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Abstract: We propose a new prescription for computing the Nekrasov partition functions

of five-dimensional theories with eight supercharges realized by gauging non-perturbative

flavor symmetries of three five-dimensional superconformal field theories. The topologi-

cal vertex formalism gives a way to compute the partition functions of the matter theories

with flavor instanton backgrounds, and the gauging is achieved by summing over Young di-

agrams. We apply the prescription to calculate the Nekrasov partition functions of various

five-dimensional gauge theories such as SO(2N) gauge theories with or without hypermul-

tiplets in the vector representation and also pure E6, E7, E8 gauge theories. Furthermore,

the technique can be applied to computations of the Nekrasov partition functions of five-

dimensional theories which arise from circle compactifications of six-dimensional minimal

superconformal field theories characterized by the gauge groups SU(3), SO(8), E6, E7, E8.

We exemplify our method by comparing some of the obtained partition functions with

known results and find perfect agreement. We also present a prescription of extending the

gluing rule to the refined topological vertex.
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1 Introduction

The (refined) topological vertex is a powerful tool to compute the all genus topological

string amplitudes for toric Calabi-Yau threefolds [1–4]. One can compute the full topolog-

ical string partition function like a Feynman diagram-like method and it can yield the full

list of the Gromov-Witten invariants and the Gopakumar-Vafa invariants of a toric Calabi-

Yau threefold in principle. The topological string partition function also has a physical

interpretation through string theory or M-theory. When we consider M-theory on a non-

compact Calabi-Yau threefold with a compact base that is contractible, the low energy

effective field theory gives rise to a five-dimensional (5d) theory with eight supercharges

which has a ultraviolet (UV) completion [5–8]. Then M2-branes wrapping various holo-

morphic curves in the Calabi-Yau threefold yield BPS particles in the 5d theory. Therefore,

the curve counting for a non-compact Calabi-Yau threefold is equivalent to the counting of

BPS particles of the 5d theory and this implies that the topological string partition func-

tion is equal to the Nekrasov partition function up to some extra factors. Indeed several

checks of the equality have been done for example in [9–13] for 5d SU(N) gauge theories

with flavors by utilizing the method of the topological vertex.

Recently, the topological vertex formalism has been extended for computing the topo-

logical string partition functions of certain non-toric Calabi-Yau threefolds [14–16].1 The

new method makes use of a Higgs prescription of the superconformal index in [19, 20].2

In fact, some non-toric Calabi-Yau threefold can be obtained from a topology changing

transition or a Higgsing from a toric Calabi-Yau threefold. Then applying the Higgsing

prescription for the topological string partition function of the “UV” Calabi-Yau three-

fold gives rise to the topological string partition function of the “infrared” (IR) non-toric

Calabi-Yau threefold. This new technique enables us to compute the Nekrasov partition

functions of the 5d rank one E7, E8 theories [14, 15], the 5d SU(N) gauge theory with

a hypermultiplet in the antisymmetric representation and also the 5d Sp(N) gauge the-

ory [25]. Furthermore, it has been also applied to the calculation of the Nekrasov partition

functions of 5d theories which has a six-dimensional (6d) UV completion, and non-trivial

checks with the elliptic genus of the 6d self-dual strings have been done in [26, 27].

Although the new method enlarges the space of non-compact Calabi-Yau threefolds

to which we can apply the topological vertex, there is still a large class of non-compact

Calabi-Yau threefolds to which we have not yet known how to apply the topological vertex.

An interesting class of such Calabi-Yau threefolds is the ones which yield 5d gauge theories

with a gauge group SO(2N) or E6, E7, E8. In this paper, we propose a new technique

which enables us to compute the Nekrasov partition functions of the 5d pure gauge theories

with a gauge group SO(2N) or E6, E7, E8 from the topological vertex. The new method

utilizes a dual description of the 5d pure gauge theory with a gauge group of DE-type. In

fact, it turns out that the dual description is given by gauging the diagonal part of flavor

1There is also another vertex-like approach to compute the unrefined topological string amplitudes for

some non-toric Calabi-Yau threefolds [17, 18].
2In terms of geometry, the Higgsing corresponds to a topology changing transition and a similar technique

has been also used in [21–24] in the context of the refined version of the geometric transition.
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symmetries of three 5d theories. We call such a gauging trivalent gauging. We have often

encountered the case of gauging the diagonal part of flavor symmetries of two 5d theories

from toric Calabi-Yau threefolds or equivalently 5-brane webs [28–30]. Gauging the flavor

symmetries of three 5d theories is a natural generalization but goes beyond the standard

picture of 5-brane webs. The main aim of this paper is to formulate a novel method

to compute the Nekrasov partition functions of 5d theories constructed by the trivalent

gauging. The 5d theories coupled by the trivalent gauging may be considered as “matter”

parts for the gauging. We indeed develop a way to compute the partition functions of the

5d theories as a “matter” contribution for the gauging from the topological vertex. Then,

the trivalent gauging can be implemented by inserting the Nekrasov partition function of

vector multiplets for the gauging and summing over Young diagrams. The prescription

may be interpreted as a generalization of the gauging for the superconformal index in four-

dimension [31–33]. However, the extension to the gauging for five-dimensional partition

functions is quite non-trivial compared with the four-dimensional case since we need to

add instanton contributions which appear by the gauging.

The new prescription of the trivalent gauging not only apply to the partition functions

of 5d theories which have a 5d UV completion but also apply the partition functions of 5d

theories which have a 6d UV completion. An interesting class of 6d superconformal field

theories (SCFTs) are non-Higgsable cluster theories [34, 35]. These 6d N = (1, 0)SCFTs

are an important ingredient for the atomic classification of general 6d SCFTs [35–37].

When the non-Higgsable cluster has only one tensor multiplet then they are called 6d

minimal SCFTs and labeled by an integer n = 3, 4, 5, 6, 7, 8 and 12 [34, 35]. 5d descriptions

for some 6d minimal SCFTs with eight supercharges have been proposed in [38]. In fact,

it turns out that the 5d descriptions for the cases of n = 4, 6, 8, 12 can be described by

gauging flavor symmetries of three or four 5d theories. Therefore, we can use the trivalent

gauging method and it is possible to compute the Nekrasov partition functions of the 5d

descriptions of some 6d minimal SCFTs on a circle. The Nekrasov partition function for

a 5d theory with a 6d UV completion can be also interpreted as the sum of the elliptic

genera of the self-dual strings in the 6d SCFT. We will give a non-trivial check between the

result from the trivalent gauging and the elliptic genus for the case of n = 4 by using the

elliptic genus computed in [39]. We will further propose a 5d description of the 6d minimal

SCFT of the case n = 3 and calculated its 5d Nekrasov partition function. Again we will

see a non-trivial matching with the elliptic genus computation recently done in [40].

The organization of this paper is as follows. In section 2, we first determine a dual de-

scription for the 5d SO(2N+4) gauge theory with or without hypermultiplets in the vector

representation and also for the 5d pure gauge theories with a gauge group of E-type. In sec-

tion 3, we present a new technique to compute the topological string partition function from

the trivalent gauging of 5d theories. We then apply the method to compute the Nekrasov

partition function of the 5d SO(2N + 4) gauge theory with or without flavors and perform

non-trivial checks with known results. We then apply the trivalent gauging prescription for

the partition functions of the pure E6, E7, E8 gauge theories in section 4. In section 5, the

trivalent gauging method is applied to 5d descriptions for some minimal 6d SCFTs. We also

propose a 5d description for the 6d minimal SCFT in the case of n = 3, and give non-trivial

– 3 –
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support for it. We further comment on a 5d description of a non-Higgsable cluster theory

with multiplet tensor multiplets in section 5.4. In section 6, we present a way to extend the

prescription of the trivalent gauging to the refined topological vertex formalism. We then

conclude our work in section 7. In appendix A, we describe a relation between the SO(2N+

4) gauge theory and the SO(2N+3) gauge theory from a Higgsing, which provides a way to

compute the Nekrasov partition function of the SO(2N+3) gauge theory from the SO(2N+

4) gauge theory. We finally summarize technical tools used in this paper in appendix B.

This paper accompanies a Mathematica notebook which is available from the arXiv

web site. The notebook performs some of the computations of topological vertices exhibited

in section 3, section 4 and section 5, and the computation of the Hilbert series explained

in appendix B. The notebook utilizes the Mathematica application LieART [41]. The

notebook only provides calculations related to the unrefined limit.

2 A dual description of 5d gauge theory with D,E-type gauge group

Five-dimensional gauge theories with eight supercharges can be realized by compactifying

M-theory on a singular Calabi-Yau threefolds X3 [5–8]. When the Calabi-Yau threefold X3

has a G-type surface singularity over a sphere CB, then the low energy effective field theory

from the M-theory compactification yields a 5d pure gauge theory with a gauge group G.

Here G is either AN = SU(N + 1), (N = 1, 2, · · · ), DN+2 = SO(2N + 4), (N = 2, 3, · · · )3 or

E6, E7, E8.

The resolution of the singularity means that the 5d gauge theory is on the Coulomb

branch. The Calabi-Yau manifold X̃3 after the resolution contains a collection of spheres

fibered over the base sphere CB. The intersections among collection of the fibered spheres

form a shape of the Dykin diagram of the Lie algebra g (the Lie algebra of a Lie group

G) corresponding to the resolution of the G-type singularity. We denote the fiber which

consists of spheres alighted along the Dynkin-diagram of type g by Fg. Each sphere in Fg

corresponds to a simple root of g and let a collection of spheres corresponding to a root α

be Cα. Then an M2-brane wrapping a curve Cα in Fg yields a massive W-boson for the

root α of g in the 5d gauge theory. Therefore, the size of Cα is a Coulomb branch modulus.

On the other hand, an M2-brane wrapping the base CB yields an instanton particle of the

5d gauge theory. The size of the base CB is then related to 1
g2YM

where gYM is the 5d gauge

coupling. We also denote a complex surface which is Cα fibration over CB by Sα.

From this construction it is clear that the gauge theory information is encoded in the

complex two-dimensional space Sg which is given by the Fg fibration over the base CB.

The effect of gravity may be neglected by taking a limit where the transverse direction to

Sg is infinitely large. We will always take the field theory limit and hence the background

X̃3 is a non-compact Calabi-Yau threefold whose compact base is given by the complex

surface Sg. More generally, M-theory on a non-compact Calabi-Yau manifold which is a

line bundle over a compact surface S will yield a 5d N = 1 supersymmetric theory. When

the complex surface S is contractible then the 5d theory has a UV completion [5–8] and

3An uncommon convention for N is due to the construction of its dual theory in this section.
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the theory becomes a SCFT when the volume of S vanishes . We will restrict our attention

to such a case in this paper.

The case of G = AN is special since the Calabi-Yau manifold X̃3 is a toric variety. In

this case, we can use the powerful technique of toric geometry or a dual picture of 5-brane

webs in type IIB string theory [28–30]. In this section, we will argue that the cases of

G = DN+2, E6, E7, E8 in fact have a web-like description by making use of the geometric

picture, although we are not sure whether there exists any kind of brane construction which

physically realizes that web-like picture.

2.1 5d SO(2N + 4) gauge theory

Let us first consider the case of G = DN+2, N = 2, 3, · · · . The Calabi-Yau geometry X̃3

has the compact surface Sso(2N+4) which is a Fso(2N+4) fibration over the base CB. The

non-Abelian SO(2N +4) gauge symmetry is recovered at the origin of the Coulomb branch

moduli space which corresponds to the limit where the spheres forming the Fso(2N+4) fiber

shrink simultaneously over the base CB, recovering the DN+2 surface singularity over the

base CB. It is possible to further shrink the base CB. Then the whole complex surface

Sso(2N+4) shrinks to zero size and the gauge coupling become infinitely strong. This limit

corresponds to the conformal limit where nonperturbative particles as well as perturbative

particles become simultaneously massless, and therefore the 5d theory becomes a super-

conformal field theory.

In order to obtain a dual gauge theory description we consider a different order of

shrinking of the surface Sso(2N+4). The fiber Fg consists of N + 2 spheres whose shape is

the Dynkin diagram of type DN+2. Among the N + 2 spheres, there is one special sphere

Cg which intersect with adjacent three spheres. We then consider Cg as a base and shrink

the other spheres including CB. Since CB is fibered over Cg, the geometry develops an

A1 singularity wrapping Cg after shrinking CB. Hence the theory has an SU(2) gauge

symmetry. Furthermore, we have three singular points on Cg. Two of them originate from

contracting a surface Ssu(2) which has a Fsu(2) fiber over CB. The other singular point

originates from contracting a surface Ssu(N) which has a Fsu(N) fiber over CB. Since the

singularities arise from shrinking the complex surfaces, each singular point yields a 5d SCFT

and they are coupled by the SU(2) gauge symmetry associated to the A1 singularity over

Cg. Hence each of the SCFTs should have an SU(2) flavor symmetry and the diagonal part

of the three SU(2) flavor symmetries is gauged. Therefore, the dual description is realized

by the SU(2) gauging of the three 5d SCFTs. We call the gauging trivalent gauging.

Let us then see the three superconformal field theories in detail. Two of them come

from shrinking the complex surface Ssu(2). Hence, the 5d theory is a pure SU(2) gauge

theory with its mass parameter turned on. The pure SU(2) gauge theory should have an

SU(2) flavor symmetry in UV which can be used for the SU(2) trivalent gauging. Hence,

the discrete theta angle for the pure SU(2) gauge theory should be zero. The other SCFT

comes from shrinking the complex surface Ssu(N). Therefore the 5d theory is a pure SU(N)

gauge theory. Since the pure SU(N) gauge theory should have an SU(2) flavor symmetry in

UV again for the SU(2) trivalent gauging, the Chern-Simons (CS) level should be ±N [42].

For each case of the pure SU(2) gauge theory and the pure SU(N) gauge theory, the SU(2)

– 5 –
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0 1 2 3 4 5 6 7 8 9

D5-brane × × × × × ×
NS5-brane × × × × × ×

(p, q) 5-brane × × × × × angle

7-brane × × × × × × × ×

Table 1. The configuration of 5-branes in the ten-dimensional spacetime of type IIB string

theory. The slope of the (p, q) 5-brane is q
p in the two-dimensional (x5, x6)-space. In particular,

a horizontal line represents a horizontal line and a vertical line represents an NS5-brane. Since

the structure of the 5-brane only appears in the (x5, x6)-plane, we only write the two-dimensional

plane for depicting a 5-brane.

flavor symmetry arises non-perturbatively in UV. To deal with the flavor symmetry we

should directly consider the UV superconformal field theory of the pure SU(2) gauge theory

and the pure SU(N)±N gauge theory,4 which we denote by D̂2(SU(2)) and D̂N (SU(N))

respectively. Here the notation D̂p(SU(2))5 implies a SCFT which arises from M-theory

on an orbifold C3/Γ where the orbifold action of Γ is given by

g = (ω2, ω−1, ω−1) (2.1)

with ω2p = 1 and p = 2, 3, · · · . The three components act on the three complex coordinates

of C3. Note that the orbifold action

gp = (ω2p, ω−p, ω−p) = (1,−1,−1) (2.2)

yields an A1 singularity, leading to an SU(2) flavor symmetry. The D̂p(SU(2)) theory is

then a rank (p−1) SCFT with an SU(2) flavor symmetry. Therefore, it has p−1 Coulomb

branch moduli and one mass parameter. In particular, D̂2(SU(2)) theory is the yields the

same SCFT as E1 theory in [45].

It is illustrative to describe the D̂p(SU(2)) theory by a 5-brane web. A 5-brane web is

a dual configuration of a certain Calabi-Yau threefold X̃3 [30]. The directions which the 5-

brane extend are summarized in table 1. It is also useful to introduce 7-branes attached to

the ends of external 5-branes in a 5-brane web configuration to read off the flavor symmetry

of a 5d theory realized on a 5-brane web [46]. The 5-brane web for the pure SU(p)±p gauge

theory is given in figure 1. To understand the SU(2) flavor symmetry “perturbatively”,

it might help to take a S-dual of the web, which is also depicted in figure 1. The S-

duality of the 5d theory is simply given by the π
2 rotation of the web in the (x5, x6)-plane.

Note that in the S-dual picture, the flavor symmetry of the D̂p(SU(2)) theory is realized

perturbatively as background gauge field on two D7-branes attached to the ends of the

external 5-branes extending in the right direction. However, we do not have internal D5-

branes and the theory does not admit a Lagrangian description. On the other hand the

4SU(N)κ implies that an SU(N) gauge theory with the CS level κ.
5The notation of D̂p(SU(2)) has been introduced in [38] as a 5d uplift of the 4d Dp(SU(2)) theory [43, 44]

which is equivalent to the 4d (A1, Dp) Argyres-Douglas theory.

– 6 –
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S-dual

Figure 1. Left: the 5-brane web for the pure SU(p) gauge theory with the ±p CS level. We have

p D5-branes which lie in the horizontal direction. The parallel two external NS5-branes imply the

non-perturbative SU(2) flavor symmetry. Right: the S-dual configuration to the 5-brane web on

the left. Namely the 5-brane web for the D̂p(SU(2)) theory.

SU(2) flavor symmetry appears non-perturbatively in the pure SU(p) gauge theory since

it is associated to a symmetry on the two (0, 1) 7-branes or the two NS5-branes.

In summary, when we regard Cg as the base manifold, the geometry gives rise to the

following 5d theory

D̂N (SU(2))−

D̂2(SU(2))
|

SU(2) − D̂2(SU(2)) (2.3)

The SU(2) in the center of (2.3) implies the SU(2) trivalent gauging which couple the two

D̂2(SU(2)) theories and the D̂N (SU(2)) theory by the diagonal gauging of their SU(2) flavor

symmetries. We argue that this is a dual description of the pure SO(2N + 4) gauge theory.

One can check that the number of the moduli and the parameters of one theory match

with those of the other theory. The pure SO(2N + 4) gauge theory has N + 2 Coulomb

branch moduli and one mass parameter corresponding to the gauge coupling. The dual

theory (2.3) has (N − 1) + 1 + 1 + 1 = N + 2 Coulomb branch moduli and one mass

parameter from the gauging coupling of the SU(2) trivalent gauging in (2.3). This duality

between SO(2N + 2) gauge theory and the SU(2) gauge theory (2.3) with non-Lagrangian

matter is a generalization of base-fiber dualities between 5d SU(N) linear quiver gauge

theories [29, 47] as well as 4d theories [48].

It is also possible to write a web-like picture for the dual theory (2.3). Noting that the

D̂p(SU(2)) theory is given by the web in the right figure of figure 1, we can write a web-like

picture for the theory (2.3) as in figure 2. Due to the trivalent gauging, it is not possible

to write the diagram in figure 2 as a proper 5-brane web on a plane. Verifying that this

picture somewhat makes sense is the main purpose of this paper. In particular, what to do

with the “trivalent SU(2) gauging” in the picture is going to be given in the next section.

