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1 Introduction

Conformal field theories (CFT) are among the most well studied examples of quantum

field theories (QFT), and are also among the few which admit a simple non-perturbative

definition. This is owing to the fact that conformal invariance fixes all 2pt and 3pt cor-

relation functions up to numerical coefficients and spectrum, usually referred to as CFT
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data. Associativity of the conformal operator algebra then allows to reconstruct, in prin-

ciple, all higher point correlation functions at the non-perturbative level. This intrinsic

simplicity triggered the pioneering works [1–6] centred on the idea that symmetry and

quantum mechanics alone should suffice to fix the dynamics of a QFT. This is known as

the Bootstrap Program. This approach proved to be very successful in the 80’s in the

context of 2d CFTs [7], but remained dormant for CFTs in d > 2 until very recently with

the emergence of new analytic and numerical methods [8–15]. These have led to striking

new numerical results for 3d CFTs [16, 17], and have further triggered new analytic results

for the conformal bootstrap in various limits [18–23].

CFTs also play a pivotal role in the holographic dualities, and are conjectured to be

dual to gravitational theories living in a higher-dimensional anti-de Sitter (AdS) space [24–

26]. From a bottom up perspective, AdS/CFT maps bulk and boundary consistency into

each other, repackaging the various kinematic building blocks in terms of bulk or boundary

degrees of freedom. To some extent, without imposing any additional constraint, this is

a kinematic re-writing of the same physical object in two different bases. It was further

shown in [27, 28] that, in the large N limit, standard Feynman diagram expansion in the

bulk does repackage solutions to the bootstrap at leading order in 1
N . In particular, this

repackaging is in terms of Witten diagrams. From the bulk perspective, the latter play the

role of the building blocks in terms of which the observables of the theory are expressed

— in direct analogy with S-matrix elements. In this holographic picture, a crucial physical

consistency requirement for a non-trivial field theory description in the bulk is that of

locality, see e.g. [27, 29–38] for an incomplete list of works in this direction.1

Holography thus naturally provides a reformulation of the bootstrap problem in terms

of different types of building blocks, which have a neat physical interpretation. The link

between these two pictures is the main subject of the present work. In particular, we

explicitly invert the map between spinning three-point conformal structures and CPWE

expansion on the boundary, and the local spinning bulk cubic couplings and Witten dia-

grams in the bulk. At the level of four-point functions this draws upon the link [37, 40]

between the shadow formalism [1, 4, 41, 42] and the split representation of AdS harmonic

functions [43]. At the level of three-point functions, given a CFTd our results provide the

complete holographic reconstruction of all cubic couplings involving totally symmetric fields

in the putative dual theory on AdSd+1. Previous works on the holographic reconstruction

of bulk interactions from CFT correlation functions include: [31, 37, 44–47] in the context

of higher-spin holography, and more recently in the context of p-adic AdS/CFT [49].

A key motivation behind this work is that such a bulk repackaging of CFT objects may

give new insights into the bootstrap program, potentially providing novel methods to solve

the crossing equations (see [22, 50–52] for recent progress in this direction). Furthermore,

this may also shed light on the quest for understanding quantum gravity and which CFTs

admit a well-defined gravitational dual.

1The main issue is that, with no restriction on the functional class of interactions, a field theory descrip-

tion in the bulk becomes a tautological re-writing of CFT data (see e.g. [39] for a theorem on the triviality

of interactions in the absence of any locality requirement.)
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In the process of diagonalising the map between boundary OPE coefficients and bulk

cubic couplings, we identify the corresponding bases of bulk and boundary 3pt and 4pt

structures, which, in this sense, appear to be naturally selected by holography. This allows

us to systematically study tree-level four-point exchange amplitudes involving totally sym-

metric fields of arbitrary mass and spin, and seamlessly derive their CPWE. Our formalism

builds upon, and extends, the approach and results of the previous works [31, 37, 40, 45],

which considered four-point Witten diagrams with only external scalars. As a concrete ap-

plication, we determine all four-point exchange diagrams in the type-A higher-spin gauge

theory on AdSd+1, whose complete cubic couplings have been recently been established in

metric-like form in [47, 53]. This application of our results extends the previous exchange

diagram computations [31, 45] in the type A higher-spin gauge theory to include external

gauge fields of arbitrary integer spin.

Let us also mention a parallel approach to the conformal partial wave decomposition

of Witten diagrams, which has recently been developed in [54].2 This is underpinned by

what is known as the “geodesic Witten diagram”, the bulk object which computes a single

conformal partial wave. The latter is essentially an exchange Witten diagram, but the

crucial difference being that one integrates the cubic vertices over geodesics, as opposed

to the full volume of AdS. The original paper [54] considered the case of external scalars,

which has more recently been generalised to external fields with arbitrary integer spin:

first to a single spinning external leg in [63], and very recently to each leg having arbitrary

integer spin in [64–66]. It would be instructive to employ the geodesic Witten diagram

approach developed in [54] to reproduce the explicit results obtained in section 3.3 for the

CPWEs of spinning exchange Witten diagrams. A prescription for the latter very recently

appeared in [64], together with some results for spin-0 and spin-1 exchange diagrams.

The outline is as follows: section 2 we review the CPWE in the standard setting

of CFT, with a particular focus on the shadow formalism. In section 3 we detail the

parallel story in the bulk. In particular, how the harmonic function decomposition of

four-point Witten diagrams provides the link with the shadow formalism via the split

representation. In section 3.1 we review the computation [47] of generic spinning three

point Witten diagrams, and present a convenient explicit diagonal form of the linear map

between three-point conformal structures and local bulk cubic couplings. In section 3.3

we apply the latter results to compute the CPWE of a generic spinning exchange Witten

diagram in AdSd+1, and furthermore in section 3.4 consider exchange diagrams in the

concrete setting of the type A minimal higher-spin gauge theory. Various technical details

are relegated to appendices A, B, C and D.

2 Conformal partial waves

2.1 The conformal partial wave expansion

The CPWE of correlation functions of primary operators in CFT is a decomposition into

contributions from each conformal multiplet.3 As a simple illustrative example, let us first

2This has origins in the AdS3/CFT2 literature [55–62], on Virasoro and WN conformal partial waves

from the bulk.
3I.e. each conformal partial wave re-sums the contribution of the primary operator + all of its descendants

to the correlator, and is thus labelled by the dimension ∆ and spin s of the primary operator.
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consider the CPWEs of correlation functions involving scalar primary operators Oi. For a

four-point function expanded in the s-channel,4 this reads

〈O1 (y1)O2 (y2)O3 (y3)O4 (y4)〉 =
∑
O∆,s

cO1O2O∆,s
cO∆,sO3O4W∆,s (yi) . (2.1)

The functions W∆,s are the conformal partial waves. These are purely kinematical objects,

fixed completely by conformal symmetry and only depend on the representations of the

primary operators O∆,s and Oi under the conformal group. Each conformal partial wave

in the expansion (2.1) is weighted by the coefficients of the operator O∆,s in the O1 ×O2

and O3 ×O4 OPEs. The CPWE thus effectively disentangles the dynamical information,

which depends on the theory under consideration, from the universal information dictated

by conformal symmetry.

Owing to these defining features, the CPWE expansion has turned out to be a powerful

tool. This is highlighted, for instance, by its pivotal role in the successes ([10, 11, 16, 67, 68],

to name a few) of the conformal bootstrap program [3, 5]. But in spite of this, explicit

closed formulas for conformal partial waves are only possible in certain cases. For the scalar

case (2.1) closed form expressions are only available in even dimensions [8, 9], while in other

cases CPWs are inferred via indirect methods, such as: recursion relations [13, 69–73] and

efficient series expansions [74–76].

In the following section we review another indirect approach, which is convenient for

the CPWE of correlators involving operators with spin — as well as their Witten diagram

counterparts. This is underpinned by the shadow formalism of Ferrara, Gatto, Grillo,

and Parisi [1, 4, 41, 42], and leads to an expression for conformal blocks for operators in

arbitrary Lorentz representations as an integral of three-point conformal structures. This

approach was first considered by Hoffmann, Petkou and Rühl in [77, 78] for external scalar

operators (see also [13]), and the idea revisited and results generalised in [79–81].

2.2 Spinning conformal partial waves

To a given primary operator O∆,s, can be associated a dual (or shadow) operator5

Õ∆,s (y; z) = κ∆,s
1

πd/2

∫
ddy′

1

(y − y′)2d−2∆

(
z · I(y − y′) · ∂̂z′

)s
O∆,s

(
y′; z′

)
, (2.4)

of the same spin and scaling dimension d−∆. The normalisation

κ∆,s =
Γ (d−∆ + s)

Γ
(
∆− d

2

) 1

(∆− 1)s
, (2.5)

ensures that applying (2.4) twice gives the identity.

4We use sans-serif font to denote the expansion channels, to be distinguished from the spin, s.
5Iµν (y) is the inversion tensor

Iµν (y) = δµν −
2yµyν
y2

; z1 · I (y) · z2 = z1 · z2 − 2
z1 · y z2 · y

y2
. (2.2)

The Thomas derivative [82] (see also [83])

∂̂zi = ∂zi −
1

d− 2 + 2z · ∂z
zi∂

2
z , (2.3)

accounts for tracelessness, i.e. z2 = 0.
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The key observation of the shadow approach to conformal partial waves is that the

integral

P∆,s = κd−∆,s
1

πd/2

∫
ddyO∆,s (y) |0〉〈0|Õ∆,s (y) , (2.6)

projects onto the contribution of the conformal families of O∆,s and its shadow to a given

four-point function. This is illustrated for the simplest case of scalar correlators in the

following, before moving on to correlators of spinning operators.

2.2.1 External scalar operators

Restricting, for now, to the case of external scalar operators (2.1), when projecting onto

the s-channel we have

〈O1 (y1)O2 (y2)P∆,sO3 (y3)O4 (y4)〉 (2.7)

= cO1O2O∆,s
cO∆,sO3O4W∆,s (yi) + cO1O2Õ∆,s

cÕO3O4Wd−∆,s (yi) ,

which implies the following integral representation

cO1O2O∆,s
cO∆,sO3O4W∆,s (yi) + shadow (2.8)

= κd−∆,s
1

πd/2

∫
ddy 〈O1 (y1)O2 (y2)O∆,s (y)〉〈Õ∆,s (y)O3 (y3)O4 (y4)〉,

for the total contribution as a product of two three-point functions. Stripping off the

dynamical data leaves a universal integral expression for the sum of a conformal partial wave

and its shadow, dictated purely by conformal symmetry and the operator representations:

W∆,s (yi) + shadow (2.9)

= κd−∆,s
γτ,sγ̄τ,s

πd/2

∫
ddy 〈〈O1 (y1)O2 (y2)O∆,s (y)〉〉〈〈Õ∆,s (y)O3 (y3)O4 (y4)〉〉,

where

γτ,s =
Γ
(
d
2 −

τ3−τ4+τ
2

)
Γ
(
τ3−τ4+τ

2 + s
) , γ̄τ,s =

Γ
(
d
2 −

τ4−τ3+τ
2

)
Γ
(
τ4−τ3+τ

2 + s
) . (2.10)

The notation 〈〈•〉〉 denotes the kinematical part of the three-point function that is fixed

by conformal symmetry. I.e. removal of the overall coefficient,6

〈O1 (y1)O2 (y2)O∆,s (y)〉 = cO1O2O∆,s
〈〈O1 (y1)O2 (y2)O∆,s (y)〉〉 (2.12a)

〈Õ∆,s (y)O3 (y3)O4 (y4)〉 = cÕ∆,sO3O4
〈〈Õ∆,s (y)O3 (y3)O4 (y4)〉〉, (2.12b)

which, for unit two-point function normalisation, is the removal of the OPE coefficients.

