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1 Introduction

Relaxion models offer a new perspective on the hierarchy problem [1]. The weak scale

is obtained in a dynamical way as the Higgs mass depends on a time-dependent vacuum

expectation value (VEV) of a scalar field, φ . This scalar evolves and eventually halts at

a value rendering the effective Higgs mass much smaller than the cutoff. This is achieved

due to the fact that the potential of φ consists of a backreaction term that is switched on

once the Higgs mass square gets negative and electroweak symmetry breaking (EWSB) is

induced. When compared with conventional models of naturalness, this class of models

leads to a completely different phenomenology as there is no analog of top or gauge partners

that can be discovered at colliders. Instead, as we will discuss in detail in this paper, for

experimental verification of the relaxion mechanism over a broad mass range we need to

go to the low energy, high precision frontier.

Let us first present a very brief review of the relaxion mechanism. In relaxion models

the value of µ2, the mass squared term in the Higgs potential, changes during the course

of inflation as it varies with the classical value of φ,

V (H,φ) = µ2(φ)H†H + λ(H†H)2 , (1.1)

µ2(φ) = −Λ2 + gΛφ+ . . . , (1.2)

which slowly rolls because of a potential,

V (φ) = rgΛ3φ+ . . . . (1.3)

In these equations g is a coupling1 and Λ is the scale where the Higgs quadratic divergence

gets cut off. Note that the operator in eq. (1.3) can be radiatively generated by closing

the Higgs loop in the term gΛφ(H†H) in eq. (1.1) and thus technical naturalness demands

r & 1/16π2. In canonical models the field φ slowly rolls down (during inflation) from some

initial large field value φ > Λ/g, such that µ2 is positive and the electroweak symmetry

unbroken. It stops rolling shortly after the point φc ' Λ/g, where µ2 becomes negative,

electroweak symmetry is broken and the Higgs gets a vacuum expectation value, v2(φ) =

−µ2(φ)/λ. A crucial ingredient of the relaxation proposal is the feedback mechanism that

triggers a backreaction potential once the Higgs gets a VEV,

∆Vbr(h, φ) = −M̃4−j ĥj cos

(
φ

f

)
, (1.4)

where 1 ≤ j ≤ 4 is an integer and ĥ = (v + h)/
√

2.2 As φ continues rolling, |µ2(φ)|
becomes larger, resulting in a monotonically increasing Higgs VEV and thus increasing the

backreaction’s amplitude. Eventually the barriers become large enough and the relaxion

stops rolling at an arbitrary O(1) value of the phase φ0/f ,

∂V (h, φ)

∂φ
= rgΛ3 +

Λ4
br(v(φ0))

f
sin

(
φ0

f

)
= 0 ⇒ Λ =

∣∣∣∣Λ4
br(v(φ0))

rgf
sin

(
φ0

f

)∣∣∣∣
1
3

, (1.5)

1Note that the coupling g defined here is dimensionless and is related to gGKR, the one in ref. [1], via

gGKR = gΛ.
2For an alternative proposal where the rolling is stopped due to particle production see ref. [2].
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where

Λ4
br(v(φ0)) ≡ M̃4−jv(φ0)j/

√
2
j
. (1.6)

Note that for values of Λ4
br(v(φ0)) � rgΛ3f , eq. (1.5) is satisfied for | sin(φ0/f)| � 1,

but as M̃4−jvj grows monotonically and the rolling starts at a random phase, φ/f , the

relaxion stops well before it reaches this stage. Therefore, generically the phase φ0/f has

an O(1) value. It is basically the result of a balance between the two terms controlling

the derivative of the potential in eq. (1.5). We shall return to this point when discussing

CP-violation. For a small enough value of g, the cut-off can be raised much above the

electroweak scale. Such a small value of g can be radiatively stable as in the g → 0 limit

we recover the discrete symmetry,

φ→ φ+ 2πkf , k ∈ Z . (1.7)

Higher dimensional terms such as g2φ2Λ2, g3φ3Λ . . . contribute at the same order for φ '
φc ' Λ

g and thus do not affect the above analysis. For the same reason, in variants of the

above model where only even powers of φ appear one can proceed along the same lines to

obtain essentially the same results.

It is important to emphasize that in order to achieve higher values of the cut-off Λ,

higher values of Λbr are required. Let us review the three main reasons for this. First

of all, cosmological considerations during inflation (classical rolling must dominate over

quantum fluctuations, see ref. [1]) put an upper bound on the cut-off which decreases if

Λbr is smaller,

Λ . Λcq =

(
Λ4

br

f

) 1
6 √

MPl , (1.8)

where from now onward, for simplicity, by v, M̃ and Λbr we will refer to the final values

of these quantities at the relaxion minima φ = φ0. An even stronger bound can be derived

if we demand that the relaxion does not have transplanckian excursions,

∆φ ∼ Λ

g
≤MPl ⇒ Λ . Λtp =

(
MPl

rf

) 1
4

Λbr , (1.9)

which once again favours a large Λbr. As the requirement of subplanckian field excur-

sions depends on quantum gravity assumptions and can be possibly evaded by UV model

building, we will not take this as a strict bound and extend our analysis also to the trans-

planckian region. Finally, as argued in ref. [3], if the relaxion is a compact field, as any

pseudo Nambu-Goldstone boson (PNGB) must be, the ratio of the distance the relaxion

rolls to the periodicity of the backreaction,

n ' Λ/g

f
(1.10)

is, for a single axion sector, generically expected to be an O(1) number. On the other

hand, this ratio must be large to raise the cut-off substantially above the weak scale, as

eq. (1.5) implies,

Λ '
(n
r

)1/4
Λbr . (1.11)

Thus smaller values of Λbr require larger values of n for a given cut-off scale.
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In this work we derive several new results relevant for relaxion phenomenology. We

emphasise the importance of relaxion-Higgs mixing that is expected in a large class of

relaxion models and focus on its experimental and observational implications. As the

relaxion-Higgs mixing turns out to be proportional to Λ4
br, these observational constraints

put an upper bound on the backreaction scale, Λbr. We also derive a theoretical upper

bound on the backreaction scale Λbr. We further consider multiaxion (clockwork) models

where n ∼ eN , N being the number of sites in these models, and show that for a too large

value of N , the clockwork construction becomes tuned unless further structure is assumed.

By eqs. (1.8)–(1.11) we see that together these considerations favour lower values of the

cut-off scale.

In the following section we derive the expressions for the relaxion-Higgs mixing and

in section 3 review existing backreaction models and bounds on the backreaction scale. In

section 4 we consider bounds on models with compact relaxions. We find a rich variety

of experimental and observational probes for the relaxion in the mass range 0.1 µeV to

50 GeV described in detail in section 5 and section 6. All our bounds are equally applicable

to general Higgs portal models. As the relaxion couplings to SM particles via the mixing

are like that of a CP-even scalar, in the sub-eV range fifth force experiments can constrain

large parts of the relaxion parameter space. In the keV-MeV range constraints on the

relaxion parameter space arise from astrophysical star cooling bounds and cosmological

probes of late decays, including constraints from entropy injection, BBN observables, CMB

distortions and distortion of the extragalactic background light (EBL) spectrum. In the

MeV-GeV region we find that the most important bounds arise from cosmological entropy

injection and BBN bounds, cooling rate of the SN 1987 supernova, beam dump experiments

and from constraints on rare B- and K-meson decays. Finally for GeV scale masses the

bounds arise from LEP Higgs-strahlung data and LHC Higgs coupling bounds on the h→
φφ channel. We also discuss how presently unconstrained parts of the relaxion parameter

space would be probed by future data from experiments such as the PIXIE detector for

CMB distortions, the NA62 experiment and especially the SHiP beam dump experiment.

In section 7 we discuss the implications of our bounds on the theoretical parameter space

of relaxion models. In section 8 we briefly discuss how the characteristic CP violation of

relaxion models can be probed and finally we conclude in section 9. Useful relations are

derived in the appendices.

2 Relaxion-Higgs mixing

Relaxion models contain two sources of breaking of the shift symmetry, the one that allows

the Higgs mass to scan as the relaxion rolls and the backreaction term. In this section

we will see how the presence of both terms can lead to spontaneous CP-violation in the

backreaction sector and a measurable relaxion-Higgs mixing (see also ref. [4]). The full

relaxion potential is given by combining the terms in eq. (1.2), eq. (1.3) and eq. (1.4),

V =
[
−Λ2 + gΛφ+ . . .

]
ĥ2 − M̃4−j ĥj cos

(
φ

f

)
+ λĥ4 + rgΛ3φ+ . . . . (2.1)
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To obtain the mixing terms we expand around the minima of the fields φ and H,

φ = φ0 + φ′ HT =

(
0 ,

vH + h′√
2

)
. (2.2)

In models with even j, vH = v = 246 GeV. On the other hand, as we will see in section 3, the

backreaction sector breaks electroweak symmetry in models with odd j. In these models,

therefore, vH =
√
v2 − v′2, where v′ is the electroweak symmetry breaking (EWSB) VEV

in the backreaction sector. The minimisation conditions and explicit mass matrices, M2
ij ,

for the j = 1 and 2 cases can be, respectively, found in appendix A and B. We find in both

cases that the leading contribution to the mass matrix elements can be written entirely in

terms of the parameters of the backreaction sector. In particular,

M2
h′φ′

M2
h′h′

= O
(

Λ4
br

m2
hvHf

)
,
M2
φ′φ′

M2
h′φ′

= O
(
vH
f

)
. (2.3)

for both j = 1 and j = 2. In addition, as discussed below, we expect Λbr . vH which

implies that the relaxion-Higgs mixing angles is naturally small, sin θ � 1. We find that,

to leading order the relaxion Higgs-mixing angle θ and the relaxion mass mφ are,

sin θ ' tan θ '
M2
h′φ′

M2
h′h′

= j
Λ4

br

vHfm2
h

sin

(
φ0

f

)
, (2.4)

m2
φ '

Λ4
br

f2

(
cos

(
φ0

f

)
−
j2Λ4

br

v2
Hm

2
h

sin2

(
φ0

f

))
. (2.5)

As anticipated, the mixing angle is proportional to the spontaneous CP-violating spurion

sin(φ0/f) in the backreacting sector. In more complicated relaxion models there can be

mechanisms to suppress this phase. An example is the model with the QCD axion where a

small phase is necessary to be compatible with the non-observation of a strong CP-phase.

In such models (see also ref. [5] and ref. [6]), relaxion-Higgs mixing is also suppressed.