Note that the lengths between the parallel horizontal legs for the three 5-brane webs are the

size of CB and hence they should be equal to each other. We need to impose this condition

for the partition function computation in the later sections. In the dual picture, the size

– 7 –
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trivalent

SU(2)

gauging

Figure 2. A 5-brane web-like description of the theory (2.3) which is dual to the pure SO(2N + 4)

gauge theory. The prescription for the “trivalent SU(2) gauging” is going to be given in the next

section. Three webs actually does not live in the same plane, and thus do not cross each other in

the cases we will deal with in this paper.

of CB becomes the Coulomb branch modulus of the SU(2) trivalent gauging. In terms of

the web diagram, the trivalent gauging may be thought of as trivalent gluing of the three

webs which give rise to the D̂2(SU(2)), D̂2(SU(2)) and D̂N (SU(2)) theories. We will use

the terminology of trivalent gauging and trivalent gluing interchangeably in this paper.

We can further support the dual description (2.3) in another manner. The pure

SO(2N + 4) gauge theory can be also realized by a 5-brane web with an O5-plane as

in the left figure in figure 3. The 5-brane web configuration can be thought of as connect-

ing a pure SU(N) gauge theory with the CS level ±N with a pure SO(4) gauge theory by

the two NS5-branes in the middle of the diagram. Since so(4) ∼= su(2) × su(2), we may

replace the 5-brane web for the SO(4) gauge theory with the two 5-brane webs for the pure

SU(2) gauge theory as in figure 3. Then the web-like figure on the right in figure 3 may be

considered as an S-dual configuration of the web in figure 2.

This understanding also provides us with a way to introduce hypermultiplets in the

vector representation of SO(2N+4). Starting from the 5-brane web of the pure SO(2N+4)

gauge theory, M1 + M2 hypermultiplets in the vector representation can be added by

introducing M1 flavor 5-branes on the left and M2 flavor 5-branes on the right as in figure 4.

We here assume M1 ≤ N + 1 and M2 ≤ N + 1 and also M1 + M2 ≤ 2N + 1. In fact the

SO(2N + 4) gauge theory with Nf hypermultiplets in the vector representation has a 5d

UV completion when Nf ≤ 2N + 1 [49].6 In the case when the number of flavors saturates

the bound Nf = 2N + 1, the 5-brane web configuration is more involved than that in

6When Nf = 2N + 2, the 5d SO(2N + 4) theory has a 6d UV completion [50].
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SU(N)±N

O5+O5+ O5−

SO(4)

SU(N)±N

trivalent gluing

SU(2)× SU(2)

Figure 3. A transition from a 5-brane web with an O5-plane to a web-like diagram with trivalent

gluing. The left figure represents a 5-brane web of the pure SO(2N + 4) gauge theory using an

O5-plane. The right figure is a web-like description by replacing the 5-brane for the SO(4) gauge

theory part in the left figure with the two 5-branes webs of the pure SU(2) gauge theory with no

discrete theta angle. Now the three 5-brane webs are connected by the trivalent gluing.

M1
M2

O5+O5+ O5−

Figure 4. A 5-brane web for the SO(2N + 4) gauge theory with M1 +M2 hypermultiplets in the

vector representation.

M1
M2

trivalent gluing

Figure 5. A 5-brane web-like description for the SO(2N + 4) gauge theory with M1 +M2 hyper-

multiplets in the vector representation by replacing the web for the SO(4) part with the two webs

for the pure SU(2). The three 5-brane webs are connected by the trivalent gluing.

figure 4 but it is still possible to write down a 5-brane web by introducing a configuration

of 5-branes jumping over other 5-branes [49]. With the 5-brane web picture in figure 4, one

can again apply the replacement of the web of the SO(4) gauge theory with the two webs

of the pure SU(2) gauge theory as in figure 5. A dual picture may be obtained by simply

rotating the web in figure 5 by π
2 as in figure 6. By denoting the web on the left part in

figure 6 by D̂M1,M2

N (SU(2)), a 5d theory which is dual to the 5d SO(2N + 4) gauge theory

– 9 –
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trivalent

SU(2)

gauging

Figure 6. A web-like diagram which is obtained by rotating web in figure 5 by π
2 .

with M1 +M2 hypermultiplets in the vector representation is given by

D̂M1,M2

N (SU(2))−

D̂2(SU(2))
|

SU(2) − D̂2(SU(2)) (2.4)

Here D̂M1,M2

N (SU(2)) is the 5d rank (N − 1) SCFT with an SU(2)× SU(M1 +M2)×U(1)

flavor symmetry. When M1 = N and M2 = N , the flavor symmetry is further enhanced to

SU(2)× SU(M1 +M2)× SU(2).

2.2 5d pure E6, E7, E8 gauge theories

It is straightforward to apply the idea in the previous subsection to the cases of G = E6, E7

and E8. For each case, there is again one sphere Cg in the fiber Fg which intersects with

three adjacent spheres. We may consider Cg as a base and shrink the other spheres including

CB. Then the shrinking of CB yields again an A1 singularity over Cg, leading to an SU(2)

gauge symmetry. Cg has three singular points and each point gives rise to a certain 5d

SCFT, depending on G = E6, E7 or E8.

When G = E6, one singular point arises by contracting a surface Ssu(2) whereas the

other two singularities originate from shrinking a surface Ssu(3). Repeating the same argu-

ment in section 2.1, the former yields the D̂2(SU(2)) theory and the latter gives rise to the

D̂3(SU(2)) theory. Therefore, a dual description of the pure E6 gauge theory is given by

the trivalent gauging of the D̂2(SU(2)) theory and the two D̂3(SU(2)) theories, namely

D̂3(SU(2))−

D̂2(SU(2))
|

SU(2) − D̂3(SU(2)) . (2.5)
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The theory (2.5) has 2+1+1+2 = 6 Coulomb branch moduli and one mass parameter from

the gauge coupling of the SU(2) trivalent gauging. These numbers agrees with the numbers

of the Coulomb branch moduli and the mass parameter of the pure E6 gauge theory.

When G = E7, the three singular points yield different 5d SCFTs, and they are

the D̂2(SU(2)) theory, the D̂3(SU(2)) theory and the D̂4(SU(2)) theory. Hence a dual

description of the pure E7 gauge theory is

D̂4(SU(2))−

D̂2(SU(2))
|

SU(2) − D̂3(SU(2)) (2.6)

The dual theory (2.6) has 3+1+1+2 = 7 Coulomb branch moduli and one mass parameter

from the gauge coupling of the SU(2) gauging. The numbers again agree with the numbers

of the Coulomb branch moduli and the mass parameter of the pure E7 theory.

Finally when G = E8, three singular points give rise to the D̂2(SU(2)) theory,

D̂3(SU(2)) and the D̂5(SU(2)) theory. Then a dual picture of the pure E8 gauge theory is

D̂5(SU(2))−

D̂2(SU(2))
|

SU(2) − D̂3(SU(2)) (2.7)

The number of the Coulomb branch moduli is 4 + 1 + 1 + 2 = 8 and it has one mass

parameter. The numbers completely agrees with the eight Coulomb branch moduli and

the one mass parameter of the pure E8 gauge theory.

3 Gluing rule and 5d SO(2N + 4) gauge theory

Having identified the dual gauge theory descriptions (2.3)–(2.7) for the gauge theories with

a gauge group G = SO(2N + 4), E6, E7, E8 in section 2, we will make use of the picture

to compute their Nekrasov partition functions. The main tool is the topological vertex

formalism [1–4], whose basic formulae are summarized in appendix B.1. When a 5d theory

is realized on a 5-brane web, the application of the topological vertex to the 5-brane web

gives rise to its Nekrasov partition function [9–13]. However, it is not possible to simply

apply the topological vertex to the web-like descriptions of the theories (2.3)–(2.7) due to

the existence of the trivalent gauging of three 5d theories. In this section we propose a

new technique which enables us to apply the topological vertex formalism to the trivalent

gauging of three 5d theories. The result will come in the form of double expansion of

instanton fugacity and the Coulomb branch parameter corresponding to the trivalent node

of the Dynkin diagram of the gauge group, and that is compared with result from the

localization computations up to some orders of those two expanding parameters.

In this section, we focus on unrefined partition functions, and postpone the refined

cases to section 6.

3.1 Trivalent gluing

In the previous section, the web-like descriptions for the gauge theory with G = SO(2N +

4), E6, E7, E8 came from the duality frame which involves the SU(2) gauging of the diagonal
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part of SU(2) flavor symmetries of three SCFTs. Although each SCFT is a UV SCFT of a

gauge theory, the gauged SU(2) symmetry emerges non-perturbatively at UV, so we cannot

have a Lagrangian description of the duality frame, and thus we need to develop a new

way to compute the partition function of such a theory.

The central idea is regarding those SCFTs as “SU(2) matter”, although they do not

have a Lagrangian description where the SU(2) symmetry is manifest. Recall that the

Nekrasov partition function [51, 52] for an SU(2) gauge theory with hypermultiplets looks

like ∑
λ,µ

Q|λ|+|µ|g Zhyper
λ,µ (QB, Qm)Z

SU(2) vector
λ,µ (QB), (3.1)

where λ, µ are Young diagrams, Qg, Qm, QB are associated to the instanton fugacity,

a mass parameter and Coulomb branch parameter, respectively.7 Zhyper
λ,µ (QB, Qm) is the

contribution from the hypermultiplets, and Z
SU(2) vector
λ,µ (QB) is that from the SU(2) vector

multiplets. What we need now is a generalization of Zhyper
λ,µ to the partition function of a

general SCFT with an SU(2) flavor symmetry.

The pair of Young diagrams (λ, µ) labels the fixed points of the U(1) action in the U(2)

instanton moduli space. Then, Zhyper
λ,µ is the partition function of hypermultiplets with

SU(2) background with the nontrivial instanton configuration labeled by (λ, µ). Therefore,

this concept is manifestly generalized into a general SCFT T , and we denote the partition

function with the flavor instanton background and flavor fugacity QB by ZTλ,µ(QB). Then,

the partition function of the trivalent SU(2) gauging of T1, T2 and T3 can be obtained by∑
λ,µ

Q|λ|+|µ|g ZT1λ,µ(QB)ZT2λ,µ(QB)ZT3λ,µ(QB)Z
SU(2) vector
λ,µ (QB). (3.2)

This is similar to the gauging formula for 4d index [31–33], One might worry about the

validity of this formula, since the formula (3.1) comes from the U(N) instanton, and there-

fore it is not clear that the formula can be generalized into gauging of SCFTs with only

SU(2) flavor. Here we just go ahead, and it will turn out this prescription almost works.

However, we occasionally need to subtract “extra factors” similar to what is discussed in

subsection B.1 when the theory have flavor symmetries as we will see in subsection 3.3.

The next task is understanding how to compute such a partition function ZSCFT
λ,µ

with a nontrivial flavor background. Note again that in our case the flavor emerges non-

perturbatively, and therefore methods relying on Lagrangian descriptions cannot be uti-

lized. This is where the topological vertex helps. To be inspired, let us rewrite (3.1) using

the topological vertex. The web diagram representing an SU(2) gauge theory with one

fundamental hypermultiplet can be depicted as

QB

Qg
Qm

=
∑
λ,µ

Q|λ|+|µ|g fλ,µ × QB

Qm
µ

λ

×
µ

λ

QB , (3.3)

7More precisely, Q implies Q = e−k where k is a modulus or a parameter of a 5d theory. We will call Q

also for moduli and parameters of a 5d theory.
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where fλ,µ is the framing factor:

fλ,µ(q) = f−1
λt (q)fµt(q) (3.4)

where fν(q) is that of (B.7) with unrefined limit t = q. The right hand side of the equation

means the summation over a pair of Young diagrams (λ, µ) assigned to the indicated

internal edges. This summation over λ, µ can be directly identified with that in (3.1) [9–

13].8 Decoupling the hypermultiplet, the partition function reduces to the that of the pure

SU(2) gauge theory and it is given by

∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB) = QB

Qg

=
∑
λ,µ

Q|λ|+|µ|g fλ,µ × QB

µ

λ

×
µ

λ

QB , (3.5)

obtaining the equation

Z
SU(2) vector
λ,µ (QB) = fλ,µ × QB

µ

λ

×
µ

λ

QB . (3.6)

Then, equating (3.1) and (3.3) gives aa

Zhyper
λ,µ (QB, Qm) = QB

µ

λ

Qm
/

QB

µ

λ

. (3.7)

This equation tells us that assigning nontrivial Young diagrams to parallel external edges

representing the SU(2) flavor symmetry almost realizes the flavor background labeled by

those Young diagrams, but the division by the factor

ZHalf
λ,µ (QB) = QB

µ

λ

=

µ

λ

QB ,=

ZSU(2) vector
λ,µ (QB)

fλ,µ

1/2

(3.8)

is needed. This factor is the square root of Z
SU(2) vector
λ,µ , and thus we call this factor a

contribution from a “half” vector.

Noe let us apply this division for determining the partition function of the D̂2(SU(2))

matter. The web diagram is given in figure 1 with p = 2. Since the theory couples to

8This is also true for refined case, if one is careful about the preferred direction. See section 6.
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the SU(2) flavor instanton background, we assign Young diagrams to the parallel external

legs. Then the consideration (3.7) motivate us to declare that the partition function for

the D̂2(SU(2)) is given by

Z
D̂2(SU(2))
λ,µ (QB, Q) = Ẑ

D̂2(SU(2))
λ,µ (QB, Q)/ZHalf

λ,µ (QB)

= QB

Q
µ

λ

/
QB

µ

λ

,
(3.9)

where Ẑ
D̂2(SU(2))
λ,µ (Q) is the quantity computed by the topological vertex with nontrivial

Young diagrams λ, µ on the external edges, with Coulomb branch parameter Q. When

λ = µ = ∅, the factor ZHalf
∅,∅ , called extra factor appearing in the literature [14, 53–55],

which removes the constitutions coming from decoupled strings bridging the parallel 5-

branes. (3.9) is a natural generalization of that. In general, if a SCFT T with an SU(2)

flavor symmetry can be engineered by a web diagram which make the flavor symmetry

manifest, we claim that then the partition function ZTλ,µ with instanton flavor background

can be computed by the topological vertex in the same matter, namely the ratio of the

naive topological vertex computation ẐTλ,µ and ZHalf
λ,µ .9 In particular, a generalization to

the partition function of the D̂p(SU(2)) matter is obvious.

Let us check that (3.9) actually works. For that, we consider a limit of Coulomb branch

parameters of the pure SO(8) gauge theory which gives an SU(3) gauge theory. In the dual

frame (2.3), two of D̂2(SU(2)) decouples in this limit, and thus we get a dual description

D̂2(SU(2))− SU(2). (3.10)

of the SU(3) gauge theory. From (3.9), the partition function of this dual description is∑
λ,µ

Q|λ|+|µ|g Z
D̂2(SU(2))
λ,µ (QB, Q)ZSU(2) vector(QB)

=
∑
λ,µ

Q|λ|+|µ|g fλ,µ ×


QB

Q
µ

λ

/
QB

µ

λ


 QB

µ

λ

×
µ

λ

QB



= QB

Qg
Q

. (3.11)

9If the web of the SCFT T contains other manifest flavor symmetries, then the partition function should

be further divided by extra factors corresponding to those symmetries.
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The resulting web diagram is in fact nothing but the S-dual web for the pure SU(3)±1

gauge theory. Note that Q,Qg corresponds to the two Coulomb branch parameters of

SU(3), and QB is the related to the gauge coupling of SU(3). Therefore the parameters

Qg, QB exchanges their roles under the duality between the SU(3)1 description and (3.10).

Now we can write down a prescription for partition functions for gauge theories dealt

with in the previous section. For simplicity, here we explicitly state the pure SO(8) case. Let

us denote the Coulomb branch parameters corresponding to edge nodes by Q1, Q−1, Q−2,

that corresponding to the center node by Qg, and the parameter associated to the instanton

counting by QB. From (2.3) and (3.9), the partition function is

ZSO(8) =
∑
λ,µ

Q|λ|+|µ|g Z
D̂2(SU(2))
λ,µ (QB, Q1)Z

D̂2(SU(2))
λ,µ

× (QB, Q−1)Z
D̂2(SU(2))
λ,µ (QB, Q−2)Z

SU(2) vector
λ,µ (QB)

=
∑
λ,µ

Q|λ|+|µ|g Ẑ
D̂2(SU(2))
λ,µ (QB, Q1)Ẑ

D̂2(SU(2))
λ,µ

× (QB, Q−1)Ẑ
D̂2(SU(2))
λ,µ (QB, Q−2)

fλ,µZ
Half
λ,µ (QB)2

ZHalf
λ,µ (QB)3

=
∑
λ,µ

Q|λ|+|µ|g Ẑ
D̂2(SU(2))
λ,µ (QB, Q1)Ẑ

D̂2(SU(2))
λ,µ

× (QB, Q−1)Ẑ
D̂2(SU(2))
λ,µ (QB, Q−2)

fλ,µ

ZHalf
λ,µ (QB)

=
∑
λ,µ

Q|λ|+|µ|g fλ,µ × QB

Q1

µ

λ

× QB

Q−1

µ

λ

× QB

Q−2

µ

λ

/
QB

µ

λ

.

(3.12)

Note that we have the factor 1/ZHalf
λ,µ (QB) in addition to the naive expectation from the

dual description (2.3). In the latter part of this paper we are going to make non-trivial

checks of (3.12) and its generalizations by explicitly calculating the righthand side and

comparing the result with field theory computations.

3.2 5d pure SO(2N + 4) gauge theory

We then move onto the explicit computation of the Nekrasov partition function of the pure

SO(2N + 4) gauge theory, making use of the trivalent gluing rule obtained in section 3.1.

Its dual theory is described by the trivalent gauging as in (2.3). Namely, it is realized by
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λλ1
λ2

λ3

λN−2

λN−1

λN = ∅

µµ1

µ2

µ3

µN−2

µN−1

µN = ∅

ν1ν2ν3
νN−1νN

Q1

Q2

QN−1

QB

Figure 7. The assignment of the Young diagrams, λ, µ, λi, µi as well as the Kähler parameters

QB , Qi for i = 1, · · · , N − 1.

the trivalent SU(2) gauging of the diagonal part of the three SU(2) flavor symmetries of

the D̂N (SU(2)) and the two D̂2(SU(2)) theories. The web-like description of the 5d theory

which is dual to the pure SO(2N + 4) gauge theory was given in figure 2. We then apply

the gluing rule as well as the topological vertex to the web diagram. For that we first

compute the partition function of the “D̂N (SU(2)) matter” part with non-trivial Young

diagrams on the parallel external legs representing the SU(2) instanton background.

