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1 Introduction

Here and there, in collider experiments, we see hints of deviations from the standard model

(SM) and will probably see more in the future. These anomalies — e.g., in the diphoton

spectrum, weak diboson spectrum, or in the flavor sector — may point at new physics in

close vicinity of the electroweak (EW) scale which is well motivated theoretically given the

gauge hierarchy problem. One of the most popular solutions to this puzzle is provided by

the Higgs compositeness paradigm [1, 2]1 whose implications at EW energies can be re-

flected in an economical and reasonably model-independent way in the strongly interacting

light Higgs (SILH) framework [6]. It does not only address the construction of a basis of

dimension-six operators from standard-model fields, but also imposes the theoretical biases

arising from our understanding of strongly coupled ultraviolet (UV) completions. Its pre-

dictivity is thereby increased. This framework can in principle be extended to also describe

new states. In this note, we aim at presenting the minimal such extension including one

single new dynamical degree of freedom in the form of a composite spin-zero EW singlet

1For detailed reviews of composite PNGB Higgs we for instance refer the reader to refs. [3–5].
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S, heavier than the Higgs boson. There are numerous roles an extra singlet field could

play and help addressing relevant issues that the standard model is deficient with, like the

abundance of dark matter (see e.g. refs. [7, 8]) or the matter-antimatter asymmetry that

could be produced during a strong first order electroweak phase transition [9, 10].

Since its discovery, the Higgs boson experienced a change of status and has become a

tool to search for new physics. In composite Higgs (CH) models, the deviations from the

SM predictions of the Higgs production and decay rates induced by the putative strong

dynamics above the EW scale have been known for quite some time. The goal of our study

is to understand how these generic signatures are affected by the presence of additional

composite states below the new scale of the strong interactions. In particular, we identify

under which circumstances the effects of a singlet spin-zero field dominate over that of the

strong sector, in which channels they are more likely to be revealed and how they can help

deciphering the dynamics governing this singlet field.

The structure of this paper is the following. In section 2, we define the general power

counting rule for the operators involving SM fields and S, discuss possible underlying UV

dynamics, and construct a basis from the relevant operators. In section 3, we apply our

formalism to several minimal but consistent scenarios for the composite H + S pair and

discuss their phenomenology, notably in the Higgs sector. In section 4, we discuss the

matching of two explicit examples of composite Higgs models onto our power counting.

Finally, our conclusions are presented in section 5.

2 General formalism

In this section, we set up an effective field theory (EFT) framework describing a variety

of models that feature a new strongly coupled dynamics which confines at some scale f

not very far above the EW scale. We assume that the Higgs doublet H and a spin-zero

gauge singlet S are the lightest composite resonances and include them explicitly in our

EFT. The effects of the rest of the strong dynamics are described by effective operators.

This type of spectrum can naturally arise in theories where both S and the Higgs are

pseudo Nambu-Goldstone bosons (PNGB) associated with the spontaneous breaking of

an approximate global symmetry of the strong sector at the scale f (see refs. [11, 12] for

specific examples). The general mechanism can be illustrated using the SO(6) → SO(5)

spontaneous symmetry breaking pattern [11]. It gives rise to five PNGBs transforming in a

fundamental representation of SO(5). Among those five states, a quadruplet and a singlet

of SO(4) ⊂ SO(5) are found. The quadruplet has the right quantum numbers to form a

complex Higgs doublet if the SM EW group SU(2)L is identified with one of the factors

of SO(4) ∼ SU(2)1 × SU(2)2, and the remaining SO(4) singlet becomes the additional

singlet S. While assuming a PNGB nature for the Higgs seems indispensable,2 the relative

lightness of S may just be accidental. This situation can be realized for instance in scenarios

with SO(5)→ SO(4) breaking, giving only rise to four PNGBs forming the Higgs doublet.

Our aim here is to probe the robustness of the generic predictions of the minimal models

and to construct a unified framework suitable for describing next-to-minimal models, thus

2For a brief analysis of non-PNGB, accidentally light Higgs we refer the reader to ref. [13].
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capturing a broad range of explicit models and providing a common basis for their compari-

son. In the following, we establish a general procedure to construct the effective Lagrangian

of these next-to-minimal theories. In section 3, we use this procedure to build several con-

sistent realizations of composite S +H scenarios, corresponding to typical limiting cases.

2.1 Power counting rule

Our EFT is complemented by a power counting rule allowing to estimate, up to order-one

factors, the dependence of different operators on the strong sector properties. We assume

that the quantitative features of the strong dynamics can be fully characterized by a typical

mass mρ of the lightest composite states other than S and H, playing also the role of a

cutoff of our EFT description, and a typical coupling gρ, which can take values in a range

from order-one to 4π. The expected scaling of the effective operator coefficients in terms of

these parameters can be determined using dimensional analysis. The qualitative features

of the strong sector, related to its symmetries and internal structure, manifest themselves

through selection rules, i.e. the suppression of certain operator coefficients with respect to

generic expectations. In the reminder of this section, after having introduced the required

dimensional analysis arguments, we discuss the selection rules deriving from the nature of

S and the possible features of an underlying UV completion. We cover scenarios featuring

a CP-odd or -even, generic or PNGB, S state.

Dimensional analysis. With the c = ~ = 1 convention abandoned, dimensional analysis

determines the correct scaling of the EFT operators coefficients with mρ and gρ. Following

ref. [4], we characterize the dimensions of all the relevant objects in units of ~ and length

L. The ~ and L dimensions of an operator generated at #L loops are (1 − #L) and −4

respectively. They have to match the total dimension of the scalars (~ dimension 1/2, L

dimension −1), fermions (1/2, and −3/2), vectors (1/2 and −1), mass parameters, deriva-

tives (0 and −1) and couplings (−1/2 and 0) it involves. Hence, if no selection rule applies,

an operator with #H external fields H, #S external S, and #∂ derivatives has the form

m4
ρ

g2
ρ

[
gρS

mρ

]#S
[
gρH

mρ

]#H
[
∂µ
mρ

]#∂

(composite states) . (2.1)

Selection rules can however play a crucial role in determining the magnitude of operator

coefficients. For instance, CP invariance in the strong sector would forbid the S|H|2 and

S|DµH|2 operators for a pseudo-scalar S. Less trivial examples will be considered in the

following.

According to the rule (2.1), the insertion of a Higgs field is associated with a factor

gρ/mρ. Comparing this to the usual parametrization of Goldstone bosons, appearing in

the Lagrangian only through U ∼ exp(iH/f), we obtain the important relation:

mρ ∼ gρf . (2.2)

It is worth emphasizing that f and mρ thus have different ~ dimensions.
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Shift symmetry breaking and partial compositeness. An important symmetry en-

countered in CH models is the “shift” symmetry of the Nambu-Goldstone bosons. If unbro-

ken, it forbids Goldstone bosons to have a potential and, in particular, a mass. In realistic

models, the PNGB Higgs potential is generated through the partial compositeness (PC)

mechanism.3 In this case, the breaking of the shift symmetry is induced by the couplings

of the strong sector to the rest of the SM fields, which are assumed to be elementary. It is

rather natural to suppose that S, if realized as a PNGB, shares its shift symmetry break-

ing source with the Higgs boson.4 Since the shift-breaking interactions couple elementary

SM states to the Higgs boson, they are also responsible for the generation of SM masses.

The couplings to the heaviest SM fermion, namely the top quark, hence induce the largest

breaking. Therefore, all the shift symmetry breaking operators have to either explicitly

contain SM fields or be suppressed by a loop of the elementary top quark. This loop

suppression can be estimated from dimensional arguments as Ncy
2
t /(4π)2 or Ncytgρ/(4π)2,

where yt is the SM top quark Yukawa coupling and Nc is a number of colors. Either value

can appear in explicit models [18]. In the following, we will stick to the first option which

gives the most distinct results with respect to the non-PNGB case. This discussion can be

formalized by adding the following factors to the power counting formula (2.1):[
Ncy

2
t

(4π)2

]#/L
[
yq q̄q

m2
ρf

]#q̄q
[
gAA

mρ

]#A

(elementary states) . (2.3)

Here, yq is the SM Yukawa coupling of the fermion q, gA is the coupling strength of the SM

gauge field A, and #q̄q,#A,#/L are respectively the numbers of fermion bilinears, gauge

fields, and loop suppression factors required to break the S or H shift symmetry. The para-

metric form of the coefficient again follows from dimensional analysis, while the presence of

a Yukawa coupling in front of the fermion bilinear assumes Minimal Flavor Violation [19].

Note that it is in any case required for the Higgs interactions to reproduce the form of

the SM Yukawa interactions yq q̄Hq, and that the S couplings to fermions can be naturally

endowed with this flavor structure, because they always involve a Higgs doublet. For sim-

plicity we will assume that the chirality conserving quark bilinears of the type q̄γµq obey

the same power counting as q̄q.

Using the formulas (2.1), (2.3) we can for example obtain the parametric form of the

one-loop PNGB Higgs potential

Vh = m2
ρf

2 Ncy
2
t

(4π)2

(
−α |H|

2

f2
+ β
|H|4
f4

)
(2.4)

where α and β are dimensionless coefficients which are expected to be of order one. Its

minimization yields

v = f

(
α

2β

) 1
2

and m2
h ' β

Ncy
2
t

2π2

v2

f2
m2
ρ , (2.5)

3Partial compositeness of the top quark seems to be the only viable way to make the top as heavy as it

is, while the mass of other SM states can in principle be generated in a different way, see refs. [14–16]. See

also ref. [17] for a CH model with other sources of shift symmetry breaking.
4Though the Higgs and S shift symmetries and breaking sources are a priori independent, we take them

to be equal as a first approximation, keeping in mind that this assumption can be relaxed.

