.2)

we replace, in the action computed in step 1, ηµν by ηµν + 2 εµνe
ik.x and all ordinary

derivatives by covariant derivatives computed with this metric and expand the action

to first order in εµν . Since we have taken the polarization tensor to be traceless, we do

not need to worry about the
√

det g term in the action. This determines the coupling

of the soft graviton to the rest of the fields (scalars and finite energy gravitons)

correctly to linear order in momentum kµ. There may be additional coupling at

quadratic and higher order in kµ through couplings involving Riemann tensor that

are missed by this expansion.

We shall now proceed to evaluate the contribution from figure 1. Using the prescription

given above, the coupling of the soft graviton to the scalar field is given by replacing ηµν

by ηµν − 2 εµνeik.x in the quadratic term in the action involving the scalar field:

− 1

2

∫
dDx{ηµν∂µφ∂νφ+M2φ2} . (2.3)

We have assumed that the quadratic term contains only two derivatives. If it contained

higher powers of (−� +M2), they could be removed by a redefinition of φ that is regular

near on-shell field configuration, and therefore would not affect the S-matrix. This gives

the following coupling of the scalar to the soft graviton:∫
dDx εµνeik.x∂µφ∂νφ . (2.4)

Therefore the contribution from the three point vertex in figure 1 involving the soft graviton

and the external scalar is given by

2 i εµνpi µ(pi + k)ν = 2 i εµνpi µpi ν , (2.5)

where in the last step we have used (2.2). The second piece in figure 1 is the contribution

from the scalar propagator carrying momentum (pi + k). This is given by

− i 1

(pi + k)2 +M2
= −i 1

2pi · k
, (2.6)

using the on-shell conditions p2i + M2 = 0, k2 = 0. The final piece in figure 1 is the con-

tribution from the amputated Green’s function with external scalar particles of momenta

p1, . . . , pi−1, pi + k, pi+1, . . . , pN . This is given by

Γ(p1, . . . , pN ) + kρ
∂

∂pi ρ
Γ(p1, . . . , pN ) +O(kµkν) . (2.7)

3Throughout our discussion all indices will be raised and lowered by ηµν and ηµν .
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Taking the product of (2.5), (2.6) and (2.7) we get the full contribution from figure 1 to

order unity. We can now sum over all diagrams in which the soft graviton is attached to

any of the external states i. The net contribution from all these diagrams is given by

N∑
i=1

εµνpi µpi ν
1

pi · k
Γ(p1, . . . , pN )+

N∑
i=1

εµνpi µpi ν
1

pi · k
kρ

∂

∂pi ρ
Γ(p1, . . . , pN )+O(k) . (2.8)

The first term gives the amplitude to order 1/k, while the second term is of order

unity. However if we want to compute the total order unity contribution, we also need to

compute the contribution from the diagrams shown in figure 2. In this figure Γ̃ denotes the

sum of Feynman diagrams from which external propagators have been removed, and also

diagrams like the ones shown in figure 1, in which by cutting a single internal propagator

we can remove the soft line and one more external line from the rest of the diagram, have

been removed. Therefore in figure 2 the soft graviton is attached to a hard internal line,

and the amplitude has a finite limit as kµ → 0. This in turn means that to evaluate these

diagrams to order unity, we can set the momentum of the external soft graviton to zero.

Using the rules for determining the soft graviton interaction vertex described earlier, we see

that such an amplitude has the interpretation of a deformation of the amputated Green’s

function without the soft graviton under a constant change in the background metric

ηµν → ηµν − 2 εµν to first order in εµν . Since Γ̃(p1, . . . pN ) depends on the metric only via

the combinations gµνpi µpj ν = (ηµν − 2 εµν)pi µpj ν , the effect of deforming the background

metric by 2 εµν can also be equivalently represented by deforming pi µ to pi µ − ε σ
µ pi σ.

Therefore the contribution from figure 2 can be expressed as

−
N∑
i=1

ε ν
µ pi ν

∂

∂pi µ
Γ(p1, . . . pN ) . (2.9)

Adding (2.8) and (2.9) we get the full amplitude to order unity:

N∑
i=1

εµνpi µpi ν
1

pi · k
Γ(p1, . . . , pN )

+

N∑
i=1

[
εµνpi µpi ν

1

pi · k
kρ − ε ν

ρ pi ν

]
∂

∂pi ρ
Γ(p1, . . . , pN ) +O(k) . (2.10)

This is the subleading soft graviton theorem for one external soft graviton [6, 45, 46].