To compute the partition function of the D̂N (SU(2)) matter system, we assign Young

diagrams {νa} = {ν1, · · · , νN}. {λa} = {λ1, · · · , λN−1}, {µa} = {µ1, · · · , µN} and also

Kähler parameters QB, {Qa} = {Q1, · · · , QN−1} to the lines in the web for the D̂N (SU(2))

as in figure 7. By using the techniques in appendix B.1, the application of the (unrefined)

topological vertex to the web in figure (7) yields

Ẑ
D̂N (SU(2))
λ,µ (QB, {Qa}) =

∑
{νa}

∑
{λa}

∑
{µa}

N∏
a=1

[
(−QBQ2

1Q
4
2 · · ·Q2(a−1)

a−1 )|νa|f−2a+1
νa (q) (3.13)

×Cλta−1λaνa
(q)fλta(q)(−Qa)|λa|Cµaµta−1ν

t
a
(q)f−1

µta
(q)(−Qa)|µa|

]

where λ0 = λ, µ0 = µ and λN = µN = ∅. Note that we chose the last suffixes of the

topological vertices as the Young diagrams assigned to the vertical lines in the web in

figure 7. The choice is useful for the comparison with the Nekrasov partition function from

the localization method since then (3.13) is expanded by QB which is eventually related to

the instanton fugacity of the pure SO(2N+4) gauge theory. A straightforward computation
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of (3.13) gives

Ẑ
D̂N (SU(2))
λ,µ (QB, {Qa}) = q−

1
2
||µ||2+ 1

2
||µt||2

×
∑
{νa}

N∏
a=1

[
(QBQ

2
1Q

4
2 · · ·Q2(a−1)

a−1 )|νa|qa||ν
t
a||2−(a−1)||νa||2Z̃νa(q)Z̃νta(q)

]
×

∏
1≤a≤b≤N−1

H
(
QaQa+1 · · ·Qbqi+j−1

)2
×

∏
1≤a≤b≤N−1

I+
νa,νb+1

(QaQa+1 · · ·Qb)2
∏

1≤b<a≤N
I−νa,νb (QbQb+1 · · ·Qa−1)2

×sλ(q−ρ−ν1 , Q1q
−ρ−ν2 , Q1Q2q

−ρ−ν3 , · · · ,Qq−ρ−νN )

×sµt(q−ρ−ν1 , Q1q
−ρ−ν2 , Q1Q2q

−ρ−ν3 , · · · ,Qq−ρ−νN ), (3.14)

where sλ is the Schur function and q−ρ is the specialization of its arguments, both of which

are briefly reviewed in appendix B.3. We introduced the notations

H(Q) =
∞∏

i,j=1

(
1−Qqi+j−1

)−1
, (3.15)

I±ν1,ν2(Q) =
∏
s∈ν1

(
1−Qq±`ν1 (s)±aν2 (s)±1

)−1
, (3.16)

Q =
N−1∏
a=1

Qa, (3.17)

where ± signs in (3.16) are taken in the same order.

As discussed in section 3.1, the partition function of (3.14) is not the one for the

D̂N (SU(2)) matter but one needs to divide it by the contribution of a “half” of the vector

multiplets of (3.8), and its explicit partition function is

ZHalf
λ,µ (QB) =

∑
ν

(−QB)|ν|fνt(q)Cλt∅ν(q)C∅µtνt(q)

= q−
1
2
||µ||2+ 1

2
||µt||2∑

ν

Q
|ν|
B q
||νt||2Z̃ν(q)Z̃νt(q)sλ(q−ρ−ν)sµt(q

−ρ−ν). (3.18)

Therefore, the partition function of the D̂N (SU(2)) matter is finally given by

Z
D̂N (SU(2))
λ,µ (QB, {Qa}) =

Ẑ
D̂N (SU(2))
λ,µ (QB, {Qa})

ZHalf
λ,µ (QB)

. (3.19)

One might worry that the contribution of the D̂N (SU(2)) matter may be different

when one rotates the diagram in figure 7 by π and puts Young diagrams on the parallel

external legs with an orientation outward. When we consider the usual quadrivalent SU(2)

gauging, we glue such a web with the web in figure 7. However, it turns out that the

partition function (3.19) does not change after the π rotation with the opposite orientation

of the arrows for λ, µ. Therefore we may use the partition function (3.19) both for the gluing
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from the left and the right. Due to this symmetric property, it is possible to use (3.19)

even for the trivalent gauging.

Then as described in section 3.1, our proposal is that the partition function of the

pure SO(2N + 4) gauge theory can be computed by treating the partition function (3.19)

as a matter contribution for the SU(2) gauging. After inserting also the Nekrasov partition

function of the SU(2) vector multiplets, we obtain

ZSO(2N+4)(QB, Qg, {Qa}, Q−1, Q−2) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂2(SU(2))
λ,µ (Q−1)

×ZD̂2(SU(2))
λ,µ (Q−2)Z

D̂N (SU(2))
λ,µ (QB, {Qa}), (3.20)

where Z
SU(2) vector
λ,µ (QB) is the contribution from the SU(2) vector multiplets

Z
SU(2) vector
λ,µ (QB) =

∑
ν

Q
|ν|
B q
||νt||2Z̃ν(q)Z̃νt(q)sλ(q−ρ−ν)sµt(q

−ρ−ν)

×
∑
ν′

Q
|ν′|
B q||ν

′t||2Z̃ν′(q)Z̃ν′t(q)sλ(q−ρ−ν
′
)sµt(q

−ρ−ν′). (3.21)

In the dual picture QB corresponds to the Coulomb branch modulus of the SU(2)

gauging and Qg/QB corresponds to the instanton fugacity of SU(2). For the original

frame, Qg is rather related to one of the Coulomb branch moduli of the pure SO(2N + 4)

gauge theory and QB is related to the instanton fugacity of SO(2N + 4).

It is possible to determine the precise relations between the Kähler parameters QB,

Q−2, Q−1, Qg, {Qa} and the Coulomb branch moduli and the instanton fugacity of the

pure SO(2N + 4) gauge theory. Let Cf be the curve whose Kähler parameter is Qf for

f = −2,−1, g, 1, · · · , N − 1. The N + 2 curves Cf , f = −2,−1, g, 1, · · · , N − 1 form the

Fso(2N+4) fiber whose shape is the Dynkin diagram of so(2N + 4). Therefore, they are

associated to the simple roots of the Lie algebra so(2N + 4) and we can parameterize

Qi = e−(aN−i−aN−i+1), i = 1, · · · , N − 1, Qg = e−(aN−aN+1),

Q−1 = e−(aN+1−aN+2), Q−2 = e−(aN+1+aN+2), (3.22)

where ai, i = 1, · · · , N + 2 are the Coulomb branch moduli of the pure SO(2N + 4) gauge

theory.

One the other hand, the instanton fugacity uSO(2N+4) is related to the size of the base

CB and hence it is equal to QB up to a factor consisting of Qf , f = −2,−1, g, 1, · · · , N −1,

uSO(2N+4) = QBh(Q−2, Q−1, Qg, {Qa}), (3.23)

where h is a certain monomial of arguments. In order to fix the factor h, let us see the

intersection numbers between the curves Ci, i = −2,−1, g, 1, · · · , N − 1, B and the surface

Sf which has the Cf fibration over CB where f = −2,−1, g, 1, · · · , N − 1. Due to the

Dynkin diagram structure of the fiber Fso(2N+4), the intersection matrix between Cf and

Sf ′ for f, f ′ = −2,−1, g, 1, · · · , N − 1 forms the negative of the Cartan matrix of the

so(2N + 4) Lie algebra. Furthermore, CB intersects only with Sg with the intersection
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SN−1 SN−2 · · · S1 Sg S−1 S−2

CN−1 -2 1 · · · 0 0 0 0

CN−2 1 -2 · · · 0 0 0 0
...

C1 0 0 · · · -2 1 0 0

Cg 0 0 · · · 1 -2 1 1

C−1 0 0 · · · 0 1 -2 0

C−2 0 0 · · · 0 1 0 -2

CB 0 0 · · · 0 -2 0 0

Table 2. The intersection numbers between the surfaces Sf , f = −2,−1, g, 1, · · · , N − 1 and the

curves Ci, i = −2,−1, g, 1, · · · , N − 1, B.

number −2. The intersection numbers are summarized as in table 2. In other words,

the intersection numbers imply the Coulomb branch moduli dependence for the Kähler

parameter. Since the instanton fugacity does not depend on the Coulomb branch moduli,

the factor h(Q−2, Q−1, Qg, {Qa}) in (3.23) should be chosen so that uso(2N+4) does not

depend on the Coulomb branch moduli or equivalently the corresponding curve has the

zero intersection number with any surface Sf , f = −2,−1, g, 1, · · · , N − 1. This uniquely

fixes the factor h(Q−2, Q−1, Qg, {Qa}) and the instanton fugacity is given by

uso(2N+4) = QBQ
−2N
g Q−N−1 Q

−N
−2

N−1∏
a=1

Q−2N+2a
a . (3.24)

Therefore, we conjecture that the partition function (3.20) yields the Nekrasov par-

tition function of the pure SO(2N + 4) gauge theory after inserting the gauge theory

parameters given by the relations (3.22) and (3.24).10

3.2.1 Example: 5d pure SO(8) gauge theory

Let us explicitly compute the partition function (3.20) obtained from the SU(2) trivalent

gauging for an example. We work on the simplest case when N = 2, namely the 5d pure

SO(8) gauge theory. Inserting N = 2 to (3.20) yields

ZSO(8)(QB, Qg, Q1, Q−1, Q−2) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂2(SU(2))
λ,µ (Q−1)

×ZD̂2(SU(2))
λ,µ (Q−2)Z

D̂2(SU(2))
λ,µ (QB, {Q1}), (3.26)

10In this paper, we ignore the perturbative partition function from vector multiplets in the Cartan

subalgebra of a gauge group G. The contribution cannot be captured from the topological vertex calculation

but it can be easily recovered by the general formula

ZCartan = H(1)rank(G), (3.25)

where rank(G) is the rank of the gauge group G.
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and we argued that this gives rise to the Nekrasov partition function of the 5d pure SO(8)

gauge theory. The Coulomb branch moduli ai, i = 1, 2, 3, 4 of the SO(8) gauge theory are

given by (3.22) with N = 2, namely

Q1 = e−(a1−a2), Qg = e−(a2−a3), Q−1 = e−(a3−a4), Q−2 = e−(a3+a4), (3.27)

and from (3.24) the instanton fugacity uSO(8) is

uSO(8) =
QB

Q2
−2Q

2
−1Q

4
gQ

2
1

. (3.28)

Perturbative part. Since the instanton fugacity is written by (3.28), the perturbative

part is obtained at the order O(Q0
B). Its explicit form is given by

ZPert
SO(8)(Qg, Q1, Q−1, Q−2) = H(Q−2)2H(Q−1)2H(Q1)2 (3.29)

×
∑
λ,µ

Q|λ|+|µ|g

∏
i=−2,−1,1 sλ(q−ρ, Qiq−ρ)sµt(q−ρ, Qiq−ρ)

sλ(q−ρ)sµt(q−ρ)
.

Indeed we have checked that

∑
λ,µ

Q|λ|+|µ|g

∏
i=−2,−1,1 sλ(q−ρ, Qiq−ρ)sµt(q−ρ, Qiq−ρ)

sλ(q−ρ)sµt(q−ρ)

=H(Qg)
2H(Q−2Qg)

2H(Q−1Qg)
2H(Q1Qg)

2H(Q−2Q−1Qg)
2H(Q−2Q1Qg)

2H(Q−1Q1Qg)
2

×H(Q−2Q−1Q1Qg)
2H(Q−2Q−1Q1Q

2
g)

2, (3.30)

until the order of Q8
g. Combining (3.29) with (3.30) yields

ZPert
SO(8) = H(Q−2)2H(Q−1)2H(Q1)2H(Qg)

2H(Q−2Qg)
2H(Q−1Qg)

2H(Q1Qg)
2 (3.31)

×H(Q−2Q−1Qg)
2H(Q−2Q1Qg)

2H(Q−1Q1Qg)
2H(Q−2Q−1Q1Qg)

2H(Q−2Q−1Q1Q
2
g)

2,

which precisely reproduces the perturbative partition function of the pure SO(8) gauge

theory except for the Cartan part which cannot be captured from the topological vertex.

Instanton part. Next we turn to the instanton partition function of the pure SO(8)

gauge theory. The instanton part is obtained by normalize the full partition function by

the perturbative partition function,

ZInst
SO(8)(QB, Qg, Q1, Q−1, Q−2) =

ZSO(8)(QB, Qg, Q1, Q−1, Q−2)

ZPert
SO(8)(Qg, Q1, Q−1, Q−2)

. (3.32)

We checked that (3.32) agrees with the result obtained from the localization (B.17) until

the order of Q5
g for the one-instanton part and also the two-instanton part. Note that the q

dependence of the unrefined one-instanton partition function is just − q
(1−q)2 coming from

the center of mass mode. This behavior alone is nontrivial from (3.26).
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P1P2PM1
· · ·

P̃1P̃2P̃M2−1P̃M2 (P̃i = PM1+i)

Figure 8. The assignment of the newly introduced Kähler parameters {Pc} = {P1, · · · , PM1+M2} to

the web diagram of the D̂M1,M2

N (SU(2)) matter theory. The Young diagrams λi, (i = 1, · · · , N+M1−
1), µi, (i = 1, · · · , N+M2−1) are assgined by generalizing the Young diagram assignment in figure 7

and the Kähler parameters {Qa} = {Q1, · · · , QN−1} are assigned in the same way as in figure 7.

3.3 Adding flavors

As described in section 2.1, the trivalent gauging also provides us with a web-like diagram

for the 5d theory which is dual to the SO(2N + 4) gauge theory with M1 + M2 vector

multiplets in the vector representation. The figure is depicted in figure 6 and the quiver-

like description of the dual theory is given in (2.4). In this section, we assume M1 ≤ N

and M2 ≤ N and excludes the case M1 + M2 = 2N − 1. This is a technical assumption

which eases the computation of the partition function, but it is straightforward to apply

the trivalent gluing method to the case of M1 +M2 = 2N − 1.

In order to compute the Nekrasov partition function of the SO(2N + 4) gauge the-

ory with M1 + M2 flavors, we first calculate the partition function of the D̂M1,M2

N (SU(2))

matter. We then assign Young diagrams {νa} = {ν1, · · · , νN}, {λb} = {λ1, · · · , λ2N−1},
{µb} = {µ1, · · · , µ2N−1} to the internal lines in figure 8 by generalizing the Young diagram

assignment in figure 7. The assignment of the Kähler parameters {Qa} = {Q1, · · · , QN−1}
is the same as the assignment in figure 7. We further introduce new labels {Pc} =

{P1, · · · , PM1+M2} to the lines in the web as in figure 8. Then the application of the
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topological vertex to the web in figure 8 yields

Ẑ
D̂
M1,M2
N (SU(2))

λ,µ (QB, {Qa}, {Pc}) =
∑
{νa}

∑
{λb}

∑
{µb}

N∏
a=1

[
(−QBQ2

1Q
4
2 · · ·Q2(a−1)

a−1 )|νa|f−2a+1
νa (q)

]

×
[
N−1∏
a=1

Cλta−1λaνa
(q)(−Qa)|λa|fλta(q)

]
CλtN−1λNνN

(q)

×
M1∏
a=1

CλN+aλ
t
N+a−1∅

(q)(−Pa)|λN+a−1|
M1∏
a=2

fλtN+a−1
(q)−1

×
[
N−1∏
a=1

Cµaµta−1ν
t
a
(q)(−Qa)|µa|f−1

µta
(q)

]
CµNµtN−1ν

t
N

(q)

×
M2∏
a=1

CµtN+a−1µN+a∅(q)(−PN+a)
|µN+a−1|fµtN+a

(q), (3.33)

where λ0 = λ, λN+M1 = ∅, µ0 = µ, µN+M2 = ∅. A tedious but straightforward calculation

gives rise to

Ẑ
D̂
M1,M2
N (SU(2))

λ,µ (QB, {Qa}, {Pc}) = q−
1
2
||µ||2+ 1

2
||µt||2

×
∑
{νa}

N∏
a=1

[
(QBQ

2
1 · · ·Q2(a−1)

a−1 )|νa|qa||ν
t
a||2−(a−1)||νa||2Z̃νa(q)Z̃νta(q)

]
×

∏
1≤a≤b≤N−1

H(QaQa+1 · · ·Qb)2

×
∏

1≤a≤b≤N−1

I+
νa,νb+1

(QaQa+1 · · ·Qb)2
∏

1≤b<a≤N
I−νa,νb(QbQb+1 · · ·Qa−1)2

×
∏

2≤a≤b≤M1

H(PaPa+1 · · ·Pb)
∏

2≤a≤b≤M2

H(PM1+aPM1+a+1 · · ·PM1+b)

×
∏

1≤a≤N, 1≤b≤M1

H(QaQa+1 · · ·QN−1P1P2 · · ·Pb)−1

×
∏

1≤a≤N, 1≤b≤M1

I+
νa,∅(QaQa+1 · · ·QN−1P1P2 · · ·Pb)−1

×
∏

1≤a≤N, 1≤b≤M2

H(QaQa+1 · · ·QM−1PM1+1PM1+2 · · ·PM1+b)
−1

×
∏

1≤a≤N, 1≤b≤M2

I+
νa,∅(QaQa+1 · · ·QN−1PM1+1PM1+2 · · ·PM1+b)

−1

×
∑
α

sλ/α
(
q−ρ−ν1 , Q1q

−ρ−ν2 , Q1Q2q
−ρ−ν3 , · · · ,Qq−ρ−νN

)
×sαt

(
−QP1q

−ρ,−QP1P2q
−ρ, · · · ,−QP1q

−ρ) ,
×
∑
β

sµt/β
(
q−ρ−ν1 , Q1q

−ρ−ν2 , Q1Q2q
−ρ−ν3 , · · · ,Qq−ρ−νN

)
×sβt

(
−QPM1+1q

−ρ,−QPM1+1PM1+2q
−ρ, · · · ,−QP2q

−ρ) , (3.34)
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where we defined

P1 =

M1∏
a=1

Pa, P2 =

M2∏
a=1

PM1+a. (3.35)

The partition function (3.34) contains an extra factor associated to the parallel external

legs in figure 8. In order to recover the partition function of a 5d theory realized on a 5-

brane web, one needs to divide the topological vertex result by the extra factor [14, 53–55].

The contribution of the extra factor is

Zextra,1(QB, {Qa}, {Pc}) =
∏

2≤a≤b≤M1

H(PaPa+1 · · ·Pb)
∏

2≤a≤b≤M2

H(PM1+aPM1+a+1 · · ·PM1+b)

×H
(
QB

N∏
a=1

Q
2(a−1)
a−1 (PaPN+a)

N−a+1

)
δM1,NδM2,N . (3.36)

Note that when M1 = M2 = N , another two parallel external legs appear and the extra

factor from the parallel external legs is the last factor in (3.36). Furthermore, we also

divide (3.34) by the half of the vector multiplet contribution of SU(2) given by (3.18).