Details on the above steps where given by Dolan and Osborn in [13] section 3 and [8].

6Using the definition (2.4) one finds

cÕ∆,sO3O4
= γτ,sγ̄τ,s cO∆,sO3O4 , (2.11)

which is the origin of the factors (2.10) in the expression (2.9).
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An integral expression for a single, non-shadow, conformal partial wave can be obtained

by introducing a contour integral7

W∆,s (yi) =

(
∆− d

2

)
2π

∫ ∞
−∞

dν

ν2 +
(
∆− d

2

)2 (W d
2

+iν,s (yi) +W d
2
−iν,s (yi)

)
, (2.13)

and inserting (2.9) into the integrand. The CPWE (2.1) can then be re-cast as a contour

integral [83, 84],

〈O1 (y1)O2 (y2)O3 (y3)O4 (y4)〉 (2.14)

=
∑
s

∫ ∞
−∞

dν cs (ν)

∫
ddy 〈〈O1 (y1)O2 (y2)Od

2 +iν,s
(y)〉〉〈〈Od

2−iν,s
(y)O3 (y3)O4 (y4)〉〉,

where for ease of notation we defined O d
2
−iν,s = Õ d

2
+iν,s. The real function cs (ν) encodes

the dynamical information, with poles that carry the contribution from each spin-s con-

formal multiplet. For example, a contribution from a conformal multiplet [∆, s] manifests

itself in cs (ν) with a pole at d
2 + iν = ∆, with residue giving the OPE coefficients

cs (ν) =

(
∆− d

2

)
κd−∆,sγτ,sγ̄τ,s

2πd/2+1

cO1O2O∆,s
cO∆,sO3O4(

d
2 −∆ + iν

) (
d
2 −∆− iν

) + . . . , (2.15)

where the . . . denote possible contributions from other spin-s multiplets in the spectrum.

The contour integral form (2.14) of the CPWE admits a direct generalisation to four-

point correlators involving operators with spin. The only difference with respect to the

scalar case is that, in general, there is more than one conformal partial wave associated to

each conformal multiplet. This is a consequence of the non-uniqueness of tensor structures

compatible with conformal symmetry in three-point functions with more than one spinning

operator. It is for this reason that external spinning operators are easily accommodated for

in the integral form (2.13) of the conformal partial wave, which we discuss in the following.

2.2.2 Spinning conformal partial waves

The integral representation (2.13) of conformal partial waves carries over straightforwardly

to CPWEs of four-point functions containing operators with spin. In this case, however,

since the structure of three-point functions with more than one operator of non-zero spin

is not unique, generally there is more than one conformal partial wave associated to the

contribution of a given conformal multiplet.

The number of independent structures that may appear in a conformal three-point

function with operators of spins s1-s2-s3 is [85]

N (s1, s2, s3) =
(s1 + 1) (s1 + 2) (3s2 − s1 + 3)

6
− p (p+ 2) (2p+ 5)

24
− 1− (−1)p

16
, (2.16)

where s1 ≤ s2 ≤ s3 and p ≡ Max (0, s1 + s2 − s3). For correlation functions with two

scalar operators there is just a single structure compatible with conformal symmetry,

7The conformal partial wave W d
2
±iν,s (yi) decays exponentially for Im (ν) → ∓∞. In applying the

residue theorem to obtain the l.h.s. from the r.h.s. , for W d
2
±iν,s we close the ν-contour in the lower/upper

half plane respectively.

– 6 –



J
H
E
P
0
6
(
2
0
1
7
)
1
0
0

N (0, 0, s) = 1, in accordance with the uniqueness of conformal partial waves with external

scalar operators that we previously observed.

Three-point functions involving two spinning operators have N (s1, s2, s3) > 1. A

general three-point function of spinning operators in a parity-even theory takes the form8

〈O∆1,s1(y1)O∆2,s2(y2)O∆3,s3(y3)〉

=
∑
ni

cn1,n2,n3
s1,s2,s3

Ys1−n2−n3
1 Ys2−n3−n1

2 Ys3−n1−n2
3 Hn1

1 Hn2
2 Hn3

3

(y2
12)

τ1+τ2−τ3
2 (y2

23)
τ2+τ3−τ1

2 (y2
31)

τ3+τ1−τ2
2

, (2.17)

with theory-dependent OPE coefficients cn1,n2,n3
s1,s2,s3 . The six three-point conformally covariant

building blocks are given by (i ∼= i+ 3)9

Yi =
zi · yi(i+1)

y2
i(i+1)

−
zi · yi(i+2)

y2
i(i+2)

, (2.18)

Hi =
1

y2
(i+1)(i+2)

(
zi+1 · zi+2 +

2zi+1 · y(i+1)(i+2) zi+2 · y(i+2)(i+1)

y2
(i+1)(i+2)

)
. (2.19)

A conformal partial wave with spinning external operators is thus labelled by two three-

component vectors n = (n1, n2, n) and m = (m,m3,m4),

Wn,m
∆,s (yi) + shadow (2.20)

= κd−∆,s
γτ,sγ̄τ,s

πd/2

∫
ddy 〈〈O∆1,s1(y1)O∆2,s2(y2)O∆,s(y)〉〉(n)

× 〈〈Õ∆,s(y)O∆3,s3(y3)O∆4,s4(y4)〉〉(m),

where, by applying the definition (2.12) of the operation 〈〈•〉〉,

〈〈O∆1,s1(y1)O∆2,s2(y2)O∆3,s3(y3)〉〉(n) =
Ys1−n2−n

1 Ys2−n−n1
2 Ys−n1−n2

3 Hn1
1 Hn2

2 Hn
3

(y2
12)

τ1+τ2−τ
2 (y2

23)
τ2+τ−τ1

2 (y2
31)

τ+τ1−τ2
2

. (2.21)

In the same way, the shadow contribution can be projected out by introducing a contour

integral as in (2.13).

2.2.3 Spinning conserved conformal partial waves

Conservation of external operators places additional constraints on conformal partial waves,

which is a consequence of the conservation conditions on three-point functions of conserved

operators [87, 88]. The latter relates the coefficients cn1,n2,n3
s1,s2,s3 in a general spinning three-

point function (2.17) amongst each other, reducing the number of independent forms to [85]

N (s1, s2, s3) = 1 + min {s1, s2, s3} , (2.22)

8To be more precise,
∑
ni

=
min{s1,s2}∑
n3=0

min{s1−n3,s3}∑
n2=0

min{s2−n3,s3−n2}∑
n1=0

.

Let us also note that it is from this that one obtains the counting (2.16):
∑
ni

1 = N (s1, s2, s3).

9Note that our conventions differ from those in [86], which uses Hjk and Vi,jk in place of our Hi and Yi
above. They are related by: Hi = Hjk/P

2
jk and Yi =

Pjk
PikPij

Vi,jk.

– 7 –
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when each operator in the three-point function is conserved. The general form for a

three-point function of conserved operators in d > 3 is given as a generating functional

by [89, 90],10

〈Js1(y1)Js2(y2)Js3(y3)〉=

1+min(s1,s2,s3)
2∑

k=0

ckJs1Js2Js3 2F1

(
1

2
− k,−k, 3− d

2
− 2k,−1

2

Λ

H2
1H2

2H2
3

)

×
eY1+Y2+Y3

0F1(d2 + 2k − 1,−1
2H1)0F1(d2 + 2k − 1,−1

2H2)0F1(d2 + 2k − 1,−1
2H3)

(y2
12)

d
2−1(y2

23)
d
2−1(y2

31)
d
2−1

Λ2k,

(2.23)

with

Λ = Y1Y2Y3 +
1

2
[Y1H1 + Y2H2 + Y3H3] , (2.24)

and k takes both integer and half integer values. The OPE coefficients ckJs1Js2Js3
are not

fixed by current conservation and depend on the theory.

The above counting implies, for instance, that conserved conformal partial waves rep-

resenting the contribution of a conserved primary operator are labelled by two half-integers

k ∈ {0, 1/2, 1, . . . , 1 + min (s1, s2, s) /2} and k̃ ∈ {0, 1/2, 1, . . . , 1 + min (s, s3, s4) /2}, where

(s1, s2, s3, s4) are the spins of the external conserved operators,

Wk,k̃
(s1,s2|s|s3,s4) (yi) + shadow

= κd−∆,s
γτ,sγ̄τ,s

πd/2

∫
ddy 〈〈Js1(y1)Js2(y2)Js(y)〉〉(k)〈〈J̃s(y)Js3(y3)Js4(y4)〉〉(k̃), (2.25)

where Js is the exchanged spin-s conserved current and

〈〈Js1(y1)Js2(y2)Js(y3)〉〉(k) = 2F1

(
1

2
− k,−k, 3− d

2
− 2k,−1

2

Λ

H2
1H2

2H2
3

)
×
eY1+Y2+Y3

0F1(d2 + 2k − 1,−1
2H1)0F1(d2 + 2k − 1,−1

2H2)0F1(d2 + 2k − 1,−1
2H3)

(y2
12)

d
2−1(y2

23)
d
2−1(y2

31)
d
2−1

Λ2k.

