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1 Introduction

In 1986, Kawai, Lewellen and Tye (KLT) revolutionized our understanding of the relations

between scattering amplitudes [1]. They discovered that tree-level amplitudes of closed

strings can be written as a quadratic combination of the open string amplitudes. In the

infinite tension limit, these relations tell us how to construct pure gravity amplitudes as a

“square” of the Yang-Mills theory [2, 3].

Nearly 30 years later, Cachazo, He and Yuan (CHY) refined this statement by showing

that the coefficients of the field-theory KLT expansion are given by the inverse of a matrix

whose components are nothing but the bi-adjoint scalar amplitudes [4–6]. Schematically,

we can write:
Gravity =

Yang-Mills2

bi-adjoint scalar
.

We make this relationship precise in section 2, where we also give a brief review of the

bi-adjoint scalar theory.

This new interpretation of the field-theory KLT kernel hints at a possible deeper under-

standing of the “squaring” procedure. A natural question is how it extends to the full string

theory KLT kernel. In this note, we introduce a new object that generalizes the bi-adjoint

scalar to include the α′ dependence. We propose that it leads to the KLT relation:

Closed string =
Open string2

α′-corrected bi-adjoint scalar
.

As it turns out, the new α′-corrected amplitudes, which we denote by mα′(β|β̃), display

an interesting structure. We will explore it in this work.
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Before properly introducing the notation, let us take a glimpse on some examples of

the amplitudes1 we will study,

mα′(1234|1234) =
1

tan(πα′s12)
+

1

tan(πα′s23)
, (1.1)

mα′(123456|126345) =
1

sin(πα′s12) sin(πα′s345)

(
1

tan(πα′s34)
+

1

tan(πα′s45)

)
, (1.2)

mα′(12345|12345) =
1

tan(πα′s12) tan(πα′s34)
+

1

tan(πα′s23) tan(πα′s45)

+
1

tan(πα′s34) tan(πα′s51)
+

1

tan(πα′s45) tan(πα′s12)

+
1

tan(πα′s51) tan(πα′s23)
+ 1. (1.3)

Surprisingly, these objects have compact expressions in terms of trigonometric functions

that are exact in α′ and can be calculated using simple diagrammatic rules! We present

these rules in section 3. We will see that they correctly recover the standard bi-adjoint

theory in the infinite tension limit, α′ → 0.

In section 4, we show how to construct string theory KLT relations based on the

amplitudes in the α′-corrected bi-adjoint theory. The KLT kernel will be given by the

inverse of a matrix of the objects mα′(β|β̃). As the first application, we show how the

newly-found interpretation of the KLT kernel can be used to derive the leading soft factors

of closed string amplitudes from the open string ones.

In section 5, we explain how the same structure can be used to generate a basis

expansion of open string partial amplitudes. In the α′ → 0 limit, the expansion gives the

Bern-Carrasco-Johansson (BCJ) basis for the Yang-Mills partial amplitudes [7].

It is important to mention that other string-like constructions that can be thought of

as α′-corrected versions of the bi-adjoint scalar have been previously studied in [8–15]. In

particular, the objects Zβ(γ) introduced in [8, 9] are used to construct open string ampli-

tudes from super Yang-Mills amplitudes. In this case, the amplitudes Zβ(γ) encapsulate

all the α′ dependence of the string scattering amplitudes. We connect it to the object

mα′(β|β̃) studied in this work in section 6, where we also discuss possible future directions.

As an ancillary file to this arXiv submission, we have attached a Mathematica note-

book which allows to reproduce all α′-corrected amplitudes mα′(β|β̃) studied in this work.

It can be conveniently used to generate KLT and BCJ expansion coeffiecients in both string

theory and field-theory.

2 Review of the bi-adjoint scalar theory

Before introducing the new theory, we review the field theory bi-adjoint scalar [5, 6, 16]. It is

a massless scalar field, φaã, that derives its name from the two flavour groups, U(N)×U(Ñ),

1From the form of (1.1)–(1.3) it is evident that the objects mα′(β|β̃) contain an infinite number of simple

poles corresponding to massless, massive and tachyonic states. In a slight abuse of terminology, we will refer

to them as amplitudes of an α′-corrected bi-adjoint scalar theory, since they compute physical quantities at

the leading order in α′. Nonetheless, we think of mα′(β|β̃) as a purely combinatorial object.
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under which it transforms in the adjoint representation. The theory contains a single self-

interaction of the form fabcf̃ ãb̃c̃ φaã φbb̃ φcc̃, where fabc and f̃ ãb̃c̃ are the structure constants

of the two flavour groups.

The full scattering amplitude of n bi-adjoint scalars can be expanded in the trace

decomposition:

mfull =
∑

β,β̃ ∈Sn/Zn

Tr(T aβ1T aβ2 · · ·T aβn ) Tr(T̃
ãβ̃1 T̃

ãβ̃2 · · · T̃ ãβ̃n )m(β |β̃), (2.1)

where the sum goes over all the permutations β and β̃ modulo cyclicity. The partial

amplitudes, m(β|β̃), are the objects of our interest. They can be written as a sum over

all trivalent graphs that are planar with respect to the first partial ordering, Gβ , and the

second partial ordering, Gβ̃ , at the same time. Every internal edge, e, is decorated with an

appropriate propagator,

m(β|β̃) = ±
∑

g ∈Gβ ∩Gβ̃

1∏
e∈g se

, (2.2)

where se = p2
e/2 is the norm of the momentum flowing through the edge e. In particular,

if there are no diagrams consistent with both permutations, the amplitude vanishes. The

overall sign can be determined using the rules described in [6]. We will introduce an

alternative construction later in section 3.1, after the discussion of the diagrammatic rules.