Couplings: as the relaxion mixes with the Higgs boson, it inherits its couplings to SM

particles suppressed by a the mixing angle sin θ as a universal factor — such as in Higgs

portal models.3 For gφψ, the coupling to pairs of matter fields ψ, and gφV , the coupling to

pairs of V = W± or Z, the couplings are given by

gφf,φV = sin θghf,hV . (2.6)

At the loop level, the relaxion couples via quark loops to gluons and quark and W± loops

to photons,

L ⊃ −
gφγ
4
φFµνFµν −

gφg
4
φGµνGµν , (2.7)

(2.8)

3Note that in j = 1 models the Higgs couplings themselves might differ from their SM values because of

the reduced Higgs VEV, vH =
√
v2 − v′2; in the following we will assume that v′ . 100 GeV so that these

are at most 10 % effects which we would ignore (see also section 3).
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where

gφg =
αs sin θ

4πv

∣∣∣∣∣ ∑
fermions

Nc,fQ
2
fAF (τf )

∣∣∣∣∣ ,
gφγ =

αem sin θ

2πv

∣∣∣∣∣AW (τW ) +
∑

fermions

Nc,fQ
2
fAF (τf )

∣∣∣∣∣ (2.9)

with

AF (τ) =
2

τ2
(τ + (τ − 1)f(τ)) (2.10)

AW (τ) = − 1

τ2

(
2τ2 + 3τ + 3(2τ − 1)f(τ)

)
(2.11)

f(τ) =


arcsin2√τ τ ≤ 1

−1

4

[
log

1 +
√

1− τ−1

1−
√

1− τ−1
− iπ

]2

τ > 1
(2.12)

where τx = m2
h/4m

2
x.

Let us finally comment on the pseudoscalar couplings of the relaxion to Standard Model

particles, as these may have a significant impact on the experimental probes discussed in the

following. However, these couplings are model-dependent and as the relaxion potential can

be controlled by a sequestered sector [1, 3] these couplings could be in principle suppressed

relative to the “Higgs-portal” couplings discussed above (which are at the core of the

relaxion construction). As we show in appendix C, this is the case in existing backreaction

models (see section 3) where we find that these couplings are in magnitude generally smaller

than or equal to the Higgs portal couplings. An exception is the pseudoscalar coupling to

photons which in some backreaction models (see appendix C) can be larger than the one

induced via Higgs mixing while in other models is of the same size as the Higgs-portal

coupling. As the presence of a large pseudoscalar coupling to photons is thus model-

dependent, we will comment on its implications only qualitatively.

3 Review of backreaction models and existing bounds on Λbr

As both the cutoff of the theory as well as the relaxion-Higgs mixing depends polynomially

on the back reaction scale, it is important to examine what is its allowed range. In this

section we thus describe the different backreaction models in the literature and discuss

various bounds on the size of the scale M̃ or Λbr that appears in the backreaction potential

[see eq. (1.6)].

Note, first of all, that for odd j = 1 or 3, a non-zero M̃ in eq. (1.4) must break

electroweak symmetry which already suggests M̃ . v, but let us analyze this case in

more detail. The simplest relaxion model [1] where the backreacting sector is QCD and

the relaxion couples to gluons like the axion, φ
fGµνG̃

µν is an example of a j = 1 model.

Non-perturbative effects generate a potential for the axion,

∆Vbr ' −mu cos
φ

f
〈q̄q〉 ' −4πf3

πmu cos
φ

f
, (3.1)

– 6 –
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where Λ4
br = 4πf3

πmu = 4πf3
πyuv/

√
2 is set by the pion decay constant fπ and the up quark

mass. As the relaxion stops at a generic value of the phase, φ/f , QCD relaxion models are

generally in conflict with the non-observation of a large value of the strong CP phase. This

problem can be solved in more complicated variants where there is a dynamical mechanism

to make the above phase small.

An alternative approach would be to give-up the solution to the strong CP problem

and to consider an additional strong sector. For instance, a new technicolor-like strong

sector would lead to an EWSB condensate of techniquarks, 〈ŪLUR + D̄LDR〉 ' v′3, where

UL,R and DL,R are quarks with the same electroweak charges as the SM quarks uL,R and

dL,R, but charged under the new strong group and not QCD. If the relaxion is coupled to

the operator G′µνG̃
′µν , involving the strong sector gauge bosons (G′µν corresponds to the

new strong sector field strength), a backreaction is generated with j = 1 and

Λ4
br '

yv′3vH√
2

, (3.2)

where y is the smaller of the U or D Yukawa coupling with the SM Higgs, and vH is

the VEV of the Higgs doublet so that v′2 + v2
H = v2 = (246 GeV)2. Such a scenario

is constrained by Higgs and electroweak (EW) precision observables as Higgs couplings

deviate from SM values by O(v′2/v2
H). Requiring these deviations to be smaller than 20%

gives, v′ . 100 GeV. Together with this upper bound and the fact that the quarks must

not have too large an explicit mass, i.e. we must have yvH � 4πv′ and hence y . 1, we

obtain an upper bound on Λbr,

Λbr . 100 GeV. (3.3)

It is worth pointing out that such models would not be as strongly constrained as typical

technicolor models because the condensate does not need to explain the large top mass

and because the presence of an elementary Higgs somewhat alleviates the tension with

electroweak precision observables [7]. In this work we have assumed v′ . 100 GeV and

ignored O(v′2/v2
H) effects.

A less constrained model with j = 2 was presented in ref. [1]. In this model, φ couples

to G′µνG̃
′µν , the gauge bosons of an EW symmetry preserving strong sector. The Higgs

couples to two vector-like leptons charged under this strong group as follows,

L = y1LHN + y2L
cH†N c −mLLL

c −mNNN
c + h.c. , (3.4)

where (L,N) have the same quantum numbers as the SM lepton doublet and right-handed

neutrino, respectively, and (Lc, N c) are in the conjugate representations. If we take

mN � 4πf ′π � mL, only the fermion N forms a condensate that is EW preserving. Upon

integrating out L,Lc, the Higgs contributes to the mass of N as follows, ∆mN = y1y2ĥ
2/mL

so that the relaxion potential gets the backreaction

∆Vbr ' −4πf3
π′∆mN cos

φ

f
= −

4πf3
π′y1y2ĥ

2

mL
cos

φ

f
. (3.5)

– 7 –
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A perturbative j = 2 model was presented in ref. [3]. In this model the relaxion is

a familon, the PNGB of a spontaneously broken flavour symmetry. Let us consider the

Lagrangian,

L = y1e
iφ/fLHN + y2L

cH†N −mLLL
c − mN

2
NN + h.c. (3.6)

where L and Lc have the same quantum numbers as before, and N is a SM singlet fermion.

The one-loop Coleman-Weinberg potential of the relaxion φ reads

∆Vbr ' −
1

2π2
mLmNy1y2ĥ

2 cos

(
φ

f

)
log

(
Λ2

m̃2

)
, (3.7)

where m̃ is the larger of mL, mN .

A theoretical challenge that any j = 2 model faces is that at the quantum level the

backreaction term [see eq. (1.4)] generates the term M̃2Λ2
c

16π2 cos φf upon closing the ĥ loop.

This term is independent of the Higgs VEV, which implies the presence of an oscillatory

potential even before the Higgs condenses [5]. Thus, the relaxion stops rolling prematurely,

before EWSB, unless the scale Λc at which the Higgs loop is cut-off satisfies

Λc . 4πv . (3.8)

In axion-like models this is automatically satisfied because the instanton contribution are

highly suppressed at energy scales larger than the confinement scale, 4πfπ′ , so that eq. (3.8)

implies fπ′ . v. In the model of eq. (3.4) there is actually another contribution to the po-

tential that exists even before EWSB, ∆VN ' 4πf3
π′mN cos φf , where technical naturalness

requires that mN must be larger than y1y2mL log(Λ/mL)/(16π2) . Demanding the above

EW preserving contribution to be smaller than the backreaction generated upon EWSB,

4πf3
π′∆mN cos φf , we obtain mL . 4πv/

√
log Λ/mL. Together with these bounds, the re-

quirement ∆mN � 4πfπ′ � mL so that N forms a condensate and L does not, implies

that in this model

1

16π2

(
y1y2v

8π

)4

� Λ4
br � 16π2v4 , (3.9)

where we have assumed mL & v due to experimental bounds for the first inequality. In the

perturbative familon case, of eq. (3.6), a simple extension can ensure that the constraint

in eq. (3.8) is satisfied as followed. The Majorana mass mN is actually induced via a mini

see-saw mechanism. A new heavier fermion N c is added to the theory,

L ⊃ −mDNN
c − mNc

2
N cN c . (3.10)

After N c is integrated out, the Majorana mass of N is induced, mN = m2
D/mNc . One can

show in this case that two-loop corrections to the relaxion potential do not get contributions

from energies above the scale mNc so that we get Λc = mNc , and eq. (3.8) is satisfied as

long as mNc . 4πv. As mL,N � mNc , this implies mL,N � 4πv, and thus

Λ4
br � 64π2v4 (3.11)
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where we have assumed y1,2 < 4π.

Now let us discuss some model-independent bounds on the backreaction scale. First

note that eq. (2.5) implies that for a non-tachyonic φ,

Λ2
br < (Λmax

br )2 =
mhv

j

√
cos (φ0/f)

sin (φ0/f)
. (3.12)

Finally notice that in the presence of the mixing the Higgs-like eigenvalue would satisfy,

m2
h > M2

h′h′ . For the j = 1 case this leads to a bound on M̃ simply arising from the

expression for the Higgs mass that is given by (see eq. (A.8))

m2
h ≥

M̃3 cos(φ0/f)√
2vH

+ 2λv2
H (3.13)

where the inequality becomes an equality in the limit of no relaxion-Higgs mixing. We

must have λ > 0 to ensure that the potential does not have a runaway direction which

implies the following bound,

M̃3 .