(2.26)

Conservation of higher-spin currents is a powerful constraint, with the presence of a

single exactly conserved current of spin s > 2 in the spectrum implying (in d ≥ 3) that

the theory is a free one [91–95].11 In this case the label k of each independent structure

in (2.23) denotes the spin of the free conformal representation [90]. An example which we

employ later on is the free scalar, where k = 0 (the scalar singleton) and the corresponding

10To extract the explicit structure of the correlator from the generating function form (2.23) one expands

and collects monomials of the form Ys1−n2−n3
1 Ys2−n1−n3

2 Ys−n1−n2
3 Hn1

1 Hn2
2 Hn3

3 .
11Assuming a single stress tensor.
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conserved three-point structure can be conveniently expressed in terms of Bessel functions12

〈Js1(y1)Js2(y2)Js3(y3)〉 = c0
Js1Js2Js3

(∏3
i=1 2

d
4−1q

1
2−

d−2
4

i Γ(d−2
2 ) J d

2
−2

(√
qi
))

Ys11 Ys22 Ys33

(y2
12)d/2−1(y2

23)d/2−1(y2
31)d/2−1

,

(2.28)

where qi = 2Hi ∂Yi+1
· ∂Yi+2

. The OPE coefficients were worked out in [47] to be

c0
Js1Js2Js3

= Nd.o.f.c
0
s1c0

s2c0
s3 ,

(
c0
si

)2
=

√
π 27−d−si Γ(si + d−2

2 )Γ(si + d− 3)

Nd.o.f. si! Γ(si + d−3
2 )Γ(d−2

2 )2
. (2.29)

3 CPWE of spinning Witten diagrams

The integral representation of the CPWE is most suitable for establishing CPWEs of

Witten diagrams, as it arises naturally from their harmonic function decomposition (see [37]

for a detailed review):

The analogue of the CPWE expansion in the bulk is the decomposition into partial

waves of the AdS isometry group. I.e. in terms of harmonic functions with energy and

spin quantum numbers,13

,

(3.2)

To make contact with the CPWE on the boundary, one notes that harmonic functions

factorise [43]

Ων,k (x1, u1;x2, u2) =
ν2

πk!
(
d
2 − 1

)
k

∫
∂AdS

ddyΠ d
2

+iν,k(x1, u1; y, ∂̂z)Π d
2
−iν,k (y, z;x2, u2) ,

(3.3)

12To see this one employs the identity

Γ (α+ 1)x−αJα (2x) = 2−α0F1

(
α+ 1;−x

2

4

)
. (2.27)

13The harmonic function Ων,s−2k is a symmetric and traceless (in both sets of indices) spin s − 2k

Eigenfunction of the Laplacian,(
� +

(
d
2

+ iν
) (

d
2
− iν

)
+ s− 2k

)
Ων,s−2k = 0, (3.1)

which is divergence-free, ∇ · Ων,s−2k = 0.
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into a product of two boundary-to-bulk propagators of dimensions d
2 ± iν and the same

spin k. We see that, like for conformal partial waves (section 2 equation (2.14)), each bulk

partial wave factorises into a product of two three-point Witten diagrams,

.

(3.4)

Evaluating the bulk integrals yields a decomposition of the Witten diagram into products of

three-point conformal structures on the boundary — i.e. the integral representation (2.14)

of the conformal partial wave expansion.

So far this approach has been applied to compute the CPWEs of tree-level Witten

diagrams with only external scalars. This includes: the exchange of a massive spin-s field

and the graviton exchange [40];14 the exchange of spin-s gauge field on AdSd+1 [45] and

contact diagrams for a general quartic scalar self-interaction [31].

Spinning Exchange Witten Diagrams

In this section we generalise the aforementioned results, to include all possible four-point

exchange diagrams involving totally symmetric fields of arbitrary integer spin and mass —

both internally and externally.15 To wit, we decompose into conformal partial waves the

following general exchange of a spin-s field of mass m2R2 = ∆ (∆− d)− s in AdSd+1

, (3.5)

between external fields of spin si and mass m2
iR

2 = ∆i (∆i − d)− si.
14See also the very recent [66] which also employed this approach to compute the CPWE of four-point

exchange Witten diagrams with external scalars, but using a different form for the cubic vertex. Since the

latter vertex is equivalent to the ones used in [40, 45] up to total derivatives, the result is the same up to

contact terms.
15For other works on spinning exchange diagrams, see: [96, 97] in the context of higher-spin gauge theories

and more recently [64] in the context of the geodesic Witten diagram decomposition of standard Witten

diagrams.
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The first step is to obtain the decomposition (3.2) of the exchange diagram. This is

achieved by expressing the bulk-to-bulk propagator of the exchanged field in a basis of

harmonic functions [40, 45, 98], which we review for massive fields in section 3.2.1 and

for massless fields in section 3.2.2. This leads to the decomposition (3.4) of the exchange

diagram (3.5) into products of tree-level three-point Witten diagrams, whose evaluation

leads to the sought-for conformal partial wave expansion via identification with the integral

form (2.20) of the conformal partial waves.

3.1 Spinning three-point Witten diagrams

In the light of the decomposition (3.2) of Witten diagrams, a key step to obtain CPWEs

of spinning diagrams is therefore the evaluation of tree-level three-point Witten diagrams

involving fields of arbitrary integer spin and mass. For parity even theories, this was carried

out in [47] in general dimensions, whose results we review here and also further supplement

with new ones.

3.1.1 Building blocks of cubic vertices

Employing the ambient space formalism (reviewed in appendix A), a convenient basis of

on-shell cubic vertices between totally symmetric fields ϕsi of spins si and mass m2
iR

2 =

∆i (∆i − d)− si is given by

In1,n2,n3
s1,s2,s3 = Ys1−n2−n3

1 Ys2−n3−n1
2 Ys3−n1−n2

3 (3.6)

×Hn1
1 H

n2
2 H

n3
3 ϕs1 (X1, U1)ϕs2 (X2, U2)ϕss (X3, U3)

∣∣∣
Xi=X

,

which is parameterised by the six basic contractions

Y1 = ∂U1 · ∂X2 , Y2 = ∂U2 · ∂X3 , Y3 = ∂U3 · ∂X1 , (3.7a)

H1 = ∂U2 · ∂U3 , H2 = ∂U3 · ∂U1 , H3 = ∂U1 · ∂U2 . (3.7b)

Recall that, in accordance with standard AdS/CFT lore, the basis elements (3.6) are in

one-to-one correspondence with the independent three-point conformal structures (2.21).

The most general cubic vertex thus takes the form (cf. footnote 8 for the sum over ni)

Vs1,s2,s3 =
∑
ni

gn1,n2,n3
s1,s2,s3 I

n1,n2,n3
s1,s2,s3 . (3.8)

The choice of basis (3.6) is convenient for three main reasons:

1. Simplicity: The basis is built from the (commuting) ambient partial derivatives as

opposed to the (non-commuting) AdS covariant derivatives.

2. Ease of manipulation and computation: This is a consequence of the above

simplicity. One important example is given by integration by parts in the ambient

formalism. While this is in general more involved compared to standard integration

by parts directly on the AdS manifold, the basis (3.6) makes integration by parts as

simple as in flat space. See [99] for details on integration by parts in the ambient

space framework, and in particular for the basis (3.6).
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3. Physical interpretation: Any vertex expressed in terms of covariant derivatives

can straightforwardly be cast in terms of the basis (3.6), and vice versa, using (see

section A)

∇A = PBA
∂

∂XB
− XB

X2
ΣAB, (3.9)

where

ΣAB = U[A
∂

∂UB ]
= UA

∂

∂UB
− UB

∂

∂UA
, (3.10)

is the spin connection in the ambient generating function formalism. See appendix B

of [47] for more details about radial reduction.

3.1.2 Spinning Witten diagrams from a scalar seed

Another virtue of the ambient space formalism is that Witten diagrams with spinning ex-

ternal legs can be seamlessly generated from those with only external scalars (which are

comparably straightforward to evaluate) via the application of appropriate differential op-

erators in the boundary variables. The ease of this approach to spinning Witten diagrams

within the ambient framework is owing in particular to the homogeneity of the ambient

representatives in both the bulk and boundary coordinates. The implication of this obser-

vation for the three-point Witten diagram generated by the basis vertex (3.6) is that it can

be re-expressed in the form

, (3.11)

for some homogeneous differential operator Fn1,n2,n3
s1,s2,s3 (Zi, Pi, ∂Pi), acting on the diagram

generated by the coupling I0,0,0
0,0,0 between scalars of some mass m̃2

i . The latter is a well

known integral which is straightforward to evaluate [100], which we review in section D.

Naturally, since the action of Fn1,n2,n3
s1,s2,s3 increases the spin of the external legs, it will be a

non-trivial function of Zi.

The decomposition (3.11) of the spinning three-point Witten diagram can straightfor-

wardly be obtained by noting that spinning bulk-to-boundary propagators have an analo-
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gous differential relationship to scalar bulk-to-boundary propagators [37]16

K∆,s (X,U ;P,Z) =
1

(∆− 1)s
(DP (Z;U))sK∆,0 (X;P ) , (3.14)

with differential operator

DP (Z;U) = (Z · U)

(
Z · ∂

∂Z
− P · ∂

∂P

)
+ (P · U)

(
Z · ∂

∂P

)
. (3.15)

Ambient partial derivatives of spinning bulk-to-boundary propagators, which arise

naturally from the basis (3.6), can readily be expressed in a similar form:

(Uj · ∂X)nK∆,s (X,Ui;P,Z) =
1

(∆− 1)s
(DP (Z;U))s (Ui · ∂X)nK∆,0 (X;P ) (3.16)

with

(Ui · ∂X)nK∆,0 (X;P ) = 2n
(
∆ + 1− d

2

)
n

(Ui · P )nK∆+n,0 (X;P ) . (3.17)

This further illustrates the convenience of the choice of basis (3.6).

Employing the expression for spinning bulk-to-boundary propagators (3.16) one then

obtains

Fn1,n2,n3
s1,s2,s3 =

2s̃1+s̃2+s̃3
(
∆1 + 1− d

2

)
s̃3

(
∆2 + 1− d

2

)
s̃1

(
∆3 + 1− d

2

)
s̃2

(∆1 − 1)s1 (∆2 − 1)s2 (∆3 − 1)s3 (s̃1)! (s̃2)! (s̃3)!
(3.18)

×Hn1
1 H

n2
2 H

n3
3 H̄

s̃2
1 H̄

s̃3
2 H̄

s̃1
3 D

s1
P1
Ds2P2
Ds3P3

(
Ū1 · P1

)s̃3 (Ū2 · P2

)s̃2 (Ū3 · P3

)s̃1
where for concision we defined s̃i = si − ni−1 − ni+1 and introduced the auxiliary vector

Ūi which enters the contraction H̄i = ∂Ui−1 · ∂Ūi+1
. The mass of each scalar entering the

seed vertex on the r.h.s. of (3.11) is given in terms of the quantum numbers of the original

spinning fields on the l.h.s.

m̃2
iR

2 = ∆̃i(∆̃i − d) with ∆̃i = ∆i + si+2 − ni − ni+1. (3.19)

What remains to obtain the result for the spinning Witten diagram in the l.h.s. of (3.11)

is to simply insert the result (D.5) for the scalar seed on the r.h.s. and then act with

the differential operator (3.18). Denoting the amplitude by An1,n2,n3
s1,s2,s3;τ1,τ2,τ3 , this procedure

yields17

16By evaluating the action of the differential operator one recovers the standard expression [101]

K∆,s (X,U ;P,Z) = (U · P · Z)s
C∆,s

(−2X · P )∆
, C∆,s =

(s+ ∆− 1) Γ (∆)

2πd/2 (∆− 1) Γ
(
∆ + 1− d

2

) . (3.12)

This also dictates the normalisation of the dual operator two-point function at large Nd.o.f

〈O∆,s (y1; z1)O∆,s (y2; z2)〉 =
C∆,s

(y2
12)∆

(
z1 · z2 +

2z1 · y12z2 · y21

y2
12

)s
. (3.13)

17The summation symbol is defined as:

∑
α,β,δ,ω,γ

≡
sκ−kκ∑
ακ=0

kκ∑
βκ=0

nκ∑
δκ=0

ακ−1+βκ−1∑
ωκ=0

ακ−1+βκ−1∑
γκ=0

. (3.20)
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An1,n2,n3
s1,s2,s3;τ1,τ2,τ3 (y1, y2, y3) = (3.21)

P3

∑
α,β,δ,ω,γ

3∏
i=1

(−1)si−ni−δi+αi+βi2si−ni−γi−δi−ωi
ni!(αi+βi)!(si−ni+1−ni−1)!