Hence the partition function of the D̂M1,M2

N (SU(2)) matter is

Z
D̂
M1,M2
N (SU(2))

λ,µ (QB, {Qa}, {Pc}) =
ẐM1,M2

λ,µ (QB, {Qa}, {Pc})
ZHalf
λ,µ (QB)Zextra,1(QB, {Qa}, {Pc})

. (3.37)

Having identified the partition function of the D̂M1,M2

N (SU(2)) matter, the Nekrasov

partition function of the SO(2N + 4) gauge theory with M1 + M2 hypermultiplets in the

vector representation is obtained by the trivalent gauging of D̂M1,M2

N (SU(2)) matter with

the two D̂2(SU(2)) matter. Namely the partition function is given by

Z̃M1,M2

SO(2N+4)(QB, Qg, {Qa}, {Pc}, Q−1, Q−2) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB) (3.38)

×ZD̂2(SU(2))
λ,µ (Q−2)Z

D̂2(SU(2))
λ,µ (Q−1)

×ZD̂
M1,M2
N (SU(2))

λ,µ (QB, {Qa}, {Pc}).

However, this is not the final partition function. We argue that the trivalent gluing

yields another extra factor. The presence of the another extra factor may be understood

from the 5-brane web with an O5-plane in figure 4. The extra factor is associated to the

parallel external legs. In figure 4, the diagram has M1 flavor D5-branes on the left and M2

flavor D5-branes on the right. In the absence of the O5-plane, the extra factor contribution

may be given by a half of the perturbative vector multiplet contribution of SU(M1) from

the left and that of SU(M2) from the right. Here SU(M1) and SU(M2) are the flavor

symmetries associated to the M1 flavor D5-branes on the left and M2 D5-branes on the

right respectively. In the presence of the O5-plane, the M1 flavor D5-branes imply an

Sp(M1) flavor symmetry and the M2 flavor D5-branes imply an Sp(M2) flavor symmetry

since the flavor branes are on top of an O5+-plane. Therefore, the extra factor from the

parallel external branes on the left may be a half of the perturbative contribution of Sp(M1)
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vector multiplets and the extra factor from the parallel external branes on the right may

be a half of the perturbative partition function of Sp(M2) vector multiplets. The combined

partition function is written as

Zextra, pert =
∏

2≤a≤b≤M1

H(PaPa+1 · · ·Pb)
∏

1≤a≤b≤M1

H

R a∏
k=1

Pk

b∏
j=1

Pj

 (3.39)

×
∏

2≤a≤b≤M2

H(PM1+aPM1+a+1 · · ·PM1+b)
∏

1≤a≤b≤M2

H

R a∏
k=1

PM1+k

b∏
j=1

PM1+j

 ,

where

R = Q−2Q−1Q
2
g

[
N−1∏
a=1

Q2
a

]
(3.40)

Compared with the extra factor (3.36) of the D̂M1,M2

N (SU(2)) matter with (3.39), we can

deduce the additional extra factor

Zextra,2(Qg, {Qa}, {Pc}, Q−1, Q−2) =
∏

1≤a≤b≤M1

H

R a∏
k=1

Pk

b∏
j=1

Pj

 (3.41)

×
∏

1≤a≤b≤M2

H

R a∏
k=1

PM1+k

b∏
j=1

PM1+j

 .

Hence we claim that the final expression for the Nekrasov partition function of the

SO(2N + 4) gauge theory with M1 +M2 hypermultiplets in the vector representation is

ZM1,M2

SO(2N+4)(QB, Qg, {Qa}, {Pc}, Q−1, Q−2) =
Z̃M1,M2

SO(2N+4)(QB, Qg, {Qa}, {Pc}, Q−1, Q−2)

Zextra,2(Qg, {Qa}, {Pc}, Q−1, Q−2)
.

(3.42)

Lastly, we relate the Kähler parameters with the Coulomb branch moduli, mass pa-

rameters and the instanton fugacity of the 5d SO(2N + 4) gauge theory. The Coulomb

branch moduli of the SO(2N + 4) gauge theory are again related to the Kähler parameters

{Qa}, Q−2, Q−1 by (3.22). The mass parameters mi, i = 1, · · · ,M1 +M2 are related to the

height of the flavor branes of the 5-brane web in figure 4. This leads to the parameterization

Pi = e−(mi−mi−1), P1 = e−(m1−a1), PM1+1 = e−(mM1+1−a1), (3.43)

for i = 2, · · · ,M1,M1 + 2, · · · ,M1 + M2. The determination of the instanton fugacity

is more involved. First we note that from the localization result of (B.17) one needs to

redefine the instanton fugacity when one decouples one flavor as

uSO(2N+4),Nf e
m = uSO(2N+4),Nf−1, (3.44)

where m is the mass parameter which we send to infinity. In other words, the combination

on the lefthand side of (3.44) remains finite in the limit m → ∞. Therefore, decoupling

M1 +M2 flavors imply

uSO(2N+4),M1+M2
= uSO(2N+4),0e

−∑M1+M2
i=1 mi . (3.45)
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SN−1 SN−2 · · · S1 Sg S−1 S−2

CN−1 -2 1 · · · 0 0 0 0

CN−2 1 -2 · · · 0 0 0 0
...

C1 0 0 · · · -2 1 0 0

Cg 0 0 · · · 1 -2 1 1

C−1 0 0 · · · 0 1 -2 0

C−2 0 0 · · · 0 1 0 -2

CB 0 0 · · · 0 -2 0 0

C ′ M1 0 · · · 0 0 0 0

C ′′ M2 0 · · · 0 0 0 0

Table 3. The intersection numbers between the surfaces Sf , f = −2,−1, g, 1, · · · , N − 1 and the

curves C ′, C ′′, Ci, i = −2,−1, g, 1, · · · , N − 1, B.

eq. (3.45) suggests that the instanton fugacity may be written as

uSO(2N+4),M1+M2
= QB

[
M1∏
a=1

PM1−a+1
a

][
M2∏
a=1

PM2−a+1
M1+a

]
h(Q−2, Q−1, Qg, Q1, · · · , QN−1).

(3.46)

The remaining task is to determine h(Q−2, Q−1, Qg, Q1, · · · , QN−1) so that the instanton

fugacity does not have the Coulomb branch moduli dependence. For that we denote the

curve whose Kähler parameter is Qf by Cf for f = −2,−1, g, 1, · · · , N − 1. We further

introduce C ′, C ′′ whose Kähler parameters are PM1
1 , PM2

M1+1 respectively. Note that only

P1, PM1+1 in the set {Pc} have the Coulomb branch moduli dependence. Let Si be the

surface which is Cf fibration over CB for f = −2,−1, g, 1, · · · , N−1. Then the intersection

numbers are summarized in table 3. By making use of table 3, we can fix the remaining

factor h(Q−2, Q−1, Qg, Q1, · · · , QN−1) and the instanton fugacity is given by

uSO(2N+4),M1+M2
= QB

[
M1∏
a=1

PM1−a+1
a

][
M2∏
a=1

PM2−a+1
M1+a

]
Q−2N+M1+M2
g

×Q−N+
M1+M2

2
−1 Q

−N+
M1+M2

2
−2

N−1∏
a=1

Q−2N+M1+M2+2a
a , (3.47)

in the case of the M1 +M2 flavors.

Therefore, we claim that the partition function (3.42) with the relations (3.22), (3.43)

and (3.47) yields the Nekrasov partition function of the SO(2N + 4) gauge theory with

M1 +M2 hypermultiplets in the vector representation.

3.3.1 Example: 5d SO(8) gauge theory with four flavors

Let us then see an explicit simple example with N = 2 and M1 = M2 = 2. Then the 5d

theory in (2.4) with N = 2 and M1 = M2 = 2 is dual to the 5d SO(8) gauge theory with
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four flavors. The full partition function is given by

Z2,2
SO(8)(QB, Qg, Q1, {Pc}, Q−1, Q−2) =

∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂2(SU(2))
λ,µ (Q−2)

×ZD̂2(SU(2))
λ,µ (Q−1)Z

D̂2,2
2 (SU(2))

λ,µ (QB, Q1, {Pc})
×Zextra,2(Qg, {Qa}, {Pc}, Q−1, Q−2)−1, (3.48)

where

Zextra,2(Qg, {Qa}, {Pc}, Q−1, Q−2) = H(P 2
1Q

2
1Q

2
gQ−2Q−1)H(P2P

2
1Q

2
1Q

2
gQ−2Q−1) (3.49)

×H(P 2
2P

2
1Q

2
1Q

2
gQ−2Q−1)H(P 2

3Q
2
1Q

2
gQ−2Q−1)

×H(P4P
2
3Q

2
1Q

2
gQ−2Q−1)H(P 2

4P
2
3Q

2
1Q

2
gQ−2Q−1).

The Coulomb branch moduli ai, i = 1, 2, 3, 4 of the SO(8) gauge theory are the same

as (3.27) and four mass parameters mi, i = 1, 2, 3, 4 are given by

P1 = e−(m1−a1), P2 = e−(m2−m1), P3 = e−(m3−a1) P4 = e−(m4−m3). (3.50)

The instanton fugacity uSO(8),4 is

uSO(8),4 = QBP
2
1P2P

2
3P4Q1. (3.51)

The comparison with the Nekrasov partition function of the SO(8) gauge the-

ory with four flavors can be achieved by using the partition function (3.48) with the

maps (3.27), (3.50) and (3.51). Indeed we checked that our proposal agrees with the local-

ization result (B.17) until the order of Q6
g for the perturbative part and the one-instanton

part, and we also checked the agreement until the order of Q2
g for the two-instanton part.

4 5d gauge theory with E-type gauge group

In section 3, we computed the Nekrasov partition function of the 5d SO(2N + 4) gauge

theory with or without hypermultiplets in the vector representation by making use of the

topological vertex and the gluing rule for the trivalent gauging. In fact, the technique can

be applied to the calculation of the Nekrasov partition functions of the 5d pure E6, E7 and

E8 gauge theories by using their dual descriptions (2.5), (2.6) and (2.7). In this section we

will obtain the Nekrasov partition functions of the 5d pure E6, E7 and E8 gauge theories

and perform non-trivial checks with the general one-instanton result (B.16).

4.1 5d pure E6 gauge theory

The dual description of the 5d pure E6 gauge theory is given by (2.5). Namely the theory

is realized by the SU(2) gauging of the diagonal part of the SU(2) flavor symmetries of the

D̂2(SU(2))theory and two D̂3(SU(2)) theories. A web-like description of the dual theory is

given in figure 9.

The partition function of the theory (2.5) can be computed by using exactly the same

technique obtained in section 3. The assignment of the Kähler parameters to the web is
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trivalent

SU(2)

gauging

Figure 9. A web-like description of the 5d theory which is dual to the pure E6 gauge theory.

QB

Q2

Q1

λ

µ

QB

Q3

λ

µ

QB

Q4

Q5

λ

µ

Figure 10. The assignment of the Kähler parameters to the web in figure 9. We write the three

webs separately for simplicity.

summarized in figure 10. Q1, Q2, Q3, Q4, Q5 are related to the size of the spheres in the

Fe6 fiber other than Cg and hence they correspond to the five Coulomb branch moduli of

the pure E6 theory. In the dual frame, Q1, Q2 correspond to the Coulomb branch moduli

of the D̂3(SU(2)) theory coming from the leftmost web in figure 10, Q3 corresponds to the

Coulomb branch modulus of the D̂2(SU(2)) theory from the middle web in figure 10 and

Q4, Q5 correspond to the Coulomb branch moduli of the D̂3(SU(2)) theory coming from the

rightmost web in figure 10. The other Coulomb branch moduli of the pure E6 gauge theory

comes from trivalent gluing parameter Qg in the dual picture. QB is the Kähler parameter

for the size of the base CB, related to the instanton fugacity of the pure E6 gauge theory.

Since the web diagram in figure 9 preserves the structure of the Dynkin diagram of e6,

Q1, Q2, Q3, Q4, Q5 and Qg are related to the simple roots of e6. Hence, we can read off the

explicit Coulomb branch moduli dependence for the Kähler parameters as

Q1 = e−
1
2(a1−a2−a3−a4−a5+

√
3a6), Q2 = e−(a4+a5), Q3 = e−(a2−a3),

Qg = e−(a3−a4), Q4 = e−(a4−a5), Q5 = e−
1
2

(a1−a2−a3−a4+a5−
√

3a6), (4.1)

where ai, i = 1, · · · , 6 are the Coulomb branch moduli of the pure E6 gauge theory. The

instanton fugacity uE6 is equal to QB up to a factor made from Qi, i = 1, · · · , 5 and Qg.

We can determine the factor from the geometric data as done in section 3.2. Let Ci be the

curve whose Kähler parameter is given by Qi for i = 1, · · · , 5. We also define Si as the
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S1 S2 Sg S4 S5 S3

C1 -2 1 0 0 0 0

C2 1 -2 1 0 0 0

Cg 0 1 -2 1 0 1

C4 0 0 1 -2 1 0

C5 0 0 0 1 -2 0

C3 0 0 1 0 0 -2

CB 0 0 -2 0 0 0

Table 4. The matrix of the intersection numbers between the divisors Si, i = 1, · · · , 5, g and the

curves Ci, i = 1, · · · , 5, g, B.

surfaces which has the Ci fibration over CB for i = 1, · · · , 5, g. The intersection matrix

between Si and Cj inside X̃3 is the negative of the Cartan matrix of e6 as in table 4.

On the other hand the curve CB has −2 intersection number only with Sg but does not

intersect with the other divisors. The intersection numbers are then summarized in table 4.

Then the instanton fugacity uE6 can be obtained by multiplying QB by a combination of

Q1, · · ·Q5 and Qg so that the intersection numbers with any surfaces Si, i = 1, · · · , 5, g
vanish. This uniquely fixes the instanton fugacity as

uE6 =
QB

Q4
1Q

8
2Q

12
g Q

8
4Q

4
5Q

6
3

. (4.2)

The partition function of the dual theory (2.5) is then given by the trivalent SU(2)

gauge of the partition functions of the two D̂3(SU(3)) theories and the D̂2(SU(2)) theory,

ZE6(Qg, QB, Q1,2,3,4,5) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂3(SU(2))
λ,µ (QB, {Q2, Q1})

×ZD̂2(SU(2))
λ,µ (QB, {Q3})ZD̂3(SU(2))

λ,µ (QB, {Q4, Q5}), (4.3)

where the Kähler parameters Qg, Q1, · · · , Q5 and QB are related to the Coulomb branch

moduli by (4.1) and the instanton fugacity of the pure E6 gauge theory by (4.2). We

checked that the partition function (4.3) perfectly agrees with the perturbative part (B.13)

until the order of Q6
g. We also checked that it matches with the known result of the E6

instanton (B.16) until the order of Q2
g for the one-instanton part.

The fact that ZE6 is a positive power series of Q1,2,3,4,5,g combined with (4.2) alone gives

non-trivial information. The one-instanton partitions function is uE6 times (B.16), and

that should be a positive power series of Q1,2,3,4,5,g. Therefore, for G = E6, the numerator

of (B.16) should be proportional to Q4
1Q

8
2Q

12
g Q

8
4Q

4
5Q

6
3, which is alone non-trivial from the

form of (B.16).

4.2 5d pure E7 gauge theory

We then move onto the calculation of the partition function of the pure E7 gauge theory.

The dual theory is given in (2.6) and its web-like description is depicted in figure 11.
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Figure 11. A web-like of the 5d theory which is dual to the pure E7 gauge theory.

QB

Q2

Q1

λ

µ

QB

Q3

λ

µ

QB

Q4

Q5

Q6

λ

µ

Figure 12. The assignment of the Kähler parameters to the web in figure 11. We write the three

webs separately for simplicity.

We then assign Kähler parameters to the web as in figure 12. Like the case in section 4.1,

Q1, · · · , Q6 and Qg correspond to the Coulomb branch moduli of the pure E7 gauge theory.

Here Qg is again the Kähler parameter for the trivalent gluing. Since Q1, · · · , Q6 and Qg
are associated to the simple roots of e7, the relations between Q1, · · · , Q6, Qg and the

Coulomb branch moduli ai, i = 1, · · · , 7 of the pure E7 gauge theory are given by

Q1 = e−(a2−a3), Q2 = e−(a3−a4), Q3 = e−(a5+a6), Qg = e−(a4−a5),

Q4 = e−(a5−a6), Q5 = e−
1
2

(a1−a2−a3−a4−a5+a6−
√

2a7), Q6 = e−
√

2a7 . (4.4)

On the other hand, the instanton fugacity uE7 of the pure E7 gauge theory can be

read off from the intersection numbers between complex surfaces and curves inside X̃3.

Let Ci, i = 1, · · · , 6 be the curves whose size is given by the Kähler parameters Q1, · · ·Q6

respectively. We also denote Si by the surface which has the Ci fibration over CB for

i = 1, · · · , 6, g. Then the intersection matrix between Si and Ci′ for i, i′ = 1, · · · , 6, g and

also CB inside X̃3 is summarized in table 5. The instanton fugacity uE7 of the pure E7

gauge theory is equal to QB up to a factor made from Qi, i = 1, · · · , 6, g. The factor can be
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S1 S2 Sg S4 S5 S6 S3

C1 -2 1 0 0 0 0 0

C2 1 -2 1 0 0 0 0

Cg 0 1 -2 1 0 0 1

C4 0 0 1 -2 1 0 0

C5 0 0 0 1 -2 1 0

C6 0 0 0 0 1 -2 0

C3 0 0 1 0 0 0 -2

CB 0 0 -2 0 0 0 0

Table 5. The matrix of the intersection numbers between the divisors Si, i = 1, · · · , 6, g and the

curves Ci, i = 1, · · · , 6, g, B.

determined by requring that the intersection numbers with all the surfacesSi, i = 1, · · · , 6, g
vanish. The condition leaves the unique choice

uE7 =
QB

Q8
1Q

12
2 Q

24
g Q

18
4 Q

12
5 Q

6
6Q

16
3

. (4.5)

The partition function of the pure E7 gauge theory can be calculated from the trivalent

SU(2) gauging of the D̂3(SU(2)) matter, the D̂2(SU(2)) matter and the D̂4(SU(2)) matter.

Hence its expression becomes

ZE7(Qg, QB, Q1,2,3,4,5,6) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂3(SU(2))
λ,µ (QB, {Q2, Q1})

×ZD̂2(SU(2))
λ,µ (QB, {Q3})ZD̂4(SU(2))

λ,µ (QB, {Q4, Q5, Q6}), (4.6)

where the relations between the Kähler parameters and the Coulomb branch moduli and

the instanton fugacity are given by (4.4) and (4.5) respectively. Then We found (4.6) agrees

with the perturbative partition function (B.13) of the pure E7 gauge theory until the order

of Q6
g. We also checked that the partition function (4.6) agrees with the known result

of (B.16) until the order of Q3
g for the one-instanton part. Again, (4.5) indicates that the

numerator of (B.16) is proportional to Q8
1Q

12
2 Q

24
g Q

18
4 Q

12
5 Q

6
6Q

16
3 for G = E7.