Examples of the amplitudes are as follows:

m(123|123) = 1, (2.3)

m(1234|1234) =
1

s12
+

1

s23
, m(1234|1243) = − 1

s12
, (2.4)

m(12345|13254) =
1

s23s45
, m(12435|14253) =

1

s24s35
,

m(12345|14253) = 0, m(12435|13254) = 0. (2.5)

In the last two cases there are no diagrams consistent with both orderings and hence the

corresponding amplitudes vanish.

Using the CHY representation [4–6] of the bi-adjoint scalar, a simple linear algebra

derivation [6] leads to the field theory KLT relation,

MGR
n = AYM

KLT

⊗ AYM

≡ AYM(β) m−1(β|β̃) AYM(β̃), (2.6)

which we take as a definition of the operation
KLT

⊗ . Here, MGR
n is a pure gravity am-

plitude and A(β) is a Yang-Mills partial amplitude obtained from the decomposition,

AYM
full =

∑
β∈Sn/Zn Tr(T aβ1T aβ2 · · ·T aβn )AYM(β), analogous to (2.1). By m−1(β|β̃) we

mean the inverse of the matrix of bi-adjoint amplitudes, with columns and rows labelled

by permutations β and β̃ respectively. The vectors AYM(β) and AYM(β̃) are defined simi-

larly. The sum over repeated indices β and β̃ is implied. Here β and β̃ range over sets of

(n − 3)! permutations forming a BCJ basis, in which case the (n − 3)! × (n − 3)! matrix

m−1(β|β̃) is invertible.

– 3 –
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Let us illustrate this construction with an example. For n = 5, we choose two sets of

orderings to be β ∈ {(12345), (12435)} and β̃ ∈ {(13254), (14253)}. We can then use the

amplitudes computed in (2.5) to construct the KLT kernel matrix as follows:

MGR
5 =

[
AYM(12345)

AYM(12435)

]ᵀ [
1/s23s45 0

0 1/s24s35

]−1 [
AYM(13254)

AYM(14253)

]
= s23s45AYM(12345)AYM(13254) + s24s35AYM(12435)AYM(14253). (2.7)

The bi-adjoint scalar can be used to build the matrix m(β|β̃) with arbitrary permutations,

as long as the matrix is invertible.

Using the CHY representation, it was found that the KLT relation (2.6) generalizes to

other theories as well [17–20]. For instance, Born-Infeld theory can be written as a KLT

product of Yang-Mills with the non-linear sigma model [18]. Despite the fact that the

relations are linking different theories, the kernel stays the same.

In addition to this, the bi-adjoint scalar also generates a basis expansion of partial

amplitudes [6]. Taking the example of the Yang-Mills theory, we can write:

AYM(β) = m(β|β̃)m−1(β̃|γ)AYM(γ), (2.8)

which in fact can be understood as a KLT of a bi-adjoint scalar with the Yang-Mills theory.

Here, AYM(β) on the left hand side is a vector of size p, m(β|β̃) is an p× (n− 3)! matrix,

m−1(β̃|γ) is an (n − 3)! × (n − 3)! matrix and finally AYM(γ) is a vector of size (n − 3)!.

Hence, each of the p partial amplitudes on the left hand side is being written as a linear

combination of (n− 3)! Yang-Mills partial amplitudes. The latter forms a basis.

For instance, let us expand AYM(12354) in the basis {AYM(13254),AYM(14253)}. We

can reuse the matrix from (2.7) to write:

AYM(12354) =

[
−1/s12s45 − 1/s23s45

−1/s12s35

]ᵀ [
1/s23s45 0

0 1/s24s35

]−1 [
AYM(13254)

AYM(14253)

]

= −s12 + s23

s12
AYM(13254)− s24

s12
AYM(14253). (2.9)

Here, we have also used two extra bi-adjoint amplitudes:

m(12354|12345) = − 1

s12s45
− 1

s23s45
, m(12354|12435) = − 1

s12s35
. (2.10)

In similarity to the KLT relations, the basis expansion is valid in any dimension and for

any choice of polarization vectors. The same expansion also extends to the supersymmetric

case [21].

The bi-adjoint scalar theory can be also used to understand the colour-kinematics

duality [7, 22–24] at tree level [4, 6, 16, 25–27]. Moreover, it was recently shown that this

theory plays a crucial role in the understanding of the classical double copy relations [28–

31] between exact solutions in Yang-Mills and gravity. The equations of motion have been

studied in [32]. Berends-Giele recursion relations were given in [33].

– 4 –



J
H
E
P
0
6
(
2
0
1
7
)
0
8
4

3 Diagrammatic rules for mα′(β|β̃)

In this section we investigate the analogue of (2.6) in string theory. Let us assume there

exist some amplitudes that compute the inverse of the KLT kernel exactly in α′, such that,2

Mclosed
n = Aopen

string
KLT

⊗ Aopen

≡ Aopen(β) m−1
α′ (β|β̃) Aopen(β̃). (3.1)

Here

string
KLT

⊗ is the original KLT operation [1], now defined in terms of a new object, mα′(β|β̃).

Since the open and closed string amplitudes become the Yang-Mills and gravity ones in

the α′ → 0 limit, we require that the same happens for the α′-corrected bi-adjoint theory.