γi!δi!αi!ωi!(βi+δi+1−ni+1+1)!

×
(αi+βi+∆i)si+δi(i+1)−γi+1−ni+1−ωi+1−∆i

(αi+βi−γi+1−γi−1−ωi+1+1)!(si−αi−ni+1−ni−1−ωi−1+1)!(ni+1+ni−1−βi−δi+1−δi−1+1)!

× Hγ1+δ1+ω1
1 Hγ2+δ2+ω2

2 Hγ3+δ3+ω3
3 Ys1−γ2−γ3−δ2−δ3−ω2−ω3

1 Ys2−γ1−γ3−δ1−δ3−ω1−ω3
2 Ys3−γ1−γ2−δ1−δ2−ω1−ω2

3 ,

where i ∼= i+ 3.

The pre-factor is given by

P3 =
1

16πd
1

(y12)δ12(y23)δ23(y31)δ31
Γ

(∑
α

( τα2 + sα − nα)− d
2

)
3∏
i=1

Γ(∆i − 1)(∆i + si − 1)

Γ
(
∆i + 1− d

2

) ,

where

δ(i−1)(i+1) =
1

2
(τi−1 + τi+1 − τi) , τi = ∆i − si . (3.22)

While the basis (3.6) is convenient as a means to evaluate spinning Witten diagrams,

the resulting one-to-one map (3.21) between the bulk basis elements (3.6) and the canon-

ical basis (2.21) of three-point conformal structures is rather involved. In the following

section we introduce an alternative bulk and boundary pair of bases, through which the

aforementioned bulk-to-boundary mapping simplifies dramatically and moreover allows to

elegantly re-sum the expression (3.21).

3.1.3 A natural basis of cubic structures in AdS/CFT

Let us motivate this alternative basis with a simple example. As observed in [47], the

amplitude generated by the highest derivative basis vertex

I0,0,0
s1,s2,s3 = Ys11 Y

s2
2 Y

s3
3 ϕs1 (X1, U1)ϕs2 (X2, U2)ϕss (X3, U3)

∣∣∣
Xi=X

, (3.23)

admits a very simple re-summation in terms of Bessel functions

A0,0,0
s1,s2,s3;τ1,τ2,τ3 (y1, y2, y3) =

Bsi;τi
(y12)δ12(y23)δ23(y31)δ31

(3.24)

×

[
3∏
i=1

2
δ(i+1)(i−1)

2 −1Γ

(
δ(i+1)(i−1)

2

)
q

1
2
−
δ(i+1)(i−1)

4
i J(δ(i+1)(i−1)−2)/2 (

√
qi)

]
Ys11 Ys22 Ys33 ,

where we recall that qi = 2Hi∂Yi+1∂Yi−1 and the overall coefficient is given by

Bsi;τi =
1

16πd
Γ

(
τ1 + τ2 + τ3 − d+ 2(s1 + s2 + s3)

2

)
(3.25)

×
3∏
i=1

(−2)si Γ
(
si + δi(i+1)

)
Γ
(
si + δ(i−1)i

)
Γ(si + τi − 1)

Γ
(
si + τi − d

2 + 1
)

Γ
(
δ(i+1)(i−1)

)
Γ(2si + τi − 1)

.
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Such three-point conformal structures are for instance generated in free scalar CFTs (see

e.g. (2.28) for the case of three-point functions of conserved operators).

Given the simplicity and compactness of the three-point conformal structure (3.24)

generated by the basis vertex (3.23), it is temping to consider the following basis of con-

formal structures,

[[O∆1,s1(y1)O∆2,s2(y2)O∆3,s3(y3)]](n) ≡ (3.26)

Hn1
1 Hn2

2 Hn3
3

(y12)δ12(y23)δ23(y31)δ31

[
3∏
i=1

2
δ(i+1)(i−1)

2 +ni−1Γ
(
δ(i+1)(i−1)

2 + ni

)]

×

[
3∏
i=1

q
1−ni

2
−
δ(i+1)(i−1)

4
i J(δ(i+1)(i−1)+2ni−2)/2 (

√
qi)

]
Ys1−n2−n3

1 Ys2−n3−n1
2 Ys3−n1−n2

3

in the view of simplifying the map between bulk and boundary structures.

Indeed, working iteratively one finds that the conformal structure (3.26) is generated

by the bulk vertex18

In1,n2,n3
s1,s2,s3 =

∑
mi

Cn1,n2,n3
s1,s2,s3;m1,m2,m3

Im1,m2,m3
s1,s2,s3 , (3.27)

with coefficients Cn1,n2,n3
s1,s2,s3;m1,m2,m3 given by

Cn1,n2,n3
s1,s2,s3;m1,m2,m3

=
(
d−2(s1+s2+s3−1)−(τ1+τ2+τ3)

2

)
m1+m2+m3

(3.28)

×
3∏
i=1

[
2mi

(
ni
mi

)
(ni + δ(i+1)(i−1) − 1)mi

]
,

In particular, denoting the three-point amplitude generated by each basis element (3.27)

by An1,n2,n3
s1,s2,s3;τ1,τ2,τ3 , we have:19

An1,n2,n3
s1,s2,s3;τ1,τ2,τ3 (y1, y2, y3) = B(si;ni; τi) [[O∆1,s1(y1)O∆2,s2(y2)O∆3,s3(y3)]](n) , (3.29)

with the coefficient B(si;ni; τi) given by

B(si;ni; τi) = π−d(−2)(s1+s2+s3)−(n1+n2+n3)−4 Γ
(
τ1+τ2+τ3−d+2(s1+s2+s3)

2

)
(3.30)

×
3∏
i=1

Γ
(
si−ni+1+ni−1+ τi+τi+1−τi−1

2

)
Γ
(
si+ni+1−ni−1+ τi+τi−1−τi+1

2

)
Γ(si+ni+1+ni−1+τi−1)

Γ
(
si+τi− d

2 +1
)

Γ
(

2ni+
τi+1+τi−1−τi

2

)
Γ(2si+τi−1)

.

Given a CFTd, the result (3.29) provides the complete holographic reconstruction of all

cubic couplings involving totally symmetric fields in the putative dual theory on AdSd+1.

18For concision we define
∑
mi

=
min{s1,s2,n3}∑

m3=0

min{s1−n3,s3,n2}∑
m2=0

min{s2−n3,s3−n2,n1}∑
m1=0

.

19Note, the vertices constructed here should not be confused with those written down in [65, 66] in the

context of geodesic Witten diagrams.
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Relation between bulk basis. To conclude it is useful to spell out the explicit dictio-

nary between the building blocks (3.6), which allow to straightforwardly evaluate spinning

Witten diagrams, and the basis (3.27) introduced in the previous section, which give a

simple form for spinning three-point amplitudes.

Given a coupling of the form

Vs1,s2,s3 =
∑
ni

gn1,n2,n3
s1,s2,s3 I

n1,n2,n3
s1,s2,s3 , (3.31)

the problem is to determine the explicit form of the coefficient g̃n1,n2,n3
s1,s2,s3 in the basis:

Vs1,s2,s3 =
∑
ni

g̃n1,n2,n3
s1,s2,s3 I

n1,n2,n3
s1,s2,s3 , (3.32)

with In1,n2,n3
s1,s2,s3 and In1,n2,n3

s1,s2,s3 given in (3.6) and (3.27), respectively. Working iteratively, one

arrives at the following expression for the coefficient g̃n1,n2,n3
s1,s2,s3 as a function of the coefficients

gn1,n2,n3
s1,s2,s3 in the original basis:20

g̃n1,n2,n3
s1,s2,s3 =

∑
mi

[
gm1,m2,m3

( d2 +1+
∑
α(mα−sα− τα2 ))

m1+m2+m3

3∏
i=1

(−1)ni+mi
(2ni + δjk − 1)

2mi (ni + δjk − 1)mi+1

(
mi

ni

)]
,

(3.34)

which is the inverse of the map (3.27).

Notice that the new basis (3.26) generalises to non-conserved operators the basis (2.26)

of three-point conserved conformal structures. In this regard, our basis (3.26) seems to be

naturally selected by free singleton CFTs.

3.2 Spinning bulk-to-bulk propagators

In this section we review previous works on the harmonic function decomposition of bulk-

to-bulk propagators for totally symmetric fields of arbitrary mass and integer spin [45].21

Up to cubic order in perturbations about the AdS background, a spin-s field of mass

m2R2 = ∆ (∆− d)− s is governed by an effective Euclidean action of the form

Sm2,s [ϕs] = s!

∫
AdS

1

2
ϕs (x, ∂u)

(
�−m2 + . . .

)
ϕs (x, u) + ϕs (x, ∂u) Js (x, u) +O

(
ϕ4
)
,

(3.35)

where the source Js in the cubic interaction term is quadratic in the perturbations. The

. . . denote terms which depend on the off-shell completion, which we discuss case-by-case

in the sequel.

20For concision we define:

∑
mi

=

Min{s1,s2}∑
m3=n3

Min{s3,s1−m3}∑
m2=n2

Min{s2−m3,s3−m2}∑
m1=n1

. (3.33)

21For earlier works spinning bulk-to-bulk propagators, see [102, 103] by B. Allen for the graviton and

(massive and massless) vector propagators (also [40, 104–107]); for higher spin see [40, 96, 97, 108–113].
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Upon varying the action, the corresponding bulk-to-bulk propagator satisfies an equa-

tion of the form (
�1 −m2 + . . .