4.3 5d pure E8 gauge theory

Finally we consider the 5d pure E8 gauge theory. The dual theory is given by (2.7) and

its web-like is drawn in figure 13, The assignment of the Kähler parameters to the web is

summarized in figure 14. Q1, · · · , Q7 and Qg correspond to the simple roots of the e8 Lie

algebra and are related to the Coulomb branch moduli of the pure E8 gauge theory,

Q1 = e−
1
2

(a1−a2−a3−a4−a5−a6−a7+a8), Q2 = e−(a7−a8), Q3 = e−(a7+a8), (4.7)

Qg = e−(a6−a7), Q4 = e−(a5−a6), Q5 = e−(a4−a5), Q6 = e−(a3−a4). Q7 = e−(a2−a3),
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Figure 13. A web-like of the 5d theory which is dual to the pure E8 gauge theory.
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Figure 14. The assignment of the Kähler parameters to the web in figure 13. We write the three

webs separately for simplicity.

where ai, i = 1, · · · , 8 are the Coulomb branch moduli of the pure E8 gauge theory. The

instanton fugacity uE8 is again equal to QB up to a factor consisting of Q1, · · · , Q7 and Qg.

Let Ci, i = 1, · · · , 7 be the curves whose size is given by the Kähler parameters Q1, · · · , Q7

respectively. Let Si be the surface which has the Ci fiber over CB for i = 1, · · · , 7, g. Then

the intersection matrix is given by the numbers summarized in table 6. The instanton
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S1 S2 Sg S4 S5 S6 S7 S3

C1 -2 1 0 0 0 0 0 0

C2 1 -2 1 0 0 0 0 0

Cg 0 1 -2 1 0 0 0 1

C4 0 0 1 -2 1 0 0 0

C5 0 0 0 1 -2 1 0 0

C6 0 0 0 0 1 -2 1 0

C7 0 0 0 0 0 1 -2 0

C3 0 0 1 0 0 0 0 -2

CB 0 0 -2 0 0 0 0 0

Table 6. The matrix of the intersection numbers between the divisors Si, i = 1, · · · , 7, g and the

curves Ci, i = 1, · · · , 7, g, B.

fugacity uE8 of the pure E8 gauge theory is then

uE8 =
QB

Q20
1 Q

40
2 Q

60
g Q

48
4 Q

36
5 Q

24
6 Q

12
7 Q

30
3

. (4.8)

From the dual description (2.5), the Nekrasov partition function of the pure E8 gauge

theory is given by the trivalent SU(2) gauging of the D̂3(SU(2)) matter, the D̂2(SU(2))

matter and the D̂5(SU(2)) matter. Therefore, the partition function can be written by

ZE8(Qg, QB, Q1,2,3,4,5,6,7) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂3(SU(2))
λ,µ (QB, {Q2, Q1}) (4.9)

×ZD̂2(SU(2))
λ,µ (QB, {Q3})ZD̂4(SU(2))

λ,µ (QB, {Q4, Q5, Q6, Q7}).

The relations between the Kähler parameters Q1, · · · , Q7, Qg, QB and the Coulomb branch

moduli and the instanton fugacity of the pure E8 gauge theory are (4.7) and (4.8). Then

We found (4.9) agrees with the perturbative partition function (B.13) of the pure E8 gauge

theory until the order of Q6
g.

In principle, we can also compare the partition function (4.9) with the parameteriza-

tion (4.7) and (4.8) with the general result of the one-instanton (B.16). However, because

of the same reasoning explained of E6,7 case, the numerator of (B.16) is non-trivially pro-

portional to the denominator of (4.8), which is a very high power. This means that one

needs to expand the expression (B.16) to the order 60th in Qg for the comparison. This is

computationally difficult and hence we performed the comparison by inserting some spe-

cific values to Q1, Q2, Q3, Q4, Q5, Q6, Q7 and found the agreement until the order of Q1
g for

the one-instanton part. When we take Q2 generic, then we checked the agreement until

the order of Q0
g.
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5 A 5d description of non-Higgsable clusters

So far we have considered 5d theories which are dual to the 5d gauge theories with a

gauge group of type G = DN+2, E6, E7, E8 by utilizing the trivalent SU(2) gauging. In this

section, we further make use of the trivalent gauging and construct 5d theories given by

a circle compactification of certain 6d SCFTs called non-Higgsable clusters [34, 35]. Non-

Higgsable cluster theories with one tensor multiplet on a tensorial Coulomb branch are

called 6d minimal SCFTs. We will mainly focus on these examples and also comment on

another non-Higgsable cluster in the last subsection. 6d minimal SCFTs can be obtained

from an F-theory compactification on a Calabi-Yau threefold X3 which has an elliptic

fibration over the Hirzebruch surface Fn with n = 1, · · · , 8, 12 [56, 57]. We may take the

field theory limit by sending the size of the fiber P1
F in Fn to infinite. Then the Calabi-Yau

threefold X3 becomes non-compact and the non-compact direction is given by a line bundle

O(−n) over the base P1
B. The low energy effective field theory is a 6d minimal SCFT with

one tensor multiplet on a tensorial Coulomb branch, and we denote it by O(−n) model.

When n ≥ 3, the 6d theories preserve eight supercharges and have no flavor symmetry,

and they are in a class of non-Higgsable clusters. The 6d minimal SCFTs are important

building blocks to construct more general 6d SCFTs [35–37].

In fact, the geometry of some of the O(−n) models has an orbifold limit [5] given by

(T 2 × C2)/Γ where the orbifold action is

g = (ω2;ω−1, ω−1) (5.1)

with ωn = 1. Here n should be restricted to n = 2, 3, 4, 6, 8, 12 so that the orbifold action

consistently acts on the torus. In (5.1), the first component acts on the complex coordinate

of T 2 and the other two components act on the two complex coordinates of C2.

The case of n = 2 is special since it corresponds to 6d N = (2, 0) SCFT of A1 type. The

self-dual strings of the theory are called M-strings [58, 59]. On the other hand the other

cases of n = 3, 4, 6, 8, 12 yield 6d N = (1, 0) SCFTs and hence we will focus on these cases.

A 5d description from a circle compactification of the 6d minimal SCFTs for n =

4, 6, 8, 12 has been obtained in [38]. In fact, the 5d theory also exhibits the structure of the

SU(2) gauging of three or four non-Lagrangian theories. The fact that the similar structure

appears to the cases of the dual theories of the pure gauge theories of DN+2, E6, E7, E8-type

is not coincidence. Let rS1 be the radius of the S1 for the circle compactification and con-

sider a limit where rS1 → 0. Then the limit makes the Kaluza-Klein modes associated to

the circle compactification decouple and leads to a 5d N = 1 theory with a 5d UV comple-

tion. In fact, the O(−n) models with n = 4, 6, 8, 12 reduce to the 5d pure SO(8), E6, E7, E8

gauge theories in the limit respectively. Hence, the 5d description of the 6d minimal models

in the cases of n = 4.6, 8, 12 should be closely related to the dual description of the 5d pure

gauge theories of DN+2, E6, E7, E8-type after taking the limit. Since we have developed the

technique of the trivalent gluing for computing the partition functions of the pure gauge

theories with a gauge group G = SO(2N + 4), E6, E7, E8 in section 3.1, it is also possible

to apply the method to the 5d description of the 6d minimal SCFTs.
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Furthermore, we will also propose a 5d description from a circle compactification of

the O(−3) model and compute the partition function of the 5d theory. The comparison

with the elliptic genus of the O(−3) model obtained in [40] gives non-trivial support for

the 5d description as well as the trivalent gluing rule.

One of other non-Higssable clusters can be also realized by an orbifold construction [38]

and we will propose its 5d description.

5.1 O(−4) model

We first consider a 5d description of the O(−4) model on a circle. The 6d theory is the

SO(8) gauge theory with no flavor symmetry accompanied by one tensor multiplet on its

tensorial Coulomb branch. The orbifold geometry for the O(−4) model is X3 = (T 2×C2)/Γ

where the orbifold action Γ is

g = (ω2;ω−1, ω−1), with ω4 = 1. (5.2)

F-theory compactification on X3 × S1 is dual to an M-theory compactification on X3 [60].

Hence, a 5d description of the O(−4) model is given by a low energy effective field theory

from M-theory on X3 = (T 2 × C2)/Γ with the orbifold action (5.2).

Let us review the 5d construction in [38]. First, since g2 = (1;−1,−1), the orbifold

yields an A1 singularity over the torus, leading to an SU(2) gauge symmetry. Along the

torus direction, the orbifold reduces to Z2. Hence the torus becomes a sphere Cg with four

fixed points. Around each fixed point, the orbifold becomes C3/Γ where the orbifold action

is the same as (5.2). This is exactly the same orbifold geometry considered in section 2.1

and yields the 5d SCFT, D̂2(SU(2)). Therefore, the 5d description of the O(−4) model is

given by the SU(2) gauging of four D̂2(SU(2)) theories,

D̂2(SU(2))
|

D̂2(SU(2))−SU(2)−D̂2(SU(2))
|

D̂2(SU(2)) (5.3)

Note that when one sends a Coulomb branch modulus of one of the D̂2(SU(2)) theories to

infinite, the 5d description reduces to (2.3) with N = 2, namely it is a dual description of

the pure SO(8) gauge theory. This is consistent with the fact that the rS1 → 0 limit of

the O(−4) models yields the 5d pure SO(8) gauge theory. In terms of the geometry, (5.3)

comes from a surface which has a fiber consisting of a collection of spheres whose shape is

the affine Dynkin diagram of so(8). The limit reduces the affine Dynkin diagram of so(8)

to the Dynkin diagram of so(8) and the 5d theory reduces to (2.3) with N = 2 from (5.3).

Let us also see the number of 5d gauge theory parameters can be reproduced from a

circle compactification of the O(−4) model. The O(−4) model has four vector multiplets in

the Cartan subalgebra of SO(8) and one tensor multiplet. After the circle compactification,

both become 5d vector multiplets in the Cartan subalgebra Hence the number of the

Coulomb branch moduli in the 5d theory should be five. Indeed we have five Coulomb
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branch moduli from the 5d theory (5.3). One comes from the SU(2) gauging and four come

from the four rank one D̂2(SU(2)) theories. Since the 6d theory has no flavor symmetry,

the 5d theory should has only one mass parameter originating from the radius of the

compactification circle. From the 5d description (5.3), we have only one mass parameter

associated to the gauge coupling of the middle SU(2) gauging.

We then compute the partition function of the 5d theory (5.3). The gluing procedure

is essentially the same as the one for the trivalent gluing even when we gauge four copies

of the D̂2(SU(2)) matter. The partition function is given by

ZO(−4)(Qg, QB, Q1,2,3,4) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)

×ZD̂2(SU(2))
λ,µ (QB, {Q1})ZD̂2(SU(2))

λ,µ (QB, {Q2})

×ZD̂2(SU(2))
λ,µ (QB, {Q3})ZD̂2(SU(2))

λ,µ (QB, {Q4}). (5.4)

Q1, · · · , Q4 and Qg correspond to the five Coulomb branch moduli and QB is related to

the instanton fugacity of the SU(2) gauging.

Since eq. (5.4) is the Nekrasov partition function of the 5d description (5.3) of the 6d

O(−4) model on a circle, it should also agree with the elliptic genus of the self-dual strings

of the O(−4) model. The full elliptic genus is in general given by the sum of the elliptic

genus of k strings Zk,

Zelliptic(Q,Qτ ) = Z0(Q,Qτ )

(
1 +

∞∑
k=1

Zk(Q,Qτ )Qks

)
(5.5)

where Qs is the string fugacity counting the self-dual strings and Qτ is Qτ = e2πiτ with the

complex structure modulus τ of a torus for the elliptic genus computation which is given by

localization of a two-dimensional theory on a torus. Q represents the other fugacities. The

elliptic genus of the O(−4) model has been computed in [39] and the 1 string contribution

is given by11

Z
O(−4)
1 (Qm1 , Qm2 , Qm3 , Qm4 , Qτ ) = −1

2

η2

θ(q)θ(t−1)
(5.6)

×
4∑
i=1

θ ( qtQ2
mi

)
θ
(
q2

t2
Q2
mi

)
η2

∏
j 6=i

∏
s=±1

η2

θ(QmiQ
s
mj )θ

(
q
tQmiQ

s
mj

) + (Qmi → Q−1
mi)

 ,
where t = q for the unrefined case. Qmi , i = 1, 2, 3, 4 are the fugacities for the SO(8)

symmetry. η is the Dedekind eta function and θ(Q) is an elliptic theta function, which are

defined by

η = Q
1
24
τ

∞∏
n=1

(1−Qnτ ) , (5.7)

θ(Q) = θ1 (Qτ , Q) = −iQ
1
8
τ Q

1
2

∞∏
n=1

(1−Qnτ ) (1−QnτQ)
(
1−Qn−1Q−1

)
. (5.8)

11We put an overall minus sign compared to [39]. This sign is needed so that in the 5d limit the partition

function reduces to the 5d SO(8) Nekrasov Partition function written in (B.17).
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In order to compare (5.6) with (5.4), one needs to find a map between the parameters.

The map has been also worked out in [39], and we reproduce a part of it since we can

apply it to other cases. The Kähler parameters Q1, Q2, Q3, Q4, Qg are related to the size of

spheres which form the affine Dynkin diagram of so(8). Shrinking spheres which form the

shape of the so(8) Dynkin diagram leads to the SO(8) gauge symmetry in the 6d theory.

Therefore, the Kähler parameters for the shrunken spheres are related to Qmi , i = 1, · · · , 4
and we for example choose Q1, Q2, Q3, Qg for giving the 6d SO(8) gauge symmetry. Note

that Q1, Q2, Q3, Qg correspond to the simple roots of so(8) whereas Qmi , i = 1, · · · , 4 take

values at the Cartan subalgebra of so(8). Therefore their relations are

Q1 = Qm1Q
−1
m2
, Qg = Qm2Q

−1
m3
, Q2 = Qm3Q

−1
m4
, Q3 = Qm3Qm4 . (5.9)

Furthermore, Qτ can be written by Qτ =
∏
i=1,2,3,4,g Q

ci
i where ci is the comark associated

to a simple root of so(8) and c4 = 1 for the extended node. Therefore, we obtain

Qτ = Q1Q2Q
2
gQ3Q4. (5.10)

The final parameter which we need to identify is the string fugacity Qs which counts the

self-dual strings in the elliptic genus calculation. Since the self-dual strings arise from

D3-branes wrapping the base P1
B, it should be related to QB by

Qs = QBh(Q1, Q2, Q3, Q4, Qg). (5.11)

One can restrict the explicit form of h(Q1, Q2, Q3, Q4, Qg) by requiring that the string

fugacity has no Coulomb branch moduli dependence. As in section (3.2), the curve P1
B has

nonzero intersection number −2 with Sg which has the Cg fibration over P1
B. Then, we can

deduce that

Qs = QB
Qa4

(Q1Q2Q3Q2
g)
b

(5.12)

with a + b = 2. The precise value of a, b cannot be determined from the conditions so far

but we may determine it by the explicit comparison between (5.4) and (5.6). In fact, it

should be easy to determine a, b since we can just observe the overall rescaling difference

between (5.4) and (5.6) at the order O(Q1
B). We here simply quote the result of [39],

Qs = QB
Q4

Q1Q2Q3Q2
g

. (5.13)

With the relations (5.9), (5.10) and (5.13), one can perform the explicit comparison

of (5.4) with (5.6). Since (5.6) is the one-string contribution, we can use the one-instanton

result of (5.4). Furthermore, the partition function (5.4) is expanded by Qg and hence we

need to expand (5.6) byQg for the comparison. Although it would be in principle possible to

perform the comparison by the double expansion in QB andQg, we need an exact expression

for Qτ . In order to use the truncated form of the elliptic theta function, we further expand

the both equations by Q4 which appears only in Qτ , not in Qmi , i = 1, 2, 3, 4. Then we

have found the complete agreement between the two results until the order of Q2
gQ

3
4 for

the one-string part. Hence, the gluing rule indeed works for the case when the 5d theory

has a 6d UV completion.
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5.2 O(−n) model with n = 6, 8, 12

The analysis for the O(−n) models with n = 6, 8, 12 is parallel to the case of the O(−4)

model. The elliptic genus of one-string for the O(−6) model has been computed in [61–

63]. Furthermore, ref. [63] also computed the elliptic genus of one-string for the O(−n)

model with n = 8, 12. The calculation in terms of the BPS invariants from the Calabi-Yau

geometry by using the mirror symmetry has been done in [39]. We here present another

approach to compute the elliptic genus of the O(−n) models with n = 6, 8, 12 from the

Nekrasov partition functions of their 5d descriptions. Although comparisons between the

result here and in the literature is possible in principle, it is technically difficult because

unrefined limit t→ q we take is not compatible with the results in the literature, at least in

a naive way. Thus, unfortunately, we do not provide comparison of the results for O(−n)

theory with n = 6, 8, 12.

O(−6) model. When n = 6, the F-theory geometry is given by (T 2 × C2)/Γ where the

orbifold Γ is given by

g = (ω2;ω−1, ω−1), with ω6 = 1. (5.14)

Then a 5d description of the O(−6) model is obtained by considering M-theory on the same

background geometry. Since g3 = (1;−1,−1), we again have an A1 singularity over the

torus, leading to an SU(2) gauge symmetry. In the torus direction the orbifold action is Z3

and the torus becomes a sphere with three Z3 fixed points. Around each fixed point, the

geometry becomes C3/Γ with Γ given by (5.14). Hence each fixed point gives rises to the

5d D̂3(SU(2)) theory, and the three D̂3(SU(2)) theories are coupled by the SU(2) gauging.

In summary, the 5d description of the O(−6) model is given by the trivalent SU(2) gauging

of the three D̂3(SU(2)) theories,

D̂3(SU(2))−

D̂3(SU(2))
|

SU(2) − D̂3(SU(2)) (5.15)

Note that sending one Coulomb branch modulus of one of the D̂3(SU(2)) theories to infinity

reproduces the 5d description of the pure E6 theory given by (2.5).

We can again see the number of 5 gauge theory parameters can be reproduced from a

circle compactification of the 6d O(−6) model. The 6d O(−6) model has six vector multi-

plets in the Cartan subalgebra and one tensor multiplet. Hence we should have 6+1 vector

multiplets in the Cartan subalgebra in 5d after a circle compactification. Indeed the SU(2)

gauging provides one Coulomb branch moduli and each of the three D̂3(SU(2)) gives two

Coulomb branch moduli, leading to the seven-dimensional Coulomb branch moduli space.

Since the 6d theory does not have any flavor symmetry, we expect one mass parameter in

5d. This agrees with the one instanton fugacity from the trivalent SU(2) gauging.

The computation of the partition function is straightforward by using the trivalent

gauging as well as the partition function of the D̂3(SU(2)) theories. The proposed partition
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function is then

ZO(−6)(Qg, QB, Q1,2,3,4,5,6) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂3(SU(2))
λ,µ (QB, {Q2, Q1})

×ZD̂3(SU(2))
λ,µ (QB, {Q3, Q4})ZD̂3(SU(2))

λ,µ (QB, {Q5, Q6}), (5.16)

For the relation to the elliptic genus of the O(−6) model, Qτ can be written by Qτ =∏
i=1,2,3,4,5,6,g Q

ci
i where ci is the comark associated to a simple root of e6 and ci = 1 for

the extended node. Hence we get

Qτ = Q1Q
2
2Q

2
3Q4Q

2
5Q6Q

3
g. (5.17)

The string fugacity Qs is again proportional to QB.