Note that even if we set the external states on-shell by setting p2i+M
2 = 0, computation

of ∂Γ/∂pi ρ requires off-shell information. For example if we add to Γ a contribution

proportional to (p2i +M2) that vanishes on-shell, ∂Γ/∂pi ρ gets a contribution proportional

to pρi that does not vanish on-shell. However when substituted into (2.10) it does vanish,

showing that (2.10) depends only on on-shell data.

3 One soft graviton theorem in tree level superstring field theory

We now turn to superstring field theory [54]. It can be regarded as a regular field theory

of infinite number of fields of arbitrarily high spin, with interaction vertices that are expo-

nentially suppressed at large euclidean momenta. This makes the contribution from each

– 6 –
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Feynman graph manifestly ultraviolet finite, but otherwise the amplitudes are expressed

as sum over Feynman diagrams just as an ordinary quantum field theory. Therefore as

in section 2, the leading contribution to the soft graviton amplitude will come from fig-

ure 1, and the subleading contribution will come from figure 1 and figure 2, although the

Feynman rules for evaluating these diagrams will be different. We shall now evaluate these

contributions by restricting the external states to be from the NS sector in the heterotic

string theory and NSNS sector in type II string theory. During this analysis we shall allow

for the possibility that some of the spatial directions have been compactified, and denote

by D the number of non-compact space-time dimensions.

Note that even though we make use of superstring field theory, at tree level amplitudes

computed from this theory are identical to the standard amplitudes of superstring theory

computed using world-sheet methods. Therefore our proof of subleading soft graviton

theorem holds for the standard amplitudes computed using the world-sheet methods. At

loop level the world-sheet approach gives divergent results when the masses of the external

states are renormalized, but superstring field theory continues to give sensible S-matrix

elements via the standard LSZ framework.

Before proceeding to the details of the analysis, let us comment on one underlying

assumption that will be made in our analysis. In superstring field theory the graviton is a

specific component of the string field. Therefore coupling of a soft graviton to the rest of

the fields will be determined by the change in the interaction vertices / propagators due to

the effect of switching on a low momentum plane wave solution of this field to first order in

the field. We shall be using the fact that to linear order, this deformation is equivalent to a

deformation of the world-sheet superconformal field theory underlying the construction of

the superstring field theory due to a change in the target space metric ηµν to ηµν+2 εµνe
ik.x.

In the string field theory literature this property is known as background independence.

Background independence of closed bosonic string field theory was established in [56, 57].

This has not yet been proved for superstring field theory, but there does not seem to be

any specific difficulty in doing so [58]. Our analysis will assume background independence

of superstring field theory, since we shall be computing the coupling of soft graviton by

studying the effect of deforming the target space metric entering the construction of the

world-sheet superconformal field theory.

Let us suppose that the i-th external particle is associated with some rank ni tensor

field φµ1...µni . In the Siegel gauge the kinetic operator acting on the NS sector states is

proportional to (L0 + L̄0) where Ln, L̄n are the world-sheet Virasoro generators. Acting

on a state of momentum p and mass M this is proportional to p2 +M2. Therefore we can

choose a basis for the NS sector string fields in which the kinetic term of φµ1...µni takes a

particularly simple form4

− 1

2

∫
dDx

ni∏
j=1

ηµjνj
[
ηµν∂µφµ1...µni∂νφν1...νni +M2

i φµ1...µniφν1...νni
]
, (3.1)

4Note that we have taken the field φ to be a covariant tensor. While coupling it to a background soft

graviton we shall take these to be the independent fields. This is of course related by field redefinition to

the case where the fields with contravariant indices are regarded as independent fields. The S-matrix is

independent of which prescription we choose.
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where Mi denotes the tree level mass of the field φµ1...µni . Typically the tensor has specific

symmetry properties, but we can ignore this for now and restore it at the end by choosing

the polarizations of the external states to have the required symmetry. Eq. (3.1) is the

only specific property of the superstring field theory action that we shall use — we shall

not need to use any detailed property of the interaction terms except general coordinate

invariance of the action. From (3.1) we see that the coupling of the soft graviton to the

tensor field φ has three types of terms:

1. The first type of term is given by the replacement of ηµν by ηµν − 2 εµνeik.x in (3.1).

The effect of this is identical to that given in (2.5), and generates a contribution to

the vertex:

2 i εµνpi µpi ν

ni∏
j=1

ηµjνj , (3.2)

where µ1, . . . , µni are the Lorentz indices carried by the external state carrying mo-

mentum pi and ν1, . . . , νni are the Lorentz indices carried by the internal state car-

rying momentum pi + k.