In our normalization,

mα′(β|β̃) =
1

(πα′)n−3

(
m(β|β̃) +O(α′)

)
, (3.2)

where n in the number of particles. The new theory can be understood as a bi-adjoint

scalar with additional interaction terms that vanish in the infinite tension limit. As we

will see, however, the precise knowledge of these terms is not necessary to compute the

amplitudes. Instead, we will employ graphical rules that compute them exactly in α′.

Before explaining the rules, let us provide some examples of mα′(β|β̃) that are useful

to keep in mind. From the direct inversion of the string KLT kernel we obtain:

mα′(123|123) = 1, (3.3)

mα′(1234|1234) =
1

tan(πα′s12)
+

1

tan(πα′s23)
, mα′(1234|1243) = − 1

sin(πα′s12)
, (3.4)

mα′(12345|13254) =
1

sin(πα′s23) sin(πα′s45)
, mα′(12435|14253) =

1

sin(πα′s24) sin(πα′s35)
,

mα′(12345|14253) = 0, mα′(12435|13254) = 0. (3.5)

As before, we use the notation sa1a2···am =
∑

1≤i<j≤m pai · paj . It is straightforward to

see these amplitudes collapse to (2.3)–(2.5) in the α′ → 0 limit. Since the Mandelstam

invariants are always multiplied by the factor πα′, from now on we will set πα′ = 1 for the

sake of brevity. We also introduce the notation In to denote the identity permutation with

n labels. Then, some more interesting examples become:

mα′(I6|126435) =
1

sin s12 sin s34 sin s345
, (3.6)

mα′(I6|126345) =
1

sin s12 sin s345

(
1

tan s34
+

1

tan s45

)
, (3.7)

mα′(I7|1276345) =
1

sin s12 sin s345

(
1

tan s34
+

1

tan s45

)(
1

tan s67
+

1

tan s712

)
. (3.8)

These amplitudes factorize into products of inverse sine factors times the amplitude mα′(I4|I4)

from (3.4). As we will find out, in general any off-diagonal amplitude, i.e., one with β 6= β̃,

2Following [6], by m−1
α′ (β|β̃) we denote the entries of a matrix mα′(β̃|β) after taking the inverse.
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can be reduced into a product of the diagonal ones, mα′(β|β), connected by 1/ sin(πα′se)

propagators. This motivates a separate discussion of the two cases.

For convenience, we have attached a Mathematica notebook as an ancillary file to

this arXiv submission, which allows to reconstruct all the objects mα′(β|β̃) studied in this

work, using the diagrammatic rules described below.

3.1 Off-diagonal amplitudes

We can compute the off-diagonal terms, i.e., β 6= β̃, by adapting the diagrammatic rules of

the usual bi-adjoint theory [6]. It provides a convenient way of listing all the graphs allowed

in both permutations at the same time. The procedure is as follows. First, draw points

on a circle according to the permutation β. Next, connect the points with a loop joining

them with respect to the other ordering, β̃. As a result, we obtain a set of polygons defined

by the interior of this loop. For instance, for the examples given above, mα′(I6|126435),

mα′(I6|126345) and mα′(I7|1276345), we have respectively:

1

2

3

4

5

6

,

1

2

3

4

5

6

and

1

2

3

45

6

7

. (3.9)

Here, the permutations β and β̃ are drawn with black and red lines respectively. The

polygons are shown in grey. Starting from these diagrams, the prescription for obtaining

the amplitude is very simple. Each shaded polygon corresponds to a sub-amplitude, and

each vertex of the polygons corresponds to a single leg. As a result, this recipe has given

us all the diagrams that are planar with respect to both β and β̃ [6].

Let us now specialize to the theory under consideration. We find the following rules.

Internal legs are decorated with propagators of the form 1/ sin(πα′se), where se = p2
e/2 is

the norm of the momentum flowing through the leg e. In this way, we have introduced an

infinite number of simple poles at α′se = 0,±1,±2, . . . for each of the internal states. This

means that if we choose to interpret the new object as a physical theory, it would contain

massless, massive and tachyonic states. Note that in the α′ → 0 limit we obtain the usual

massless propagator 1/se, which is consistent with the field theory bi-adjoint scalar.

Let us now dissect each diagram in turn. Firstly,

mα′(I6|126435) =

1

2

3

4

5

6

=
1

sin s12 sin s34 sin s345
. (3.10)

In this example, all the sub-amplitudes, here denoted with white circles, are trivalent.

From (3.3) we now that each of them evaluates to 1. Therefore, the amplitude under

– 6 –
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consideration is just a product of propagators given by sines. Secondly,

mα′(I6|126345) =

1

2

3

4

5

6

= − 1

sin s12 sin s612
×

3

45

345

= − 1

sin s12 sin s612

(
1

tan s34
+

1

tan s45

)
. (3.11)

The amplitude can be written as a product of the propagators times the sub-amplitudes,

two of which are trivial. In the last equality we have used the diagonal four-point amplitude

given in (3.4). We will explain the origin of the minus sign shortly. Finally, we have:

mα′(I7|1276345) =

1

2

3

45

6

7

=
1

sin s12 sin s345
×

3

45

345

×

12

3456

7

=
1

sin s12 sin s345

(
1

tan s34
+

1

tan s45

)(
1

tan s67
+

1

tan s712

)
. (3.12)

Here we have used (3.4) twice.

The overall signs of the amplitudes will be important later on. They are given in terms

of the relative winding number between the two permutations, w(β|β̃). The rule is to first

draw the permutation β on a circle, and then follow the points according to the other

permutation β̃ by always going clockwise. The relative winding number, w(β|β̃) is then

given by the total number of cycles completed. For instance, for the above example (3.11)

we have:

w(I6|126345) =

1

2

3

4

5

6

= 2. (3.13)

The sign of the amplitude mα′(β|β̃) is then simply given by (−1)w(β|β̃)+1. We give a proof

of this statement in appendix A. In the above example, this prescription leads to a minus

sign. Similarly, both (3.10) and (3.12) have winding number 3, thus yielding a plus sign.