O(−8) model. When n = 8, the F-theory geometry is an orbifold (T 2 × C2)/Γ where

the orbifold Γ is given by

g = (ω2;ω−1, ω−1), with ω8 = 1. (5.18)

A 5d description of the O(−8) model is realized by M-theory on the same background

geometry. Since g4 = (1;−1,−1), there is an A1 singularity over the torus. On the torus,

we have a Z4 orbifold which induces a sphere with one Z2 fixed point and two Z4 fixed

points. The Z2 fixed point gives rise to the 5d D̂2(SU(2)) theory and each of the two Z4 fixed

points yields the 5d D̂4(SU(2)) theory. Therefore, the 5d description of the O(−8) model is

D̂4(SU(2))−

D̂2(SU(2))
|

SU(2) − D̂4(SU(2)) (5.19)

Again sending one Coulomb branch modulus in one of the D̂4(SU(2)) theories yields the

5d theory in (2.6), which is dual to the 5d pure E7 gauge theory.

The partition function of the 5d theory is then given by the trivalent SU(2) gauging

of the partition functions of one D̂2(SU(2)) theory and two D̂4(SU(2)) theories, and it is

given by

ZO(−8)(Qg, QB, Q1,2,3,4,5,6,7) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂4(SU(2))
λ,µ (QB, {Q3, Q2, Q1})

×ZD̂2(SU(2))
λ,µ (QB, {Q4})ZD̂4(SU(2))

λ,µ (QB, {Q5, Q6, Q7}), (5.20)

The relation to the complex structure modulus of the torus for the elliptic genus calculation

is

Qτ = Q1Q
2
2Q

3
3Q

2
4Q

3
5Q

2
6Q7Q

4
g. (5.21)
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O(−12) model. Finally we turn to the case of n = −12. The F-theory geometry is

given by (T 2 × C2)/Γ where the orbifold Γ is given by

g = (ω2;ω−1, ω−1), with ω12 = 1. (5.22)

For a 5d description of the O(−12) model, we consider M-theory on the same orbifold

background. Since g6 = (1;−1,−1), we have an A1 singularity on the torus. On the torus,

the orbifold action is Z6 which gives rise to a sphere with a Z2 fixed point, a Z3 fixed point

and also a Z6 fixed point. Each fixed point is associated to the D̂2(SU(2)) theory, the

D̂3(SU(2)) theory, and the D̂6(SU(2)) theory respectively. Therefore, the 5d description of

the O(−12) model is

D̂6(SU(2))−

D̂2(SU(2))
|

SU(2) − D̂3(SU(2)) (5.23)

Again when we send one Coulomb branch modulus of the D̂6(SU(2)) theory, we recover

the 5d theory (2.7) which is dual to the 5d pure E8 gauge theory.

The partition function of the 5d theory (5.23) is then calculated by the trivalent SU(2)

gauging of the partition functions of the D̂2(SU(2)) theory, the D̂3(SU(2)) theory and the

D̂6(SU(2)) theory, and we propose that

ZO(−12)(Qg, QB, Q1,2,3,4,5,6,7,8) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector
λ,µ (QB)Z

D̂3(SU(2))
λ,µ (QB, {Q2, Q1})

×ZD̂2(SU(2))
λ,µ (QB, {Q3})ZD̂6(SU(2))

λ,µ (QB, {Q4, Q5, Q6, Q7, Q8}), (5.24)

The relation to the complex structure modulus of the torus for the elliptic genus calculation

is

Qτ = Q2
1Q

4
2Q

3
3Q

5
4Q

4
5Q

3
6Q

2
7Q8Q

6
g. (5.25)

5.3 O(−3) model

So far we have considered a 5d description of the 6d O(−n) models with n = 4, 6, 8, 12 and

all of them are described by the SU(2) gauging of three or four non-Lagrangian theories of

type D̂p(SU(2)). We here consider a 5d description of the O(−3) model, which has a slight

difference from the other cases.

The F-theory geometry of the 6d O(−3) model is given by an orbifold (T 2 × C2)/Γ

where the orbifold Γ is given by

g = (ω2;ω−1, ω−1), with ω3 = 1. (5.26)

Again a 5d description of the O(−3) theory is obtained from M-theory on the same orbifold.

One difference from the other cases is that we do not have an A1 singularity or other

singularity which exists over the torus. However the Z3 action acts on the torus and it

becomes a sphere Cg with three Z3 fixed points. Around each fixed point the geometry

becomes C3/Z3 and the resolved geometry is a local P2 Calabi-Yau threefold. The 5d SCFT

obtained from the fixed point by shrinking the P2 is called E0 theory [6]. The E0 theory has
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Figure 15. A 5-brane web for the E0 theory.

Figure 16. A 5-brane web for the connecting two E0 theories.

one Coulomb branch modulus but no other parameter. Therefore, a 5d description of the

O(−3) consists of three E0 theories coupled to each other. Note that since the E0 theory

does not have a flavor symmetry we cannot couple them by gauging flavor symmetries.

From the geometric picture the three E0 theories are coupled by the presence of the

sphere Cg. Before considering coupling the three E0 matter, let us think of coupling two

E0 matter. The 5-brane web picture for the E0 theory is given in figure 15. Then we can

connect the two E0 theories as in figure 16. Note that a resolved conifold appears along

the gluing and hence this geometry corresponds to a local Calabi-Yau threefold whose

compact base is P1 on which we have two fixed points described by C3/Z3 in a singular

limit. Similarly, for coupling three E0 matter along the Cg ' P1, we glue the three copies

of the 5-brane web corresponding to a local P2 manifold by a single line as in figure 17.

We call the gluing trivalent “SU(1)” gluing. Schematically, we may write

E0 −

E0
|

SU(1)− E0 (5.27)

We propose that the “SU(1)” gauging of three 5d E0 matter is a 5d description of the 6d

O(−3) model on a circle.

One can check the number of gauge theory parameters in 5d agrees with the expectation

from 6d. In 6d, we have two vector multiplets in the Cartan subalgebra of su(3) and

one tensor multiplets. Hence, the 5d description should have three vector multiplets and

indeed the three copies of the E0 theories provide three 5d vector multiplets in the Cartan

subalgebra. Since the 6d theory has no global symmetry, the 5d theory should have only

one mass parameter from the radius of the compactification circle. This corresponds to the

instanton fugacity of the trivalent “SU(1)” gauging or the gluing parameter.

Another consistency check is that the 6d O(−3) model in the limit rS1 → 0 should

give rise to a pure SU(3) gauge theory. When one decouples one E0 theory we arrive at a
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trivalent

“SU(1)”

gauging

Figure 17. A web-like description for the connecting three E0 matter which is a 5d description of

the O(−3) model.

λ2

λ1
λ3

ν

Q

Figure 18. The assignment of Young diagrams and Kähler parameter for computing the E0 matter.

5d theory whose web diagram is given in figure 16. A flop transition with respect to the

gluing 5-brane indeed reproduces a 5-brane web diagram for a pure SU(3) gauge theory.

We then present a prescription for the trivalent “SU(1)” gauging of the three E0 matter.

The essential point is the same as the trivalent SU(2) gluing done in section 3.1. Namely,

in order to get the partition function of the E0 matter for the “SU(1)” gauging, we divide

the partition function for the E0 theory with non-trivial Young diagram on one external leg

by a “half” of the partition function of the resolved conifold. More concretely, we compute

the partition function of the E0 theory with non-trivial Young diagram on one external leg

corresponding to a web in figure 18. The application of the topological vertex to the web

in figure 18 yields

ẐE0
ν (Q) =

∑
λ1,λ2,λ3

(−Q)|λ1|+|λ2|+|λ3|fλ1(q)−2fλt2(q)2fλt3(q)2Cλ3λt1νt(q)Cλ2λt3∅(q)Cλ1λt2∅(q).

(5.28)

The explicit calculation gives

ẐE0
ν (Q) = q

1
2
||νt||2Z̃νt(q) (5.29)

×
∑

λ1,λ2,λ3,η,η′,η′′

(−Q)|λ1|+|λ2|+|λ3|q−
3
2

∑3
i=1(||λi||2−||λti||2)

×sλt1/η(q
−ρ−ν)sλt1/η′(q

−ρ)sλt2/η′(q
−ρ)sλt2/η′′(q

−ρ)sλt3/η(q
−ρ−νt)sλt3/η′′(q

−ρ).
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ν∅

∅

Figure 19. A web diagram for the “half” of the conifold.

λ1

λ3
λ2

ν

Q

Figure 20. Another web diagram for the E0 matter with an opposite direction for the arrow

associated to ν compared to the one in figure 18.

We then divide (5.29) by a “half” of the partition function of the resolved conifold repres-

nted by a web in figure 19. Its partition function is simply given by

ZHalf SU(1)
ν = C∅∅νt = q

1
2
||νt||2Z̃νt(q). (5.30)

Then we claim that the partition function for the E0 matter is

ZE0
ν (Q) =

ẐE0
ν (Q)

ZHalf SU(1)
. (5.31)

The partition function after the π rotation compared to the one in figure 18 but with an

opposite direction of the arrow for ν as in figure 20 in fact gives the same answer as (5.31)

after the division by the partition function of another “half” of the partition function of

the resolved conifold. Hence, this means that the partition function (5.31) can be used for

gluing from the left and also from the right. Therefore, one can use (5.31) for each of the

contribution of the three E0 matter.

Finally, we couple the three E0 matter system by the “SU(1)” gauging corresponding

the resolved conifold. The “SU(1)” gauging contribution is

ZSU(1)
ν = (−1)|ν|q

1
2
||ν||2+ 1

2
||νt||2Z̃ν(q)Z̃νt(q). (5.32)

Therefore, the partition function of the 5d theory (5.27) is

ZO(−3)(Qg, Q1, Q2, Q3) =
∑
ν

Q|ν|g Z
SU(1)
ν ZE0

ν (Q1)ZE0
ν (Q2)ZE0

ν (Q3). (5.33)

Since eq. (5.33) is the partition function of the 5d theory for a circle compactification of

the 6d O(−3) model, it should agree with the elliptic genus of the 6d O(−3) model. The el-

liptic genus of the 6d O(−3) model has been calculated in [40] and one string contribution is

Z
O(−3)
1 (Qτ , Qm1,m2,m3) =

η2

θ(q)θ(q−1)

3∑
i=1

η4θ(Q2
mi)θ(Qmi)∏

j 6=i θ(QmiQ
−1
mj )θ(Q

−1
miQmj )θ(Qmj )

. (5.34)

Here Qmi , i=1, 2, 3 are the fugacities for the SU(3) symmetry and satisfy Qm1Qm2Qm3 =1.
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Q2

Qg

Q1
flop

Q̃2

Q̃1

QB

Figure 21. A flop transition for the gluing cuve in figur 16.

For the comparison of (5.34) with (5.33), we need to perform a flop transition with

respect to a curve for the gluing. As mentioned before, the limit Q3 → 0 in (5.33) does not

directly yield the web diagram of the pure SU(3) gauge theory but we needed to perform

a flop transition associated to Qg. Therefore, in order to compare (5.33) with (5.34), we

need to compute the partition function after the flop transition.

Before going to the flop transition for web in figure 17, let us consider the flop transition

for the web in figure 16. The partition function from the web in figure 16 is

ZSU(3)(Qg, Q1, Q2) =
∑
ν

Q|ν|g Z
SU(1)
ν ZE0

ν (Q1)ZE0
ν (Q2). (5.35)

The flop transition is given in figure 21. From the web in figure 21, the flop transition

relates the Kähler parameters in the two webs by

Qg = Q−1
B , Q1Qg = Q̃1, Q2Qg = Q̃2, (5.36)

where Q̃1, Q̃2 correspond to the Coulomb branch moduli of the pure SU(3) gauge theory

and QB is related to the instanton fugacity of the pure SU(3) gauge theory. Inserting (5.36)

into (5.35) does not work since it seems to include the negative power of QB which should

not appear in the pure SU(3) partition function. A trick is that when we divide it by

partition function of the resolved conifold, namely

Z̃SU(3)(QB, Q̃1, Q̃2) =
ZSU(3)(Q

−1
B , Q̃1QB, Q̃2QB)

H(Q−1
B )−1

(5.37)

then the terms with negative power of QB disappears [64–69]. Since we divide (5.35) by

H(Q−1
B )−1, we need to multiply (5.37) by H(Q−1

B )−1. Here we can use the flop invariance

of the partition function of the resolved conifold [64]

H(Q−1
B )−1 = H(QB)−1, (5.38)

up to some factor which we neglect. Therefore, the partition function after the flop tran-

sition as in figure 21 is given by

Zflop
SU(3)(QB, Q̃1, Q̃2) =

ZSU(3)(Q
−1
B , Q̃1QB, Q̃2QB)

H(Q−1
B )−1

H(QB)−1. (5.39)
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Eq. (5.39) should agree with the SU(3) Nekrasov partition function given by

ZNek
SU(3) = ZPert

SU(3)

(
1 + ukSU(3)Z

Inst
SU(3),k

)
, (5.40)

where

ZInst
SU(3),k =

∑
∑
i |Yi|=k

3∏
i,j=1

∏
s∈Yi

1

2 sinh
Eij(s)

2 2 sinh
Eij(s)−(ε1+ε2)

2

, (5.41)

Eij(s) = ai − aj − ε1`i(s) + ε2(aj(s) + 1). (5.42)

Here Yi’s are Young diagrams and a1, a2, a3 with a1 + a2 + a3 = 0 are the Coulomb branch

moduli related to Q1, Q2, Q3 by

e−a1 = Q̃
2
3
1 Q̃

1
3
2 , e−a2 = Q̃

− 1
3

1 Q̃
1
3
2 . (5.43)

ZPert
SU(3) is the perturbative part of the SU(3) partition function and

ZPert
SU(3) = H(Q̃1)2H(Q̃2)2H(Q̃1Q̃2)2. (5.44)

We checked that eq. (5.39) agrees with the Nekrasov partition function (5.41) of the pure

SU(3) gauge theory by identifying the instanton fugacity uSU(3) as

uSU(3) = − QB

Q̃1Q̃2

. (5.45)

until the order of Q3
BQ̃

2
1Q̃

2
2 and Q2

BQ̃
3
1Q̃

2
2.

We are now ready to apply the flop transition to the partition function (5.33). We

assume that the same prescription for the flop transition apply for the trivalent “SU(1)”

gauging. We conjecture that the partition function of the 5d theory (5.33) after the flop

transition is given by

Zflop
O(−3)(QB, Q̃1, Q̃2, Q̃3) =

ZO(−3)(Q
−1
B , Q̃1QB, Q̃2QB, Q̃3QB)

H(Q−1
B )−1

H(QB)−1. (5.46)

The partition function (5.46) can be directly compared with the elliptic genus (5.34). The

Kähler parameters Q̃1, Q̃2, Q̃3 form the affine Dynkin diagram of su(3) and we can for

example choose Q̃1, Q̃2 for the simple roots of the su(3) corresponding to the 6d SU(3)

symmetry. Then a map between Qm1 , Qm2 , Qm3 and Q̃1, Q̃2 is

Q̃1 = Qm1Q
−1
m2
, Q̃2 = Qm2Q

−1
m3
, (5.47)

which can be written by

Qm1 = Q̃
2
3
1 Q̃

1
3
2 , Qm2 = Q̃

− 1
3

1 Q̃
1
3
2 , (5.48)

with Qm3 = Q−1
m1
Q−1
m2

. From the comarks of the affine Dynkin diagram of su(3), the

complex structure modulus of the torus is

Qτ = Q̃1Q̃2Q̃3. (5.49)
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base 3, 2 3, 2, 2 2, 3, 2

gauge g2 × su(2) g2 × sp(1) su(2)× so(7)× su(2)

matter 1
2(7 + 1,2) 1

2(7 + 1,2) 1
2(2,8,1) + 1

2(1,8,2)

Table 7. Non-Higgsable clusters with multiple base curves. The first row of the table represents

the negative of the self-intersection numbers of the base spheres.

By using the maps (5.48) and (5.49), we checked that (5.46) agrees with

QB
Q

1
2
τ

Q̃1Q̃2
Z
O(−3)
1 (Qτ , {Qmi}) until the order of Q̃2

1Q̃
2
2Q̃

2
3 for the one-string part. This also

implies that the string fugacity is given by

Qs = QB
Q̃

1
2
3

Q̃
1
2
1 Q̃

1
2
2

. (5.50)

5.4 Another non-Higgsable cluster

So far we have focused on the O(−n) models which contain only one tensor multiplet or

equivalently one P1 base. In particular when n = 3, 4, 6, 8, 12 the O(−n) model has an

orbifold description of (T 2 × C2)/Γ with the orbifold action given by (5.1), leading to its

5d description after a circle compactification. There are still another non-Higgsable cluster

theories which contain multiple tensor multiplets or more than one base curves [34, 35].

The 6d theories again have no flavor symmetry. The F-theory geometry has a compact

base which is an elliptic fibration over a collection of spheres given in table 7. They are

also important ingredients for constructing 6d SCFTs.

Among the three non-Higgsable clusters, the last entry in table 7 has an orbifold

description [38]. The F-theory geometry is (T 2 × C2)/Γ with the orbifold action

g = (ω−6;ω, ω5), (5.51)

with ω8 = 1. On the torus the orbifold action is Z4. The torus then becomes a sphere with

one Z2 fixed point and two Z4 fixed points.

Then we consider a 5d description of this 6d theory. We can simply consider M-theory

on the same orbifold geometry. Since g4 = (1;−1,−1), the orbifold action induces an A1

singularity and the 5d theory has an SU(2) gauge symmetry. Around the Z2 fixed point,

the geometry becomes C3/Γ′ with the action

g′ = g2 = (ω−12, ω2, ω10) = (ω−4, ω2, ω2) = (ω′−2, ω′, ω′), (5.52)

with ω′4 = 1. This is the same geometry as (2.1) with p = 2. Namely, the 5d theory

is the D̂2(SU(2)) theory at the Z2 fixed point. Around the Z4 fixed point, the geometry

is an orbifold C3/Γ with the orbifold action (5.51). It is possible to write a 5-brane web

corresponding to the orbifold geometry and it is depicted in figure 22. The 5d theory has

an SU(2) flavor symmetry with three Coulomb branch moduli. We denote the 5d theory
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Figure 22. A 5-brane web diagram corresponding to the orbifold C3/Γ with the orbifold ac-

tion (5.51).

by D̂Γ(SU(2)), Therefore, the 5d theory for the non-Higgsable cluster is

D̂Γ(SU(2))−

D̂2(SU(2))
|

SU(2) − D̂Γ(SU(2)) (5.53)

The 5d theory is again given by the SU(2) trivalent gauging.