– 4 –



J
H
E
P
0
6
(
2
0
1
7
)
0
8
8

where mh is the Higgs mass and v its vacuum expectation value (VEV).5 A key parameter

of CH models is the ratio ξ = v2/f2 of the EW symmetry breaking scale v ∼ 246 GeV

and the strong sector global symmetry breaking scale f . It controls the size of the Higgs

couplings deformations with respect to SM predictions [20, 21] and is already bounded to

be ξ . 0.2 [22, 23]. In order to achieve the separation v � f required phenomenologically,

one has to tune the α and β coefficients of the potential. An additional tuning of the β

coefficient may be required to provide a sufficiently low Higgs mass. If S is a PNGB as well,

its potential would have the same parametric form as the Higgs, but there is a priori no

reason for any tuning to take place. One therefore expects the following hierarchy between

the Higgs boson mass, the S mass M , and the masses of other composite states

m2
h : M2 : m2

ρ ∼
Ncy

2
t

(4π)2
ξ :

Ncy
2
t

(4π)2
: 1 (PNGB S with PC breaking) . (2.6)

In the case of a generic S, we rather expect this mass hierarchy to be

m2
h : M2 : m2

ρ ∼
Ncy

2
t

(4π)2
ξ : 1 : 1 (generic S) . (2.7)

The EFT validity then requires S to be accidentally lighter than the cutoff mρ, with the

degree of tuning M2/m2
ρ characterizing the accuracy of our description.

Anomaly-mediated shift symmetry breaking. A breaking of the shift symmetry of

a PNGB S through PC is not the only possibility. It is actually not strictly necessary since

S does not have to couple to SM fermions, unlike H which generates their masses. The

shift symmetry of a CP-odd S can for instance be broken by anomalies associated with the

gauge fields of the SM or the strong sector

Nfg
2
X

(4π)2

S

f
XµνX̃

µν , (2.8)

where Xµν is a gauge field strength tensor, gX the corresponding coupling and Nf is an

anomaly coefficient roughly corresponding to the number of strong sector fermion flavors

generating the anomaly. The anomalous interactions with the SM gauge fields can however

not generate a sufficiently large S mass [24]. In order to make S heavier than the Higgs

boson, one could either again resort to PC breaking, or assume that M arises from the

anomaly related to the new strong dynamics. In the latter case, in analogy with the

η′ meson of QCD [25], we obtain M2 ' m2
ρ Nf/N , where N is a number of colors of

the underlying strong dynamics. Using the relation 1/N ∼ g2
ρ/(4π)2, predicted for large-

N theories (see next section), the expression for the S mass can be rewritten as M2 '
m2
ρ Nfg

2
ρ/(4π)2. So, in this case, the estimate for the mass hierarchy is

m2
h : M2 : m2

ρ ∼
Ncy

2
t

(4π)2
ξ :

Nfg
2
ρ

(4π)2
: 1 (PNGB S with anom. breaking) . (2.9)

5Notice that the Higgs field value is not proportional to the symmetry breaking parameters because, in

the absence of external breaking, there is no Higgs potential, the Higgs VEV is simply not fixed and can

take any value, i.e. one should not expect that v → 0 for yt → 0.
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The S mass and couplings to gauge bosons differ from the generic estimates, m2
ρS

2 and

g2
X/g

2
ρ XµνX̃

µνS/f , derived from eqs. (2.1), (2.3) by a factor of Nfg
2
ρ/(4π)2, which we thus

include as a suppression characteristic of anomaly breaking in our power counting rule.

Notice that the Nf factors appearing in the anomalous couplings and in the expression for

the mass are in general independent.

UV selection rules. We have so far discussed selection rules connected to symmetry

breaking. In addition, some of the operators can carry suppressions not transparently

related to the EFT symmetries. Two types of such suppressions, present in large-N and N -

site theories, will be described in the following two sections. They can affect the couplings

of S to the SM gauge bosons or the Higgs field, leading to an additional Nfg
2
ρ/(4π)2 factor,

where Nf is an effective number of composite flavors.

At this point we can summarize the power counting in a single expression

m2
ρf

2

[
Ncy

2
t

(4π)2

]#/L

[
Nfg

2
ρ

(4π)2

]#L [
yq q̄q

m2
ρf

]#q̄q
[
gAA

mρ

]#A
[
S

f

]#S
[
H

f

]#H
[
∂µ
mρ

]#∂

, (2.10)

where #/L is a number of loops required to break the shift symmetry through PC, #L stands

for a number of loops required by the UV selection rules or the shift symmetry breaking by

anomalies, and the remaining #’s correspond to the number of insertions of external fields

or momenta. The power counting formula (2.10) applies only to the operators generated

by the strong dynamics and, for instance, not to the elementary field kinetic terms. It

complements the power countings developed in refs. [6, 13, 26] for CH models, in what

concerns the presence of an additional state S, but does not have their generality, as we

made simplifications to display more transparently the physics relevant for our discussion.

Having defined the basic ingredients of our EFT, we now comment on its validity. As

usual, we have to limit our EFT description to operators of a certain mass dimension.

In order to keep the effect of higher-dimensional operators negligible, we need a sizable

separation between M and mρ. As we have seen, a PNGB S can be parametrically lighter

than mρ, while for a generic S the scale separation could be accidental or due to some

unknown features of the underlying strong dynamics leading to deviations from our power

counting estimates. However it is worth stressing that the first signals of a new resonance

will not allow for a precise determination of its properties. Instead, one will only be sensitive

to the order of magnitude of different operator coefficients and therefore to selection rules.

Hence, even with a moderate M −mρ separation, our framework could allow to determine

the main features of the underlying theory and could point at the explicit UV completions

of the most appropriate type.

In the two following subsections we give a short overview of the two well-known ap-

proaches used to describe the behavior of strongly coupled dynamics bound states. They

lead to — and provide us with further insight in — the power counting rule (2.10).

2.2 Matching to large-N theories

As a first prototypical example of UV completion we consider confining SU(N) gauge

theories with Nf quark flavors transforming in the fundamental representation of the gauge

– 6 –
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S

H

H

S
S

γ

γ

γ

γ

Figure 1. Examples of diagrams generating S|H|2 and S|DµH|2 couplings (left) and SFµνF
µν

coupling at loop level in terms of hypothetical hyperquark constituents of S (center) and in terms

of their bound states (right). Solid straight lines of different colors correspond to different fermionic

flavors, wavy lines correspond to SM gauge bosons, and dashed lines are for composite scalars.

group. (We will call the new states quarks and gluons for simplicity and will not refer to

their SM analogues in this section.) In this case, we can use a 1/N expansion [27–29]

in order to understand the properties of bound states. The bound states which we are

interested in form when the coupling g∗ between quarks and gluons becomes strong, hence

an expansion in g∗ is not useful for their description. But in the strongly coupled regime

characterized by

N
g2
∗

16π2
∼ 1 , (2.11)

amplitudes acquire a well-defined scaling with N which can be used to estimate their

relative size. The use of the 1/N expansion relies on the assumption that this regime plays

the dominant role in the bound state dynamics.

Let us consider the specific example of meson-like states which are typically the lightest

and therefore can be good candidates for H and S. In the Feynman diagrams corresponding

to meson interactions, each additional gluon loop brings an extra factor of Ng2
∗/16π2 ∼ 1.

This means that diagrams with any number of additional gluon propagator insertions have

at most6 the same size as the leading-order diagram. Their sum therefore has the same scal-

ing with N as the easily estimated leading-order contribution. Using this feature, one can

determine the expected scaling of different n-point functions [27–29], effectively resuming an

infinite series in g∗. The power counting formula (2.1) is then recovered for the interaction

of meson-like states with the following identification for the meson-meson coupling strength

gρ =
4π√
N
. (2.12)

One can also show that the mass of mesons mρ is independent of N [29]. Notice that

glueballs and baryons behave differently: our power counting only applies to mesons.

Moreover, each additional quark loop brings an extra 1/N suppression. This derives

from the fact that quarks have one fewer color index than gluons whose loops are unsup-

pressed when Ng2
∗/16π2 ∼ 1. Given the identification (2.12), a 1/N factor corresponds to

a g2
ρ/16π2 suppression, i.e., to a loop factor in the (2.10) counting. The Zweig rule is an

example of such suppression at work in QCD. Analogous suppressions can also appear in

6The largest contributions are given by the planar diagrams, while the non-planar ones carry extra 1/N

suppression factors.
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the interactions of composite states made of different types of quarks. With a different

quark composition for S and H, the S|H|2 operator would for instance arise from a dia-

gram containing two closed fermion lines instead of one for operators like S3 featuring one

single type of meson (see left graph of figure 1).

Closed fermionic lines can however be enhanced by the quark multiplicity, hence a fac-

tor Nf in eq. (2.10). At the same time the scaling of meson masses and couplings with N is

not affected by Nf as long as one remains within the region of applicability of the large-N

expansion which requires Nf < N and also ensures confinement [30]. As an example, let us

consider the coupling of S to SM gauge field strengths if the quark constituents of S are SM-

neutral. It must involve a loop of other quarks, charged under SM, which brings a 1/N sup-

pression together with an enhancement by the number of quark flavors running in this addi-

tional loop. This example is represented graphically on the central graph of figure 1. Note

the analogy with a process induced by a loop of SM-charged mesons (right graph of figure 1).

2.3 Matching to multisite models

Multisite models are often used as a weakly coupled description of the lowest laying com-

posite resonances [26, 31, 32], inspired by five-dimensional realizations of the composite

Higgs [1] and the idea of dimensional deconstruction [33]. In this section, we give a general

overview of the relation between the two-site models and the power counting rules developed

in section 2.1. Two concrete examples of two-site models will be discussed later in section 4.