)
Πm2,s (x1;x2) = −δd+1 (x1, x2) , (3.36)

where for convenience we suppressed the index structure, for now. To determine the prop-

agator as a decomposition in harmonic functions, one can consider an ansatz of the form

Πm2,s (x1, u1;x2, u2) (3.37)

=

bs/2c∑
k=0

s−2k∑
l=0

∫ ∞
−∞

dν gk,l (ν)
(
u2

1

)k (
u2

2

)k
(u1 · ∇1)l (u2 · ∇2)l Ων,s−2k−l (x1, u1;x2, u2) .

The functions gk,l (ν) are fixed by requiring that the equation of motion (3.36) is satisfied.

We first review the solution for massive spinning fields before moving on to the massless

case, where one has the additional requirement of gauge invariance.

3.2.1 Massive case

The Lagrangian formulation for freely propagating totally symmetric massive fields of ar-

bitrary spin was first considered by Singh and Hagen in the 70’s [114, 115].22 In order for

the Fierz-Pauli physical state conditions [120–122](
�−m2

)
ϕs (x, u) = 0, (∂u · ∇)ϕs (x, u) = 0, (∂u · ∂u)ϕs (x, u) = 0, (3.38)

to be recovered upon varying the action, the field content consists of the traceless field ϕs,

and additional traceless auxiliary fields of ranks s− 2, s− 3, . . . , 0 which vanish on-shell.23

The complete off-shell form of the free Lagrangian is involved, and is moreover currently

unavailable in its entirety on an AdS background. On the other hand, the terms which

have not yet been identified explicitly are those which vanish on-shell (i.e. the . . . in (3.35))

and thus only generate contact terms in exchange amplitudes. The latter are not universal

contributions, as they are highly dependent on the field frame. For our purposes it is

therefore not necessary to keep track of such terms,24 and we can solve the following

equation for the massive spin-s bulk-to-bulk propagator(
�1 −m2

)
Πm2,s (x1, u1;x2, u2) = −{(u1 · u2)s} δd+1 (x1, x2) , (3.39)

where the notation {•} signifies a traceless projection.

Since in this case the field is traceless, the following ansatz can be considered for the

bulk-to-bulk propagator

Πm2,s (x1, w1;x2, w2) =
s∑
l=0

∫ ∞
−∞

dν gl (ν) (w1 · ∇1)l (w2 · ∇2)l Ων,s−l (x1, w1;x2, w2) ,

(3.40)

22See also [116–119].
23See [123, 124] for an alternative formulation of the free massive Lagrangian in terms of curvatures, free

from such auxiliary fields. Their removal, however, comes at the price of introducing non-localities.
24When it is feasible we do keep track of contact terms, such as for the massless case introduced in the

following section.
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where the null auxiliary vectors w2
i = 0 enforce tracelessness. Substituting into the equation

of motion (3.39), one finds [45]

gl (ν) =
1(

d
2 −∆

)2
+ ν2 − l + l(d+ 2s− `− 1)

(3.41)

×
2l (s− l + 1)l

(
d
2 + s− l − 1

2

)
l

l! (d+ 2s− 2l − 1)l
(
d
2 + s− l + iν

)
l

(
d
2 + s− l − iν

)
l

.

Before moving on to consider the massless case, let us briefly highlight some generic features

of the propagator (3.40):

• The traceless and transverse part of the propagator (corresponding to l = 0 in (3.40))

ΠTT
m2,s (x1;x2) =

∫ ∞
−∞

dν(
d
2 −∆

)2
+ ν2

Ων,s (x1;x2) , (3.42)

is universal, and encodes the exchanged single-particle state of spin-s and mass

m2R2 = ∆ (∆− d)− s.

• The remaining contributions from harmonic functions of spin < s (the l > 0 in (3.40))

are purely off-shell, and generate only contact terms in exchange amplitudes.

3.2.2 Massless case

On contrast to the massive case discussed in the previous section, the construction of free

Lagrangians for massless fields is somewhat simplified owing to the additional guidance

provided by gauge invariance.

Recalling that the concept of masslessness in AdS is slightly deformed owing to the

background curvature, requiring gauge invariance of the Fierz-Pauli system (3.38) under

the gauge transformation

δξϕs (x, u) = (u · ∇) ξs−1 (x, u) , (3.43)

fixes ∆ = s + d − 2 in the mass m2R2 = ∆ (∆− d) − s. The complete off-shell Lagrangian

form was determined by Fronsdal in the 70’s [125], and reads

S
(2)
Fronsdal [ϕs] =

s!

2

∫
AdSd+1

ϕs (x; ∂u)Gs (x;u) , (3.44)

where Gs is the corresponding spin-s generalisation of the linearised Einstein tensor

Gs (x;u) =

(
1− 1

4
u2 ∂u · ∂u

)
Fs (x;u,∇, ∂u)ϕs (x, u) , (3.45)

with Fs the so-called Fronsdal operator

Fs(x, u,∇, ∂u) = �−m2 − u2(∂u · ∂u)− (u · ∇)

(
(∇ · ∂u)− 1

2
(u · ∇)(∂u · ∂u)

)
. (3.46)
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The latter is fixed by invariance under linearised spin-s gauge transformations (3.43) with

symmetric and traceless rank s− 1 gauge parameter ξs−1.25 The Bianchi identity

(∂u · ∇)Gs (x, u) = 0 (3.47)

requires that the field ϕs is double-traceless26

(∂u · ∂u)2 ϕs (x, u) = 0. (3.48)

To determine the bulk-to-bulk propagator one needs to invert the equation of motion with

source

(1− 1

4
u2 ∂u · ∂u)Fs (x;u,∇, ∂u)ϕs (x, u) = −Js (x, u) , (3.49)

where from gauge-invariance it follows that Js is conserved on-shell, (∂u · ∇) Js ≈ 0.27 For

tree-level diagrams involving a single exchange, this inversion is independent of the off-shell

gauge fixing of the exchanged field, since the exchanged field couples to on-shell external

legs. In this context, the bulk-to-bulk propagator can be determined disregarding terms

proportional to gradients [96, 97, 112] — both in the equation of motion and in the solution.

To wit, one may solve28[
(�1 −m2)− u2

1(∂u1 · ∂u1)
]

Πs(x1, u1;x2, u2) (3.52)

= −(1− 1

4
u2

1 ∂u1 · ∂u1)−1
{{

(u1 · u2)s δd+1 (x12)
}}

,

up to gradient terms. It is then sufficient to make an ansatz that is free from gradient

terms,

Πs(x1, u1;x2, u2) =

bs/2c∑
k=0

∫ ∞
−∞

dν gk (ν)
(
u2

1

)k (
u2

2

)k
Ων,s−2k(x1, u1;x2, u2). (3.53)

25Alternative formulations have been developed which eliminate this algebraic trace constraint on the

gauge parameter, however they come at the price of introducing non-localities [126] or auxiliary fields [96,

127, 128].
26Note that the double-trace of ϕs is gauge invariant owing to the tracelessness of the gauge parameter.

Forgoing the double-traceless constraint (3.48) without introducing auxiliary fields (apart from deforming

the Bianchi identity (3.47) and thus requiring a modification of the action (3.44)) would lead to the prop-

agation of non-unitary modes, which one may try to kill by imposing appropriate boundary conditions.

This has been shown to be possible in flat space [128] though it is not yet clear if this approach can be

extended to AdS space-times, or if it is compatible with introducing a source. For this reason we stick to

the standard Fronsdal formulation (3.44) with double-trace constraint (3.48).
27 To be more precise, consistency with higher-spin symmetry (3.43) requires that Js has vanishing

double-trace, and moreover is conserved up to pure trace terms,

(∂u · ∇) Js (x, u) ≈ O
(
u2) . (3.50)

As we shall demonstrate explicitly in section 3.4.1 (supplemented by section B), improvement terms (which

do not contribute to on-shell vertices) can be added to the Js such that it is exactly conserved.
28The symbol {{•}} indicates a double-traceless projection:

(∂u · ∂u)2 {{f(u, x)}} = 0, and {{f(u, x)}} = f(u, x) iff (∂u · ∂u)2f(u, x) = 0. (3.51)
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Plugging the ansatz into (3.52) fixes the functions gs,k (ν) [45]

gs,0 (ν) =
1

(d2 + s− 2)2 + ν2
,

gs,k (ν) = −
(1/2)k−1

22k+3 · k!

(s− 2k + 1)2k

(d2 + s− 2k)k(
d
2 + s− k − 3/2)k

(3.54)

×
(
(d2 + s− 2k + iν)/2

)
k−1

(
(d2 + s− 2k − iν)/2

)
k−1(

(d2 + s− 2k + 1 + iν)/2
)
k

(
(d2 + s− 2k + 1− iν)/2

)
k

, k 6= 0.

As for the massive propagators in the previous section, the k = 0 term is the traceless and

transverse part of the propagator which encodes the exchanged single-particle state, while

those for k > 0 generate purely contact terms in exchange amplitudes.

3.3 CPWE of spinning exchange diagrams

In this section we put together the results of the preceding sections to determine CPWEs

of tree-level four-point exchange Witten diagrams with fields of arbitrary mass and integer

spin on the internal and external legs.

3.3.1 Natural basis of conformal partial waves in AdS/CFT

To this end, it is useful to briefly discuss the integral form (2.20) of spinning conformal

partial waves in terms of the natural AdS/CFT basis (3.26) of three point conformal struc-

tures. Employing this new basis, the spinning conformal partial waves of section 2.2.2 read

Wn,m
∆,s (yi) + shadow (3.55)

= κd−∆,s
γτ,sγ̄τ,s

πd/2

∫
ddy [[O∆1,s1(y1)O∆2,s2(y2)O∆,s(y)]](n)

× [[Õ∆,s(y)O∆3,s3(y3)O∆4,s4(y4)]](m),

where for convenience we repeat here the form of the basis elements (3.26)

[[O∆1,s1(y1)O∆2,s2(y2)O∆3,s3(y3)]](n) (3.56)

≡ Hn1
1 Hn2

2 Hn3
3

(y12)δ12(y23)δ23(y31)δ31

[
3∏
i=1

2
δ(i+1)(i−1)

2 +ni−1Γ
(
δ(i+1)(i−1)

2 + ni

)]

×

[
3∏
i=1

q
1−ni

2
−
δ(i+1)(i−1)

4
i J(δ(i+1)(i−1)+2ni−2)/2 (

√
qi)

]
Ys1−n2−n3

1 Ys2−n3−n1
2 Ys3−n1−n2

3

In combination with the basis (3.27) of bulk cubic vertices, once the harmonic function

decomposition of a given spinning Witten diagram is known the choice of basis (3.55)

of spinning conformal partial waves makes its CPWE follow almost automatically. We

demonstrate this explicitly in the following section.
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3.3.2 Generic spinning exchange diagram

We consider a generic tree-level four-point exchange of a spin-s field of mass m2 between

fields of spin si and mass m2
i . This is depicted for the s-channel below,

. (3.57)

At this level the cubic vertices Vs,si,sj are kinematic, and are not constrained by any

consistency condition aside from the necessary requirement of respecting the AdS isometry.