– 7 –
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The above method allows for a convenient reduction of any off-diagonal amplitude to a

product of propagators and the diagonal sub-amplitudes. Diagonal amplitudes, mα′(β|β),

are the ones containing the information about the α′ corrections. Before we proceed to

explaining how to compute them, let us comment on the vanishing amplitudes. When it

is impossible to construct a tree-level graph compatible with two partial orderings, the

amplitude necessarily vanishes. In the diagrammatic language, it means that the duals of

the polygons form a loop.3 We have, for example:

1

2

34

5

=

1

2

3

4

5

6

=

1

2

3

45

6

7

=

1 2

3

4

5

6

= 0. (3.14)

In all the cases, it is impossible to find a tree-level graph consistent with planar embeddings

β and β̃. Vanishing amplitudes will be exploited later on, in order to construct matrices

with zero entries, which are easier to invert.

3.2 Diagonal amplitudes

The diagonal amplitudes, mα′(β|β), contain the whole information about the higher-order

interactions in this theory. Even without the full knowledge of their precise form, we will

see that the on-shell amplitudes have a simple form amenable to a diagrammatic expansion.

Without loss of generality we can focus on the identity permutations, i.e., β = β̃ = In. So

far we have met the diagonal amplitudes (3.3) and (3.4). Let us rewrite them as follows:

mα′(I3|I3) =

1

23

= = 1, (3.15)

mα′(I4|I4) =

1

23

4

= + =
1

tan s12
+

1

tan s23
.

(3.16)

Here, we have introduced a new expansion that is not related to the previous sub-section. Of

course, the mα′(β|β̃) amplitudes could still be written in the expansion of sine propagators

plus additional interaction terms. The reason for introducing a different set of rules is that

3Note, however, that the decomposition into polygons depends on the placement of labels on the outer

circle. If a tree-level decomposition exists, it is unique [6]. If it does not, the corresponding amplitude

vanishes. The trick is to always place the labels that are neighbouring in both orderings at infinitesimal

separation [6]. For instance, in the last diagram of (3.14), we have placed labels 1 and 2 very close to

each other.
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the amplitudes turn out to have a very simple expressions in this new language. This time,

each red internal line, e, corresponds to a propagator of the form 1/ tan(πα′se). Hence,

again, it produces an infinite number of simple poles at α′se = 0,±1,±2, . . .. Each trivalent

red vertex carries the same factor as before, 1. It turns out that these graphical rules extend

to higher multiplicities.

Let us see how they work for the next case, n = 5:

mα′(I5|I5) =

1

2

34

5

= + +

+ + +

=
1

tan s12 tan s34
+

1

tan s23 tan s45
+

1

tan s34 tan s51

+
1

tan s45 tan s12
+

1

tan s51 tan s23
+ 1. (3.17)

The first five terms are produced by trivalent graphs with the same vertex as before. These

terms are fixed by requiring that the amplitude factorizes correctly on all of the massless

poles. There is also a contribution that stays finite on all the factorization channels. It

takes a very simple form of a contact term carrying a dimensionless factor 1. Note that in

the infinite tension limit α′ → 0, the contact term does not contribute and we recover the

usual bi-adjoint scalar amplitude. We continue with n = 6:

mα′(I6|I6) =

 +
13 other

terms

+

 +
5 other

terms


=

(
1

tan s12 tan s34 tan s56
+ · · ·

)
+

(
1

tan s12
+ · · ·

)
. (3.18)

As we can see, the presence of the new five-valent vertex introduced a hierarchy in the

expansion. The terms in the first bracket go as α′−3 close to the field theory limit, while

the second bracket behaves as α′−1. Because of this, only the first family survives the

α′ → 0 limit, as expected. There are no new vertices introduced at this stage.

Now that the general rule is established, we want to find out the form of the additional

contact terms appearing at higher multiplicities. We find:

mα′(I7|I7) =

 +
41 other

terms

+

 +
27 other

terms

+ ,

– 9 –
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where the last term is a seven-valent vertex equal to 2. Here, we have again sorted the

terms depending on their leading α′ order. Finally:

mα′(I8|I8) =

 +
131 other

terms

+

 +
123 other

terms



+

 +
7 other

terms

 , (3.19)

mα′(I9|I9) =

 +
428 other

terms

+

 +
530 other

terms



+

 +
53 other

terms

+ . (3.20)

We find that the last nine-valent vertex carries a factor 5. To summarize, we have found that

the diagonal amplitudes mα′(β|β) can be calculated from a graph expansion, where each

propagator carries an inverse tangent factor, and 3, 5, 7, 9-valent vertices come with factors

1, 1, 2, 5 respectively. This pattern seems to generate Catalan numbers. It is tempting to

conjecture that all the remaining vertices follow this pattern, i.e.,

1
2

3

4

56

2k + 1

= Ck−1, (3.21)

where Ck is the k-th Catalan number [34].

4 KLT relations

KLT relations were originally derived in [1] using the holomorphic factorization properties

of the closed string amplitudes. The explicit formula for all multiplicities in the α′ → 0

limit was given in [2] and later proven in a more general setting in [3]. In this section, we

show how to construct KLT relations from the objects mα′(β|β̃) introduced in this work.

We have verified validity of this construction numerically for n ≤ 10 and it remains a

conjecture for higher multiplicities.