Let us see whether the numbers of 5d gauge theory parameters agrees with the ex-

pectation from 6d. The number of vector multiplets in the Cartan subalgebra in 6d is

1 + 3 + 1 = 5. The number of tensor multiplets is 3. After a circle compactification they

should become 5 + 3 = 8 vector multiplets in the Cartan subalgebra and the 5d theory

should have an eight-dimensional Coulomb branch moduli space. In 5d, D̂2(SU(2)) theory

has one Coulomb branch modulus and two D̂Γ(SU(2)) theories have 2 × 3 = 6 Coulomb

branch moduli. By adding one Coulomb branch modulus from the trivalent SU(2) gauging,

the 5d theory has an eight-dimensional Coulomb branch moduli space which agrees with

the expectation. Since the 6d theory has no flavor symmetry, the 5d theory should have

only one mass parameter, Indeed the 5d theory (5.53) has one mass parameter coming

from the instanton fugacity of the SU(2) trivalent gauging.

6 Refinement

So far we have considered the unrefined partition function where the two Ω-deformation

parameters ε1, ε2 are set to ε1 = −ε2. In this section, we extend the rule for the trivalent

SU(2) gluing to the refined topological vertex formalism. Instead of performing the calcu-

lation in full generality, we will focus on a specific example of the pure SO(8) gauge theory

and describe how the trivalent SU(2) gauging can be generalized to the refined case. The

application to other cases will be carried out in a similar manner in principle.

6.1 Refined partition function of D̂2(SU(2)) matter from flop transition

In order to perform the computation for the trivalent SU(2) gauging for the refined case, we

first need to determine the refined partition function of the D̂N (SU(2)) matter correspond-
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Figure 23. A 5-brane web for a theory which is S-dual to the SU(2) gauge theory with two flavors.

The Kähler parameters satisfy Qm1Q = Qm2Q
′.

ing to the web in figure 7. Similarly to the topological vertex formalism, we assign the

refined topological vertex which is labeled by three Young diagrams corresponding to three

legs at each vertex of a 5-brane web. However the role of the three legs is not symmetric

and we assign t, q and a preferred direction for each leg. Furthermore, when one glues a

leg with t(or q) with another leg, then the another leg should be labeled by q(or t).

Let us first think about the case when we choose the vertical directions in figure 7 for

the preferred direction, then the gluing leg in the horizontal direction should be labeled

by t or q. In order to have the consistent gluing for the refined topological vertex, one

needs to label t or q in a different way for the horizontal legs in the web for the other

D̂N (SU(2)) matter. When we glue two D̂N (SU(2)) matter system then this gluing rule

causes no problem. However when we consider the trivalent gluing with three D̂N (SU(2))

matter system, then it is difficult to glue three webs consistently with the gluing rule for

the refined topological vertex.

This problem can be avoided when we choose the horizontal direction in figure 7 for

the preferred direction. This is also conceptually plausible. The equation (3.6) which we

relied on can be generalized to the refined case only when the preferred direction is taken

to be horizontal. However another problem arises since some vertex does not have a leg in

the preferred direction and we cannot apply the refined topological vertex to such a vertex.

In fact, there is a way to solve the second problem by using a flop transition. To see that

we focus on the case of the D̂2(SU(2)) matter which we will use for the computation of the

refined partition function of the pure SO(8) gauge theory. Although we cannot apply the

refined topological vertex to the web for the D̂2(SU(2)) matter with the horizontal direction

chosen for the preferred direction, we can first apply the refined topological vertex to a

different but a related to web in figure 23. From the web in figure 23, we can perform a

flop transition with respect to the curves whose Kähler parameters are Qm1 and Qm2 as in

figure 24. Then we obtain a web on the right in figure 24. From the right web in figure 24,

one can send Qm1 , Qm2 → 0, giving rise to a web in figure 23. From the comparison

between the webs in figure 24, the Kähler parameters are related by

Qm1 = Q−1
E1
, Q = QFQE1 , Qm2 = Q−1

E2
, Q′ = QFQE2 . (6.1)

The same trick has been used to obtain the refined partition function for the D̂P2 theory [69].
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Figure 24. Two flop transitions from the web in figure 23.

We then first compute the refined partition function for the web in figure 23. The

application of the refined topological vertex to the web in figure 23 yields

˜̂
Z
L

λ,µ(QB, Q,Q
′, Qm1 , Qm2) =

∑
λ1,λ2,µ1,µ2,ν1,ν2

Cνt2∅µt2(t, q)C∅ν2λt2(t, q)(−QBQQ′)|ν2|f̃νt2(t, q)

×C∅µt1µ2(q, t)(−Q)|µ1|Cνt1µ1µt(t, q)(−QB)|ν1|f̃νt1(t, q) (6.2)

×Cλ1ν1λt(t, q)(−Q′)|λ1|Cλt1∅λ2(q, t)(−Qm1)|µ2|(−Qm2)|λ2|,

where QQm1 = Q′Qm2 . After a calculation, we get

˜̂
Z
L

λ,µ(QB, Q,Q
′, Qm1 , Qm2) = q

1
2
||µt||2+||λt||2Z̃λt(t, q)Z̃µt(t, q) (6.3)

×
∑

λ1,µ1,ν1,ν2,η,η′

Q
|ν1|+|ν2|
B (−1)|µ1|+|λ1|Q|µ1|+|ν2|Q′|λ1|+|ν2|

×sµ1/η(t−µq−ρ)sν1/η(t−ρq−µ
t
)sν1/η′(t

−λq−ρ)sλt1/η′(t
−ρq−λ

t
)

×
(q
t

) 1
2

(|η|+|η′|−|ν2|−|ν1|)
ZRC
µt1ν2

(Qm1 ; t, q)ZRC
λ1ν2(Qm2 ; q, t),

where

ZRC
µ1µ2(Q; t, q) =

∑
ν

(−Q)|ν|q
1
2
||ν||2t

1
2
||νt||2Z̃ν(t, q)Z̃νt(q, t)sµ1(t−ρq−ν)sµ2(t−ρq−ν). (6.4)

In order to apply the flop transition in figure 24, we use a similar trick which we used

in section 5.3. The insertion of (6.1) into (6.3) gives

˜̂
Z
L

λ,µ(QB, QFQE1 , QFQE2 , Q
−1
E1
, Q−1

E2
) = q

1
2
||µt||2+||λt||2Z̃λt(t, q)Z̃µt(t, q) (6.5)

×
∑

λ1,µ1,ν1,ν2,η,η′

Q
|ν1|+|ν2|
B (−1)|µ1|+|λ1|Q|µ1|+|λ1|+2|ν2|

F

×sµ1/η(t−µq−ρ)sν1/η(t−ρq−µ
t
)sν1/η′(t

−λq−ρ)sλt1/η′(t
−ρq−λ

t
)

×
(q
t

) 1
2

(|η|+|η′|−|ν2|−|ν1|)

×ZRC
µt1ν2

(Q−1
E1

; t, q)ZRC
λ1ν2(Q−1

E2
; q, t)Q

|µ1|+|ν2|
E1

Q
|λ1|+|ν2|
E2

.
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Then we consider the quantity

Gµν(Q; t, q) =
ZRC
µν (Q; t, q)

Zconifold(Q)
, (6.6)

where

Zconifold(Q) =
∏
i,j=1

(
1−Qqi− 1

2 tj−
1
2

)
(6.7)

In fact, Gµν(Q) is a polynomial of degree |µ| + |ν| in Q [66, 68]. Therefore, the following

limit is well-defined

G̃µν(t, q) = lim
Q→0

Gµν(Q−1; t, q)Q|µ|+|ν|. (6.8)

By using the flop invariance for the partition function of the resolved conifold (6.7), the

limit for ZRC
µν (Q; t, q) can be taken as

Zflop
µν (t, q) = lim

Q→0
Zconifold(Q)×

ZRC
µν (Q−1; t, q)

Zconifold(Q−1)
Q|µ|+|ν|

=

[
ZRC
µν (Q−1; t, q)

Zconifold(Q−1)
Q|µ|+|ν|

]
Q0

, (6.9)

where [F (Q)]Q0 implies that we take the zeroth order of Q from F (Q). Therefore, applying

the limit QE1 , QE2 → 0 to (6.5), we obtain

ẐLλ,µ(QB, QF ) = q
1
2

(||µt||2+||λt||2)Z̃λt(t, q)Z̃µt(t, q)

×
∑

λ1,µ1,ν1,ν2,η,η′

Q
|ν1|+|ν2|
B (−1)|µ1|+|λ1|Q|µ1|+|λ1|+2|ν2|

F

×sµ1/η(t−µq−ρ)sν1/η(t−ρq−µ
t
)sν1/η′(t

−λq−ρ)sλt1/η′(t
−ρq−λ

t
)

×
(q
t

) 1
2

(|η|+|η′|−|ν2|−|ν1|)
Zflop
µt1ν2

(t, q)Zflop
λ1ν2

(q, t). (6.10)

For the refined partition function of the D̂2(SU(2)) matter, one needs to divide the

refined partition function by a “half” of the partition function of the SU(2) vector multiplets

ZHalf,L
λ,µ (QB) = q

1
2

(||λt||2+||µt||2)Z̃λt(t, q)Z̃µt(t, q)

×
∑
ν

Q
|ν|
B

(q
t

) 1
2

(−|ν|)
sνt(q

−µtt−ρ)sνt(q
−ρt−λ). (6.11)

Therefore, the refined version of the D̂2(SU(2)) matter contribution is given by

Z
D̂2(SU(2)),ref
λ,µ (QB, QF ) =

ẐLλ,µ(QB, QF )

ZHalf,L
λ,µ (QB)

. (6.12)

In order to treat (6.12) for the D̂2(SU(2)) matter, we check whether the web diagram

which is given by the π rotation compared to figure 23 but with the opposite direction

for the arrows of λ, µ yields the same partition function. We then compute the partition
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Figure 25. Another 5-brane web for a theory which is S-dual to the SU(2) gauge theory with two

flavors.

function for the web in figure 25 and apply the limit (6.1). By following the same steps,

we obtain the partition function

ẐRλ,µ(QB, QF ) = t
1
2

(||µ||2+||λ||2)Z̃λ(q, t)Z̃µ(q, t)

×
∑

λ1,µ1,ν1,ν2,η,η′

Q
|ν1|+|ν2|
B (−1)|µ1|+|λ1|Q|µ1|+|λ1|+2|ν2|

F

×sµ1/η(t−µq−ρ)sν1/η(t−ρq−µ
t
)sν1/η′(t

−λq−ρ)sλt1/η′(t
−ρq−λ

t
)

×
(
t

q

) 1
2

(|η|+|η′|−|ν2|−|ν1|)
Zflop
µt1ν2

(t, q)Zflop
λ1ν2

(q, t). (6.13)

Dividing (6.13) by the another half of the partition function of the vector multiplet for the

SU(2) theory gives

Z
′D̂2(SU(2)),ref
λ,µ (QB, QF ) =

ẐRλ,µ(QB, QF )

ZHalf,R
λ,µ (QB)

, (6.14)

where

ZHalf,R
λ,µ (QB) = t

1
2

(||λ||2+||µ||2)Z̃λ(q, t)Z̃µ(q, t)

×
∑
ν

Q
|ν|
B

(
t

q

) 1
2

(−|ν|)
sνt(q

−µtt−ρ)sνt(q
−ρt−λ). (6.15)

It is not clear whether (6.12) is equal to (6.14) but we checked that they are indeed equal

to each other until the order of Q2
BQ

4
F for the cases (µ, λ) = (∅,∅), (µ, λ) = ({2, 1}, {1, 1}).

Therefore, we can use (6.12) for the refined partition function of the D̂2(SU(2)) matter.

6.2 Examples: 5d pure SO(8) gauge theory and O(−4) model

In the previous subsection, we computed the refined version of the partition function of

the D̂2(SU(2)) matter. In this section we apply the trivalent SU(2) gauging for the refined

partition function and obtain the Nekrasov partition functions of the pure SO(8) gauge

theory and the 5d theory from the O(−4) model on a circle.
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Pure SO(8) gauge theory. A 5d dual description of the pure SO(8) gauge theory is

described by (2.3) with N = 2. The Nekrasov partition function of the pure SU(2) gauge

theory is given by

ZSU(2)(QB, Qg) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector,ref
λ,µ (QB), (6.16)

where

Z
SU(2) vector,ref
λ,µ (QB) = t

1
2
||µ||2− 1

2
||λ||2q−

1
2
||µt||2+ 1

2
||λt||2ZHalf,R

λ,µ (QB)ZHalf,L
λ,µ (QB). (6.17)

Hence, we propose that the refined Nekrasov partition function of the pure SO(8) gauge

theory is given by

ZSO(8)(QB, Qg, Q1, Q2, Q3) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector,ref
λ,µ (QB)Z

D̂2(SU(2)),ref
λ,µ (QB, {Q1})

×ZD̂2(SU(2)),ref
λ,µ (QB, {Q2})ZD̂2(SU(2)),ref

λ,µ (QB, {Q3}), (6.18)

where the Kähler parameters are related to the gauge theory parameters by (3.22)

and (3.24) with N = 2. We checked that eq. (6.18) agrees with the refined Nekrasov

partition function of the pure SO(8) gauge theory until the order of Q3
1Q

3
2Q

3
3Q

3
g for the

one-instanton part.

O(−4) model. We can also make use of the refined D̂2(SU(2)) matter contribution to

compute the Nekrasov partition function of the 5d theory (5.3) which arises from a circle

compactification of the O(−4) model. In this case, we gauge four refined partition functions

of the D̂2(SU(2)) matter and the full partition function is given by

ZO(−4)(QB, Qg, Q1, Q2, Q3, Q4) =
∑
λ,µ

Q|λ|+|µ|g Z
SU(2) vector,ref
λ,µ (QB) (6.19)

×ZD̂2(SU(2)),ref
λ,µ (QB, {Q1})ZD̂2(SU(2)),ref

λ,µ (QB, {Q2})

×ZD̂2(SU(2)),ref
λ,µ (QB, {Q3})ZD̂2(SU(2)),ref

λ,µ (QB, {Q4}).

We checked that (6.19) agrees with the elliptic genus (5.6) of the O(−4) model until the

order of Q2
1Q

2
2Q

2
3Q

2
4Qg for the one-string part.

7 Conclusion

In this paper, we have proposed a novel method to compute the topological string par-

tition functions/Nekrasov partition functions of 5d theories constructed by the trivalent

gluing/gauging. A dual description of 5d pure gauge theories with a gauge group of D,E-

type is given by the SU(2) trivalent gauging of three 5d D̂N (SU(2)) matter theories. We

have proposed a way to apply the topological vertex formalism to the trivalent gauging

and successfully calculated their Nekrasov partition functions. We first computed the par-

tition function of the 5d D̂N (SU(2)) theory with non-trivial flavor instanton backgrounds,
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which can be used for a matter contribution for the SU(2) gauging. Then, combining the

D̂N (SU(2)) matter contributions with the partition function of the SU(2) vector multiplets

yields the Nekrasov partition functions of the 5d pure gauge theories of D,E-type gauge

groups. This method gives a new way to compute the Nekrasov partition functions and

one advantage of this technique is that the higher-order instanton partition functions can

be obtained systematically simply by summing over Young diagrams with more boxes. We

also performed non-trivial checks with the known results of the SO(8) gauge theory with or

without flavors and also the pure E6, E7, E8 gauge theories up to some order of the gluing

parameters. Moreover, we will see in appendix A that applying a Higgsing prescription to

the Nekrasov partition function of a gauge theory with a D-type gauge group and flavors

may yield the Nekrasov partition function of a gauge theory with a B-type gauge group.

Therefore, with the Higgsing procedure as well as the trivalent gluing method, it is now

possible to compute the Nekrasov partition functions of 5d pure gauge theories with a

ABCDE gauge group from the topological vertex.

Another application of the trivalent gluing method is that we can also compute the

Nekrasov partition functions of 5d theories which have a 6d UV completion. In particular

the 5d description of the O(−n) models with n = 4, 6, 8, 12 is written by gauging four or

three 5d D̂N (SU(2)) matter theories. We applied the trivalent gauging method for the

5d theories and performed a non-trivial check for the case of n = 4 by comparing the

Nekrasov partition function with the elliptic genus of the one-string calculated in [39]. We

also proposed a 5d description of the O(−3) model and calculated its Nekrasov partition

function. Remarkably, we found perfect agreement with the elliptic genus result of the

one-string in [40] up to some orders. In every case, the computation for higher instantons

can be achieved very systematically and the trivalent gauging method provides a powerful

tool to compute their elliptic genera. We also determine a 5d description of another non-

Higgsable cluster theory and the 5d theory can be again described by the SU(2) gauging

of three 5d theories.

Most of the computation in this paper have been done in the unrefined limit. We also

argued that it is possible to extend the computation for the refined topological vertex when

we choose the preferred direction to the gluing direction. Indeed we have checked that the

trivalent gluing prescription works for the refined one-instanton partition function for the

pure SO(8) gauge theory and also the refined one-string elliptic genus of the O(−4) model.

We expect that the refined calculation can be generalized to other cases.

As for the comparison with the exceptional instantons of 5d theories, we restrict the

check to the one-instanton order which can be computed from the general formula (B.16).

The higher-instanton partition functions of the exceptional gauge groups have been calcu-

lated in [19, 70–72]. However, a direct comparison of the results obtained in this paper

with the results in [19, 70–72] may not be straightforward since the explicit expressions

in the literature seems not to be compatible with the unrefined limit. It would be inter-

esting to extend the computation for the Nekrasov partition function of the exceptional

gauge groups to the refined one by using the technique in section 6. Similarly the un-

refined limit also prevented us from comparing the results with computations from other

methods in the literature about 6d O(−n) theories with n = 6, 8, 12. It would be interest-
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ing to extend the Nekrasov partition function computation for the 5d descriptions of the

O(−6),O(−8),O(−12) models to the refined partition function computation and perform

checks with the results in [61–63].

We expect that our trivalent gauging method has vast applications. In this paper

we only consider vector matter of the SO(2N + 4) gauge group. It will be interesting to

generalize our method to include matter in different representations. Furthermore, our

method is applicable to any SU(N) gluing of possibly non-Lagrangian matter. Finding

more dualities among 5d/6d theories like what we argued in section 2 and computing

Nekrasov partition functions would be fruitful.
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A 5d SO(2N + 3) gauge theory

In section 3.3, we have computed the partition function of the SO(2N + 4) gauge theory

with Nf = M1 + M2 flavors by making use of the trivalent SU(2) gauging. On a Higgs

branch of the SO(2N + 4) gauge theory with M1 +M2 flavors, it is possible to realize a 5d

SO(2N +3) gauge theory with Nf −1 flavors in the far infrared. A 5-brane web picture for

the Higgsing has been presented in [73]. Therefore, one can apply the Higgsing prescription

for the Nekrasov partition function of the SO(2N+4) gauge theory with Nf flavors to obtain

the Nekrasov partition function of the SO(2N + 3) gauge theory with Nf − 1 flavors.