Expanded in the natural basis (3.27), they read

Vs,si,sj =
∑
ni

g
ni,nj ,n
si,sj ,s I

ni,nj ,n
si,sj ,s , (3.58)

with arbitrary couplings g
ni,nj ,n
si,sj ,s .

The harmonic function decomposition follows upon insertion of the massive spin-s

bulk-to-bulk propagator (3.40)

.

(3.59)

What remains to determine the CPWE is to evaluate the three-point Witten diagrams

on the r.h.s. , which can be carried out seamlessly by employing the tools developed in

section 3.1.

For this generic case we focus on the part of the exchange which encodes the exchanged

single-particle state. These are carried by the traceless and transverse part of the bulk-to-

bulk propagator (3.42), and accordingly we focus on the l = 0 contribution in the harmonic

function decomposition (3.59). The latter is factorised into three-point Witten diagrams
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of the form:

, (3.60)

by virtue of the split representation (3.3) of the harmonic function. The amplitudes (3.60)

can be straightforwardly given in any basis of three-point conformal structures using the

results of section 3.1. However, choosing to expand the couplings (3.58) in the natural

AdS/CFT basis (3.27) of cubic vertices gives the following simple and compact form

As;τ± (yi, yj , y) =
∑
n

gnsAn
s;τ± (yi, yj , y) (3.61)

=
∑
n

gns B(s; n; τ±) [[O∆i,si(yi)O∆j ,sj (yj)O d
2
±iν,s(y)]](n)

where we defined the vectors s = (si, sj , s), n = (ni, nj , n) and τ± = (τi, τj ,
d
2 ± iν − s).

29

Using the integral representation of the conformal partial waves (3.55), one can then

immediately write down the CPWE of the s-channel exchange (3.57)3031

As
s1,s2|s,m2|s3,s4 =

∫ ∞
−∞

dν

ν2 +
(
d
2 −∆

)2 ν2

π
As1,2;τ+

1,2
(y1, y2, y)As3,4;τ−3,4

(y3, y4, y) + . . .

=

∫ ∞
−∞

dν
∑
n,m

cn,m (ν)Wn,m
d
2

+iν,s
(yi) + . . . . (3.62)

with32

cn,m (ν) = −gns1,2
gms3,4

B(s12; n; τ+
1,2)B(s34; m; τ+

3,4)

ν2 +
(
d
2 −∆

)2 2π
d
2−1Γ (iν + 1) ν(

iν + s+ d
2 − 1

)
Γ
(
iν + d

2 − 1
) . (3.64)

This is the contour integral form (2.14) of the conformal partial wave expansion, reviewed

in section 2.2.1. Recall that the functions cn,m (ν) encode the contribution from spin-s

29In particular, gns = g
ni,nj ,n
si,sj ,s and An

s;τ is the amplitude (3.29) with labels s = (si, sj , s), n = (ni, nj , n)

and τ = (τi, τj ,
d
2
± iν − s).

30Here, si,j = (si, sj , s), τ
±
i,j = (τi, τj ,

d
2
± iν − s), n = (n1, n2, n) and m = (m3,m4,m).

31The . . . denote contact terms generated by the l > 0 contributions in the harmonic function decompo-

sition (3.59).
32To obtain this expression we used that

B(s34;m; τ−3,4) =
iκd−iν,sγ d

2
+iν−s,sγ̄ d

2
+iν−s,s

2νπd/2C d
2

+iν,s

B(s34;m; τ+
3,4). (3.63)
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operators: a pole at scaling dimension d
2 + iν = λ in the lower-half ν-plane signifies a

contribution from the conformal multiplet [λ, s], whose residue gives the corresponding

OPE coefficient. Separating out such poles into a function pn,m (ν),

cn,m (ν) = c̄n,m (ν) pn,m (ν) , (3.65)

we have

pn,m (ν) =
1

ν2 +
(
d
2 −∆

)2 Γ

(
2(s1+n−n2)+τ1+τ2+s−( d2 +iν)

2

)
Γ

(
2(s2+n−n1)+τ1+τ2+s−( d2 +iν)

2

)
× Γ

(
2(s3+m−m4)+τ3+τ4+s−( d2 +iν)

2

)
Γ

(
2(s4+m−m3)+τ3+τ4+s−( d2 +iν)

2

)
. (3.66)

There are two types of contributions, in accord with the standard lore on CPWEs of

Witten diagrams [28, 37, 77, 78, 105, 106, 129–137]:

1. Single-trace: This is the universal contribution to an exchange diagram, correspond-

ing to the exchange of the bulk single-particle state. Accordingly, it is generated

by the pole-factor in the traceless and transverse part of the bulk-to-bulk propaga-

tor (3.42), which carries the propagating degrees of freedom. This translates into a

pole at d
2 + iν = ∆ in (3.66), which coincides with the scaling dimension of the spin-s

single-trace operator O∆,s that is dual to the exchanged spin-s single-particle state

of mass m2R2 = ∆ (∆− d)− s in the bulk.

2. Double-trace: The remaining contributions originate from contact terms, arising
from the collision of the two points that are integrated over the entire volume of AdS.
This generates 2-particle states in the bulk, which are dual to double-trace operators
on the conformal boundary. Accordingly, the corresponding poles are encoded in the
factors (3.30) arising from the integration over AdS. In the pole-function (3.66) these
are the origin of the two sets of Gamma function poles (p = 0, 1, 2, 3, . . .)

1.

(
d

2
+iν

)
−s = τ1+τ2+2 (s1+n−n2+p) ,

(
d

2
+iν

)
−s = τ1+τ2+2 (s2+n−n1+p)

(3.67a)

2.

(
d

2
+iν

)
−s = τ3+τ4+2 (s3+m−m4+p) ,

(
d

2
+iν

)
−s = τ3+τ4+2 (s4+m−m3+p) ,

(3.67b)

corresponding to contributions from the two families [O∆1,s1O∆2,s2 ]s and [O∆3,s3

O∆4,s4 ]s of spin-s double-trace operators, respectively. In the bulk, these correspond

to 2-particle states created, respectively, by ϕs1 with ϕs2 , and ϕs3 with ϕs4 .

Let us briefly comment on the l > 0 contributions to the harmonic function decom-

position (3.59). As explained earlier these are purely contact terms, and likewise

generate double-trace contributions [O∆1,s1O∆2,s2 ]s−l and [O∆3,s3O∆4,s4 ]s−l to the

CPWE, but of lower spin s− l.
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3.4 Spinning exchanges in the type A higher-spin gauge theory

So far our dialogue has not been restricted to any particular theory of spinning fields. In

recent years, a lot of interest has been generated in theories of higher-spin gauge fields,

owing in part to the conjectured duality [138–143] between higher-spin gauge theories on

AdS backgrounds and free CFTs. In this section we apply the tools and results of the

preceding sections to compute all four-point exchange Witten diagrams in the simplest

higher-spin gauge theory for d > 2, which is known as the type A minimal higher-spin

theory expanded about AdSd+1 [144].33 This theory is conjectured to be dual to the

(singlet sector of the) free scalar O (N) model in d-dimensions [141, 142].

The spectrum consists of a tower of totally symmetric even spin gauge fields (one for

each even spin s = 2, 4, 6, . . .) and a parity even scalar of mass m2
0R

2 = −2(d − 2), which

sits in the higher-spin multiplet.

Before moving to the computation of the exchange amplitudes, we first review the

result for the metric-like cubic couplings established in [47].

3.4.1 Off-shell cubic couplings

The off-shell cubic couplings of the type A minimal higher-spin theory on AdSd+1 were

determined in [47], for de Donder gauge.34 For tree-level exchanges we only require cou-

plings with a single field — the one that is exchanged — off-shell. For a spin-s field ϕs in

de Donder gauge, its interaction with two on-shell fields of spins s1 and s2 reads

Vs1,s2,s = gs1,s2,s

[
1− 1

2
(d− 2 + Yi∂Yi) ∂2

Y3
∂2
U3

]
Ys11 Y

s2
2 Y

s
3 (3.68)

× ϕs1 (X1, U1)ϕs2 (X2, U2)ϕs (X3, U3) .

The coupling constants gs1,s2,s, for canonically normalised kinetic terms, are given by [47]

gs1,s2,s =
1√
N

π
d−3

4 2
3d−1+s1+s2+s

2

Γ(d+ s1 + s2 + s− 3)

√
Γ(s+ d−1

2 )

Γ (s+ 1)

2∏
i=1

√
Γ(si + d−1

2 )

Γ (si + 1)
. (3.69)

The first term in (3.68) is the traceless and transverse part of the vertex, which is non-trivial

on-shell. The second term accounts for the off-shell de Donder field ϕs, and accordingly is

proportional to its trace.

For the four-point exchange of a spin-s gauge field, we massage the vertices (3.68) into

the form

Vs1,s2,s (X) = s!Js|s1,s2 (X, ∂U )ϕs (X,U) , (3.70)

33See [31, 37, 45, 47, 145–149] for other results on Witten diagrams in higher-spin gauge theories.
34Note that although the result (3.68) for the complete cubic couplings was fixed using the holographic

duality, it was later verified [53] that the result solves the Noether procedure — i.e. requiring that each

cubic coupling is local, the cubic vertices coincide with those that would be obtained without employing

holography. The result built upon the covariant classification [99, 150–153] of cubic interactions in AdSd+1.
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with the spin-s current Js|s1,s2 bi-linear in ϕs1 and ϕs2 . This is an exercise of integration

by parts in ambient space, and gives

Js|s1,s2 =

min(s1,s2)∑
k=0

(−2)k

k!
Γ(s1+s2+s+d−3)

Γ(s1+s2+s+d−3−k)
Γ(s1+1)

Γ(s1−k+1)
Γ(s2+1)

Γ(s2−k+1)H
k
3 Ȳ

s1−k
1 Ȳs2−k2 Ȳs3

+ . . . ,

(3.71)

where the . . . are terms that constitute the completion with ϕs off shell, which are reinstated

below. For convenience above we defined the contractions

Ȳ1 = Y1, Ȳ2 = −∂U2 · ∂X1 , Ȳ3 = 1
2∂U3 · (∂X1 − ∂X2) , H3 = ∂U1 · ∂U2 . (3.72)

In its present form, the complete current (3.71) is not exactly conserved. Indeed, recall

that for a doubly-traceless Fronsdal field ϕs, higher-spin symmetry at the linearised level

only requires that it is conserved up to traces (cf. footnote 27). On the other hand, as

emphasised in section 3.2.2, the manifest trace form (3.53) of the bulk-to-bulk propagators

requires the use of exactly conserved currents. In appendix B we show the details of how

the current (3.71) can be improved such that it satisfies exact conservation. Here we just

state that it can be attained by taking on-shell non-trivial part of (3.71) and dressing each

term with a differential operator

Hk3 Ȳ
s1−k
1 Ȳs2−k2 Ȳs3 →

[s/2]∑
n=0

α(k)
n (∂2

Ȳ3
)n(∂2

U3
)n

Hk3 Ȳs1−k1 Ȳs2−k2 Ȳs3 , (3.73)

where

α(k)
n =

(
1

2

)2n 1

n!