Two-site models consist of two separate sites in a theory space, each featuring sepa-

rately a copy of an approximate global symmetry G, which we call G1 and G2, and contain-

ing certain sets of gauge and matter fields. The product G1×G2 is spontaneously broken to

the diagonal subgroup Gdiag. The Goldstone bosons χ of the spontaneous breaking are em-

bedded into the unitary matrix U = exp[iχ/f ], which transforms under G1×G2 rotations as

U → g1Ug
†
2 . (2.13)

Once set to its VEV, 〈U〉 = I, the Goldstone matrix only leaves unbroken the subgroup

Gdiag, corresponding to transformations with g1 = g2. The field content of the first site

is that of the SM without the Higgs, and the SM gauge symmetry group GSM is realized

as a subgroup of G1. Since GSM ⊂ G1, the SM fields form only incomplete multiplets of

G1 and hence break it. This mimics the explicit weak breaking of the strong sector global

symmetry G → GSM by elementary fields. The second site features a gauge symmetry

H ⊂ G2 with typical gauge couplings gρ � gSM. The second site therefore plays the role

of strong sector with a spontaneous G → H breaking. Since H is gauged and broken by

a condensate 〈U〉, the gauge bosons of the second site ρµ acquire a mass mρ ∼ gρf . The

χ components corresponding to the H generators can be absorbed by the H gauge bosons

and disappear from the spectrum. The remaining Goldstone bosons, associated with the

G/H coset, contain the Higgs field and possibly also S.

The crucial assumptions about the two-site model include, besides the choice of the

G and H symmetry groups, the embedding of the SM third-family quarks in incomplete

multiplets of G. Once they are specified, the elementary fermions of the first site can be

– 8 –
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coupled to the composite fermionic partners ψ of the second site

Lmix = yLf q̄LUψR + yRf t̄RUψL + h.c. , (2.14)

where qL = (tL, bL) and tR are SM quarks, embedded in some representation of G.7 This

Lagrangian realizes the PC paradigm and leads to the top quark Yukawa Lagrangian

LYukawa ⊃ yLyRf
mψ

q̄LHtR where mψ is the typical mass of the composite fermions. At

the same time, since the interactions (2.14) couple the Goldstones to the G → GSM and

G → H breaking sources, they generate the loop-level scalar potential V (yL, yR,mψ) for

the Higgs boson and the singlet S. The Goldstone symmetry-preserving interactions arise

from the kinetic term of the U field

Lkin,χ =
f2

2
Tr[DµU(DµU)†] , (2.15)

where DµU = ∂µU − igAAµU + igρUρµ. This Lagrangian also contains mixings between

the elementary and composite gauge fields which make the SM gauge bosons partially

composite and break the Goldstone shift symmetry.

The well-known structure described above, including the specific assumptions about

the G and H symmetry groups as well as the field content of the second site, determines the

Lagrangian at the renormalizable level (thinking of fU as a dimension-one scalar). Since

the second site states are just an effective description of the lightest composite resonances,

one however also needs to describe the effects of the rest of the strong sector through higher-

order operators. In the following, we will simply assume that there are no other composite

resonances up to the cutoff Λ = 4πf . At this energy the derivative couplings between

the Goldstone bosons become non-perturbative and the theory of bound states has to be

substituted by some other description. Therefore, all the higher-order operators generated

by the strong dynamics arise at the cutoff scale Λ and we use the naive dimensional analysis

(NDA) prescription [34] to estimate their size. NDA predictions correspond to those of the

power counting formula (2.10) in the limit of the maximal coupling gρ → 4π and hence

mρ → Λ. Our description of the composite resonances of the second site thus obviously

requires a sufficiently large separation mρ < Λ or, equivalently, gρ < 4π.

First, it is trivial to see that the operators obtained by integrating out the composite

resonances at a scale mρ, at tree level, from the renormalizable Lagrangian will automati-

cally follow the (2.10) prescription. Now let us discuss how the NDA-sized operators coming

from the scale Λ will affect the low-energy physics below the scale mρ, and how this effect

can be captured by the power counting rule (2.10). Recall that the derivation of our for-

mula (2.10), used to describe the physics below mρ, was based on the assumption that mρ

is the only UV scale of the problem, while now we have additional effects coming from Λ.

One may naively assume that the NDA coefficients of the relevant operators, like the Higgs

mass, will be enhanced by factors of Λ/mρ with respect to (2.10) predictions. This does

however not happen because of the symmetry structure of the two-site model which requires

the simultaneous presence of both G1 → GSM and G2 → H breaking sources to generate

7In this case, we have explicitly assumed that elementary fermions are embedded into fundamental repre-

sentations of G while, for other choices, one may need a different form of mixing, as will be seen in section 4.
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the PNGB potential. If any of the two sites were G-symmetric, the Goldstone matrix could

be eliminated by a unitary G-rotation from the mixing Lagrangians (2.14), (2.15). Since

the G2 → H breaking comes from the masses ∼ mρ and couplings ∼ gρ of the second site

fields, the PNGB potential is suppressed by an additional factor of m2
ρ/Λ

2 with respect

to the NDA estimate and thus follows the prediction of our power counting (2.10).8 As

for the irrelevant operators, the NDA predictions for their coefficients are suppressed by

powers of gρ/4π with respect to the predictions of (2.10). This suppression is thus similar

to the effect of what we call UV selection rules.

This leads to an important conclusion: in this particular realization of the strong

sector, the UV selection rule suppression of some couplings arises if they can not be gen-

erated after integrating out, at tree level, the composite states from the renormalizable

Lagrangian of the second site. As a result, the corresponding operators are generated ei-

ther at loop level, or directly at the scale Λ, in both cases carrying extra powers of gρ/4π.

This type of UV selection rules in particular realizes the minimal coupling (MC) condi-

tion, as defined in ref. [6]. The couplings of neutral matter fields to the on-shell gauge

bosons SGµνG
µν , SWµνW

µν , SBµνB
µν , |H|2GµνGµν , |H|2γµνγµν , (DµH)†σi(DνH)W iµν ,

and (DµH)†(DνH)Bµν can not be generated at tree level in N -site models and hence carry

a g2
ρ/(4π)2 suppression. Part of the couplings listed above, namely SX2 and |H|2X2, are

expected to be loop-level even without MC if S and the Higgs are PNGBs. Notice that,

unlike the 1/N “loop” suppression of large-N theories, the MC loop suppression in N -site

models is automatic rather than optional.

2.4 Effective Lagrangian construction and choice of the operator basis

In the EFT obtained after integrating out the UV degrees of freedom, one generically

expects all operators compatible with the gauge and approximate global symmetries and

their breaking patterns. We assume that the degrees of freedom of the EFT are chosen

such that all the associated symmetries are manifest, and hence our power counting (2.10)

directly applies to all EFT operators. It would however be impractical to perform physical

analyses with the full set of possible operators, given that some of them are redundant.

Our goal here is to find the minimal set of operators obeying the power counting (2.10),

to which the full set can be reduced. This task is nontrivial because certain manipulations

with the effective operators leading to the reduction of their total number also explicitly

break of the power counting. In other words, if we simply eliminate all the redundant

operators without paying attention to the size of the corrections induced to the remaining

ones, the resulting operator coefficients may not follow the power counting and the presence

of symmetries may become hidden in correlations between different coefficients. This will

become clear in the following part of this section where we construct a set of operators

capturing the leading interactions of the new spin-zero state S with SM fields. They can

be described by operators of dimension five at least (unless S features some additional

symmetries which we do not consider) and those are the only ones we will consider.

8An analogous reasoning can be applied to the PNGB S mass, but implementing the large mass sepa-

ration M � Λ for a generic S may require some ad hoc assumptions.
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We will first discuss the case of a scalar S. Let us start by analyzing the set of

dimension-five operators containing the fields S, H as well as two derivatives

O1 =
1

f
|DµH|2S O2 =

i

f
(H†DµH)∂µS + h.c. O3 =

1

f
∂µ|H|2∂µS (2.16)

O4 =
1

f
(H†�H)S + h.c. O5 =

1

f
|H|2�S

and discuss which of these operators can be eliminated without breaking our power count-

ing.

O3, O5. Integration by parts relates these two operators which have the same symmetry

breaking properties, i.e. invariance under S → S + c but not under H → H + c. Hence,

we can safely eliminate either of them without conflicting with our power counting. We

choose to eliminate O3 in favor of O5:

O3 → −O5 . (2.17)

O1, O4, O5. The importance of the symmetry breaking structure can be seen when con-

sidering the operator O1, which can be expressed in terms of other operators using

integration by parts

O1 →
1

2
(O5 −O4) . (2.18)

One immediately realizes that the two operators in the r.h.s. break the Higgs shift

symmetry, unlike the one they originate from. This poses a problem if S is a generic

composite state because the operator O1, not carrying in this case any loop suppression,

after using the equality (2.18) gives rise to two operators breaking the Higgs shift symme-

try with unsuppressed coefficients, in contradiction to our power counting rules (2.10).

In general these types of problems are also expected to arise in a theory with both S

and H being PNGBs, but with a different size of shift symmetry breaking. The fact

that H → H + c breaking is suppressed will now be encoded into a correlation of O4

and O5 coefficients defined by eq. (2.18).

If we proceed further in this direction, the operators O4 and O5 generated by O1 can

be eliminated by the field redefinitions

H → H

(
1 +

αH
f
S

)
, S → S +

αS
f
|H|2 (2.19)

which give the following modifications of the kinetic and mass terms

δLHkin = −αHO4 + . . . , δLHmass =
2αH
f

µ2S|H|2 + . . . , (2.20)

δLSkin = −αSO5 + . . . , δLSmass = −αS
f
M2S|H|2 + . . . , (2.21)

where −µ2 is the mass parameter of the Higgs doublet and the ellipses stand for higher-

order operators. Hence, by appropriately choosing αS and αH , the O4 and O5 operators
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can be eliminated. In return, one receives modifications of the remaining operators, e.g.