Using the graphical rules introduced in the previous section, we can calculate the KLT

relations according to

Mclosed
n = Aopen(β) m−1

α′ (β|β̃) Aopen(β̃). (4.1)
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Here, we treat mα′(β|β̃) as an (n−3)!× (n−3)! matrix with columns and rows labelled by

the permutations β and β̃. There is no restriction on the permutations we use for the open

string partial amplitudes, as long as they form an independent basis, so that mα′(β|β̃) is

an invertible matrix.

Let us start with an illustrative example for n = 4 and orderings β = β̃ = (1234). We

can use the identity sin(πz) = π/Γ(z)Γ(1− z) to rewrite the amplitude (3.16),

mα′(I4|I4) =
1

tan(πα′s)
+

1

tan(πα′t)
=

sin(πα′(s+ t))

sin(πα′s) sin(πα′t)

=
Γ(α′s) Γ(1− α′s) Γ(α′t) Γ(1− α′t)

π Γ(−α′u) Γ(1 + α′u)
. (4.2)

Here we are using the convention s = s12, t = s23, u = s13, s+ t+ u = 0. Using (4.1) with

the Veneziano amplitude [35] and working up to a universal kinematic factor we obtain:

Mclosed
4 =Aopen(1234)m−1

α′ (1234|1234)Aopen(1234)

=

(
Γ(α′s)Γ(α′t)

Γ(1+α′s+α′t)

)(
Γ(α′s)Γ(1−α′s)Γ(α′t)Γ(1−α′t)

Γ(−α′u)Γ(1+α′u)

)−1( Γ(α′s)Γ(α′t)

Γ(1+α′s+α′t)

)
=− Γ(α′s)Γ(α′t)Γ(α′u)

Γ(1−α′s)Γ(1−α′t)Γ(1−α′u)
, (4.3)

which is the Virasoro-Shapiro amplitude [36, 37].

We can also use any other basis for the KLT expansion, for example:

Mclosed
4 = Aopen(1234)


1

23

4

−1

Aopen(1324)

= − sin(πα′t)Aopen(1234)Aopen(1324), (4.4)

or alternatively,

Mclosed
4 = Aopen(1234)


1

23

4

−1

Aopen(1243)

= − sin(πα′s)Aopen(1234)Aopen(1243). (4.5)
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For n = 5, the original KLT relation has permutations β ∈ {(12345), (12435)} and

β̃ ∈ {(13254), (14253)}. Reinterpreted in our new language, the expression reads

Mclosed
5 =

[
Aopen(12345)

Aopen(12435)

]ᵀ


1

2

34

5

1

2

43

5

1

2

34

5

1

2

43

5



−1

[
Aopen(13254)

Aopen(14253)

]

=

[
Aopen(12345)

Aopen(12435)

]ᵀ  1

sin s23 sin s45
0

0
1

sin s24 sin s35


−1 [
Aopen(13254)

Aopen(14253)

]

= sin(πα′s23) sin(πα′s45)Aopen(12345)Aopen(13254) + (3↔ 4), (4.6)

which correctly reduces to the field theory relation given in (2.7). Note how the special

choice of permutations gave a diagonal matrix, which is easier to invert. In general, the orig-

inal KLT matrix will be block diagonal with each block of size bn−3
2 c!d

n−3
2 e!×b

n−3
2 c!d

n−3
2 e!.

It is straightforward to see how the specific ordering chosen in [1, 2] leads to the “star” con-

figurations annihilating all the α′-corrected bi-adjoint amplitudes outside of the diagonal

blocks, as in the example above.

As an exercise, let us compute KLT relations for another choice of permutations, say

β ∈ {(13254), (14253)} and β̃ ∈ {(12354), (12435)}. We then have:

Mclosed
5 =

[
Aopen(13254)

Aopen(14253)

]ᵀ



1

3

25

4

1

4

25

3

1

3

25

4

1

4

25

3



−1

[
Aopen(12354)

Aopen(12435)

]
(4.7)

=

[
Aopen(13254)

Aopen(14253)

]ᵀ − 1

sin s23

(
1

tan s14
+

1

tan s45

)
1

sin s14 sin s35

0
1

sin s24 sin s35


−1 [
Aopen(12354)

Aopen(12435)

]

= sin(πα′s24) sin(πα′s35)Aopen(12435)Aopen(14253)

+
sin(πα′s23) sin(πα′s45)

sin(πα′(s14 + s45))
Aopen(13254)

(
sin(πα′s24)Aopen(12435)

− sin(πα′s14)Aopen(12354)
)
, (4.8)

which can be verified using explicit formulae for the string amplitudes, e.g., [38].

– 12 –



J
H
E
P
0
6
(
2
0
1
7
)
0
8
4

As the final example, we will reproduce the n = 6 KLT kernel of [1, 2]. In this case, the

columns are labelled by β ∈ {(123456), (124356), (132456), (134256), (142356), (143256)}
and the rows by β̃ ∈ {(153462), (154362), (152463), (154263), (152364), (153264)}.