√
2m2

hvH
cos(φ0/f)

⇒ Λ4
br .

m2
hv

2
H

cos(φ0/f)
. (3.14)

4 New bounds on compact relaxions

In this section we consider simple multiaxion (clockwork) models and then show that these

suffer from stability issues when the number of sites (axions), N , becomes too large. The

instability is, in fact, related to the very same issue of highly irrelevant operators that

plagues the two-site construction in ref. [3]. First of all note that in realistic relaxion

models the coupling g in eq. (1.2) and eq. (1.3) is obtained from a compact term (at least

in QFT constructions where the relaxion is a pNGB), but with a larger periodicity F [3],

V (ĥ, φ) =

(
κΛ2 − Λ2 cos

(
φ

F
+ α

))
ĥ2 − rΛ4 cos

(
φ

F
+ α

)
− Λ4

br cos
φ

f
, (4.1)

which allows us to make the following identifications for κ < 1:

g =
Λ

F
, n =

F

f
. (4.2)

One can now directly obtain eq. (1.11) by demanding V ′(φ) = 0 using eq. (4.1),

Λ '
(n
r

)1/4
Λbr. (4.3)

As shown in ref. [8] and [9], the Choi-Kim-Yun (CKY) alignment mechanism [10]4 (also

known as the clockwork mechanism in the relaxion context) for multiple axions (or PNGBs)

can provide a relaxion potential having two periodicities with a large ratio F/f ∼ eN , N

being the number of axions. Let us first review these multiaxion models. We describe

4The mechanism was proposed as a generalization of the Kim-Nilles-Peloso alignment mechanism [11]

from 2-axion to an N -axion-alignment.
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here the realization of ref. [9]. Consider N + 1 complex scalar fields Φ1 to ΦN+1 with

the potential

V (Φ) =

N∑
j=1

(
−m2Φ†iΦi +

λ

4
|Φ†iΦi|2

)
+ ε
(

Φ†1Φ3
2 + Φ†2Φ3

3 . . . .Φ
†
NΦ3

N+1 + h.c.
)
. (4.4)

The above potential respects a U(1) symmetry under which the fields Φ1,Φ2 . . .ΦN have

charges Q = 1, 1
3 . . . ,

1
3N

. For simplicity the symmetry preserving cross terms such as

Φ†iΦiΦ
†
jΦj have been ignored and an approximate permutation symmetry has been assumed

(for ε→ 0) so that the masses m2 and quartic couplings λ are equal for all the fields. For

ε� λ the radial parts of the fields obtain a VEV, Φi = f̂√
2
eiφi/f̂ where f̂2 = 4m2/λ, such

that at low energies only the angular degree of freedom remains. N superpositions of the

angular fields obtain masses, but the direction

φ0 =
1

N

(
φ1 +

φ2

3
+
φ3

9
. . .+

φN+1

3N

)
(4.5)

is a flat direction that describes a Goldstone boson. The Goldstone mode has an O(1)

overlap with the first site and is exponentially suppressed overlap with the last site,

〈φ1|φ〉 =
1

N
, (4.6)

〈φN |φ〉 =
1

3NN
, (4.7)

where N =
√∑N+1

j=1
1

32(j−1) is the norm of the vector defined by eq. (4.5). Let us now

introduce some anomalous breaking of the global U(1) at the first and last sites,(
φN+1

f̂
+ θ

)
GµνG̃

µν +

(
φ1

f̂
+ θ′

)
G′µνG̃

′µν ,

→
(
φ0

f
+ θ

)
GµνG̃

µν +

(
φ0

3Nf
+ θ′

)
G′µνG̃

′µν , (4.8)

where f = N f̂ and we have used eqs. (4.6), (4.7) to rewrite the first line in terms of

φ0. Non-peturbative effects now generate the desired relaxion potential in eq. (4.1) with

F = 3Nf so that eq. (4.3) now becomes

n = 3N =
rΛ4

Λ4
br

. (4.9)

Thus we see that the CKY/clockwork mechanism can give us a cut-off that grows expo-

nentially with the number of axions, N . Note that the above analysis holds only if

rΛ4 � εf4

4
, (4.10)

so that the potential generated by the anomalous breaking of the U(1) symmetry in eq. (4.1)

is subdominant compared to the potential generated from eq. (4.4), the linear combination

in eq. (4.5) remains a Goldstone mode, and all the heavier modes can be decoupled.
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We now show that, for a too large N , these models become finely tuned if we relax the

approximate permutation symmetry in eq. (4.4) that was assumed only for convenience of

calculation. If we relax this assumption some of the mass square terms might be positive.

Let us assume, for instance, that k − 1 consecutive fields, Φn1+1 . . .Φn1+k−1 have positive

mass square terms so that there are no corresponding PNGB modes φn1+1 . . . φn1+k−1 for

these scalars. At first sight, this breaks the link in the axion chain because — instead of

one Goldstone mode as in eq. (4.5) — there are now two decoupled Goldstones fields [in

the absence of the subdominant boundary terms of eq. (4.8)],

φ01 =
1

N1

(
φ1 +

φ2

3
+ . . .

φn1

3n1−1

)
, (4.11)

φ02 =
1

N2

(
φn1+k +

φn1+k+1

3
+ . . .

φN
3n2

)
, (4.12)

where n2 = N − n1 − k and N1 and N2 are again normalisation constants. None of the

above modes can be identified with the relaxion as no single mode above is subject to both

the backreaction at the first site and the rolling potential at the last site. However, the link

between the two chains is not completely lost, as a process like Φn1−1 → 3Φn1 → . . . →
3mΦn1+k generates a higher dimensional operator that weakly couples the two sectors,

ε
3k−1

2
Φ†n1Φ3k

n1+k

m3k−3
→ ε

εf̂4

2
cos

(
3kφn1+k

f̂
− φn1

f̂

)
, where ε =

( ε
λ

) 3k−3
2

(4.13)

is an exponentially small number due to ε/λ � 1. More precisely, as the N − 1 heavier

pseudo-Goldstone modes that have masses m2
φ ∼ 32εf̂2/2 (see ref. [9]), must be much

lighter than the radial modes ρ with m2
ρ ∼ λf̂2/2, one needs

m2
φ

m2
ρ

.
1

9
⇒ ε

λ
.

1

34
⇒ ε . 3−2(3k−3) . (4.14)

With the above term in the potential we once again obtain that φ0 from eq. (4.5) is a

Goldstone mode. With the addition of the explicit breaking terms on the first and last site

in eq. (4.8), the terms relevant for the potential of φ01 and φ02 are,

V (φi) ⊃ −Λ4
br cos

(
φ1

f̂
+ θ

)
+ ε

εf̂4

2
cos

(
3kφn1+k

f̂
− φn1

f̂

)
− rΛ4 cos

(
φN

f̂
+ θ′

)
= −Λ4

br cos
φ01

N1f̂
+ ε

εf̂4

2
cos

(
3kφ02

N2f̂
− φ01

3n1−1N1f̂

)
− rΛ4 cos

(
φ02

3n2N2f̂
+ α′

)
,

(4.15)

where we have appropriately redefined φ01 and φ02 so that the phase appears only in the

last term. The two lightest modes now are superpositions of eq. (4.11) and eq. (4.12). The

mass matrix of φ01 and φ02 is given by

M =
εf2

2

− Λ4
br

N 2
1 εf̂

4
+ 3−2(n1−1) ε

N 2
1

3k−n1+1 ε
N1N2

3k−n1+1 ε
N1N2

32k ε
N 2

2
− 3−2n2 rΛ4

N 2
2 εf̂

4

 , (4.16)
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which results in, up to normalization factors, the two mass eigenstates,

φm1 = cαφ01 + sαφ02 ,

φm2 = −sαφ01 + cαφ02 , (4.17)

where sα = sinα, cα = cosα and α is the mixing angle. Let us first show that in the limit

that contribution of the term proportional to Λ4 to the gradient of the φm2 potential is

subdominant, i.e. Λ4 � 3n2+kεεf̂4, we recover the usual relaxion potential. In this limit

we obtain tanα = 3−n1−kN2/N1, and the first eigenstate in eq. (4.17) becomes identical

to the relaxion mode in eq. (4.5). To obtain the Lagrangian for the lightest mode we first

use the condition to stabilise φm2 , which in this limit reads

∂V

∂φm2
' −3kcα

N2

εεf̂3

2
sin

(
3kcα
N2

φm2

f̂

)
= 0 . (4.18)

Substituting the solution 〈φm2〉 = 0 in eq. (4.15) and using tanα = 3−n1−kN2/N1 yields

the potential in eq. (4.1).

In the opposite limit, i.e. Λ4 � 3n2+kεεf4, the gradient of the φm2 potential is domi-

nated by the term proportional to Λ4,

∂V

∂φm2
' Λ4cα

3n2N2f̂
sin

(
sαφm1 + cαφm2

3n2N2f̂
+ α′

)
= 0 . (4.19)

which drives φm2 to the global minimum of the rolling potential giving the Higgs an

O(Λ2) mass. Therefore for the relaxion mechanism to work one needs Λ4 � 3n2+kεεf̂4,

which implies

rΛ4 � 3−zλf̂4 , (4.20)

where

z = 2(3k − 3)−N + n1 + 4 . (4.21)

We see that for k = 4, λ = 1, r = 1/16π2 and N = 28, using f < MPl we get Λ � 2 TeV

for any positive integer n1, so that the relaxion mechanism cannot even address the little

hierarchy problem in this case.

How long must the relaxion chain be so that a sequence of k − 1 = 3 consecutive

positive masses becomes highly probable? To compute this probability we need to find the

number, N3(N), of sequences of N ‘+’ or ‘-’ signs with at least one chain of 3 consecutive

positive signs ‘+++ ’ . It can be shown that N3(N) obeys the following recursion relation,

N3(N + 1) = 2.N3(N) +
[
2N−3 −N3(N − 3)

]
. (4.22)

Here the first term comes from the fact that if we already have at least one ‘+++’ chain in

a sequence of N axions, by adding either a ‘+’ or ‘-’ sign at the N+1 th position we obtain

an arrangement of size N + 1 satisfying our criterion. This does not include arrangements

of N axions with no chain of 3 consecutive positive ‘+’ signs but having a ‘-++’ at the end
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such that we get a required arrangement if at the N + 1 th position we add a ‘+’ sign; this

is taken care of by the second term in eq. (4.22). Finally in the last term we subtract the

double counting resulting in cases where the sequence captured by the second term already

includes a ‘+++’ in the remaining subchain.