S|H|2 gets shifted by (
−αS

M2

f
+ 2αH

µ2

f

)
S|H|2 , (2.22)

and if S in not a PNGB we have αSM
2/f . m2

ρ/f , which does not feature the loop

suppression factor expected for the H shift breaking operators. The Higgs shift sym-

metry is now hidden in the correlation among the different coefficients, and can not be

reconstructed by making order of magnitude power counting estimates. For instance, if

we had performed an analysis in the basis where O1,4,5 are eliminated and assumed that

the operator S|H|2 has a coefficient of the size ∼ (M2/f) without keeping track of all

the correlations, we would have obtained an excessive mixing of the S and the physical

Higgs boson, which has in fact to be loop suppressed. Consequently, we would have over-

estimated the impact of S on Higgs physics. Had we instead assumed a loop suppressed

coefficient for the operator S|H|2, we would then have underestimated the physical ef-

fects originally triggered by the O1 operator, e.g. S → hh decay rate. Similar problems

appear with higher-order operators (S|H|4, S2|H|2, . . . ) and can be traced back to the

field redefinitions (2.19) which cause an unsuppressed explicit breaking of the H shift

symmetry when αS,H ∼ 1. We hence conclude that the elimination of the operator O1

(as e.g. in ref. [35]) would not allow to apply our power counting to the operator basis

if S is a generic scalar. Instead, we use the equality (2.18) to rewrite O5 in terms of O4

and O1, while O4 can be eliminated using one of the field redefinitions (2.19).

Note that a similar situation occurs in the construction of the SILH basis of the

dimension-six operators for the composite Higgs boson. The Higgs shift-symmetry pre-

serving operator Tr[DµU(DµU)†] (2.15), giving rise to the Higgs kinetic term, also

produces two operators |H|2|DµH|2 and ∂µ|H|2∂µ|H|2. Each of the latter breaks

H → H + c, but the specific linear combination of them coming from Tr[DµU(DµU)†]

is shift invariant. Then, the operator |H|2|DµH|2 is removed by an order-one shift-

symmetry-breaking field redefinition H → H(1+γ|H|2/f), while ∂µ|H|2∂µ|H|2 remains

in the SILH basis with an unsuppressed coefficient. At the level of dimension-six opera-

tors, this field redefinition does however not generate any SILH power counting breaking,

besides the one associated with ∂µ|H|2∂µ|H|2. It is also important to notice that, in

this case, two operators of the full initial set break the power counting estimates even

before any manipulations. We do however not expect a similar situation, contradicting

our starting assumption, to occur at the level of dimension-five operators involving S.

In case S is a PNGB with the same properties as the Higgs, expressing O1 in terms of

O4,5 poses no problem since the former has to be loop suppressed. Afterwards, O4,5 can

be eliminated by the redefinitions (2.19) with loop suppressed αS,H , without introducing

any breaking of the power counting.

O2. This operator can safely be removed by gauge field redefinitions and expressed in terms

of operators of ∂µS q̄γ
µq type.
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We conclude that one of the operators with derivatives, |DµH|2S, can not be removed

if S and H have different natures, i.e. if S is a generic composite resonance or a PNGB with

a larger breaking size than that of the Higgs. Note that one of the field redefinitions (2.19),

which is not used in this case, can still serve to eliminate one operator. Let us now discuss

operators of the type Sn|H|2m.

Sn|H|2m. Elimination of operators of this type can also lead to a violation of the power

counting rules. By applying the equations of motion (e.o.m.) of the PNGB S or H, one

unavoidably generates H shift symmetry breaking terms containing derivatives and not

carrying loop suppression factors. For example, for the operator S|H|2, we get

y2
t

16π2

m2
ρ

f
S|H|2 → 1

f
SH†�H or

1

f
�S|H|2. (2.23)

This occurs because any product of the S and H fields enters the e.o.m. with a loop

suppression while the kinetic terms of H or S are unsuppressed. Analogous problems

appear if one attempts to eliminate any operator of the type Sn|H|2m.

Hence, we are only left with a possibility to use the S e.o.m. when S is a generic scalar.

Given that the e.o.m. in that case contains unsuppressed terms of the type Sn, it can

be used to re-express Sn|H|2m in terms of other operators without absorbing the loop

suppression. However, with a generic S, one can run into a different problem related

to the necessary tuning of the S mass. Since the coefficient of the operator S2 brings

the main contribution to the physical S mass M , it has to be tuned down with respect

to the power counting estimate in the same way as M . For instance, if we apply the S

e.o.m. to the operator S|H|2, we obtain

y2
t

16π2

m2
ρ

f
S|H|2 → y2

t

16π2

1

f

m2
ρ

M2
�S|H|2 + . . . (2.24)

i.e., the resulting operator coefficients are enhanced by the degree of tuning m2
ρ/M

2 of

the S mass.9 The only two operators of Sn|H|2m type which can be eliminated without

problems are S2|H|2 and S3|H|2 because the coefficients of S2 or S3 in the equation of

motion of S are expected to be neither tuned, nor loop suppressed. The S field redefi-

nition allowing to eliminate one of these two operators is precisely the one of eq. (2.19),

which remained unused since the operator |DµH|2S can not be excluded for a generic S.

We can now complete the discussion of dimension-five operators. The remaining opera-

tors of the form ∂µSq̄γ
µq, S∂µS∂

µS can be removed by the fermion and S field redefinitions

without breaking the power counting. Up to dimension five, the minimal set of operators

preserving the power counting in all the discussed scenarios for S can be chosen to be

9Notice that analogous enhancements would not occur when applying the PNGB H e.o.m.. The physical

Higgs mass, which has to be tuned (see discussion of section 2), then receives different contributions, e.g.

direct UV contributions encoded in the |H|2 operator, but also IR ones arising from loops involving the top

Yukawa ytq̄LHtR. Generically, no tuning of the |H|2 coefficient is expected at the S mass scale.
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SX2 , S2,4 S|DµH|2 , S3,5

Sq̄Hq , S2|H|2 S|H|2 , S|H|4 , S3|H|2

where X2 stands for Xi
µνX

i µν or 1
2εµνρσX

i µνXi ρσ ≡ Xi
µνX̃

i µν with X = G,W,B cor-

responding to the SU(3)c, SU(2)L and U(1)Y gauge field strengths. The presence of the

canonically normalized kinetic term for S is understood. For definiteness, we assume that

the VEV of S vanishes when 〈H〉 = 0. We also assume CP conservation so that a CP-even

S only couples to Xi
µνX

i µν and a CP-odd S only to Xi
µνX̃

i µν . The operators in the two

upper blocks are invariant under H → H + c shifts but break S → S + c, while the ones in

the lower blocks break both shift symmetries.

Part of the operators above can be removed in specific scenarios. The operators in the

left blocks are allowed regardless of S CP properties (up to a change of gauge field strength

to its dual), while the right blocks are forbidden by CP conservation if S is a pseudo-scalar.

In the case of a CP-even S, one redundant operator can still be removed from this set. For

a PNGB S, one can eliminate S|DµH|2 without breaking our power counting while, for a

generic S, one can remove either S2|H|2 (as done below) or S3|H|2.

As a final remark, it is important to mention that the operations leading to the con-

struction of the given basis do not violate any of the UV selection rules identified for the

large-N and multisite models, namely the possible loop suppression of the couplings of S

to the Higgs and gauge bosons. Their preservation trivially follows from the fact that all

the modifications related to the field redefinitions that were applied to S and H are loop

suppressed, while the redefinitions of the gauge bosons and fermions are never relevant in

this respect.

3 Model classification and phenomenology according to the dynamics of

the singlet field

With different assumptions regarding the dynamics of the singlet, we now present a de-

scription of several next-to-minimal scenarios for the composite Higgs boson and the singlet

field, using the operator basis and power counting rules developed in section 2. Each of

the scenarios is intended to capture the main distinct features of well-motivated UV com-

pletions in a consistent way. Among the plethora of possible operators, we focus on those

describing the leading interactions of S with SM fields, which are responsible for the S

production and decays at collider experiments. For this reason, operators of dimension five

at most will be considered. We will also present the implications for Higgs physics observ-

ables at the level of dimension-six operators. Their coefficients are already well constrained

by the EW precision tests and the Higgs data. The lowest dimension of the operators ap-

pearing after integrating S out increases by at least one unit as S is the only available

dimension-one singlet, while the lowest-dimensional gauge singlet combination of SM fields

is |H|2. This means that, in the dimension-six low-energy Lagrangian for the SM fields,

there will be no operators coming from the UV Lagrangian with dimension higher than
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five. Therefore, for the sake of study of S effects at high and low energies, it is consistent

to limit our study to LUV
≤5 (S, SM) + LIR

≤6(SM).

3.1 Classification

We classify the different scenarios according to the nature of S. The typical magnitude of

the operator coefficients is presented in table 1 for each case.

• Generic scalar.

In this case, we assume that S is a scalar particle without any specific feature distin-

guishing it from typical composite resonances. Hence, the only selection rules affect-

ing the power counting are those following from the shift symmetry of the Higgs field,

which is dominantly broken by the top quark Yukawa coupling. Even though generic

scalars are expected to have a mass of the same size as other composite resonances,

we assume that M is accidentally lighter than mρ.

• Inert scalar.

Here we impose an additional constraint with respect to the previous scenario, which

is a Nfg
2
ρ/(4π)2 suppression of S couplings to gauge bosons or the Higgs boson,

dictated by some UV selection rules. We do not fix exactly which of the two types of

operators gains the loop factor, but there must be at least one. The operators already

carrying the loop suppressions from the Higgs shift symmetry breaking do not get

an additional suppression. Since the only difference with respect to the generic case

is the aforementioned Nfg
2
ρ/(4π)2 factors in the operators OX or OH,H1,H2,H3,H4

(subscripts correspond to that of the corresponding coefficients in table 1), we do not

show explicitly the corresponding coefficients.