After a tedious but straightforward calculation we obtain:

mα′(β|β̃) =



1

2

3

4

5

6

1

2

4

3

5

6

1

3

2

4

5

6

1

3

4

2

5

6

1

4

2

3

5

6

1

4

3

2

5

6

1

2

3

4

5

6

1

2

4

3

5

6

1

3

2

4

5

6

1

3

4

2

5

6

1

4

2

3

5

6

1

4

3

2

5

6

1

2

3

4

5

6

1

2

4

3

5

6

1

3

2

4

5

6

1

3

4

2

5

6

1

4

2

3

5

6

1

4

3

2

5

6

1

2

3

4

5

6

1

2

4

3

5

6

1

3

2

4

5

6

1

3

4

2

5

6

1

4

2

3

5

6

1

4

3

2

5

6

1

2

3

4

5

6

1

2

4

3

5

6

1

3

2

4

5

6

1

3

4

2

5

6

1

4

2

3

5

6

1

4

3

2

5

6

1

2

3

4

5

6

1

2

4

3

5

6

1

3

2

4

5

6

1

3

4

2

5

6

1

4

2

3

5

6

1

4

3

2

5

6



. (4.9)

As one can see, components of this matrix are related by relabelling. It is then sufficient

to calculate the inverse of the first block:
1

sin s12 sin s34 sin s345
− 1

sin s12 sin s345

(
1

tan s34
+

1

tan s35

)
− 1

sin s12 sin s345

(
1

tan s34
+

1

tan s45

)
1

sin s12 sin s34 sin s345


−1

=

[
− sin s12 sin s35 sin s45 − sin s12 sin s45 sin(s34 + s35)

− sin s12 sin s35 sin(s34 + s45) − sin s12 sin s35 sin s45

]
. (4.10)

After contracting it with the two vectors of open amplitudes, we obtain the expression

Mclosed
6 = − sin(πα′s12) sin(πα′s45)Aopen(123456)

(
sin(πα′s35)Aopen(153462)

+ sin(πα′(s34 + s35))Aopen(154362)
)

+ P(2, 3, 4), (4.11)
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which is the correct form of the KLT relation for n = 6. Here, P(2, 3, 4) stands for the sum

over permutations of {2, 3, 4}.
The rules for the computation of mα′(β|β̃) presented in this work, including the sign,

can be automated. We have checked numerically that they reproduce entries in the KLT

matrix in the form of [3] up to n = 10.

4.1 Soft limits of closed strings

As the first application of the newly-found interpretation of the KLT kernel, we compute

the leading soft factor of the closed string amplitudes, given the knowledge of the open

string soft factors. Closed string soft limits have been previously considered in various

different ways [39–42]. The leading soft factor is equal to the Weinberg soft factor for

pure gravity [43, 44]. The novelty of our approach is that it does not require the precise

knowledge of the KLT kernel, other than the diagrammatic rules of section 3.

We follow the construction of [3, 20] by choosing the permutations labelled by two

particles a, b 6= 1, n− 1, n:

β ∈ {(1, ωa, n− 1, a, n)} and β̃ ∈ {(1, ω̃b, n− 1, n, b)}, (4.12)

where ωa and ω̃b denote the permutations of the remaining n − 4 labels. We can arrange

the matrix mα′(β|β̃) so that a and b label its (n− 4)!× (n− 4)! blocks. Let us consider the

behaviour of the α′-corrected bi-adjoint amplitudes, with this specific ordering, under the

soft limit of the particle n, pn = τ p̂n with τ → 0. We keep α′ finite.

In the case of the off-diagonal blocks, a 6= b, the particle n is adjacent to different

particles in both orderings β and β̃. Therefore, there are no trivalent vertices involving

the particle n and hence all the propagators stay finite. We conclude that the off-diagonal

blocks go as O(τ0) is the soft limit.

In the case of the diagonal blocks, a = b, the soft particle interacts with a through a

trivalent vertex, thus making the corresponding propagator diverge. Of course, it is also

allowed to interact via higher-order vertices, but these give rise to finite contributions.

Hence, the diagonal blocks behave as O(τ−1) in the soft limit.

We have learned that the matrix mα′(β|β̃) becomes block diagonal in the soft limit.

More precisely, near τ = 0 we have:

mα′(1, ωa, n− 1, a, n|1, ω̃b, n− 1, n, b)→ − δab
τπα′ŝan

mα′(1, ωa, n− 1, a|1, ω̃a, n− 1, a) + . . . ,

(4.13)

where the minus sign comes about since the winding number changes by 1. Each of the

(n − 4)! × (n − 4)! diagonal blocks on the right hand side becomes a small inverse KLT

matrix for n− 1 particles.

We know that under the same soft limit, the open string partial amplitudes factorize

as follows [9]:

Aopen(1, ωa, n− 1, a, n)→ 1

τ

(
εn · pa
p̂n · pa

− εn · p1

p̂n · p1

)
Aopen(1, ωa, n− 1, a) + . . . , (4.14)
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and similarly for the other ordering. We see that in each of the diagonal blocks, a = b, the

bi-adjoint matrices (4.13) and the open string factors (4.14) combine to produce a closed

string amplitude with n − 1 particles. Working to leading order and neglecting constant

factors, let us now collect all the terms together to obtain the result,

Mclosed
n → −1

τ

n−2∑
a=2

(
εn · pa
p̂n · pa

− εn · p1

p̂n · p1

)
ŝan

(
ε̃n · pn−1

p̂n · pn−1
− ε̃n · pa
p̂n · pa

)
Mclosed

n−1 + . . .

=
1

τ

(
n−1∑
a=1

εµν p
µ
a pνa

p̂n · pa

)
Mclosed

n−1 + O(τ0), (4.15)

where εµν = εµε̃ν is the polarization vector of the massless state. In the last line we

have used momentum conservation. This is indeed the correct soft factor for closed string

amplitudes [39], coinciding with the pure gravity result.