To obtain a successful relaxion model, however, we are interested in an N -site sequence

with no ‘+++’ chain, N ′3(N), which is given by

N ′3(N) = 2N −N3(N) . (4.23)

It turns out that N ′3(N) satisfies the following familiar relation,

N ′3(N + 1) = N ′3(N) +N ′3(N − 1) +N ′3(N − 2) , (4.24)

which is nothing but the recurrence relation of the 3-step Fibonacci sequence.5 By in-

spection, N ′3(3) = 7 , the 5th element of the 3-step Fibonacci sequence so that we must

have N ′3(N) = fib3(N + 2). Our arguments can be easily generalized to find the number

of arrangements with no chains of k − 1 positive masses which turns out to be just the

(k−1)-step Fibonacci sequence. Hence the probability to randomly obtain a sequence with

at least one chain of k − 1 positive masses is

P(k − 1, N) = 1− fibk−1(N + 2)

2N
. (4.25)

We find that for N ≥ 28 the probability of having at least k − 1 = 3 consecutive positive

masses in a chain of N axions is P(k − 1, N) ' 90%. Thus for N ≥ 28, from eq. (4.20)

generically we have Λ� 3 TeV as already discussed above.

For N . 28 axions there is the possibility of raising the cut-off to a value of

Λ . 328/4(16π2Λ4
br)

1/4 = 1000 TeV

√
Λ2

br

mhv
, (4.26)

where we have used eq. (4.9) and the numerical value above is for Λbr '
√
mhv. As we will

show in sections 5 and 6, experimental probes can constrain Λbr to even smaller values as

a function of f (or alternatively the relaxion mass) and this in turn would imply an even

lower cut-off in accordance with eq. (4.26).

5 Laboratory probes of relaxion-Higgs mixing

In this and the next section we discuss in detail the bounds and the future probes for

relaxion-Higgs mixing, distinguishing between laboratory experiments, discussed here, and

cosmological and astrophysical probes considered in section 6. As we will show below, the

relaxion mass can range from far below the eV-scale to almost the weak scale. Therefore a

variety of experiments is needed to look for the relaxion. As the couplings to SM particles

are proportional to sin θ, a convenient plane to present the constraints is the sin2 θ-mφ

5The n-step Fibonacci sequence fibn is a sequence where any number in the sequence is the sum of the

previous n numbers.
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Figure 1. Relaxion properties: (a) The relaxion mass mφ as a function of Λbr for different values of

f , where the vertical gray line indicates Λ∗
br that maximizes mφ for each f . Here Λmax

br is the upper

bound on Λbr arising from the requirement of a non-tachyonic φ in eq. (3.12) for sin(φ0/f) = 1/
√

2.

(b) The lifetime τφ also depending on mφ and sin2 θ with thresholds (vertical gray lines) and example

values of τφ (horizontal gray lines). The lifetime for any other sin2 θ value can be obtained from

the sin2 θ = 1 line using τφ ∼ 1/ sin2 θ.

plane. Before going into the details of the various constraints to be presented in figures 2–

5, let us first identify the regions of the sin2 θ-mφ plane that are relevant for relaxion models.

For the convenience of the reader we repeat the expressions for the mass and mixing angle

of the relaxion in the small-mixing approximation from eq. (2.4) and eq. (2.5) substituting

for definiteness sin(φ0/f) = cos(φ0/f) = 1/
√

2,6

sin θ ' j
Λ4

br√
2vfm2

h

,

m2
φ '

Λ4
br

2f2

(√
2−

j2Λ4
br

v2m2
h

)
=

Λ4
br√

2f2

(
1−

(
Λbr

Λmax
br

)4
)
, (5.1)

where (Λmax
br )2 = 21/4mhv/j is the maximal allowed value of Λbr that follows from

eq. (3.12).7 Other O(1) choices of φ0/f lead to slightly modified numerical values for

6Note that we have assumed v2H ' v2 which amounts to ignoring, at most, O(10%) effects (see section 3).
7It was shown in ref. [12] that in j = 2 models it is possible to have Λbr & mhv with smaller then O(1)

values for sin(φ0/f) . v2/Λ2
br, such that eq. (3.12) is still satisfied. In this work we take O(1) values of

sin(φ0/f), and in accordance with eq. (3.12), Λbr . mhv thus not considering this region of the parameter

space. As the backreaction scale, Λbr, is in any case constrained to be less than a few times the weak scale

(see section 3), this is actually a narrow region of the parameter space where the constraints are expected

to be similar to those we obtain for Λ2
br ∼ mhv.
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mφ, sin θ and Λmax
br . These can be inverted to obtain

Λ2
br(mφ, sin θ) =

21/4vm2
h

j

sin θ√
m2
φ +m2

h sin2 θ
,

f(mφ, sin θ) =
m2
hv sin θ

j(m2
φ +m2

h sin2 θ)
. (5.2)

We use the equations above to make contours of constant Λbr and f in the sin2 θ-mφ plane

in figure 2, 3 and 5. Although we have made the contours for the j = 2 case, using eq. (5.2)

one can easily translate to the j = 1 case by substituting f → 2f,Λbr →
√

2Λbr. For

relaxions heavier than 5 GeV, the mixing can be O(1) and eq. (5.1) and eq. (5.2) are no

longer valid. Thus in section 5.2.1 and figure 4 where we consider relaxions in this mass

range, we exactly diagonalize the mass matrices in appendix A and B to obtain the Λbr

and f contours.

We see from eq. (5.1) and that if Λbr is much smaller than Λmax
br , for a given f , both

mφ and sin2 θ increase with Λbr and we get sin2 θ ∼ m4
φ. This implies that in this regime,

a light relaxion has typically a suppressed mixing. However, if we take values of Λbr close

to Λmax
br , this tendency does not hold anymore. This behaviour can be seen in figure 1(a)

where we plot the relaxion mass as a function of Λbr for different values of f taking j = 2.

We see that, for all f , the relaxion mass is maximum for Λbr = Λ∗br = 2−1/4
√
mhv/j, and

for larger values of Λbr the relaxion mass drops rapidly with Λbr as the term within the

parenthesis in eq. (5.1) becomes smaller. The relaxion mass can, in fact, be made arbitrarily

small by choosing a Λbr that is sufficiently close to its maximal value Λmax
br , while hardly

changing sin2 θ. In the sin2 θ-mφ plane this can be seen from the shape of the f contours

in figure 2 (and subsequent figures) for which two branches can be clearly identified. The

region Λbr > Λ∗br corresponds to the top left part of figure 2 where the f contours become

nearly horizontal as sin2 θ hardly changes but the mass can become arbitrarily small. The

thick grey line in figure 2 is the contour Λbr = 0.99Λmax
br . The whole region above the

this line, which we refer to as the “tuned region”, corresponds to the narrow region in

the theory space 0.99Λmax
br < Λbr < Λmax

br , marked by the thick black line in figure 1(a).

Therefore, in the following we will mostly discuss the “untuned region” Λbr < Λmax
br , which

translates to

sθ < 0.04
mφ

1 GeV
(5.3)

and implies that in most of the theoretical parameter space, if we make the relaxion lighter,

it also becomes more weakly coupled. We would like to point out that this is a general

feature of Higgs portal models. For instance, consider the potential [13],

Vhp =
m̂2
φ

2
φ′2 +

m̂2
h

2
h′2 + xm̂φvh

′φ′ (5.4)

where φ′ and h′ are as defined in eq. (2.2) while m̂2
φ, m̂

2
h and x parametrise the couplings

in a general Higgs-portal model. For small mixing angles we get m̂h = mh, the observed
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Higgs mass, and the condition x < xmax = mh/v to ensure that the lighter eigenstate does

not become tachyonic. The region above the grey line in this case corresponds to the small

range 0.98 xmax < x < xmax.

The second restriction on the sin2 θ−mφ parameter space arises from the fact that we

consider only the range,

mh < f < MPl

⇒ 6.5× 10−5
( mφ

1 GeV

)2
> sin θ > 10−18

(
mφ

1 µeV

)2

. (5.5)

The lower bound on f arises from the fact that in our analysis of relaxion-Higgs mixing we

ignored any new states (for instance radial modes) that must exist below the scale Λ = 4πf

to UV-complete the backreacting sector. Thus our analysis holds only if both the Higgs

boson and the relaxion have a mass much smaller than the mass scale of these UV states,

i.e. for f & mh. We will call the region defined by eq. (5.3) and eq. (5.5) the ‘relaxion

parameter space’, i.e the region in the sin2 θ −mφ relevant for relaxion models.

Let us now discuss the mass range the relaxion can have given these restrictions. In

the untuned region the relaxion can be made lighter either by decreasing Λbr or increasing

f . In our analysis we do not consider f > MPl = 2 · 1018 GeV, but as there is no strict

lower bound on Λbr, the relaxion can be made as light as we want by taking sufficiently

small values of Λbr. As discussed in section 1, however, lower values of Λbr are theoretically

disfavoured. For instance if we require relaxion field excursions to be subplanckian this

puts a bound sin2 θ . 10−27 as shown in figure 2. In the untuned region this can be

translated to mφ > 0.001 eV. As the requirement of subplanckian field excursions depends

on quantum gravity assumptions and can be possibly evaded by UV model building, we

will not take this as a strict bound and extend our constraints also to the transplanckian

region.

We now turn to the question of how heavy the relaxion can be. The largest relaxion

mass is obtained for the minimal value, f = mh, and weak scale values of Λbr where

the small-mixing approximation in eq. (5.1) no longer holds. In section 5.2.1, by exactly

diagonalising the mass matrices in appendix A and B, we find an upper bound mφ . 60 GeV

(see figure 4).

For readers interested in general Higgs portal models our analysis provides the complete

constraints in the untuned region of their parameter space apart from the area outside the

region defined by eq. (5.5). Whereas for f > MPl, the constraints in the untuned part of

the region arise only from fifth force experiments and have been discussed elsewhere (see for

instance [13, 14]), the region corresponding to f . mh can be potentially constrained only

by some cosmological probes that we will mention in the next section but not fully derive.

Before going into the details of the different experimental probes, a comment is in

order. In the following we are going to study the constraints on the relaxion parameter

space driven by its mixing with the Higgs. As it is impossible to include the effects of

the pseudoscalar couplings of the relaxion in a model-independent way we do not consider

these. In any case, in existing explicit models, these couplings are generally not larger than

the Higgs portal couplings as discussed in appendix C. An exception is the pseudoscalar
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coupling to photons which can in some backreaction models (see appendix C) be larger

than the one induced via Higgs mixing. In section 7 we qualitatively comment on how our

constraints would change if a large pseudoscalar coupling to photons is present.

In the following we describe the constraints on the relaxion in different mass ranges as

the relaxion mass spans a wide range from sub-eV values to tens of GeV. While relaxions

heavier than a MeV can be potentially probed by collider searches, the only laboratory

probes for sub-MeV relaxions are fifth force experiments. We discuss these two categories

separately starting with sub-MeV relaxions.