• PNGB scalar with shift symmetry broken by partial compositeness.

In this scenario, we assume that S is a scalar arising as a Goldstone boson, similarly

to the Higgs doublet, and that its shift symmetry is also broken by PC. Hence, we

expect couplings to SM fermions of yqSq̄Hq type, the largest one being that of the

top quark. The rest of the H and S shift symmetry breaking couplings, not involving

SM fermions, has to carry a loop suppression factor 3y2
t /16π2. The same suppression

also applies to the estimate for the S mass M2 ∼ (3y2
t /16π2)m2

ρ, making S naturally

lighter than other composite states.

• Generic or inert pseudo-scalar, PNGB pseudo-scalar with shift symmetry broken by

PC.

These three scenarios can be obtained from the previous ones by assuming that S

is now CP-odd. In this case, the couplings of Sn|H|m type with n odd as well as

the S|DµH|2 operator are forbidden. The coefficient of the Sq̄Hq operator becomes

purely imaginary. Unlike in the generic and inert scalar cases, the operator OH4 can

now not be eliminated.
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scalar pseudo-scalar

generic PNGB generic PNGB (PC) PNGB (anom.)

kX SX
2 g2

X
g2
ρ

1
f

3y2
t

(4π)2

g2
X
g2
ρ

1
f

g2
X
g2
ρ

1
f

3y2
t

(4π)2

g2
X
g2
ρ

1
f

N
(X)
f g2

X

(4π)2
1
f

kq Sq̄Hq yq
1
f yq

1
f iyq

1
f iyq

1
f —

kH S|DµH|2 1
f — — — —

kH1 S|H|2,
kH2 S|H|4/f2,

kH3 S
3|H|2/f2

3y2
t

(4π)2

m2
ρ

f
3y2
t

(4π)2

m2
ρ

f — — —

kH4 S
2|H|2 —

3y2
t

(4π)2

m2
ρ

f2
3y2
t

(4π)2

m2
ρ

f2
3y2
t

(4π)2

m2
ρ

f2

Ñfg
2
ρ

(4π)2
3y2
t

(4π)2

m2
ρ

f2

kM S2 , k4 S
4/f2 m2

ρ
3y2
t

(4π)2m
2
ρ m2

ρ
3y2
t

(4π)2m
2
ρ

Ñfg
2
ρ

(4π)2m
2
ρ

k3 S
3 , k5 S

5/f2 m2
ρ

f
3y2
t

(4π)2

m2
ρ

f — — —

Table 1. Estimated size of the dimension-five operators involving S corresponding to the scenarios

described in the text. We do not list the operators for the inert scalar and pseudo-scalar since

they are trivially obtained from the generic ones multiplying them by a loop factor Nfg
2
ρ/(4π)2.

X = G,W,B corresponds to SU(3)c, SU(2)L and U(1)Y gauge field strengths, X2 stands for either

Xi
µνX

i µν (for scalar S) or Xi
µνX̃

i µν (pseudo-scalar S) while gX is a corresponding SM gauge

coupling, q̄q is a bilinear of SM fermions and yq is a corresponding SM Higgs Yukawa coupling.

For PNGB pseudo-scalar with anomaly breaking N
(X)
f are the coefficients of anomalies associated

to SM fields while Ñf is a number of hyperquarks. The empty entries correspond to the operators

which are either redundant or not expected to be generated in a given scenario.

Finally, the couplings to field strengths XµνX
µν get substituted by couplings to

XµνX̃
µν . We expect that the coupling coefficients remain unchanged, in particular,

they should be suppressed in the PNGB case. Contrary to ref. [36], we argue that

this suppression indeed appears despite the fact that under the shift S → S + c

the operators SXµνX̃
µν change only by a total derivative. Indeed, since SXµνX̃

µν

operators contribute to the divergence of the current associated to the symmetry

under which S shifts [37], they have to vanish if no explicit or anomalous breaking

of the symmetry is present, in order to satisfy the corresponding Ward identity. For

instance, the coefficient of the operator coupling the neutral pion to a pair of photons

in the chiral Lagrangian is exactly that appearing in the divergence of the axial

current computed in the UV.

• PNGB pseudo-scalar with shift symmetry broken by anomaly.

In this scenario, the shift symmetry breaking of a pseudo-scalar PNGB S is in-

duced by anomalies associated with the SM and strong sector gauge fields. The

strength of the corresponding anomalous interaction with SM gauge bosons SXµνX̃
µν
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is proportional to the effective multiplicity of states N
(X)
f generating each type of

anomalies. The anomaly associated with the new strong dynamics generates a mass

M ' (Ñ
1/2
f /4π)mρ, with Ñf independent of the SM anomalous couplings coefficients

N
(X)
f . We thus have enough sources of symmetry breaking to generate the S mass

and the couplings to SM fields. We will therefore assume that PC couplings do not

break the S shift symmetry and do not generate Yukawa-like interactions of S with

SM fermions. One can in principle also consider a variation of this scenario, without

the anomaly related to the new strong dynamics, but with an additional PC-induced

shift symmetry breaking, giving rise to the interaction Sq̄Hq.

3.2 Direct searches

Let us briefly analyze the current status and prospects for the direct detection of the new

scalar resonances. Not aiming at a comprehensive study of this subject, we will concentrate

on the PNGB scenarios, in which a mild S mass does not require any further tuning.

The singlet S can be produced at colliders mainly via gluon fusion. The corresponding

cross section at 13 TeV for gρ = 4π ranges from ∼ 1 pb for M = 500 GeV, to ∼ 0.04 pb

for M = 1 TeV in the scalar case. These numbers are much smaller in the pseudo-scalar

case, what reflects the fact that the scalar production cross section is driven by the mixing

with the Higgs boson (note, however, that this behavior can be significantly different if

gρ is sensibly smaller than 4π). The main branching ratios of S as functions of its mass,

in the scalar scenario, are shown in figure 2. All ki couplings have been set to the unity.

The large branching ratio into massive gauge bosons, as well as into the Higgs, is inherited

from the sizable mixing with the latter. Provided the κX couplings remain smaller than

∼ (4π)2g2
ρκH , the decay rates into WW,ZZ and HH at large M are approximately 50%,

25% and 25%, as suggested by the Goldstone-equivalence theorem. On the contrary, in

the pseudo-scalar scenario, S decays almost exclusively into a pair of top quarks, with the

second largest decay ratio into a pair of b quarks being of the order of 4 × 10−4.

Previous studies (see for example ref. [38]) have estimated the reach of resonant

searches in the HH channel at the LHC. The most optimistic bound ranges from ∼ 0.1 pb

for M = 500 GeV to ∼ 0.02 pb for M = 1 TeV. Searches for ZZ are expected to be

more constraining, the bounds being of order 0.04 pb for M = 500 GeV and 0.01 pb for

M = 1 TeV. Thus, when accounting for the branching ratios depicted in the figure, direct

searches are not very sensitive to the high-mass region. The latter is better tested by

indirect searches, to which we devote the next section.

On the other side, using 2.3 fb−1 of integrated luminosity collected at 13 TeV, current

searches for resonances decaying into pairs of tops [39] bound the pseudo scalar production

cross sections at the 100 pb level for M = 500 GeV and at the 3 pb level for M = 1 TeV.

So, the high-mass region is not expected to be probed in the near future.

3.3 Impact of a scalar S on low-energy physics

In this section, we examine the impact of the singlet S on Higgs physics and compare it with

the generic effects caused by the composite nature of the Higgs boson or due to the heavier
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Figure 2. Main S branching ratios as a function of the mass for the PNGB scalar (in the pseudo-

scalar scenario, S decays almost exclusively into a pair of t quarks). We have assumed gρ = 4π and

all ki couplings fixed to the unit. Note that f and mρ can then be obtained from the expressions

in table 1.

strong-sector resonances. In practice, we look at the dimension-six operators obtained after

integrating out the singlet S. First of all, we note that the operators with a pseudo-scalar

S do not affect the low-energy dimension-six operators neither at tree nor at one loop

level, hence we will only consider the scalar S scenarios in the reminder of this section.

As already pointed out, integrating out S at tree level increases operator dimensions by

at least one unit for each external S field, with the minimal increase corresponding to a

substitution S → |H|2. This means that the operators OH3, O4 and O5 will not contribute

at dimension-six at all. The operators OH2, OH4 and O3 will only contribute to the |H|6
operator of the Higgs potential. The form of the resulting corrections to the Higgs potential

together with its derivation is given in appendix A, while in this section our main focus will

be on the operators which can affect the Higgs couplings to other SM fields. Corresponding

dimension-six effective operators in the SILH basis [6] are listed in table 2 together with the

estimated size of their coefficients. In addition to the contributions due to S, we present

the power counting estimates for the generic contributions of the strong dynamics which

are independent of S, and hence relevant for both scalar and pseudo-scalar S scenarios.