5 Basis expansion

Open string partial amplitudes can be expanded in a basis of size (n−3)! [21, 45]. This can

be seen as a consequence of the monodromy relations [21, 45, 46]. In the infinite tension

limit, the basis reduces to the BCJ relations [7] among Yang-Mills partial amplitudes. In

this section, we show how to construct a basis expansion of open strings in an alternative

way, utilizing the object mα′(β|β̃) introduced in this work.

Let us consider an (n− 3)! + 1× (n− 3)! + 1 matrix constructed from four blocks: an

(n− 3)!× (n− 3)! matrix mα′(γ|β̃) with γ and β̃ ranging in a set forming a BCJ basis, an

(n− 3)! vector Aopen(γ), and additionally (n− 3)! transposed vector mα′(β|β̃) and a scalar

Aopen(β) for a single permutation β. Since the first two objects form the same BCJ basis

in γ, the latter two are linearly dependent. Hence the following determinant vanishes:

det

[
mα′(γ|β̃) Aopen(γ)

mα′(β|β̃) Aopen(β)

]
=
(
Aopen(β)−mα′(β|β̃)m−1

α′ (β̃|γ)Aopen(γ)
)

detmα′(γ|β̃)

= 0,

where we have used a determinant expansion and Sylvester’s determinant theorem [47]

in the first equality. Since the sets over which β and β̃ range form a BCJ basis, the

determinant of mα′(γ|β̃) is non-vanishing, so we conclude that:

Aopen(β) = mα′(β|β̃)m−1
α′ (β̃|γ)Aopen(γ), (5.1)

which is a basis expansion for the open string amplitude Aopen(β) in terms of a BCJ basis.

It is a direct analogue of the expansion (2.8) for the field-theory amplitudes. Using the

same argument one can prove similar relations for other BCJ-satisfying amplitudes. In the

following, we illustrate the expansion (5.1) with a few examples.

As a first example for n = 4, we expand Aopen(1243) in the one-element basis

{Aopen(1234)}. This corresponds to taking β = {(1243)}, γ = {(1234)}, and say
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β̃ = {(1324)}. We obtain:

Aopen(1243) =


1

24

3



1

32

4

−1

Aopen(1234)

=
sin(πα′t)

sin(πα′u)
Aopen(1234). (5.2)

A slightly more involved example is:

Aopen(1324) =


1

32

4



1

32

4

−1

Aopen(1234)

=

(
1

tan(πα′u)
+

1

tan(πα′t)

)(
− sin(πα′t)

)
Aopen(1234)

=
sin(πα′s)

sin(πα′u)
Aopen(1234). (5.3)

These two examples can be easily verified using the monodromy relations [45]. Both cases

yield the correct field theory limit. Of course, in practical calculations we would put both

of the above amplitudes (5.2) and (5.3) into a vector, so that the KLT kernel has to be

inverted only once.

As the closing example, let us generalize the five point Yang-Mills basis expansion (2.9)

to string theory. Making the choice β = {(12354)}, β̃ = {(12345), (12435)} and γ =

{(13254), (14253)} we get:

Aopen(12354) =



1

2

35

4

1

2

35

4



ᵀ


1

2

34

5

1

2

43

5

1

2

34

5

1

2

43

5



−1

[
Aopen(13254)

Aopen(14253)

]

=

− 1

sin s45

(
1

tan s12
+

1

tan s23

)
− 1

sin s12 sin s35


ᵀ  1

sin s23 sin s45
0

0
1

sin s24 sin s35


−1 [
Aopen(13254)

Aopen(14253)

]

= −sin(πα′(s12 + s23))

sin(πα′s12)
Aopen(13254)− sin(πα′s24)

sin(πα′s12)
Aopen(14253), (5.4)

which can be verified against the explicit form of the open string amplitudes, e.g., [38].
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6 Future directions

In this work, we have shown that the inverse of the string theory KLT kernel can be

understood as a matrix of amplitudes in an α′-corrected bi-adjoint theory, mα′(β|β̃). Given

that a closed string amplitude is calculated from a correlation function of vertex operators

on a genus-0 Riemann surface, and an open string amplitude comes from a correlator of

operators inserted on a disk boundary of a genus-0 Riemann surface, the KLT relations (3.1)

can be graphically summarized in a cartoon:

=
∑

β,β̃∈Sn−3

Mclosed
n Aopen(β) Aopen(β̃)m−1α′ (β|β̃)

Here, the closed string amplitudeMclosed
n is understood as gluing of two open string partial

amplitudes, Aopen(β) and Aopen(β̃). The object stitching the two amplitudes together is

the KLT kernel, m−1
α′ (β|β̃). The sum proceeds over all independent ways of performing the

gluing, with β and β̃ each ranging over a set of (n− 3)! permutations. Similar picture can

be made to intuitively understand the change of basis relation (5.1).

This interpretation of the KLT kernel departs from the original understanding [1] of

the coefficients of KLT expansion as simply coming from a contour deformation argument,

where the factors of sines arise from monodromy properties of string integrals. We have

argued that mα′(β|β̃) can be understood as an interesting object on its own right. In fact,

we propose that it could itself originate from a string integral with two disk orderings. We

present some supporting evidence for this conjecture below.

The main results of this work concerns simplicity of the inverse string theory KLT

kernel. We have shown how the objects mα′(β|β̃) take a compact form, which is amenable

to a diagrammatic expansion. This fact has an immediate application in expanding open

string amplitudes in BCJ bases, as described in section 5. As it is usual in the study of

scattering amplitudes, such simplicity hints at the existence of some underlying structure.