5.1 The sub-MeV mass range

In this mass range the relaxion has a very large decay length making it impossible for

collider searches to probe visible decays of the relaxion. This can be seen from figure 1(b)

where we plot, using the expressions in appendix E, the relaxion lifetime as a function of its

mass for different choices of sin θ. Eq. (5.3) implies for the considered mass range sin θ .
10−9, and figure 1(b) shows the corresponding enormous rest frame decay length of cτ &
1014 m. Therefore the only possible laboratory probes are either fifth force experiments,

or experiments looking for invisible particles. This last class of experiments, at least at the

moment, is not sensitive enough to provide constraints on the very small Higgs-relaxion

mixing in this mass range [15]. Fifth force experiments denote experiments which can

detect the existence of a new degree of freedom by the corresponding new Yukawa-like force

induced between two electrically neutral test bodies. A relaxion induces a spin-independent

Yukawa force between two test bodies A and B, defined by the potential

V = −GmAmB

r
αAαBe

−r mφ , (5.6)

where mA, mB are their respective masses and αA, αB parametrise the couplings of the

relaxion to the two bodies. In Higgs portal models, the couplings are given by [13]

αA = αB = ghNN

√
2MPl

mnuc
sθ (5.7)

where ghNN ' 10−3 and mnuc = 1 GeV. The sensitivity of the various fifth force experi-

ments depends on the interaction length λ which is related to the mediator mass mφ via

λ = m−1
φ = 1 µm

0.2 eV

mφ
. (5.8)

Let us start discussing probes of new long-range forces going down from macroscopic length

scales to the pm scale of MeV particles. We present the bounds arising from these probes

in figure 2. For very low masses (below 3 · 10−15 GeV), the strongest constraint comes

from the Eöt-Wash experiments [16, 17] that looked for deviations from Einstein’s weak

equivalence principle (labelled as EqP in figure 2) by precision measurements of the long-

range force between a heavy attractor and two different test bodies in a torsion balance.

Let us notice that this experiment is able to constrain the Higgs portal down to very small

couplings, but for masses lighter than 10−16 GeV the probed parameter space belongs to the
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tuned region (for other potentially relevant discussion of cosmological and/or low energy

probes see for instance [18, 19]). Therefore, in figure 2 we do not show relaxion masses

of mφ < 10−16 GeV although the EqP bound extends even further. On shorter length

scales, the mass range 3 · 10−15-10−11 GeV, the strongest bounds arise from constraints

on violations of the inverse square law (labelled as InvSqL) that have been obtained by

various experimental groups [20–25]. The excluded region shown in figure 2 is an envelope

that contains bounds from all these experiments with the strongest one coming from the

Irvine experiment in the mass range 3 · 10−15-5 · 10−14 GeV [20, 21], from the Eöt-Wash

2006 experiments in the mass range 5 · 10−14- 2 · 10−12 GeV [25] and from the Stanford

experiment [22, 24] in the mass range 2 · 10−12- 5 · 10−11 GeV. Finally we also show the

constraints from tests of the Casimir force [26, 27], the force induced by the zero point

energy of the electromagnetic field when two conductors are brought very close to each

other. While these bounds from the tests of the Casimir effect are weaker than the bounds

of the torsion balance experiments below 10−11 GeV, they are the strongest bounds above

this mass as shown in figure 2. The shaded area below the horizontal light gray, dotted

line (sin2 θ ≤ 10−27) shows the region where the relaxion has transplanckian excursions for

any value of the cut-off scale Λ > 2 TeV (see eq. (1.9)).

For heavier particles, i.e. shorter-range forces, the sensitivity is even lower. The in-

termediate region, between 10 eV and 1 MeV, is the most challenging region to probe in

laboratories. The most sensitive experiment in this mass region are neutron scattering ex-

periments that test the existence of a new sub-MeV boson based on their influence on the

neutron-nucleus interaction. These experiments set a very weak bound, sθ . 0.1 [28, 29],

and are therefore incapable of probing a relevant region of the parameter space. In a subset

of this mass range from a keV to an MeV (shown later in figure 5) the relaxion parameter

space can be probed only by astrophysical and cosmololgical observations to be discussed

in detail in the next section. The 10 eV-keV mass range, on the other hand, is largely

unconstrained as shown in figure 2.

Let us conclude this subsection by commenting that fifth force experiments are a unique

probe of light states like relaxions that couple to electrons and nucleons as CP-even scalars.

Axions, for instance, do not give rise to spin-independent long range forces at leading order

because of their pseudoscalar nature and are thus only weakly constrained by fifth force

experiments. Therefore, different laboratory probes have been proposed to circumvent

this problem. This is the case for light shining through the wall (LSW) experiments [30],

which are also sensitive to Higgs portal models [31]. However, their reach is too limited to

compete with fifth force experiments and therefore these do not appear in our plot.

5.2 Relaxion masses between the MeV- and the weak scale

Let us now study the region of parameter space where the relaxion mass is above the

electron threshold and thus it can decay into SM fermions. Furthermore, as shown in

figure 1(b), in this region the relaxion has a shorter lifetime and can be directly searched

for in laboratory facilities. Let us further distinguish two sub-regions based on the different

relevant probes. The bounds in the MeV-5 GeV mass range are presented in figure 3,
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Figure 2. Constraints on the relaxion-Higgs mixing sin2 θ for light relaxions with mφ between

10−16 GeV and 10−7 GeV. Fifth-force experiments (orange) probe the lightest mass range via

the equivalence principle (labelled as EqP), the inverse square law (ISqL) and the Casimir ef-

fect (Casimir). Contours of constant Λbr (gray) for Λbr = 0.99Λmax
br ' 104 GeV (gray, thick,

solid) and Λbr = 5 GeV (gray, dashed). Here Λmax
br is the upper bound on Λbr arising from

the requirement of a non-tachyonic φ in eq. (3.12) for sin(φ0/f) = 1/
√

2. Contours of constant

f = MPl, 1016 GeV, 1014 GeV (black, solid). The light gray region below the dotted gray line corre-

sponds to trans-Planckian field excursions ∆φ > MPl for Λ = 2 TeV.

including also astrophysical and cosmological constraints which will be discussed in the

next section. Figure 4 presents the bounds in the GeV region.

5.2.1 The 1 MeV–5 GeV range

This region of the parameter space is well covered by rare K- and B-meson decays at

proton beam dump and flavour experiments. Crucial for both kinds of experiments is

the possibility of producing a relaxion in rare decays of K- and B-mesons. In flavour

experiments that probe rare decays, constraints are put on the branching ratios [32]

BR(K → π+φ) = 0.002 sin2 θ
2|pφ|
mK

, (5.9)

BR(B → K+φ) = 0.5 sin2 θ
2|pφ|
mB
F2
K(mφ) , (5.10)

where pφ is found using two-body kinematics and FK is defined in [32]. Even in proton

beam dump experiments, rare mesons decays are the main the production mode of the

relaxion. The smallness of the branching ratio is overcome by the large luminosity. Electron

beam dump experiments do not have any sensitivity to Higgs-relaxion mixing due to the

suppressed electron Yukawa coupling.
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Beam dump experiments: in proton fixed target experiments, relaxion beams are

produced from meson decays and constraints are imposed by looking at its visible decays.

The region to the left of the cτ = 2 m line in figure 3 is roughly the region where the relaxion

decay length in the lab frame is greater than about 100 m (assuming a relativistic boost

factor γβ ∼ 50 [32]). Thus this is the region relevant for beam dump experiments looking

for long lived particles. We will discuss here the sensitivity of the CHARM experiment and

future experiments such as SHIP [33] and SeaQuest [34]. NA62 is also planning a beam

dump run as proposed in ref. [35].

The CHARM beam dump experiment performed a search for long-lived axion-like

particles decaying to e+e−, µ+µ− or γγ in collisions of a 400 GeV proton beam on a copper

target [36] with a 35 m long detector located 480 m from the target. This search can be also

reinterpreted in the context of Higgs portal models [32, 33, 37, 38], where the scalar φ is

predominantly produced in rare decays of K- and B-mesons. In such an experiment around

1017 kaons and 1010 B-mesons are produced per year. Figure 3 shows that CHARM (dark

red) is able to constrain only masses below the kaon threshold. The limited sensitivity is

due to the lower B-meson luminosity and the large distance between target and detector.

The large distance, on the other hand, is good to probe the low mass region where the

relaxion has a longer decay length as shown in figure 1(b). In figure 3 we show also the

projections (in lighter red) for several future proton beam dump experiments such as SHIP

(dotted) and SeaQuest (dash-dotted). While the reach of NuCal exceeds CHARM for a

scalar/pseudoscalar with couplings only to photons [35], the NuCal bound in the presence

of Yukawa-like couplings to fermions is in ref. [39] found to be weaker than the CHARM

limit and therefore we omit NuCal in figure 1(b). If in future beam dump experiments

the detector is closer to the target than in the case of CHARM, good improvements over

CHARM can be achieved for relaxion masses heavier than the muon threshold where the

lifetime is shorter. As already noticed, lighter relaxions have a longer lifetime and therefore

the CHARM bound in this region can be improved at proton fixed target experiments by

looking for invisible new particles. The present sensitivity, however, is limited in the region

of the parameter space relevant to our scenario [40–43].

Rare meson decays: rare decays of K-, B- and Υ-mesons can be mediated by a light

scalar particle φ, and therefore bounds on their branching ratios constrain the relaxion-

Higgs mixing angle. In figure 3 the turquoise region corresponds to the bounds on B-decays

and the blue region to K-decays. We do not show bounds coming from rare Υ decays since

they are always weaker than other existing bounds.

Let us first discuss how B-decays constrain the relaxion-Higgs mixing. Both Belle

and LHCb are sensitive to the decay process of B± → K±φ → K±l+l− with l = µ at

LHCb and l = µ, e at Belle [44, 45]. In the experimental analyses, the regions of mll in

[2.95 GeV, 3.18 GeV] and in [3.59, 3.77 GeV] are vetoed in order to suppress the background

from the J/ψ and the ψ′ resonances, respectively. Figure 3 shows the constraints on sin2 θ

derived in [38] using the upper bound on the branching ratio as a function of the dilepton

invariant mass provided by LHCb and Belle (both in turquoise). The figure indicates an
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almost comparable sensitivity of both experiments in the mass region above ∼ 300 MeV.8 In

addition, LHCb constrains BR(B0 → K0∗φ) BR(φ→ µ+µ−) as a function of the mass and

the lifetime of a new boson φ. Figure 3 includes this LHCb search as a bound on (mφ, sin2 θ)

for mφ ≤ 1 GeV as presented in ref. [46] for a scalar mixing with the Higgs from the model

of ref. [47], which also applies to the relaxion case. It improves the previous LHCb bound

by appropriately an order of magnitude. Using the full 2-dimensional information provided

in ref. [46], an extension of the bound up to mφ ≤ 4.35 GeV would be possible.