2. The second kind of contribution comes from replacing in (3.1) the ηµ`ν` factor by

ηµ`ν`−2 εµ`ν`eik.x for 1 ≤ ` ≤ ni. The effect of this is to generate an interaction vertex

2 i {ηµνpi µ(pi + k)ν +M2
i }

ni∑
`=1

εµ`ν`
ni∏
j=1
j 6=`

ηµjνj = 2 i pi · k
ni∑
`=1

εµ`ν`
ni∏
j=1
j 6=`

ηµjνj , (3.3)

where in the second step we have used the on-shell condition p2i +M2
i = 0.

3. The third type of contribution comes from replacing the ∂µφµ1...µni (or ∂νφν1...νni )

factor by

Dµφµ1...µni = ∂µφµ1...µni −
ni∑
`=1

Γρ`µµ`φµ1...µ`−1ρ`µ`+1...µni
(3.4)

= ∂µφµ1...µni − i e
ik.x

ni∑
`=1

(kµε
ρ`
µ`

+ kµ`ε
ρ`
µ − kρ`εµµ`)φµ1...µ`−1ρ`µ`+1...µni

+O(kρkσ) .

This, together with similar expression for Dνφν1...νni , generates the following net

contribution to the vertex to first order in the soft momenta:

i ηµν(pi + k)ν

ni∑
`=1

(kµε
µ`ν` + kν`εµ`µ − kµ`ε ν`

µ )

ni∏
j=1
j 6=`

ηµjνj

−i ηµνpi µ
ni∑
`=1

(kνε
ν`µ` + kµ`εν`ν − kν`ε µ`

ν )

ni∏
j=1
j 6=`

ηµjνj . (3.5)

Here µ1, . . . µni are the Lorentz indices carried by the external line of momentum pi
and ν1, . . . , νi are the Lorentz indices carried by the internal line of momentum pi+k.
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Adding (3.2), (3.3) and (3.5) and keeping terms up to order k we get the following net

contribution to the three point vertex of figure 1 with one soft graviton carrying momentum

k and a pair of φ particles carrying momenta pi and −pi − k:

2 i εµνpi µpi ν

ni∏
j=1

ηµjνj + 2 i

ni∑
`=1

[pi · k εµ`ν` − pi µεµν`kµ` + pi µε
µµ`kν` ]

ni∏
j=1
j 6=`

ηµjνj +O(kρkσ) .

(3.6)

The next task is to compute the φ propagator carrying momentum pi + k. This is

easily read from (3.1) to be

− i
ni∏
j=1

ηνjρj
1

(pi + k)2 +M2
= −i

ni∏
j=1

ηνjρj
1

2pi · k
, (3.7)

where ρ1, . . . , ρni are the tensor indices carried by the right end of the internal propagator

carrying momentum pi + k.

Finally we turn to the part of the amplitude Γ with external states carrying momenta

p1, . . . , pi−1, pi + k, pi+1, . . . , pN . If ρ1 . . . , ρni are the tensor indices carried by the leg of

momentum pi + k entering this amplitude, then we shall denote the amplitude by Γρ1...ρni ,

suppressing the tensor indices associated with the other external states of Γ. Γρ1...ρni may

be expressed as

Γρ1...ρni (p1, . . . , pi−1, pi + k, pi+1, . . . , pN )

= Γρ1...ρni (p1, . . . , pN ) + kσ
∂

∂pi σ
Γρ1...ρni (p1, . . . , pN ) +O(kµkν) . (3.8)

The net contribution to figure 1 to order unity is now obtained by taking the product

of (3.6), (3.7), (3.8) and the polarization tensor εµ1...µni of the external φ field, expanding

the result to order unity and finally summing over i. This gives

N∑
i=1

εµν pi µpi ν
1

pi · k
εµ1...µniΓ

µ1...µni +
N∑
i=1

εµν pi µpi ν
1

pi · k
εµ1...µnikσ

∂

∂pi σ
Γµ1...µni

+

N∑
i=1

εµ1...µni

ni∑
`=1

1

pi · k
[
pi · k εµ`ν`−pi µε

µ
ν`
kµ`+pi µε

µµ`kν`
]

Γµ1...µ`−1ν`µ`+1...µni .