Perhaps it can be related to the work on planar algebras [48] or intersection matrices

associated to Selberg integrals [49, 50].4

Additionally, the field theory bi-adjoint amplitudes have a CHY representation that

allowed for its identification with the inverse KLT kernel in the first place [6]. In an ongoing

program of finding connections between the CHY formalism and string theory [51–59],

understanding of the α′-corrected KLT procedure in the CHY language could shed a new

light on the relations between the two.

We can relate the α′-corrected bi-adjoint theory to other objects studied in the context

of string amplitudes. Our starting point is an intriguing new identity conjectured by Huang,

4We thank Matilde Marcolli and Oliver Schlotterer for pointing out these references to us.
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Siegel and Yuan in [60]. The claim is that supergravity amplitudes can be obtained from

a string theory KLT of open string amplitudes with a small “twist,”

MSUGRA
n = Aopen

string
KLT

⊗ Aopen. (6.1)

Here, the bar over the second open string vector denotes a flip of the space-time signature,

also equivalent to a change α′ → −α′. In addition, it is known [8–11] that open string

amplitudes can be expanded in a basis of the super Yang-Mills ones as follows:

Aopen(β) = Zβ
KLT

⊗ ASYM, (6.2)

where Zβ(γ) is an amplitude of a string-like theory [14, 15] carrying all the α′ dependence.

Its disk integral representation, up to an overall factor, reads:

Zβ(γ) =

∫
zβ1<zβ2<···<zβn

dnz

vol SL(2,R)

∏
i<j |zij |α

′sij

zγ1,γ2 zγ2,γ3 · · · zγn−1,γn zγn,γ1
. (6.3)

Note that the two orderings play different roles. The permutation β gives a disk ordering

that is inherited by the open string. The ordering γ enters the Parke-Taylor factor in

the integrand and eventually gets contracted in the KLT relation (6.2). Recalling that

supergravity and super Yang-Mills are related by the usual field theory KLT relation,

MSUGRA = ASYM
KLT

⊗ ASYM, it is a simple linear algebra exercise to combine it with (6.1)

and (6.2) to obtain:

m(γ|γ̃) = Z(γ)

string
KLT

⊗ Z(γ̃) or equivalently mα′(β|β̃) = Zβ
KLT

⊗ Zβ̃ . (6.4)

Here the overbar has the same meaning as in (6.1). It is also possible to define the α′-

corrected bi-adjoint theory in terms of other string-like objects defined in [12, 13].

Due to the relation (6.4), the α′-corrected bi-adjoint amplitudes mα′(β|β̃) inherit some

symmetries of the integrals Zβ(γ), namely, the cyclicity and parity properties in the or-

derings β and β̃, as well as monodromy relations [9] in both orderings separately. Since

monodromy relations are a consequence of the disk integrals, this fact provides support

to the claim that mα′(β|β̃) should have a representation as a string integral with two

disk orderings.

Furthermore, using (6.2), one can show that (5.1) implies,

Zβ(γ) = mα′(β|β̃)m−1
α′ (β̃|δ)Zδ(γ). (6.5)

That is, the new object provides a way of changing a basis of the disk ordering in Zβ(γ),

which is distinct from the change of basis for the other permutation [9],

Zβ(γ) = m(γ|γ̃)m−1(γ̃|ε)Zβ(ε). (6.6)

The connection between the field theory and string KLT kernels has already been

studied from the perspective of multiple zeta values [8–13, 61–63]. Inverting the result

from [62], one finds,

mα′(β|β̃) = P (β|γ)m(γ|γ̃)P (γ̃|β̃), (6.7)
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where

P (β|γ) = δβγ +
∑
n≥1

ζn2 Zβ(δ)

∣∣∣∣
ζn2

m−1(δ|γ). (6.8)

The connection to (6.1) has been examined in [60]. An interesting question is how to obtain

the compact expressions for mα′(β|β̃) presented in this work from the motivic structure

of (6.8).

Finally, in this work we have not pursued questions pertaining to the colour-kinemetics

duality. The field theory bi-adjoint scalar plays a prominent role in understanding of this

duality both on-shell [4, 6, 16, 25–27] and off-shell [28–31]. It would be very interesting to

study the α′-corrected version of these developments in the light of the results presented

in this note.
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A Proof of the sign of mα′(β|β̃)

In section 3.1, we gave a prescription for computing the sign of mα′(β|β̃). It says that

sgn(mα′(β|β̃)) = (−1)w(β|β̃)+1, (A.1)

where w(β|β̃) is the relative winding number between permutations β and β̃, see (3.13) for

an example. Since the overall sign of mα′(β|β̃) does not change in the α′ → 0 limit, it is

sufficient to show that (A.1) works for the field theory bi-adjoint scalar.

Let us consider any Feynman diagram consistent with both orderings, β and β̃. Each

vertex carries a factor fabcf̃ ãb̃c̃. There are two options. When the labels of the three

legs belonging to the vertex are the same in both orderings modulo cyclicity, the ver-

tex contributes a plus sign to the trace decomposition (2.1). Otherwise, it contributes a

minus sign.

We can now reshuffle the permutation β̃ into β by a series of flips. A single flip is a

change of the labels of β̃, so that one vertex changes sign, e.g. from (abc|acb) to (abc|abc).
In a finite number of steps, we reach a configuration with all plus signs on the vertices,

which necessarily corresponds to β = β̃. Since this configuration comes with the plus sign,

the overall sign of the initial configuration is (−1)#flips.

Let us analyze the situation from the perspective of the winding number definition (A.1).

For the diagonal configuration, β = β̃, the winding number is one and hence the sign is

a plus. Each of the flips changes the winding number by exactly one. Therefore, the

definition (A.1) computes the correct sign.
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