In the range of 0.212 GeV ≤ mφ ≤ 0.3 GeV [48], Belle has performed a dedicated study

of B0 → K∗0µ+µ−, searching for a peak in the dimuon spectrum in order to enhance the

sensitivity; this bound is also shown in figure 3. For even lighter masses, the limit on

the B → K + invisible from Belle and BaBar (also indicated in turquoise) constrains the

relaxion parameter space in a region where the relaxion has a long decay length. In both

of the above cases we have used the constraints derived by ref. [32].

Let us now discuss the constraints set by the searches for visible and invisible rare K-

meson decays, using again the results of ref. [32]. These are shown in dark blue in figure 3.

A search for KL → π0l+l− has been performed at KTeV/E799 [49, 50] and translated into

bounds on a pseudoscalar [39] and scalar [33] mediator of this decay. The corresponding

constraint (dark blue) in figure 3 is stronger above the muon threshold, where it surpasses

the current constraints from B-decays, and much weaker when the only visible decay mode

is into electrons (shown as a dark blue line). The branching ratio of K± → π±µ+µ− has

been measured by the NA48/2 fixed target experiment [51] at the CERN SPS. Despite

the good agreement of the branching ratio with the SM prediction, the resulting bound

on sin2 θ is weaker than those derived from the B-decays into visible final states due to

the relative CKM suppression of Vts · Vtd compared to Vtb · Vts in the W − t - loop of the

penguin diagram.

On the other hand, strong constraints can be set looking at invisible K-decays and

this is a promising search for light relaxions. Indeed for small enough couplings and/or

light enough masses — more precisely the region to the left of the cτ = 2 m contour in

figure 3 — the relaxion decays outside the detector (see also figure 1(b)). Searches for

the invisible K-decay K± → π± + invisible have been performed by the E787 [52] and the

E949 [53] experiments at BNL, also considering two-body decays and providing limits on

BR(K → π+φ) BR(φ→ invisible) as a function of mφ. The constraints on the Higgs portal

model coming from these analyses were previously studied in [32], which, however, focussed

only on the region above 100 MeV, while the search is sensitive also to lighter relaxions.

Therefore, we extended the analysis to lower masses as shown in figure 3; the gap in the

mass range 0.1 GeV ≤ mφ ≤ 0.21 GeV is due to the fact that the region around mπ± has

been vetoed. We find that the E949 experiment gives stronger limits than the CHARM

beam dump experiment for relaxions with mφ ≤ 10 MeV. Indeed, lighter relaxions have a

larger decay length, thus they are most likely detected as invisible particles. Therefore, this

is one of the most promising regions for rare K-decay measurements to probe new physics.

For instance the CERN experiment NA62 will improve the present limit on invisible K-

8As LHCb places slightly stronger constraints, we will omit the Belle results in the summary plots in

section 7.
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Figure 3. Constraints on the relaxion-Higgs mixing sin2 θ for relaxions with mφ between MeV and

5 GeV. The laboratory probes include: proton beam dump experiments (red for CHARM, light

red for the projected sensitivity for SHIP and SeaQuest), K-meson decays (blue, our conservative

projection from NA62 in a lighter shade of blue), B-meson decays (turquoise), LHC search for

h→ 4µ (light blue) and LEP (green). Astrophysical and cosmological probes include the Supernova

1987a (pale violet, labelled as SN), ηb (orange) and Neff( pink). Contours for Λbr = 0.99Λmax
br '

104 GeV (gray, thick, solid), Λbr = 10 GeV (gray, dashed), f/GeV = 106, 104, 125 (black, solid) are

presented. Here Λmax
br is the upper bound on Λbr arising from the requirement of a non-tachyonic φ

in eq. (3.12) for sin(φ0/f) = 1/
√

2. The vertical light gray line corresponds to the contour for the

relaxion mass at the muon threshold; the yellow contour corresponds to cτ = 2 m and the purple

one to τ = 1 s.

decays by almost an order of magnitude. They expect to see 90 SM signal events and 20

background events in two years [54]. Using only this information about the total rate and

no information about the differential distribution of the SM and background events, we

show a conservative estimate of the 95% CL excluded region in light blue in figure 3 where

we have assumed a 10% theoretical error [55]. The gap in the excluded region is again due

to the veto around the charged pion mass, 100 MeV . mφ . 160 MeV [54].

Finally, for GeV-scale masses we see from figure 3 that some regions of the parameter

space are bounded by LEP and LHC searches that we describe in detail in the next section.

5.2.2 The mφ > 5 GeV mass range

Finally we consider the mass region mφ > 5 GeV where the mixing angle sin θ can become

O(1) and the expressions in eq. (5.1) do not apply anymore. To compute the mixing angle,

sin θ, and the mass, mφ, as functions of Λbr and f , we therefore exactly diagonalise the mass

matrix in appendices A and B for the j = 2 (j = 1) case. We fix the value of the unknown
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λ by demanding that we obtain the observed Higgs mass for the heavier eigenvalue. This

is how we obtain Λbr and f contours in figure 4. It is in this region that we obtain lowest

values of f close to mh. As discussed in the beginning of this section, for even smaller

values of f < mh our analysis of relaxion-Higgs mixing does not hold anymore.

LEP constraints: in the high-mass range, LEP and the LHC provide useful constraints

on the mass and coupling of the relaxion. At LEP, the Higgs-strahlung process of, e+e− →
Z → Z∗h with Z∗ and h each decaying to a pair of fermions, is sensitive to the Higgs-

relaxion mixing. If mφ < 2mµ, φ escapes the detector. For visible decays above the dimuon

threshold, L3 [56] sets the most stringent bounds in the range mφ < 11.5 GeV whereas for

12 GeV ≤ mφ ≤ 116 GeV the combination of the four experiments ALEPH, DELPHI, L3

and OPAL at LEP [57] constrains this process most strongly. The experiments provide a

mass-dependent upper bound on the ratio of cross sections [57],

S95 = σmax/σSM, (5.11)

where σmax is the largest cross section σ(e+e− → Z → Z∗φ) compatible within the 95%

CL with the combined data sets, and σSM is the SM reference cross section σ(e+e− → Z →
Z∗HSM). In Higgs portal models, the ratio of φZ-production to the SM Higgs production

cross-section for the same mass is just sin2 θ, so that S95 can be directly interpreted as the

95% CL upper bound on sin2 θ. We show the parameter space excluded by LEP in green,

labelled by “LEP hZ”, in figure 4.

Higgs coupling bound on h → φφ: finally we discuss how Higgs coupling measure-

ments at the LHC constrain the h → φφ process. The strongest constraint on the partial

width to this non-standard decay channel arises from the potential dilution it can cause

to the visible decay channels of the Higgs boson to SM particles. While such a dilu-

tion of the visible decay channels may be compensated by increased scaling factors of the

couplings [58], this is not the case in Higgs portal models (like the relaxion case we are

considering) where the Higgs boson couplings are universally suppressed by cos θ with re-

spect to their SM values. This configuration with one universal coupling modifier and

non-standard decay channels has been considered in ref. [58]. Therefore we apply their

upper limit on the Higgs branching ratio to non-standard channels from a fit to the data

of ATLAS and CMS at 8 TeV with HiggsSignals [59]:

BR(h→ NP) ≤ 20% at 95% CL . (5.12)

We compute the partial width of h into φφ,

Γ(h→ φφ) =
1

32π

|ghφφ|2

mh

√
1−

4m2
φ

m2
h

, (5.13)

using the coupling ghφφ that has been derived exactly in eq. (D.2) in appendix D for j = 2,

taking h − φ mixing into account. The hφφ coupling is parametrically different in j = 1
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models and has not been considered here (see appendix D) . This allows to set bounds on

the relaxion parameter space via

BR(h→ NP) = BR(h→ φφ) =
Γ(h→ φφ)

Γ(h→ φφ) + cos2 θΓSM
h

!
≤ 20% . (5.14)

where ΓSM
h = 4.12 MeV [60].

Higgs decays to two relaxions at the LHC: in addition, the explicit searches at

the LHC for non-standard decays of the Higgs boson (see e.g. ref. [61]) with a mass of

mh = 125 GeV include the decay channel of the Higgs boson into two lighter scalars (or

pseudoscalars) φ that each further decay into a pair of fermions f or photons γ: h→ φφ→
4f/4γ at ATLAS [62, 63] and CMS [64–67]. Their results can be interpreted as bounds

on the decay of the Higgs boson into two relaxions that further decay into the analysed

final states. So far, data is only available from LHC Run 1 at 8 TeV. In ref. [66], the CMS

searches with the final states 4µ, 4τ, 2µ2τ and 2µ2b have been translated into upper bounds

on

Rhφµ := σh/σ
SM
h × BR(h→ φφ) · BR(φ→ µµ)2 (5.15)

at the 95% CL under the assumption of gφf ∝ mf , which holds also in the relaxion case, see

section 2. Therefore, the prediction of Rhφµ depending on mφ and sin2 θ compared to the

experimental limits provides bounds in the (mφ, sin2 θ) plane for those values of mφ that

are covered by the set of searches. The mass range of 0.25 GeV ≤ mφ ≤ 3.55 GeV is covered

by the 4µ final state, and the current data is sufficient to exclude parts of the parameter

space shown in figure 3 (blue), but not stronger than the flavour bounds in this region. At

higher masses, the 2µ2b final state is particularly sensitive due to the enhanced branching

ratio of φ → bb compared to φ → µµ. However, the ATLAS and CMS searches based on

the data from Run 1 do not constrain the relaxion parameter space beyond the constraints

derived from the Higgs couplings fit. Assuming an improvement of the experimental limits

by a factor of 10, which we very roughly estimate (neglecting the change of systematic

uncertainties and not combining channels and experiments) as the reach during Run 3,

we also show projections of the bounds for Run 3 (dark blue, dotted). While the 4τ final

state at the LHC will not set stronger bounds than Higgs-strahlung at LEP, the constraints

coming from the 2µ2b channel might provide an improvement comparable to the projected

Higgs couplings fits.