(3.9)

To this we have to add the leading contribution from figure 2. This is given by the

change in the amplitude εµ1...µniΓ
µ1...µni under the variation ηρσ → ηρσ − 2 ερσ. Since the

final expression for the amplitude is given by products of εµ1...µni ’s and pi µ’s contracted with

various factors of ηρσ, changing ηρσ to ηρσ − 2 ερσ can also be implemented by the change

pµ → pµ − ε ν
µ pν , εµ1...µni → εµ1...µni −

ni∑
`=1

ε ν`
µ`
εµ1...µ`−1ν`µ`+1...µni

. (3.10)
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pi

k1

pi + k1

pjk2

pj + k2
Γ

· ·

Figure 3. Two external soft gravitons attached to different external lines carrying finite momenta.

This determines the amplitude given in figure 2 to be

−
N∑
i=1

ε ν
µ εµ1...µni pi ν

∂

∂pi µ
Γµ1...µni (p1, . . . , pN )−

N∑
i=1

ni∑
`=1

ε ν`
µ`
εµ1...µ`−1ν`µ`+1...µni

Γµ1...µni .

(3.11)

Adding (3.9) to (3.11) we now get the full contribution to the amplitude of one soft

graviton and N finite energy particles to the first subleading order in the soft momentum:[
N∑
i=1

εµν pi µpi ν
1

pi · k

]
Γ(p1, . . . , pN )

+
N∑
i=1

εµ1...µni

(
εµν pi µpi ν kσ

1

pi · k
− ε ν

σ pi ν

)
∂

∂pi σ
Γµ1...µni

−
N∑
i=1

1

pi · k
εµ1...µni

ni∑
`=1

[
pi µε

µ
ν`
kµ` − pi µεµµ`kν`

]
Γµ1...µ`−1ν`µ`+1...µni . (3.12)

In the first term Γ denotes the amplitude with the same external finite energy states but

without soft graviton insertion — being equal to εµ1...µniΓ
µ1...µni in the notation of (3.11).

In the second and the third line it is understood that in the i-th term inside the sum,

we have suppressed the polarization tensor of all states other than the i-th state and the

corresponding indices of Γ.

Eq. (3.12) is the soft graviton theorem to first subleading order [6, 45, 46].

4 Multiple soft gravitons

We shall now consider amplitudes with multiple soft gravitons but restrict our analysis

to the leading order in the soft momenta. This analysis will be identical to that in [2].

Consider first the case where we have two soft external gravitons carrying momenta k1
and k2. The maximum power of soft momenta in the denominator of such an amplitude

is two. This can arise from the two soft gravitons attaching on different external legs as

– 10 –
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pi

k1 k2

pi + k1 pi + k1 + k2 ·
·

Γ

Figure 4. Two external soft gravitons attached to the same external line carrying finite momenta.

in figure 3 or both soft gravitons attaching on the same external leg as in figure 4. In

both diagrams, we can compute the product of the leading contributions from the three

point vertex from (3.2) and the propagator that follows it from (3.7). When the two soft

gravitons attach to different external lines as in figure 3, the amplitude takes the form

1

pi · k1
ε(1)µν p

µ
i p

ν
i ×

1

pj · k2
ε(2)ρσ p

ρ
jp
σ
j × Γ(N)(p1, . . . , pN ) + less singular terms , (4.1)

where Γ(N)(p1, . . . , pN ) denotes the amplitude without soft gravitons with all indices con-

tracted with the external polarization tensors. On the other hand when both soft lines

attach to the same external line as in figure 4 the amplitude takes the form

1

pi · k1
ε(1)µν p

µ
i p

ν
i ×

1

pi · (k1 + k2)
ε(2)ρσ p

ρ
jp
σ
j × Γ(N)(p1, . . . , pN ) + less singular terms . (4.2)

Adding to this another contribution where the external soft lines carrying momenta k1 and

k2 are exchanged we get

1

pi · k1
ε(1)µν p

µ
i p

ν
i ×

1

pi · k2
ε(2)ρσ p

ρ
i p
σ
i × Γ(N)(p1, . . . , pN ) + less singular terms . (4.3)

Summing over all possible insertions of the two soft lines on N external lines carrying finite

momentum, we now get [2]

N∑
i=1

1

pi · k1
ε(1)µν p

µ
i p

ν
i ×

N∑
j=1

1

pj · k2
ε(2)ρσ p

ρ
jp
σ
j × Γ(N)(p1, . . . , pN ) + less singular terms . (4.4)

If we have m external soft gravitons then the leading soft term will have m powers of

soft momentum in the denominator. For this each external soft particle must attach to a

nearly on-shell line. We again sum over all possible insertions, including multiple insertions

on a single external line in all possible order. This leads to a generalization of (4.4) of the

form:

Γ(N+m)(ε(1), k1, . . . , ε
(m), km; p1, . . . , pN ) =

m∏
α=1

[
N∑
i=1

1

pi · kα
ε(α)µν p

µ
i p

ν
i

]
Γ(N)(p1, . . . , pN )