Several comments are in order. First, we will not discuss the full basis, but only those

operators which are affected by S. Second, the operator α|DµH|2|H|2 was eliminated by a

field redefinition H → H(1−α/2|H|2/f2) which also leads to shifts in Oq and OH . Third,

the operator |H|2W i
µνW

i µν was traded for five operators in table 2 using the identity [21]

g2

v2
|H|2W i

µνW
i µν = 4(OW −OB +OHB −OHW ) +Oγ . (3.1)

where in the definition of OW and OB we used H†
←→
D µH = H†(DµH)− (DµH)†H. Hence

all five operators generated by S have a coefficient of the same parametric size, which is not

the case for the contributions coming from the Higgs compositeness effects. This difference

can be understood from the fact that the EW gauge couplings g and g′ break the Higgs
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effect of scalar S compositeness

effects [+MC]
generic PNGB

Og g2S
v2
|H|2GµνGµν kgkH1

3y2t
(4π)2

1
g2ρ

m2
ρ

M2 ξ kgkH1
9y4t

(4π)4
1
g2ρ

m2
ρ

M2 ξ cg
3y2t

(4π)2
1
g2ρ
ξ

Oγ g′2

v2
|H|2BµνBµν (kW + kB)kH1

3y2t
(4π)2

1
g2ρ

m2
ρ

M2 ξ (kW + kB)kH1
9y4t

(4π)4
1
g2ρ

m2
ρ

M2 ξ cγ
3y2t

(4π)2
1
g2ρ
ξ

OW ig
2v2

(H†σi
←→
D µH)(DνW

µν)i 4kW kH1
3y2t

(4π)2
1
g2ρ

m2
ρ

M2 ξ 4kW kH1
9y4t

(4π)4
1
g2ρ

m2
ρ

M2 ξ cW
1
g2ρ
ξ

OB ig′

2v2
(H†←→D µH)(∂νB

µν) −4kW kH1
3y2t

(4π)2
1
g2ρ

m2
ρ

M2 ξ −4kW kH1
9y4t

(4π)4
1
g2ρ

m2
ρ

M2 ξ cB
1
g2ρ
ξ

OHW ig
v2

(DµH)†σi(DνH)W iµν −4kW kH1
3y2t

(4π)2
1
g2ρ

m2
ρ

M2 ξ −4kW kH1
9y4t

(4π)4
1
g2ρ

m2
ρ

M2 ξ cHW
1
g2ρ
ξ

[
g2ρ

(4π)2

]
OHB ig′

v2
(DµH)†(DνH)Bµν 4kW kH1

3y2t
(4π)2

1
g2ρ

m2
ρ

M2 ξ 4kW kH1
9y4t

(4π)4
1
g2ρ

m2
ρ

M2 ξ cHB
1
g2ρ
ξ

[
g2ρ

(4π)2

]
Oq 1

v2
q̄Hq|H|2 yqkH1

(
kq − kH

2

)
3y2t

(4π)2
m2
ρ

M2 ξ yqkH1kq
3y2t

(4π)2
m2
ρ

M2 ξ cqyqξ

OH 1
2v2

∂µ|H|2∂µ|H|2 kH1

(
kH1

3y2t
(4π)2

m2
ρ

M2 − kH
)

3y2t
(4π)2

m2
ρ

M2 ξ k2
H1

9y4t
(4π)4

m4
ρ

M4 ξ cHξ

Table 2. Contributions of a generic or PNGB scalar S to the dimension-six operators in the SILH

basis, together with the contributions coming from the generic strong dynamics. Coefficients for

the inert scalar can be obtained by multiplying with additional loop factors, as described in the

text. σi are Pauli matrices. ci are order-one coefficients. The loop suppression factors in square

brackets apply if we impose MC on the Higgs sector. Except for the two operators OW and OB ,

the effects of S can potentially dominate over the other strong sector effects if S is sufficiently light

and gρ sufficiently small.

shift symmetry, hence generically the shift symmetry breaking operators involving SU(2)L
and U(1)Y gauge bosons, like OW ,OB,OHB,OHW do not require loops with yt. This argu-

ment does not apply to Oγ containing a coupling with two photons |H|2γµνγµν , since the

external photons can not break the Higgs shift symmetry. Hence an additional loop factor

3y2
t /(4π)2 inOγ coefficient. This explains why in table 2 the coefficients of the five operators

of eq. (3.1) coming from the generic compositeness effects have different number of yt-loops,

while all the operators coming from S, instead, have to involve a y2
t /(4π)2 factor just be-

cause it controls the h−S mixing. On top of that, the generic estimate for the size of opera-

tors OHW and OHB contains a loop factor g2
ρ/(4π)2 which comes from the MC assumption

as defined in ref. [6] (see ref. [13] for a further clarification). In the following, we will

analyse both possibilities, with and without (“general SILH” of ref. [13]) MC assumption.

Finally, we mention again that all the estimates for the inert scalar scenario, which

are not given explicitly in table 2, can be obtained from those for the generic scalar by

multiplying coefficients kX and (or) kH,H1,H2,H3,H4 by a factor Nfg
2
ρ/(4π)2.

Now let us turn to the discussion of the phenomenological implications of the operators

in table 2. An exhaustive analysis of the generic Higgs compositeness effects was performed

in ref. [6], hence we limit ourselves to a discussion of the physical effects which can be

dominated by the presence of a new resonance S. We compare the coefficients assuming

M2/m2
ρ > 3y2

t /(4π)2 for a generic scalar and M2/m2
ρ > (3y2

t /(4π)2)2 for a PNGB S, i.e.

we require that the tuning of the S mass parameter is not too high. By inspection of the

coefficients in table 2, we find six operators whose coefficients can in principle be dominated

by the contributions of S: Og, Oγ , OHW , OHB, Oq, OH .
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Figure 3. In the shaded regions of the
(
M
mρ
, gρ

)
plane, the contributions to the operators of table 2

induced by a PNGB (left from the red line) or a generic S (right from the red line) can become

larger than those of the generic strong dynamics and thus alter the dynamics of the Higgs boson.

The red line corresponds to M2 =
3y2t
(4π)2m

2
ρ, which we take as a lower bound on the generic S mass

and an upper bound on the PNGB S mass. The orange dashed line corresponds to tan θSh = 1 (for

ξ = 0.1) and, to the left from this line, the physical observables start being sensitive to interference

of multiple S-induced operators. The black lines correspond to ξ = 0.1, for M = 0.5, . . . , 2.0 TeV

(ξ increases towards the upper right corner). Since ξ = 0.1 corresponds to the ultimate reach of the

LHC with indirect searches for generic compositeness effects only (in the absence of S), the black

line passing some colored region (i.e. with S effects superseding compositeness effects) means that

corresponding indirect S effects are detectable at the LHC.

Og, Oγ. The contribution of S to these two operators can be dominant when M2/m2
ρ . 1

for a generic S (i.e. in the whole regime of validity of our EFT), and when M2/m2
ρ .

3y2
t /(4π)2 for a PNGB S. Both conditions require some tuning and correspond to the

same suppression of the S mass with respect to the power counting estimates. They

can be rewritten as kM . 1 (see table 1). The main effect of the Og, Oγ operators is

a modification of the interaction strength between the Higgs with gluons and photons.

But the observables sensitive to these couplings, such as Higgs Γgg, Γγγ partial widths,

also receive sizable contributions from the OH and Ot operators. Hence, it is important

to check under which conditions the S-induced modifications of the Higgs partial widths,

coming from the Og and Oγ operators, can dominate over the generic compositeness

contributions induced by OH and Ot. The latter induce order-ξ Higgs boson field

renormalization and top quark Yukawa coupling distortion. Hence, one can expect that

the effective coupling of the Higgs to gluons and photons, mediated by the top loop,
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results in a distortion of order ξ compared to the SM expectations:

δL ∼ g2
X

(4π)2
ξ
h

v
X2 . (3.2)

Comparing it to the S-mediated direct contribution from table 2, we conclude that the

latter can become dominant if M2/m2
ρ . 3y2

t /g
2
ρ for a generic scalar or if M2/m2

ρ .
9y4
t /(4πgρ)

2 for a PNGB S, which translates into kM . 3y2
t /g

2
ρ for both cases.

OHW , OHB. For a minimally coupled Higgs, one could think that the contribution of S

to the coefficients of these two operators becomes comparable or larger than the generic

estimates when M2/m2
ρ . 3y2

t /g
2
ρ for a generic S, and M2/m2

ρ . 9y4
t /(4πgρ)

2 for a

PNGB S. It however seems natural to assume that S is minimally coupled, if the Higgs

is. So, in the case of a generic S, we should then further suppress our estimates for the

SX2 couplings by an additional loop factor: kg,W,B → kg,W,B g2
ρ/(4π)2 (and recover an

inert scalar scenario). No additional factors would be needed for a PNGB S since its

LO coupling to gauge bosons is already loop suppressed. After this modification, we see

that only the PNGB S can give dominant contributions to OHW and OHB. The main

physical process sensitive to these two operators is the h→ Zγ decay.

Oq. This operator can be sensitive to the presence of a PNGB S in the regime where

M2/m2
ρ . 3y2

t /(4π)2, i.e. for kM . 1. It affects a variety of Higgs observables, including

the partial widths of h→ qq, h→ gg, h→ γγ, h→ Zγ which all receive contributions

from top quark loops.

OH . For this operator also, contributions from S which are larger than that of a generic

strong dynamics only arise in the PNGB case, with kM . 1. Given that this operator

leads to a Higgs wave function renormalization, it affects all the Higgs decay and pro-

duction channels. It also controls the energy growth of the longitudinal gauge bosons

scattering amplitudes.

Note that, in all cases, the large modifications of Higgs physics observables come at a

price of a large mixing between h and S, defined by tan θhS = kH1
3y2
t

(4π)2

m2
ρ

M2
v
f . When the

mixing approaches the order-one level, the interferences between BSM operators become

sizable and has to be accounted for when computing their impact on physical observables.

In the generic S scenario, the Higgs-gluon coupling originating from Og can for instance

be written as kg tan θhS
h
fGµνG

µν and grows with tan θhS . But after having accounted

for the h field renormalization induced by OH 3 tan θ2
hS(∂µh)2/2, the h-gluons coupling

becomes kg tan θhS(1 + tan θ2
hS)−1/2 h

fGµνG
µν , hence one achieves the expected result that

the coupling is proportional to sin θhS which saturates to 1.

The effects of S typically lead to order-ξ modifications of the various Higgs observables

and distort the pattern of deviations predicted by SILH. Figure 3 highlights the region of

the parameters space where the effects of S dominate over that of the strong sector.
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4 Matching to explicit composite Higgs models

To support the above EFT treatment, we now discuss its matching to two specific CH

models.