To summarise, figure 4 visualises that the bounds from LEP and the LHC are comple-

mentary in the sense that LEP is more constraining on sin2 θ for mφ <25 GeV whereas the

indirect constraint from the bound on the decay width into NP final states at the LHC

sets a stronger constraint for mφ >25 GeV. Again we show contours of constant Λbr and f

which, as we already mentioned, have been obtained by exact diagonalisation of the mass

matrices in appendices A and B. We show the contours for Λbr = 120 GeV for j = 2 (gray,

dashed) and j = 1 (brown, dashed), f = mh and f = 1 TeV for both the j = 2 (black) and

the j = 1 case (brown).
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Figure 4. Constraints on the relaxion-Higgs mixing sin2 θ for relaxions with mφ between 5 GeV

and 90 GeV from LEP and the LHC: 4-fermion final states from Higgs strahlung at LEP (green,

labelled as LEP hZ); Higgs decays to NP with BR(h → NP) ≤ 20% at the LHC (purple, solid) as

well as a projection for BR(h → NP) ≤ 10% (purple, dashed); explicit searches for h → φφ with

final states 4τ (dark blue, dotted, mφ < 10 GeV, Run 3 projection) and 2µ2b (dark blue, dotted,

mφ > 25 GeV, Run 3 projection). Contours for Λbr = 120 GeV (gray, dashed for j = 2; brown,

dashed for j = 1), f = mh and f = 1 TeV (black for j = 2, brown for j = 1).

6 Cosmological and astrophysical probes of relaxion-Higgs mixing

As discussed in the previous section, laboratory measurements can probe a significant region

of the relaxion parameter space. However, in the sub-MeV region, before the fifth force

experiments start to gain sensitivity in the sub-eV region, a large portion of the parameter

space is left unconstrained. In this section we show how astrophysical and cosmological

probes can explore part of this region of the parameter space, as shown in figure 5, and

also provide relevant bounds if the relaxion mass is in the MeV-GeV range (also shown in

figure 3). In order to identify the part of the parameter space most relevant for relaxion

models and to gain an understanding of the theory contours in figure 5, we refer the reader

to the discussion at beginning of section 5.

6.1 Cosmological probes

Late relaxion decays can be constrained by a variety of cosmological probes such as light

element abundances, CMB spectral distortions and distortions of the diffuse extragalactic

background light (EBL) spectrum. In this section we first compute the relaxion abundance
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generated by misalignment and thermal production and then use this result to study how

these bounds apply to our scenario.

6.1.1 Relaxion abundance

Misalignment production: during inflation the expectation value of the field φ, 〈φ〉,
satisfies the classical equation of motion. Quantum fluctuations lead to a spreading of the

field around this classical value. The spreading is given by (see for instance ref. [5])

d∆φ2

dNe
=
H2
I

4π2
− 2

3H2
I

〈
∆φ

∂V

∂φ

〉
, (6.1)

where ∆φ = φ−〈φ〉 and ∆φ2 = 〈(φ−〈φ〉)2〉, HI is the Hubble scale during inflation and Ne

is the number of e-folds. We see that the spreading stops when the r.h.s. above vanishes,

that is for

∆φ '
3H4

I

8π2V ′(φ)
.

3

8π2

(
Λ4

br

f

)1/3

, (6.2)

where V ′(φ) = ∂V/∂φ, and to obtain the inequality we have used the requirement that the

dynamics of the relaxion is dominated by classical rolling and not quantum fluctuations,

HI < (V ′(φ))1/3 (see ref. [1]). This gives us the misalignment of φ from its classical value

just after inflation. After this, the Universe goes through a phase of radiation domination.

If the temperature of the Universe is below the temperature T0 with

H(T = T0) =
mφ

3
⇒ T0 =

(
45

4π3g∗

)1/4√mφ

3
MPl , (6.3)

the relaxion field oscillates around the minimum. This leads to an energy density, ρφm,

and an effective non-relativistic number density, nφm, given by

ρφm =
m2
φ∆φ2

2
, (6.4)

nφm = ρφ/mφ , (6.5)

and thus results in a comoving number density,

Ym =
nφm
s

.
mφ ∆φ2

max

2s
, (6.6)

where ∆φmax is that maximal value of ∆φ given by eq. (6.2), the entropy density, s =

0.44 gS∗ (Ti)T
3
i and gS∗ (Ti) is the effective number of degrees of freedom in entropy at the

temperature Ti. If the reheating temperature is larger than T0, then Ti = T0, otherwise Ti
is the reheating temperature.

Thermal production: relaxions can be thermally produced by the process HH → φφ

at temperatures above the Higgs mass, by the processes q(g)+g → q(g)+φ at temperatures

below the electroweak critical temperature, TEW, by the pion-relaxion conversion process
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N+π → N+φ at temperatures below ΛQCD, and finally by inverse decays. Let us consider

these processes one by one.

At temperatures above the electroweak critical temperature, TEW ∼ mhv/mt the Higgs

portal mixing in eq. (2.5) is absent and the relaxion interacts only with the Higgs doublet.

The main production mode of the relaxion is then the process HH → φφ via the coupling

g2(H†H)φ2 . (6.7)

Note that any contribution to the process from the backreaction potential is absent, because

in both the non-perturbative axion and the peturbative familon model, the backreaction

term dissolves at high temperatures. In the axion case, the potential becomes negligible at

high temperatures because instanton effects become very weak as the non-abelian gauge

coupling becomes perturbative. In the familon model the Coleman-Weinberg potential gets

no contributions from momenta above mNc so that for T & mNc the backreaction potential

vanishes also in this case. The comoving number density for φ resulting from this process

has been computed in ref. [5] to be

YH2 ' 13.7 g4 0.278

g∗(TEW)

Mpl

TEW
, (6.8)

where we have not considered any contribution above the electroweak critical temperature

and g∗(TEW) is the effective number of relativistic degrees of freedom in energy density at

the temperature TEW. As we shall see in the following, this is negligible compared to the

production via the relaxion-Higgs mixing in the EW broken phase.

Now let us consider relaxion production in the EW broken phase, that is, production

at temperatures much below the critical temperature of the electroweak phase transition,

TEW ∼ mhv/mt = 180 GeV. In order to ensure that any finite temperature effects are

negligible, we take T < T0 = 20 GeV so that we always have (T/TEW)2 � 1. At these

temperatures t, h, Z,W± are not relativistic and their densities are Boltzmann-suppressed.

We thus ignore any contribution to thermal production of relaxions from processes involving

these states for T . 20 GeV and ignore any contribution at all from the temperature range

20 GeV < T < TEW where finite temperature effects become important. We also do not

consider any possible contribution from the backreaction sector as this would be impossible

to compute model-independently. Consequently, our final result for the relaxion abundance

will be a conservative lower bound and the cosmological bounds we derive can possibly be

even stronger. For T . 20 GeV, the dominant production processes are the Primakoff

process q(g) + φ→ q(g) + φ, involving the φgg vertex and the Compton photoproduction

process q + φ → q + φ which involves the φqq vertex. Using the production rate for the

Primakoff process computed in ref. [68], we get,

ΓP = 0.3
α3
ss

2
θT

3

π2v2
, (6.9)

where we have considered only the top loop for computing the φgg coupling as the loop con-

tribution of lighter quarks vanishes for temperatures above their masses. For the Compton
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process the thermally averaged rate is given by [69],

ΓfC '
αss

2
θT
∑

f m
2
f

π2v2
. (6.10)

Clearly, the dominant contribution is from bottom quarks and the contribution from lighter

quarks is negligible. The interference between the Primakoff and Compton processes also

scales as m2
fT , but is suppressed by another power of αs with respect to ΓfC in eq. (6.10) and

thus we ignore this contribution. We also ignore any contribution from the electromagnetic

counterpart of the above processes (that is replacing gluons by photons in the respective

diagrams) which are expected to be suppressed by powers of (αem/αs). Thus, we finally

obtain for the total production rate,

Γ = ΓP + ΓC . (6.11)

With the knowledge of Γ we can now compute the abundance of thermally produced

relaxions by solving the Boltzmann equation,

Y ′ =
Γ

xHt

(
0.278

g∗
− Y

)
, (6.12)

where x = 1/T and the Hubble scale Ht =

√
4π3g∗(T )

45
T 2

MPl
. Integrating the above, we get

Yhφ = Y pr

[
1− exp

(
−
∫ 1/Tf

1/T0

ΓP
xHt

dx

)
−
∑
f

(∫ 1/mf

1/T0

ΓfC
xHt

dx

)]

' 0.003
[
1− exp

(
−9× 1011s2

θ

)]
, (6.13)

where Y pr = 0.278/gpr
∗ and gpr

∗ ' 86.25 is the number of relativistic degrees of freedom

in energy density in the 1-20 GeV temperature range. In the sum over fermion species we

include only the c and b quarks as the contribution due to the other quarks is negligible (see

eq. (6.10)). We have taken the final temperature Tf = 1 GeV for Primakoff production

to justify our use of perturbative QCD and T = mf for the Compton process because

below this temperature the respective fermions become non-relativistic. For sθ & 10−6 the

relaxions have an equilibrium density given by Y = Yeq = 0.003 whereas for sθ . 10−6, the

relaxions have a much smaller density,

Yhφ = 2.9× 109s2
θ . (6.14)

Once the Universe cools down to a temperature below the quark/hadron transition,

i.e. T . 200 MeV, relaxions can be produced via the pion-relaxion conversion process, i.e.

N + π → N + φ, N being a nucleon. Using gNφ = mNsθ
v and nN =

(
mNT

2π

)3/2
e−

mN
T we

obtain the following parametric estimate for this process,

Γπφ '
(
mNT

2π

)3/2

e−
mN
T
m2
Ns

2
θT

2

4πv2m4
π

. (6.15)
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One can check that

Γπφ
Ht

∣∣∣∣
T.200 MeV

� ΓP + ΓC
Ht

∣∣∣∣
T&1 GeV

(6.16)

and hence we ignore this contribution. Finally, inverse decays may become significant at

temperatures just a bit larger than the relaxion mass. The ratio Γφ/Ht, Γφ, being the relax-

ion decay width, is maximal for T & mφ/5 as below this temperature, the relaxions become

non-relativistic and the rate is Boltzmann-suppressed while above these temperatures Ht

increases. We check numerically that

Γφ
Ht

∣∣∣∣
T=mφ/5

� ΓP + ΓC
Ht

∣∣∣∣
T&1 GeV

(6.17)

and thus the contribution from inverse decays can also be safely ignored.

We now show that the contribution to relaxion abundance from the q(g)+φ→ q(g)+φ

processes in eq. (6.13) by far dominates over the contributions in eq. (6.6) and eq. (6.8).