From the Higgsing procedure of the 5-brane web with an O5-plane, the Higgsing from

the SO(2N + 4) gauge theory with Nf flavors to the SO(2N + 3) gauge theory with Nf − 1

flavors may be achieved by setting one mass parameter and also one Coulomb branch

modulus to be zero. We can for example choose

aN+2 = mNf = 0. (A.1)

Here we denote the Coulomb branch moduli of SO(2N + 4) by ai, i = 1, · · · , N + 2 and the

mass parameters by mi, i = 1, · · · , Nf .

In fact, the tuning condition (A.1) can be directly applied to the Nekrasov partition

function of the SO(2N + 4) gauge theory with Nf flavors. A similar Higgsing prescription

has been used to compute the Nekrasov partition function of the rank one E7 theory [14]

and also the rank one E8 theory [15]. In the refined case, the tuning is not as simple
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as (A.1) but the parameters are fixed to be
( q
t

) 1
2 or

(
t
q

) 1
2
. However, in the unrefined case,

we can directly use the tuning condition of (A.1).

Let us see how the condition (A.1) works for the perturbative part. The perturbative

partition function of the SO(2N + 4) gauge theory with Nf flavors can be written as12

ZPert
SO(2N+4),Nf

= H(1)N+2

 ∏
1≤i<j≤N+2

H
(
e−(ai±aj)

)2

N+2∏
i=1

Nf∏
f=1

H
(
e−(mf±ai)

)−1

 .
(A.3)

Inserting the condition (A.1) into (A.3) yields

ZPert
SO(2N+4),Nf

|Eq. (A.1) = H(1)N

[
N+1∏
i=1

H
(
e−αi

)2] ∏
1≤i<j≤N+1

H
(
e−(ai±aj)

)2


×

N+1∏
i=1

Nf−1∏
f=1

H
(
e−(mf±ai)

)−1

Nf−1∏
f=1

H
(
e−mf

)−1


= H(1)−1ZPert

SO(2N+3),Nf−1, (A.4)

up to flop transitions (A.2). Therefore, the perturbative partition function of the SO(2N+

3) gauge theory with Nf − 1 flavors is reproduced except for the factor H(1)−1 which can

be understood as a singlet contribution o the Higgs vacuum.

When one includes the instanton partition function, a natural expectation is that

ZSO(2N+4),Nf |Eq. (A.1) = H(1)−1ZSO(2N+3).Nf−1. (A.5)

We checked that (A.5) indeed holds for the one-instanton part of a simple case of N =

2, Nf = 2 by using the localization result (B.17).

Assuming that (A.5) is correct, it is then possible to compute the Nekrasov partition

function of the 5d SO(2N + 3) gauge theory with flavors by combining (3.42) and (A.1)

from the relation (A.5).

B Some formulae for computation

In this appendix, we collect formulae which we have used for the calculation of the (refined)

topological vertex as well as the Nekrasov partition function in this paper.

12Note that the flop invariance of the partition function of the resolved conifold implies

H(Q) = H(Q−1). (A.2)

We always make use of (A.2) to compare the perturbative partition functions from the topological vertex

with the perturbative partition function from the localization result. Namely we check the equality between

the two perturbative partition functions up to the flop transitions (A.2).
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ν
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λ
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: t

Figure 26. A vertex whose three legs are labeled by a pair of (t, λ), (q, µ) and ν with the preferred

direction. The preferred direction is denoted by ||.

B.1 Refined topological vertex

The topological vertex is a powerful tool to compute the all genus topological string am-

plitude [1, 2] for a Calabi-Yau manifold X3 of the form

Ztop = exp

 ∞∑
g=0

Fgg
2g−2
top

 , (B.1)

where

Fg =
∑

C∈H2(X3,Z)

Ng
CQC . (B.2)

gtop is the topological string coupling constant, NC
g is the genus g Gromov-Witten invariant

for a curve C and QC = e−kc with the Kähler parameters kC for a curve C. The topological

vertex is parameterized by the topological string coupling and it is possible to further gen-

eralize it to the refined topological vertex by introducing two parameters q, t corresponding

to the Ω-deformation parameters by q = e−ε1 , t = eε2 [3, 4]. The unrefined limit is given

by setting q = t. Although the original refined topological vertex has constructed for

the application to toric Calabi-Yau threefolds, it can be also applied to certain non-toric

Calabi-Yau threefolds by making use of a Higgsing or topology changing transition from

a toric Calabi-Yau threefold [14–16, 25–27]. Here we summarize the rule for applying the

refined topological vertex to a toric Calabi-Yau threefold or a dual 5-brane web.

The refined topological vertex formalism provides us with a method to compute the

all genus topological string amplitude on a background of a toric Calabi-Yau threefold by

a way which is similar to the method using Feynman diagrams. We first decompose a toric

diagram or 5-brane web into trivalent vertices with three legs. We assign a Young diagram

to each leg with some orientation. When the leg is an external leg, then we assign a trivial

Young diagram on it. We also need to choose a preferred direction in the diagram and one

leg of the refined topological vertex should be in the preferred direction. We then assign

t, q for the other two legs of the vertex. The t, q assignment should be compatible with the

gluing rule which we will mention below. Let λ, µ, ν be three Young diagrams. When the

three legs of a vertex is labeled by a pair of (t, λ), (q, µ) and ν with the preferred direction
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Figure 27. The assignment of the vectors for determining the framing factor.

as in figure 26, we assign to the vertex of a 5-brane web the refined topological vertex

Cλµν(t, q) = t−
1
2
||µt||2q

||µ||2+||ν||2
2 Z̃ν(t, q)

∑
η

(q
t

) |η|+|λ|−|µ|
2

sλt/η(t
−ρq−ν)sµ/η(t

−νtq−ρ),

(B.3)

where

Z̃ν(t, q) =
∏
s∈ν

(
1− qlν(s)taν(s)+1

)−1
. (B.4)

Here we also defined

lν(i, j) = νi − j, aν(i, j) = νtj − i. (B.5)

for (i, j) ∈ ν.

Then we need to glue the vertices for going back to the original 5-brane web. For each

gluing of two legs, the assigned Young diagram on one leg should be transposed compared

to the Young diagram on the other leg. Then the gluing is done by summing over a Young

diagram ν associated to the two legs with a weight. When we glue along the preferred

direction then the weight takes a form of

(−Q)|ν|fν(t, q)n, (B.6)

where the framing factor for the preferred direction is

fν(t, q) = (−1)|ν|t
−||νt||2

2 q
||ν||2

2 . (B.7)

When we glue along the non-preferred direction then the weight has a form of

(−Q)|ν|f̃ν(t, q)n, (B.8)

where the framing factor for the non-preferred direction is

f̃ν(t, q) = (−1)|ν|q−
||νt||2

2 t
||ν||2

2

(
t

q

) |ν|
2

. (B.9)

where n is given by n = det(v1, v2) as in figure 27. Q is given by Q = e−kC where kC is the

Kähler parameter for a curve associated to the glued internal line. When we glue along

the non-preferred direction, we need to connect a leg on which q is assigned with a leg on

which t is assigned.
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Figure 28. A 5-brane web which contains extra factor from the topological vertex calculation.

By assigning refined topological vertex (B.3) for each vertex and also the weights (B.6)

or (B.8), the topological string partition function is given by summing all the assigned

Young diagrams. The rules for the unrefined version can be obtained simply by setting

t = q.

An important point is that the topological string partition function for a certain local

Calabi-Yau threefold X3 is related to the Nekrasov partition function of a 5d theory with

eight supercharges realized from M-theory compactification on X̃3 or equivalently on a 5-

brane web dual to X̃3 [9–13]. In fact, it turns out the topological string partition function

calculated from the refined topological vertex contains contributions that are not present

in the Nekrasov partition function and one needs to extract that factor [14, 53–55]. The

factor is related to the contribution from strings between parallel external legs. Therefore

the factor can be read off from a 5-brane web and for example the extra factor from a web

in figure 28 is given by

Zextra =

∞∏
i,j=1

(
1−Qqitj−1

)−1
. (B.10)

We call such a factor extra factor.

Therefore, the Nekrasov partition function of a 5d theory can be computed by the

topological string partition function of the corresponding Calabi-Yau threefold by dividing

it by the extra factor,

ZNek =
Ztop

Zextra
. (B.11)

Note that the refined topological vertex computation does not include the perturbative

contribution from vector multiplets in the Cartan subalgebra but it can be easily recovered

since it has a general form

ZCartan =
∞∏

i,j=1

(
1− qitj−1

)− rank(G)
2

(
1− qi−1tj

)− rank(G)
2 (B.12)

for a gauge group G.

B.2 Nekrasov partition function

In this section we summarize the result of the Nekrasov partition function for some 5d

gauge theories with eight supercharges.
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For a gauge with a gauge group G, the perturbative partition function of the vector

multiplets is given by

ZPert
vec = ZCartan

∞∏
i,j=1

 ∏
α∈∆+

(
1− e−α·aqitj−1

) (
1− e−α·aqi−1tj

)−1

, (B.13)

where ∆+ is a set of positive roots and a = (a1, · · · , arankG) represents the Coulomb branch

moduli in the Cartan subalgebra. The perturbative partition function of hypermultiplets

in the representation r is

ZPert
hyp =

∞∏
i,j=1

[∏
w∈r

(
1− e−(w·a−m)qi−

1
2 tj−

1
2

)]
, (B.14)

where w is a weight of the representation r. Note that the comparison using the pertur-

bative partition functions (B.13) and (B.14) is done up to flop transitions. For the pure

gauge theory with a gauge group G, the general result for the one-instanton part has been

also known and it is given by [74–78]

ZG1-inst =

( q
t

)h∨
2

(1− q)(1− t−1)

∑
γ∈∆l

e
(h∨−1)γ·a

2(
1− q

t e
γ·a) (e γ·a2 − e− γ·a2 )∏γ∨·α=1

(
e
α·a
2 − e−α·a2

) .
(B.15)

α, γ are roots of the Lie algebra g, h∨ is the dual Coxeter number,13 ∆l is a set of long

roots.14 γ∨ is a coroot of γ. When G is simply-laced and we take the unrefined case q = t,

the expression after putting all the terms over a common denominator takes a form

ZG1-inst = − q

(1− q)2

∑
γ∈∆+

[
(−1)1+ne(γ̃−+γ)·a(e(h∨−2)γ·a + 1)

∏
β∈∆+

(eβ·a − 1)2−|γ∨·β|
]

∏
α∈∆+

(eα·a − 1)2
,

(B.16)

where ∆+ is again a set of positive roots and γ̃− =
∑

γ∨·β=−1,β∈∆+
β. n stands for the

number of positive roots β which satisfy γ∨ · β = −1.

Next we turn to the result of the instanton partition function from the localization tech-

nique [51, 52, 79–82]. The k-instanton partition function can be computed from the index

of the one-dimensional ADHM quantum mechanics whose moduli space is given by the cor-

responding k-instanton moduli space. We here quote the result of the instanton partition

function for the SO(N) gauge theory with hypermultiplets in the vector representation.

The k-instanton partition function for the SO(N) gauge theory with Nf hypermulti-

plets in the vector representation is given by a contour integral over the dual Sp(k) gauge

group variables,

Zk–inst =
1

|Wk|

∮ [ k∏
I=1

dφI
2πi

]
ZvecZhyp, (B.17)

13The relevant numbers in this paper are h∨E6
= 12, h∨E7

= 18, h∨E8
= 30.

14In the case when G is simply-laced, ∆l is a set of all the roots.
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where

Zvec =

∏
1≤I<J≤k 2 sinh

(
±φI±φJ

2

)
2sinh

(
±φI±φJ+2ε+

2

)∏k
I=1 2 sinh (±φI) 2 sinh (±φI + ε+)∏k

I=1

∏n
i=1 2 sinh

(
±φI±ai+ε+

2

)∏
1≤I<J≤k 2 sinh

(
±φI±φJ+ε1

2

)
2 sinh

(
±φI±φJ+ε2

2

)
× (2 sinh ε+)k(

2 sinh ε1
2 2 sinh ε2

2

)k (B.18)

for N = 2n and

Zvec =

∏
1≤I<J≤k 2 sinh

(
±φI±φJ

2

)
2sinh

(
±φI±φJ+2ε+

2

)∏k
I=1 2 sinh (±φI) 2 sinh (±φI + ε+)∏k

I=1 2 sinh
(
±φI+ε+

2

)∏k
I=1

∏n
i=1 2 sinh

(
±φI±ai+ε+

2

)
× (2 sinh ε+)k(

2 sinh ε1
2 2 sinh ε2

2

)k∏
1≤I<J≤k 2 sinh

(
±φI±φJ+ε1

2

)
2 sinh

(
±φI±φJ+ε2

2

) (B.19)

for N = 2n + 1. Here the notation 2 sinh(±x ± y) means 2 sinh(±x ± y) = 2 sinh(x +

y)2 sinh(x − y)2 sinh(−x + y)2 sinh(−x − y). ai, i = 1, · · · , n are the Coulomb branch

moduli of the SO(N) and we also defined ε+ = ε1+ε2
2 . Zhyp is the contribution from the

hypermultiplets in the vector representation and it is given by

Zhyp =

k∏
I=1

Nf∏
f=1

2 sinh

(
mf − φI

2

)
2 sinh

(
mf + φI

2

)
. (B.20)

Finally |Wk| is the order of the Weyl group of the Sp(k) which is the dual gauge group of

SO(N). More concretely, |Wk| = 2kk!.

The contour integral (B.17) can be systematically evaluated by so-called the Jeffery-

Kirwan residue rule [82].

B.3 Schur functions

Here we summarize the formulas on Schur functions which is needed to perform the topo-

logical vertex computations. Schur polynomials sλ(x1, · · · , xn) with finite variables can be

defined by

sλ(x1, · · · , xn) =
detAλ
detAφ

, (B.21)

(Aλ)ij =

{
x
λj+n−j
i j ≤ L
xn−ji j > L

, (B.22)

where λ = λ1, · · · , λL is a integer partition. Schur polynomials have a scaling property

sλ(ax1, · · · , axn) = a|λ|sλ(x1, · · · , xn) (B.23)

with |λ| = ∑λi. Schur functions are the infinite variables generalization of this polynomial.

In particular, we often use principal specialization of Schur function, defined by

sλ(q−ρ) = sλ(q1/2, q3/2, q5/2, · · · ). (B.24)
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Stanley’s hook-length formula [83] says

sλ(q−ρ) = q
||λ||
2

∏
u∈λ

1

1− qhook(u)
(B.25)

where u runs through boxes of the Young diagram λ, and hook(u) is a(u) + `(u) + 1. The

important point is that the righthand side is finite product and thus this formula is exact

with respect to q. This formula is the reason why we can compute partition functions from

topological vertices exactly with respect to the exponentiated ε parameters.

We also encounter Schur functions with arguments like

sλ(q−ρ−ν) = sλ(q1/2−ν1 , q3/2−ν2 , · · · qL′/2−νL′ , q(L′+1)/2 · · · ). (B.26)

where ν = (ν1, · · · , νL′) is another partition. To compute this function explicitly, we make

use of the formula

sλ(x,y) =
∑
µ,ν⊂λ

cλµ,νsµ(x)sν(y), (B.27)

where x,y are sets of variables and cλµ,ν are Littlewood-Richardson coefficients. Set x to

be the first L′ variables of (B.26) and y to be the remaining, and use (B.22) for the former

and (B.25), (B.24) for the latter. Using (B.27) repeatedly, we can also compute Schur

functions like

sλ(q−ρ−ν1 , q−ρ−ν2 , · · · , q−ρ−νN ). (B.28)

We also encounter two variants of Schur functions, which are skew Schur functions

sλ/µ(x) =
∑
ν⊂λ

cλµ,νsν(x), (B.29)

and super Schur functions

sλ(x|y) =
∑
µ,ν⊂λ

cλµ,νsµ(x)sνt(y). (B.30)

The skew Schur function sλ/µ is equal to the Schur function sλ when µ = ∅, and 0 when

µ is not included in λ.

A Mathematica implementation which automates computations of Schur functions

like (B.28) and those generalization to skew and super Schur functions is available online

at https://github.com/kantohm11/SchurFs.

In the main part of this paper, we used the following formulas [84]∑
η

sλ/η(x)sη(y) = sλ(x,y) (B.31)∑
µ

sµ/η1(x)sµ/η2(y) =
∏
i,j

(1− xjyj)−1
∑
τ

sη1/τ (y)sη2/τ (x) (B.32)

∑
µ

sµ/η1(x)sµt/η2(y) =
∏
i,j

(1 + xjyj)
∑
τ

sηt1/τ t(y)sηt2/τ (x). (B.33)
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[78] M. Billó, M. Frau, F. Fucito, A. Lerda and J.F. Morales, S-duality and the prepotential of

N = 2? theories (II): the non-simply laced algebras, JHEP 11 (2015) 026

[arXiv:1507.08027] [INSPIRE].

[79] M. Mariño and N. Wyllard, A note on instanton counting for N = 2 gauge theories with

classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].

[80] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359

[hep-th/0404225] [INSPIRE].

[81] S. Shadchin, On certain aspects of string theory/gauge theory correspondence,

hep-th/0502180 [INSPIRE].

[82] C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07

(2015) 063 [Addendum ibid. 04 (2016) 094] [arXiv:1406.6793] [INSPIRE].

[83] R.P. Stanley, Theory and application of plane partitions. Part 2, Studies Appl. Math. 50

(1971) 259.

[84] I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, Oxford

U.K., (1998).

– 65 –

http://dx.doi.org/10.1007/JHEP11(2015)026
https://arxiv.org/abs/1507.08027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08027
http://dx.doi.org/10.1088/1126-6708/2004/05/021
https://arxiv.org/abs/hep-th/0404125
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404125
http://dx.doi.org/10.1007/s00220-004-1189-1
https://arxiv.org/abs/hep-th/0404225
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404225
https://arxiv.org/abs/hep-th/0502180
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502180
http://dx.doi.org/10.1007/JHEP07(2015)063
http://dx.doi.org/10.1007/JHEP07(2015)063
https://arxiv.org/abs/1406.6793
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6793
https://doi.org/10.1002/sapm1971503259
https://doi.org/10.1002/sapm1971503259

	Introduction
	A dual description of 5d gauge theory with D, E-type gauge group
	5d SO(2N+4) gauge theory
	5d pure E(6), E(7), E(8) gauge theories

	Gluing rule and 5d SO(2N+4) gauge theory
	Trivalent gluing
	5d pure SO(2N+4) gauge theory
	Example: 5d pure SO(8) gauge theory

	Adding flavors
	Example: 5d SO(8) gauge theory with four flavors


	5d gauge theory with E-type gauge group
	5d pure E(6) gauge theory
	5d pure E(7) gauge theory
	5d pure E(8) gauge theory

	A 5d description of non-Higgsable clusters
	mathcalO(-4) model
	mathcalO(-n) model with n=6, 8, 12
	mathcalO(-3) model
	Another non-Higgsable cluster

	Refinement
	Refined partition function of hatD(2)(SU(2)) matter from flop transition
	Examples: 5d pure SO(8) gauge theory and mathcalO(-4) model

	Conclusion
	5d SO(2N+3) gauge theory
	Some formulae for computation
	Refined topological vertex
	Nekrasov partition function
	Schur functions