4.1 SO(6) × U(1)′/SO(5) × U(1)′

Let us first consider a composite Higgs model based on the symmetry breaking pattern

G/H = SO(6) × U(1)′/SO(5) × U(1)′ [11]. The addition of a spectator group U(1)′ is

required in order for the SM-fermion hypercharges to be correctly reproduced, in the same

vein as in the minimal CH model. The ten unbroken and five broken generators, T and X

respectively, can be chosen to be

Tmnij = − i√
2

(δmi δ
n
j − δni δmj ) , m < n ∈ [1, 5] , (4.1)

Xm6
ij = − i√

2
(δmi δ

6
j − δ6

i δ
m
j ) , m ∈ [1, 5] . (4.2)

The SM SU(2)L ×U(1)Y gauge group is thus generated by

J1
L =

1√
2

(T 14 + T 23) , J2
L =

1√
2

(T 24 − T 13) , (4.3)

J3
L =

1√
2

(T 12 + T 34) , J3
R =

1√
2

(T 12 − T 34) , (4.4)

being the hypercharge defined as Y = J3
R+Y ′ with Y ′ the generator of U(1)′. Under the SM

gauge group, the five PNGBs hi transform as a doublet with hypercharge Y = 1/2 and a

complete singlet. The former can be thus identified with the Higgs degrees of freedom, while

the latter gives rise to S. The dynamics of the PNGBs is dictated by the Goldstone matrix

U = exp

{
−i
√

2

f
hiX

i

}
. (4.5)

In the unitary gauge, it can conveniently be written as

U =



13×3

1− h2

f2 + f
√
f2 − h2 − S2

− hS

f2 + f
√
f2 − h2 − S2

h

f

− hS

f2 + f
√
f2 − h2 − S2

1− S2

f2 + f
√
f2 − h2 − S2

S

f

−h
f

−S
f

1

f

√
f2 − h2 − S2


.

(4.6)

After having integrated out the heavy states of the second site, the Lagrangian of the model

reads

L =
f2

4
Tr(dµd

µ) + LYukawa − V , (4.7)
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where dµ
10 is the projection of the Maurer-Cartan one-form ωµ = iU−1DµU into the broken

generators T i, while LYukawa and V stand for the Yukawa Lagrangian and the potential,

respectively. The first term is completely fixed by the coset structure:

f2

4
Tr(dµd

µ) = (DµH)†DµH +
1

2
(∂µS)2 +

1

2f2

[
∂µ(H†H) +

1

2
∂µS

2

]2

+ · · · (4.8)

where the ellipsis stands for higher-order terms in the 1/f expansion.

LYukawa and V , instead, depend on the elementary-composite fermion mixing [4]. For

concreteness, we assume that only the third generation quarks sizably mix with the strong

sector, tR being fully composite while qL mixes with a single composite resonance trans-

forming in the symmetric representation 20 of SO(6). (It turns out that this is the minimal

setup for which the leading term in the potential expansion in spurions [4] can lead to EW

symmetry breaking.) The left-handed third-generation quarks, qL = (tL, bL)T can hence

be embedded in the following multiplet:

QL = Λ1
LbL + Λ2

LtL =
1

2



04×4

ζbL ibL

−iζbL bL

ζtL itL

iζtL −tL

ζbL −iζbL ζtL iζtL
02×2

ibL bL itL −tL



, (4.9)

where ζ is a free parameter that we take to be real. This makes of S a well-defined CP-odd

state. The Yukawa Lagrangian can then be written (up to order 1/f2) as

LYukawa =
yt√

2
tR(UT )6I(U

T )6JQ
IJ
L + h.c.

= −ytqLH̃tR
(

1− |H|
2

f2
− S2

2f2

)
− iytζ

S

f

(
qLH̃tR

)
+ h.c. (4.10)

Besides, the potential can be written as

V = C1f
4
∑
α

∣∣∣∣(UT )6I(U
T )6J(ΛαL)IJ

∣∣∣∣2 + C2f
4
∑
α,a

∣∣∣∣(UT )aI(U
T )6J(ΛαL)IJ

∣∣∣∣2
= 2C1

[
f2|H|2 − 2|H|4 + |H|2S2(ζ2 − 1)

]
+ C2

[
1 +

f2

2
|H|2(ζ2 − 7) + 4|H|4 + 2|H|2S2(1− ζ2) + f2S2(ζ2 − 1)

]
, (4.11)

10The term f2

4
Tr(dµd

µ) can be obtained from the Goldstone bosons kinetic term (2.15) of the two-site

model after integrating out the heavy vectorial resonances.
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C1 and C2 being free dimensionless parameters. These can be traded for the measured

values of the Higgs VEV, v, and the quartic coupling, λ. Thus,

V = µ2|H|2 + λ|H|4 + λf2(1− 2ξ)

(
ζ2 − 1

ζ2 − 3

)
S2 +

1

2
(1− ζ2)λS2|H|2. (4.12)

SO(6) admits anomalous representations, for it is locally isomorphic to SU(4). They

would manifest as a Wess-Zumino-Witten term which, in first approximation, is given

by [11, 40]

LWZW =
n

16π2

S

f

(
g2

1BµνB̃
µν − g2

2W
i
µνW̃

µν
i

)
, (4.13)

with n an integer number. Further subleading contributions from SM fermion loops can

generate corrections to this term, as well as SG2 interactions. In summary, leading-order

estimates for the coefficients of the relevant operators are:

SB2 SW 2 SG2 SqHq S|DµH|2 S|H|2 S2

ng2
1

16π2f
− ng2

2

16π2f
0 −iytζ

f
0 0 2λf2(1− 2ξ)

(
ζ2 − 1

ζ2 − 3

)
The fact that S|H|2 and S|DµH|2 are both vanishing is a consequence of the pseudo-

scalar nature of S. However, even for a complex ζ, S|DµH|2 vanishes to a first approxi-

mation, given that the coset is symmetric and hence no term with an odd number of fields

is generated in the sigma model. Note also that, for ζ = 0, S becomes stable, while ζ = 1

makes S massless for the corresponding Goldstone symmetry remains unbroken. For inter-

mediate values like ζ ∼ 0.5 and for f ∼ 2 TeV, the singlet mass becomes MS ∼ 500 GeV,

in good agreement with our expectations of equation (2.6).

4.2 SO(5) × U(1)S × U(1)′/SO(5) × U(1)′

A different coset also leading to an EW doublet plus a singlet is the SO(5) × U(1)S ×
U(1)′/SO(5) × U(1)′, considered in ref. [40]. In this coset, the doublet hi arises from the

SO(5)/SO(4) breaking while the singlet S is associated with the breaking of U(1)S . The

coset space SO(5)/SO(4) may be parametrized by the Goldstone matrix

U = exp

{
i

√
2

f
hiX

i

}
, (4.14)

where Xi are the four broken SO(5) generators [4], while the S dependence is simply given

by exp(i
√

2S/fS). We note that, in this case, S has its own decay constant, fS . In unitary

gauge, U is given by

U =


13×3 √

1− h2

f2
h
f

−h
f

√
1− h2

f2


. (4.15)
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As before,

f2

4
Tr(dµd

µ) +
f2
S

4
|∂µei

√
2

fS
S |2 = (DµH)†DµH +

1

2f2
∂µ(H†H)2 +

1

2
(∂µS)2 + · · · (4.16)

In this case, the coset structure does not mix S and H. For the matter representations,

any consistent embedding of the fermions in SO(5) multiplets with definite charge under

U(1)′ and U(1)S may be considered. For simplicity, we restrict ourselves to the case of the

MCHM5 [26, 41], where each quark is embedded in a 5 of SO(5). As before, we consider

only the top sector. The embeddings are

QL =
1√
2



−bL

ibL

tL

−itL

0



ZQ

2
3

, TR =



0

0

0

0

tR



ZT

2
3

, (4.17)

where the subscript refers to the charge under U(1)′, while the superscript is the (arbitrary)

charge under U(1)S .

The top Yukawa Lagrangian is given to leading order by

LYukawa = −yT q̄LH̃tR
[
1 + i

√
2
S

fS
(ZQ − ZT )

]
+ h.c.. (4.18)

In order to generate a non-trivial potential for S, it is necessary to mix the quarks with at

least two copies of the composite sector operators, with different charge under U(1)S . The

simplest way to do this is to assume that the right-handed top mixes with two different

fiveplets of SO(5), ψ
(1,2)
L , carrying charges Z

(1)
T and Z

(2)
T , but the same U(1)′ [40]. The

relevant mixings are then given by

Lmix = λLQ̄LUe
i
√

2 S
fS
ZQψR + λ

(1)
R T̄

(1)
R Ue

i
√

2 S
fS
Z

(1)
T ψ

(1)
L + λ

(2)
R T̄

(2)
R Ue

i
√

2 S
fS
Z

(2)
T ψ

(2)
L + h.c.

(4.19)

It can be seen that, if one of the λ
(i)
R vanishes, the dependence on S may be eliminated by

choosing the charge of the right-handed top to equal that of the remaining ψ
(i)
L . For two

mixings with operators of different charges, this is no longer possible and the U(1)S are

collectively broken. Although interactions involving the light quarks have been omitted, we

have implicitly assumed diagonal mixings in order to avoid flavor-violating effects. It should

be stressed, however, that contrary to scenarios in which all elementary fields mix with only

one composite operator, this is not generally expected from the renormalization group

evolution of anarchical couplings in the UV [4]. Instead, further assumptions should be

made, such as additional symmetries in the UV, like those proposed in [42]. For example, we
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could choose flavor universal ZQ together with Z
(1)
T = Z

(2)
T . In such a case, as argued above,

the S potential would vanish and hence it should come from sources other than partial

compositeness, for example anomalies. A different possibility is making ZQ flavor universal

and λ
(1)
R ∝ λ

(2)
R . This second assumption may also be promoted to a discrete symmetry in

the strong sector under exchange of the (1) and (2) indices. Under it, we have λ
(1)
R = λ

(2)
R

(and also other strong sector parameters depending on (1) and (2) should be equal). Of

course, this symmetry must be broken by the different Z
(i)
T , otherwise the S potential is

trivial. In this case, eq. (4.18) is still valid with the replacement ZT → (Z
(1)
T + Z

(2)
T )/2.