Γ(3 + k − s1 − s2 − d
2 + n)

Γ(3 + k − s1 − s2 − d
2)

. (3.74)

3.4.2 Four-point exchange diagrams

Consider the four-point exchange of a spin-s gauge field between gauge fields of spin si
in the s-channel. The manifest trace form of the bulk-to-bulk propagator (3.53) gives the

harmonic function decomposition

,

(3.75)

where the operator Jsi is the spin-si conserved current in the free scalar O (N) model dual

to the spin-si gauge field ϕsi in the bulk. The notation J (k) denotes the k-th trace of the

conserved current J , which arise from the trace structure of the bulk-to-bulk propagator
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contact terms. The explicit form of J is given in section 3.4.1, while its k-th trace is derived

in section C.

To determine the CPWE, we therefore need to evaluate three-point Witten diagrams

of the form,

, (3.76)

which, employing the tools introduced in section 3.1 entails expressing the cubic couplings

in the basis (3.27).

We focus first on the k = 0 contribution, which encodes the exchanged single-particle

state. As we saw for the massive exchanges in section 3.3.2, this is generated by the

traceless and transverse part of the bulk-to-bulk propagator (3.53). Accordingly, only the

on-shell non-trivial (traceless and transverse) part of the cubic couplings (3.68) contribute,

whose explicit form we give here for convenience:

VTTs1,s2,s (X) = gs1,s2,sY
s1
1 Y

s2
2 Y

s
3ϕs1 (X1, U1)ϕs2 (X2, U2)ϕs (X3, U3)

∣∣∣
Xi=X

. (3.77)

Nicely, this is already in the natural AdS/CFT basis (3.27) and the amplitudes (3.76) for

k = 0 can be immediately written down by employing the result (3.29)

As;τ± (yi, yj , y) = gsi,sj ,s B (s; 0; τ ) [[Jsi (yi)Jsj (yj)Od
2±iν,s

(y)]]0, (3.78)

where here τ± =
(
d− 2, d− 2, d2 ± iν − s

)
and n = (0, 0, 0).

Following the discussion of section 3.3.2 for the generic case, one then obtains that the

k = 0 term in the harmonic function decomposition (3.75) of the exchange diagram yields

the following contributions to its CPWE

As
s1,s2|s|s3,s4 =

∫ ∞
−∞

dν cs (ν)W 0,0
d
2

+iν,s
(yi) + . . . (3.79)

with

cs (ν) = −gs1,s2,sgs3,s4,s
B(s12; 0; τ+)B(s34; 0; τ+)

ν2 +
(
s+ d

2 − 2
)2 2π

d
2−1Γ (iν + 1) ν(

iν + s+ d
2 − 1

)
Γ
(
iν + d

2 − 1
) , (3.80)

where the pole function (3.66) in this case is given by

ps (ν) =
1

ν2 +
(
s+ d

2 − 2
)2 Γ

(
2(s1+d−2)+s−( d2 +iν)

2

)
Γ

(
2(s2+d−2)+s−( d2 +iν)

2

)
(3.81)

× Γ

(
2(s3+d−2)+s−( d2 +iν)

2

)
Γ

(
2(s4+d−2)+s−( d2 +iν)

2

)
.

In the following we discuss in detail the particular contributions.
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Single-trace. In line with the discussion of the generic case in section 3.3.2, the pole

factor in the traceless and transverse part of the bulk-to-bulk propagator (3.53) generates

a pole in (3.81) at d
2 + iν = s + d − 2, which is the scaling dimension of the dual spin-s

conserved current Js in the free scalar O (N) model.

Furthermore, notice that for d
2 +iν = s+d−2 the three-point conformal structure gener-

ated by the k = 0 amplitude (3.78) coincides with the three-point conserved structure (2.28)

in free scalar theories. The corresponding spin-s conformal partial wave thus coincides with

the conserved conformal partial wave W0,0
s1,s2|s|s3,s4 in the set (2.25), which represents the

contribution from the conserved operator Js to the four-point function 〈Js1Js2Js3Js4〉 in

free scalar theories.

With the result (2.29) of all single-trace conserved current OPE coefficients in free

scalar theories, in this case we can confirm the standard expectation that the single-trace

contribution to an exchange Witten diagram coincides with the contribution from the same

single-trace operator in the CPWE of the dual CFT four-point function, when expanded

in the same channel. Indeed, using that [47, 53]35

gsi,sj ,s
B(sij ; 0; d− 2, d− 2, d− 2)√
Csi+d−2,siCsj+d−2,sjCs+d−2,s

= cJsiJsjJs , (3.82)

we have (closing the contour in the lower-half ν-plane)

− 2πiRes

[
cs (ν)W 0,0

d
2

+iν,s
(yi) ,

d
2 + iν = s+ d− 2

]
= cJs1Js2JscJsJs3Js4W

0,0
s1,s2|s|s3,s4 (yi) ,

(3.83)

as expected.

Double-trace. As usual these originate from contact terms in the k = 0 part of the
exchange. In this case the two sets of Gamma function poles in (3.81)

1.

(
d

2
+ iν

)
− s = 2 (d− 2) + 2 (p+ s1) ,

(
d

2
+ iν

)
− s = 2 (d− 2) + 2 (p+ s2) , (3.84a)

2.

(
d

2
+ iν

)
− s = 2 (d− 2) + 2 (p+ s3) ,

(
d

2
+ iν

)
− s = 2 (d− 2) + 2 (p+ s4) , (3.84b)

with p = 0, 1, 2, 3, . . . , correspond to contributions from the two families [Js1Js2 ]s and

[Js3Js4 ]s of spin-s double-trace operators built from single-trace conserved currents.

k > 0 contributions. Similarly, being contact, the k > 0 contributions to the CPWE of

the exchange (3.75) are from double-trace operators [Js1Js2 ]s−2k and [Js3Js4 ]s−2k of lower

spin s− 2k. The result for the corresponding three-point Witten diagrams (3.76) for k > 0

is a lot more involved, as it requires to compute the k-th trace of the currents J (k)
s|si,sj . We

show explicitly how the latter are computed in section C, from which the results for the

corresponding three-point Witten diagrams (3.76) are given immediately from the results

of section 3.1. This gives the CPWE of the k > 0 contributions via (3.75).

35Here we divide by the normalisation of the bulk-to-boundary propagators (3.12) to give unit normali-

sation to the dual single-trace operator two point functions (3.13).
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We point out that there are simplifications for particular combinations of the external

spins, such as for a single spinning external field (e.g. s1-0-0-0) and also for a single spinning

external field either side of the exchange (e.g. s1-0-s3-0 in the s-channel), where the three-

point bulk integrals for k > 0 are of the same type as in the k = 0 case.

Note that in AdS4 (the case relevant for the duality with the critical O (N) model)

the current-type interactions Js|si,sj are traceless via improvements, and so the k > 0

contributions are vanishing.
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A Conventions, notations and ambient space

In this work we employ the same conventions as in [47], which we very briefly review here

for completeness. For more details on the ambient space formalism, see for instance [99,

154, 155].

The ambient formalism is an indispensable framework for computations in AdSd+1

space. In this context, the latter is viewed as a hyperboloid embedded in an ambient

(d+ 2)-dimensional Minkowski space

X2 +R2 = 0 , X0 > 0 , (A.1)

where R is the AdS radius. In ambient light-cone coordinates (X+, X−, X i) with X2 =

−X+X− + δijX
iXj , the solution of the constraints (A.1) in the Poincaré co-ordinates

xµ =
(
z, yi

)
is given by

XA =
R

z
(1, z2 + y2, yi) . (A.2)

Bulk fields. In order to obtain a one-to-one correspondence between fields on AdS and

those living in the higher-dimensional flat ambient space, one imposes constraints with

defining the ambient space extensions of the AdSd+1 fields [108]. Such restrictions are usu-

ally given as homogeneity and tangentiality constraints. Employing a generating function

formalism with intrinsic and ambient auxiliary vectors uµ and UA, a symmetric rank-s

tensor ϕs (x, u) intrinsic to the AdS manifold is represented in ambient space by

ϕs (x, u) =
1

s!
ϕµ1...µs(x)uµ1 . . . uµs → ϕs(X,U) =

1

s!
ϕA1...As(X)UA1 . . . UAs . (A.3)

subject to the following homogeneity and tangentiality conditions

(X · ∂X −∆)ϕs(X,U) = 0 , (X · ∂U )ϕs(X,U) = 0 . (A.4)

– 28 –



J
H
E
P
0
6
(
2
0
1
7
)
1
0
0

Nicely, the conditions (A.4) imply that on-shell

∂2
XϕA1...As = 0, (A.5)

for the ambient representative of the AdS field ϕs of mass m2R2 = ∆ (∆− d)− s.
Let us stress that in imposing tangentiality and homogeneity conditions (A.4) one is

implicitly extending the AdS field to the full ambient space, where X2 plays the role of the

radial coordinate. This formalism is different from the manifestly intrinsic formalism (for

instance used in [40]) where one never moves away from the AdS manifold X2 = −R2.

The ambient representative of the AdS covariant derivative ∇µ takes the simple form

∇A = PBA
∂

∂XB
, (A.6)

and acts via

∇ = P ◦ ∂ ◦ P. (A.7)

Boundary fields. The boundary of AdSd+1 is identified with the null rays

P 2 = 0, P ∼ λP, λ 6= 0, (A.8)

where P gives the ambient space embedding of the CFT coordinate yi. It is convenient to

introduce the boundary analog of the auxiliary variables UA, which we refer to as ZA(y)

and extend to ambient space the null CFT auxiliary variable zi. Working in light cone

coordinates PA = (P+, P−, P i), with the gauge choice P+ = 1 one has

PA(y) = (1, y2, yi) and ZA(y) = (0, 2y · z, zi) . (A.9)

A symmetric rank-s boundary operator O∆,s of scaling dimension ∆ is represented by:36

O∆,s(y, z) =
1

s!
Oµ1...µs (y) zµ1 · · · zµs → O∆,s(P,Z) =

1

s!
OA1...As (P )ZA1 · · ·ZAs ,

(A.10)

where

(P · ∂P −∆)O∆,s(P,Z) = 0 , (P · ∂Z)O∆,s(P,Z) = 0 , (A.11)

and, being restricted to the null cone (A.8), there is an extra redundancy

OA1...As(P )→ OA1...As(P ) + P(A1
ΛA2...As), (A.12)

PA1ΛA1...As−1 = 0, ΛA1...As−1(λP ) = λ−(∆+1)ΛA1...As−1(P ), ηA1A2ΛA1...As−1 = 0.