+less singular terms . (4.5)
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5 Generalizations

In this section we shall discuss possible generalizations of our result. One immediate

generalization is the derivation of the leading soft photon theorem for superstring tree

amplitudes for arbitrary number of external states [55]. The analysis is very similar to

that in section 4. We determine the leading order coupling of a soft photon of polarization

εµ by replacing the momentum qµ by qµ−Qεµ in the expression for the kinetic term. Here

Q denotes the charge carried by the particle. This gives the analog of (3.2):

2 iQ εµpi µ

ni∏
j=1

ηµjνj . (5.1)

Using this we can follow the same procedure as given in section 3, section 4 to derive the

multiple leading soft photon theorem for m soft photons of polarizations ε(1), . . . , ε(m) and

momenta k1, . . . , km attached to an amplitude with N finite energy particles:

Γ(N+m)(ε(1), k1, . . . , ε
(m), km; p1, . . . , pN ) =

m∏
α=1

[
N∑
i=1

1

pi · kα
Qi ε

(α)
µ pµi

]
Γ(N)(p1, . . . , pN )

+less singular terms . (5.2)

For soft photons, we do not expect any universal result beyond the leading term since soft

photons can couple to the rest of the fields via non-minimal coupling involving the field

strength, and these interactions cost only one power of soft momentum. Therefore (5.2)

gives the most general universal soft photon theorem.

A more interesting generalization would be to extend the analysis of section 3 to derive

the subleading soft graviton theorem to all orders in string perturbation theory for all finite

energy external states. For this let us restrict the discussion to the cases where the number

of non-compact space-time dimensions is five or more so that the amplitudes are free from

infrared divergences.5 In this case the contribution to the amplitude with N finite energy

external particles and one soft graviton will still be given by the sum of the contributions

shown in figure 1 and figure 2, but in figure 1 the three point vertex describing the coupling

of the soft graviton to the finite energy particle is now the full 1PI vertex and the internal

propagator carrying momentum pi + k is now the full (finitely) renormalized propagator,

and in figure 2 the blob labelled Γ̃ now denotes the full Green’s function with external

propagators removed and the contributions of the form given in figure 1 subtracted. The

subleading contribution coming from figure 2 will continue to have the same form as given

in (3.11).6 The main difficulty is in the determination of the contribution to figure 1 to the

first subleading order, since the renormalized two point function does not have the simple

5In four space-time dimensions the subleading soft graviton theorem is known to be corrected due to

infrared divergences [8].
6In this context note that even though we have used a notation in which the tensor fields carry space-time

indices, we could have also used a notation in which they carry flat tangent space indices by multiplying the

tensors by the symmetric square root of the inverse metric for each index and treating these as independent

field variables. This would make some of the intermediate steps in the analysis different, e.g. in (3.11) the

second term will be absent and in (3.4) we would have to use the spin connection instead of Christoffel symbol
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form given in (3.1) and consequently the coupling of the soft graviton to the finite energy

particles also have a more complicated form. A promising avenue will be to try to show

that the quadratic term in the fields in the 1PI effective action [54] of superstring field

theory can be brought to the diagonal form given in (3.1) after a field redefinition. In that

case we can use this 1PI effective action to derive the subleading soft graviton theorem

following the analysis of section 3. This should certainly be possible for scalar fields, but

it is not clear if this can also be achieved for general tensor fields. Another possibility

— which should also apply to Ramond sector external states — will be to work with the

renormalized kinetic term as given in [54], but use the gauge invariance of the 1PI effective

action to show that the general results of section 3 still hold.

In this context it is useful to note that the contribution to figure 2 given in (3.11) takes

the form of a differential operator acting on the amplitude without the soft particle, and

that the differential operator is ‘local’ in the sense that it contains a sum of terms each of

which involves the soft momentum and the momentum of one finite energy external state.

The contributions from figure 1 also will have this form. These were the key ingredients

based on which [13] determined the form of the subleading soft graviton theorem up to

some overall normalization constants multiplying the terms that act non-trivially on the

polarization tensors of the external particles. The new feature here is the possibility of

mixing between states carrying different tensor indices at the same mass level, including

mixing between physical and unphysical states. Therefore it is conceivable that by gaining

some basic knowledge of the contribution to figure 1 involving the soft graviton coupling to

the external state and the renormalized propagator one will be able to prove the subleading

soft graviton theorem for these amplitudes. Such arguments should be applicable to all

external finite energy states, both in the NS and R-sector.
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