For simplicity, we will assume this symmetry in the table 4.2 below.

Under these assumptions and to leading order in the mixings, the potential has the

generic form:

V ' (α1 + α2c
12
S )
|H|2
f2
− (β1 + β2c

12
S )
|H|4
f4

+ γc12
S , (4.20)

where c12
S = cos(

√
2S(Z

(1)
T − Z

(2)
T )/fS). The functions αi, βi, γ encode the composite

sector resonance contributions to the spectrum and may be straightforwardly computed in a

holographic or N -site model. Assuming real parameters, the leading contributions to these

functions scale with the top mixings as α1 ∼ (λL)2/2 − ((λ
(1)
R )2 + (λ

(2)
R )2), α2 ∼ λ

(1)
R λ

(2)
R ,

β1 ∼ (λLλ
(1)
R )2 + (λLλ

(2)
R )2, β2 ∼ (λL)2λ

(1)
R λ

(2)
R , γ ∼ λ(1)

R λ
(2)
R .

One may find a non-trivial minimum for

c12
S = ±1, s12

S = 0,
|H|2
f2

= ξ =
α1 ± α2

2(β1 ± β2)
, (4.21)

given some tuning of the parameters.

Once a tuning is made for the Higgs VEV and mass, the mass of S is given by

M2
S =

∂2V

∂S2
|V EV = ∓2

(Z
(1)
T − Z

(2)
T )2

f2
S

(γ + α2ξ − β2ξ
2), (4.22)

which is finite for ξ → 0 and so leads to a typical mass of S of the size of an untuned

PNGB. We also note that, since the potential is even in S, no mixing operator SH2 arises,

as expected from CP conservation.

In terms of the physical masses and Higgs quartic coupling, we find the potential is

given at leading order in ξ by

V ' −µ2|H|2 + λ|H|4 + (Z
(1)
T − Z

(2)
T )2γ′f2

SS
2

+

(
M2
S

2µ2
− 2γ′f2

S(Z
(1)
T − Z

(2)
T )2

µ2

)
λ|H|2S2 + · · · , (4.23)

where in order to display explicitly the mass dimensions we rescaled γ → γ′f4
S , with γ′ a

dimensionless constant.

For completeness, we note that the quartic interaction of S (in the broken EW phase)

is given by 2M2
S(Z

(1)
T − Z

(2)
T )2/f2

SS
4 and gets a contribution from the |H|2S4 and |H|4S4

higher-dimensional operators not listed above.
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Finally, depending only on the quantum numbers of the strong sector, one generically

finds an anomalous coupling of S to all the SM gauge bosons, given at leading order by

the triangle diagrams with one U(1)S and two SU(3)c or SO(5) generators:

LWZW =
1

16π2

S

fS

(
c3g

2
3G

a
µνG̃

a µν + c2g
2
2W

i
µνW̃

i µν + c1g
2
1BµνB̃

µν
)
. (4.24)

This is in contrast with the SO(6)/SO(5) coset, which lacks an anomalous coupling of S

to gluons or photons [40].

In a simple two-site model where the strong sector operators are interpolated by vector-

like fermions, one finds the ci scale as in ref. [43]:

c3 =
2

3
Zfnfd2I3 , c2 =

2

3
Zfnfd3I2 , c1 =

2

3
Zfnfd2d3Y

2 , (4.25)

where Zf is the arbitrary U(1)S coupling of the vector-like fermions, nf is a number

of composite generations, d2,3 and I2,3 are dimension and index of the fermions under

SU(2)L, SU(3)c respectively, and Y is the hypercharge. For a reference multiplet of top

partners of MCHM5, with Zf = 1, this results in c1 ' 2, c2 = 2, c3 ' 6 per generation.

We may then summarize the relevant operator coefficients in the following table:

SB2 SW 2 SG2 SqHq

c1g
2
1

16π2f

c2g
2
2

16π2f

c3g
2
3

16π2f
−i
√

2yt
fS

(
ZQ − (Z

(1)
T +Z

(2)
T )

2

)
S|DµH|2 S2 S|H|2 S2|H|2

0 (Z
(1)
T − Z

(2)
T )2γ′f2

S 0 λ

(
M2
S

2µ2 − 2(Z
(1)
T −Z

(2)
T )2γ′f2

S

µ2

)

5 Conclusions

Solutions to the gauge hierarchy problem often predict a set of new physics states not far

above the electroweak scale. The first observed such state could most probably be accom-

modated in a plethora of explicit models. It would thus be desirable to adopt an approach

allowing to derive the crucial features of the underlying theory without considering explicit

models in all their variety and details. Aiming at capturing a large class of possible TeV-

scale completions of the standard model, the composite Higgs scenarios, we addressed the

case of a first spin-zero electroweak singlet S discovery. We used an effective field theory

in conjunction with the relevant power counting to estimate the magnitude of observable

effects. This theoretical bias connects the pattern of potential signals to the structural

features of the UV dynamics.

We distinguished scenarios featuring a new, CP-even or -odd, PNGB or generic com-

posite resonance. Our description of several classes of models within a single framework

allows to compare them and judge their respective viability. The effects of the rest of the

strong sector was captured through two parameters, namely a typical mass and a typical
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coupling, as well as selection rules. The scaling of operator coefficients with these param-

eters was encapsulated in the power counting (2.10) which the known classes of explicit

UV-complete composite Higgs models were shown to reproduce. We construct bases of

dimension-five operators at most, compatible with this power counting, for the different

hypotheses about the nature of S. In doing so, we identified and addressed several problems

related to the elimination of redundant operators in the presence of two coupled spin-zero

states among which at least one possesses an approximate shift symmetry. The solutions we

discussed may find other applications: in the construction of a basis of higher-dimensional

operators, for an opposite mass hierarchy between H and S, or for S featuring additional

symmetries such as in EFT approaches to a strongly coupled dark matter particle [8, 44].

Besides the direct production and decay of S, we discussed its hypothetical implications

for Higgs observables. They could be sizably altered by a CP-even S, because of its mixing

with the Higgs. The contributions of S to the Higgs couplings could distort the SILH

pattern produced by a generic composite sector when the parameters of the S Lagrangian

are non-generic and, in particular, when the S mass deviates from its power-counting

estimate. In general, all the S scenarios we considered have important implications for the

Higgs sector and its naturalness. How natural the electroweak symmetry breaking appears

in each case thus provides an additional tool to assess their plausibility.
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A Integrating out S

In this section we present a procedure to integrate out the scalar state S, and provide a

resulting scalar potential for the Higgs field. We will consider the S Lagrangian of the

following general form

LS =
1

2
(∂µS)2 + µ3

1S + µ2
2S

2 + µ3S
3 (A.1)

where µni can contain constant terms and operators. Minimizing it with respect to the S

field configurations we find

µ3
1 + (2µ2

2 −�)S + 3µ3S
2 = 0 (A.2)

We assume that the expansion of (A.1) in S is around the true vacuum, i.e. 〈S〉 = 0, and

consequently there is no S tadpole, or, equivalently, no constant term in µ3
1. Hence the

leading contribution to µ3
1 has to be proportional to the lowest dimension singlet combi-

nation of the SM fields — |H|2, while the other µni can contain the constant contributions
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with the size around M or mρ. Hence (µ3
1)1/3 � (µ2

2)1/2, µ3 and we can search for the

solution for S as an expansion in powers of µ3
1. The lowest order term of this expansion

is proportional to |H|2 and hence, aiming at obtaining a dimension-six Lagrangian after

integrating out S, it is sufficient to consider the Lagrangian (A.1) containing the terms

up to S3. It also follows that it is enough to retain in S the terms up to (µ3
1)2. The

considerations above are sufficient to write down the desired solution for S

S =
1

�− 2µ2
2

µ3
1 +

3

�− 2µ2
2

[(
1

�− 2µ2
2

µ3
1

)2

µ3

]
(A.3)

Now the µni coefficients can be matched to the Lagrangian of table 1. Then substituting the

expression for S (A.3) back into eq. (A.1) allows to reproduce the dimension-six low-energy

operators for the Higgs physics of table 2. In addition we get the following correction to

the SM Higgs Lagrangian µ2|H|2 − λ|H|4

generic S PNGB S

|H|4 k2
H1
2

32y4
t

(4π)4

m4
ρ

M2f2 − kHkH1
3y2
t

(4π)2

µ2m2
ρ

M2f2

k2
H1
2

32y4
t

(4π)4

m4
ρ

M2f2

kH1
3y2
t

(4π)2

[
kH2

3y2
t

(4π)2

m4
ρ

f4M2 + 2λkH
m2
ρ

f2M2

]
kH1kH2

32y4
t

(4π)4

m4
ρ

f4M2

|H|6 +
k2
Hk

2
H1

4
32y4

t
(4π)4

µ2m4
ρ

f4M4 +k2
H1kH4

33y6
t

(4π)6

m6
ρ

f4M4

+k3
H1

33y6
t

(4π)6

[
k3

m8
ρ

f4M6 − kH m6
ρ

f4M4

]
+k3

H1k3
34y8

t
(4π)8

m8
ρ

f4M6

Notice that the operators |H|4 and |H|6 received corrections after the field redefinition

H → H(1− α/2|H|2/f2) used to remove the operator α|DµH|2|H|2.
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