(A.13)

36Note that here z denotes the auxiliary vector zi and should not be confused with the radial Poincaré

co-ordinate in (A.2).
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B The improved current

In this appendix we detail the improvement of the higher-spin currents (3.71) to make them

exactly conserved. We begin with the traceless and transverse part of the current,

JTTs3|s1,s2 =

min(s1,s2)∑
k=0

(−2)k

k!
Γ(s1+s2+s3+d−3)

Γ(s1+s2+s3+d−3−k)
Γ(s1+1)

Γ(s1−k+1)
Γ(s2+1)

Γ(s2−k+1)H
k
3 Ȳ

s1−k
1 Ȳs2−k2 Ȳs33 . (B.1)

On-shell, each monomial in the above is conserved. One can therefore study the structure

of the required improvements with ϕ3 off-shell for a given monomial

f (k)
s1,s2,s3 = Hk3 Ȳ

s1−k
1 Ȳs2−k2 Ȳs33 . (B.2)

The combination of different monomials in (B.1) above is necessary to achieve on-shell

gauge invariance with respect to ϕ1 and ϕ2 which can be easily verified explicitly (see

e.g. [99]).

In order to proceed to find the conserved improvement, the doubly-traceless condition

on ϕ3 together with the traceless condition on the corresponding gauge parameter needs to

be dropped. Not doing so would only recover a current whose traceless part is conserved.

We hence consider the following ansatz for the improvement, dressing each monomial (B.2)

with trace operators

F (k)
s1,s2,s3 =

[s3/2]∑
n=0

α(k)
n (∂2

Ȳ3
)n(∂2

U3
)n

 f (k)
s1,s2,s3 , (B.3)

where the derivative with respect to Ȳ3 accounts for the fact that taking the trace lowers

the spin. The coefficients α
(k)
n in the ansatz (B.3) are fixed by requiring gauge invariance

of the vertex with ϕ3 off-shell and with traceless gauge parameter ξ3∫
dX (U3 · ∇3 ξ3)F (k)

s1,s2,s3ϕ1ϕ2 = 0 . (B.4)

In the above the fields ϕ1 and ϕ2 are on-shell, while the integral sign (which in the following

will be omitted for ease of notation) implies that the above identity holds modulo total

derivatives.

Employing the explicit form of the gradient operator:

U3 · ∇3 = U3 · ∂X3 −
U3 ·X3

X2
3

(X3 · ∂X3 − U3 · ∂U3) , (B.5)

we arrive to the following conservation condition:

∞∑
n=0

[
2(n+ 1)α

(k)
n+1 − 1

4 α
(k)
n [d+ 2(s1 + s2 − k − n)− 4]

]
(∂2
Ȳ3

)nf (k)
s1,s2,s3(∂2

U3
)n∂U3 · ∂X3 = 0 ,

(B.6)

which leads to the solution for α
(k)
n in the form

α(k)
n =

(
1

2

)2n 1

n!

Γ(3 + k − s1 − s2 − d
2 + n)

Γ(3 + k − s1 − s2 − d
2)

. (B.7)
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C Trace of the currents

In order to evaluate the current exchange (3.75) with the manifest trace form of the prop-

agator (3.53), we are required to compute the n-th trace of the exactly conserved current

derived in the previous section. The process can be simplified by noting that in the present

context the traces are contracted with harmonic functions, where we encounter terms of

the form

(∂2
Ȳ3

)nf (k)
s1,s2,s3(∂2

U3
)n(u2

3)q Ων,s3−2q

∣∣∣
U3=0

, (C.1)

where u2
3 is the intrinsic symmetrised metric tensor written in generating function form,

which can be re-expressed in the ambient formalism as

u2
3 = U2

3 −
U3 ·X3U3 ·X3

X2
3

. (C.2)

To evaluate the trace one commutes the U3 contained in the
(
u2

3

)q
to the far left hand

side, where the condition U3 = 0 can be applied. We first commute the u2
3 past the ∂2

U3
,

which, employing the tracelessness of the harmonic functions, reads

(∂2
U3

)n(u2
3)qΩν,s3−2q = Aqn(u2

3)q−nΩν,s3−2q , Aqn = 22n Γ(n−q)
Γ(−q)

Γ(− d2 +n+q−s3+ 1
2)

Γ(− d2 +q−s3+ 1
2)

. (C.3)

What remains is to evaluate terms of the form

(∂2
Ȳ3

)nf (k)
s1,s2,s3(u2

3)q−nΩν,s3−2q

∣∣∣
U3=0

. (C.4)

To this end, it is useful split Ȳ3 as37

Ȳ3 =
1

2
(V31 − V32) , V31 = ∂U3 · ∂X1 , V31 = ∂U3 · ∂X2 , (C.5)

and express any function of Ȳ3 instead in terms of V31 and V21. In this way, the action of

some operator g
(
Ȳ3

)
on u3 can be expressed in the form

g
(
Ȳ3

)
uA3

∣∣∣
U3=0

=
(
∂AX1

∂V31 + ∂AX2
∂V32

)
g (V31, V32) , (C.6)

from which follows the general formula

g
(
Ȳ3

)
u2

3

∣∣∣
U3=0

=
{

2 [∂X1 · ∂X2 +X1 · ∂X1 X2 · ∂X2 ] ∂V31∂V32

+X1 · ∂X1(X1 · ∂X1 − 1)∂2
V31

+X2 · ∂X2(X2 · ∂X2 − 1)∂2
V32

}
g (V31, V32) , (C.7)

which can be iteratively applied to evaluate the traces in (C.4). Now, since each current

in the exchange is to be integrated over AdS, we can evaluate the above terms up to

integrations by parts using

X1 · ∂X1 = −(d− 2 + Ȳ1∂Ȳ1
+ Ȳ2∂Ȳ2

+ V31∂V31 +Q3∂Q3) , (C.8)

X2 · ∂X2 = −(d− 2 + Ȳ1∂Ȳ1
+ Ȳ2∂Ȳ2

+ V32∂V32 +Q3∂Q3), (C.9)

37Note that in fact V31 = Y3, but for ease of notation in this section we employ the labelling V31.

– 31 –



J
H
E
P
0
6
(
2
0
1
7
)
1
0
0

where

Q3 = −1

2
(X1 · ∂X1 +X1 · ∂X1 + ∆3 + d)(X1 · ∂X1 +X1 · ∂X1 −∆3), (C.10)

and ∆3 = d
2 ± iν.

After evaluating the action of the above operators one can integrate by parts to obtain

an expression for the final form of the trace terms (C.1) in the form

J
(k)
s3|s1,s2 ·Π d

2
±iν,s3−2k =

min(s1,s2)∑
m=0

βk,ms3|s1,s2H
m
3 Y

s1−m
1 Ys2−m2 Ys3−2k

3 , (C.11)

where, via integration by parts, we replaced Ȳ2 → eλH3∂Y1
∂Y2 , V31 → Y3 and V32 →

−Y3 + ∂U3 · ∂X3 = −Y3, where in the latter equality we used that the harmonic function is

divergenceless. See [47, 99] for (in-context) reviews of integration by parts in the ambient

space formalism, where in particular the parameter λ and its use is defined.

Equation (3.18) gives the three-point amplitude (3.76) generated by (C.11).

D Seed bulk integrals

Our approach to evaluate spinning three-point Witten diagrams is underpinned by their

differential relationship (3.11) with basic seed diagrams with external scalars [100]. The

latter is the basic ingredient from which our results are generated, which we briefly review

here.

It is useful to employ the Schwinger-parameterised form for the propagator [156, 157]

K∆ (X;P ) =
C∆,0

Γ (∆)

∫ ∞
0

dt

t
t∆e2tP ·X , (D.1)

which results in

A0,0,0
0,0,0;τ1,τ2,τ3

(P1, P2, P3) =

∫ ∞
0

3∏
i=1

(
C∆i,0

Γ (∆i)

dti
ti
t∆i

)∫
AdS

dXe2(t1P1+t2P2+t3P3)·X . (D.2)

The integration over AdS is then straightforward to perform, and yields (see e.g. box 5.2

in [155])∫ ∞
0

3∏
i=1

(
dti
ti
t∆i

)∫
AdS

dXe2(t1P1+t2P2+t3P3)·X (D.3)

= π
d
2 Γ

(
−d+

∑3
i=1 ∆i

2

)∫ ∞
0

3∏
i=1

(
dti
ti
t∆i
i

)
e(−t1t2P12−t1t3P13−t2t3P23),

where Pij = −2Pi · Pj . Through the change of variables,

t1 =

√
m2m3

m1
, t2 =

√
m1m3

m2
, t3 =

√
m1m2

m3
, (D.4)
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we then obtain the final result:

A0,0,0
0,0,0;τ1,τ2,τ3

(P1, P2, P3) (D.5)

=
π
d
2

2
Γ

(
−d+

∑3
i=1 ∆i

2

)(
3∏
i=1

C∆i,0

Γ (∆i)

)

×
∫ ∞

0

3∏
i=1

(
dmi

mi
m
δ(i+1)(i−1)/2

i

)
exp

(
−miP(i+1)(i−1)

)
,

where i ∼= i+ 3 and

δi(i+1) =
∆i + ∆(i+1) −∆(i−1)

2
, (D.6)

The standard three-point conformal structure for scalar operators is obtained from (D.5)

using the integral representation of the Gamma function

A0,0,0
0,0,0;τ1,τ2,τ3

(P1, P2, P3) = C (∆1,∆2,∆3; 0)
1

P
∆1+∆3−∆2

2
13 P

∆2+∆3−∆1
2

23 P
∆1+∆2−∆3

2
12

, (D.7)

where explicitly

C (∆1,∆2,∆3; 0) (D.8)

=
1

2
π
d
2 Γ

(
−d+

∑3
i=1 ∆i

2

)
C∆1,0C∆2,0C∆3,0

×
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆1+∆3−∆2
2

)
Γ
(

∆2+∆3−∆1
2

)
Γ (∆1) Γ (∆2) Γ (∆3)

.
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