First note that we can rewrite eq. (6.8) as

YH2 ' 2× 106s4
θ

(
3 TeV

Λ

)12( 1

16π2r

)4

(6.18)

using eq. (1.5) and eq. (2.5). As we will discuss in detail in the next subsection, cosmological

probes are sensitive only if the relaxion decays after 1 s. As one can see from figure 3, in

the region of parameter space which lies in the untuned area defined in eq. (5.3), if the

relaxion decay time is greater than 1 s (below the purple curve) we must have sin θ < 10−4.

In this region YH2 is clearly always smaller than Yhφ in eq. (6.13), even for a cut-off as low

as 3 TeV. As far as the contribution from misalignment, Ym, is concerned we have checked

numerically that Ym � Yhφ except in a region of the parameter space where none of the

cosmological constraints apply as Yhφ < Ym < 10−20 are both extremely small. Thus we

conclude that, under our assumptions, the abundance is well approximated by eq. (6.13).

6.1.2 Cosmological bounds on late decays

In this subsection we study the bounds on late decays of the relaxion. The earliest the

relaxion has to decay to have any effect on cosmology is after 1 s, that is at the neutrino

decoupling time, which in the relaxion parameter space corresponds to mφ < 150 MeV

as shown in figure 5. On the other hand for relaxion masses mφ < 0.1 keV, eq. (5.3)

implies that sin2 θ . 10−17 and thus a lifetime, τφ & 1026 s (see figure 1(b)) much greater

than the age of the Universe (1017 s). This means that for masses mφ < 0.1 keV an

exponentially small number of relaxions have decayed by the present time and, as we will

soon show more rigorously, there are consequently no bounds in this region. To compute

the various constraints from late decays it is important first to know whether the relaxion

decays relativistically or non-relativistically at a given point in the parameter space. If the

relaxions are relativistic, their temperature can be computed from their number density,

nφ = Yφs =
ζ(3)

π2
T 3
φ

⇒ Tφ =

(
gS∗
gpr
∗

Yφ
Y pr
eq

)1/3

Tγ . (6.19)
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If Tφ(τφ), the relaxion temperature at the time of its decay, is smaller than mφ/5, it can

be safely considered to have become non-relativistic before decaying. If it becomes non-

relativistic, it can even dominate the energy density of the Universe before decaying (as

the energy density of non-relativistic matter decreases more slowly compared to that of

relativistic matter). As we will see in this section, such a scenario is highly constrained. In

most of the parameter space where various bounds on late decays are relevant, the relaxion

decays non-relativistically and thus its energy density before decaying is ρφ = mφYφs. Thus

the various bounds on late decays generally put an upper bound on mφYφ as a function of

the lifetime τφ. Let us now discuss the various constraints on the relaxion decays.

Entropy injection: if the relaxions decay after the neutrinos have fully decoupled, i.e.

for τφ & 1 s, they increase the entropy of the SM plasma by ∆S,

Safter

Sbefore
= 1 +

∆S

S
(6.20)

and thus decrease both the baryon-to-photon ratio ηB and the effective number of neutrino

species, Neff . Let us now proceed to compute ∆S/S. For τφ & 1 s, relaxions decay non-

relativistically except in a small region of the parameter space with sin2 θ & 10−4 and

mφ < 1 MeV which is outside the region of interest defined in eq. (5.3). In any case for

relativistic decays,

∆S

S
'

ρφ
Tγs

=
3

4gS∗

(
Tφ
Tγ

)4

. 0.3% (6.21)

and, as we will see, entropy injection smaller than a few percent is unconstrained. To

obtain the last inequality above we have used eq. (6.19). In the rest of the parameter space

where the relaxion decays non-relativistically, we must differentiate between the scenario

where the relaxion energy density as a fraction of the energy density of radiation, i.e.,

δ =
ρφ
ρrad

=
4

3

gS∗
g∗

mφYφ
Tγ(τφ)

(6.22)

is smaller than unity, δ . 1, from the scenario, δ & 1, where the relaxion dominates the

energy density. The entropy injection is given by

∆S

S
= x ·

(
gS∗
)1/4

mφYφ

√
τφ
MPl

, (6.23)

where x = 1.50 [70] for δ . 1 whereas x = 1.83 [71] for δ & 1.

Having obtained the expression for ∆S/S, let us proceed to derive the constraints

from ηB and Neff measurements. We first discuss the bound from Neff . Entropy injection

anytime after neutrino decoupling and before recombination leads to the reduction in Neff ,

that is:

Neff = 3.046

(
Sbefore

Safter

)4/3

(6.24)
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with NSM
eff = 3.046. Following ref. [72] we use the bound Neff > 2.6 and show in pink the

region excluded by this constraint in figure 3 and figure 5.

We now discuss bounds arising from the decrease in the baryon-to-photon ratio, ηB,

caused by relaxion decays. Since the baryon-to-photon ratio is inversely proportional to S,

ηB is reduced as follows due to entropy injection,

ηafter

ηbefore
=
Sbefore

Safter
. (6.25)

A change of ηB between BBN and CMB epoch is not supported by observation since the

measured value of ηB during the CMB epoch agrees well with the value after the end

of BBN. Therefore, entropy release between these two epochs must be suppressed. In

particular, CMB and BBN data constrain ∆S/S to be smaller than 2% [73]. In figure 3

and 5 we show the regions of parameter space excluded by this bound in orange.

Big-bang nucleosynthesis: Big-Bang Nucleosynthesis (BBN), the formation of light

elements in the early Universe, might be altered by late relaxion decays into SM particles.

The effect depends strongly on the relaxion mass, particularly whether or not it is heavy

enough to cause electromagnetic or hadronic cascades. In our region of interest (i.e. for

f > mh) relaxions above the pion threshold have a lifetime bigger than 1 s (see figure 5),

so they do not affect cosmology. Decays of lighter relaxions give rise to electromagnetic

showers as long as their mass is bigger than twice the minimum photo-disintegration energy

of light nuclei (mφ & 5 MeV). In the relaxion parameter space (see the beginning of

section 5) mφ < 150 MeV for τφ > 1s, so we obtain our bounds from relaxion decays into

electrons. BBN bounds put constraints on ρφ/s = mφYφ as a function of the lifetime τφ.

We consider here the bounds presented in ref. [73] for the decay of a 140 MeV scalar.

The region f < mh in figure 5, while not relevant for relaxion models, can be interesting

in general Higgs portal models. This region can be constrained, for instance, by BBN

bounds on decays to pions, hadronic showers etc which can be easily derived using our

expression for the abundance in eq. (6.13).

Distortion of the CMB spectrum: the energy spectrum of the cosmic microwave

background (CMB) allows also to constrain energy release in the early Universe. Con-

straints from CMB distortions become effective for relaxion decays that take place af-

ter 106 s as at earlier times the thermalization process is very efficient. There are two

types of distortions: µ-distortions and y-distortions which dominate at different times. At

τDC = 106 s (Tγ ∼ 750 eV), the photon number changing double Compton scattering pro-

cess (γ + e→ γ + γ + e) freezes out. As a result, the photons can no longer be in a Planck

distribution (where the number of particles is fixed by the total energy). On the other

hand, the Compton process is active until τC = 109 s, thus the photons can still maintain

a Bose-Einstein (BE) distribution, but with a chemical potential µ, whereas the observed

Planck spectrum corresponds to an almost vanishing chemical potential. Therefore, |µ| is

constrained by the COBE/FIRAS data which give a bound of |µ| < 0.9× 10−4 at 95% CL.
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The chemical potential generated by these late decays can be computed to be [74],

µ ' 1

0.714

(
3
ρφ
ργ
− 8

nφ
nγ

)
(exp(−τDC/τφ)− exp(−τC/τφ)) . (6.26)

In the above equation the factor involving exponentials accounts for the fact that only

decays in the time period between τDC and τC contribute to µ-distortions. If the fractional

energy δ � 1, one can use ρφ = mφYφs, and ργ = π2

15T
4
γ to find the constraints whereas

the region δ & 1 is excluded as it will lead to an O(1) value for µ which is excluded. We

find that a large portion of the parameter space is excluded by this constraint as shown in

figure 5 in green.

If the relaxion decays later than τC = 109 s (T ∼ 25 eV), even the Compton process

freezes out and this leads to a deviation of the CMB spectrum from a BE distribution. The

degree of thermalization that the photons can still achieve can be parametrized by y [74],

exp(4y)− 1 =
ρφ
ργ

(exp(−τC/τφ)− exp(−τRC/τφ)) . (6.27)

The region with δ & 1 is directly excluded whereas in the region δ � 1 we use ρφ = mφYφs,

and ργ = π2

15T
4
γ to compute the bound. In figure 5, we show the region excluded by the

bounds from µ distortions in a darker shade of green than the one denoting y distortions.

We also show by dashed lines the projection for the region PIXIE can exclude at 5-sigma

level, given by |µ| < 1× 10−8 and |y| < 5× 10−8 [75].

EBL and reionization: after recombination (τRC ∼ 1013 s) the nuclei capture almost

all the electrons to form neutral atoms so that the Universe becomes nearly transparent

to radiation. The photons injected by relaxion decay can be in principle directly detected,

unless their wavelength lies in the ultraviolet range (13.6 eV-300 eV) and they are absorbed

in the photoionization process of atoms. In this ultraviolet mass range bounds from reion-

ization can be set. Photons emitted from very late decays that do not lie in this range,

can be observed today as a distortion of the diffuse extragalactic background light (EBL).

The above constraints can be used to bound the quantity mφYφ/τφ of as a function of

mφ. Together these bounds cover the wavelength range between 0.1 and 1000 µm, that is

roughly the mass range between 0.1 eV and 1 keV. We show in figure 5 the excluded region

using the bounds derived in ref. [74] and [76], but appropriately rescaled to the different

abundance in our case.

Dark matter: if the relaxion decays after ∼ 1017 s it forms a very small component of

the present dark matter density.

6.2 Astrophysical probes

SN1987a supernova: in the core of a supernova, a relaxion can be produced via its

couplings to nucleons and thereby contribute to its energy loss. The relevant process is

bremsstrahlung N +N → N +N + φ. Requiring that the energy loss into the new scalar

must be smaller than the measured energy loss into neutrinos leads to bounds on the Higgs-

relaxion mixing as long as the relaxion is lighter than 20 MeV. In figure 5 and 3 we show

(in light blue) the bounds derived in [77], using the results of ref. [78]. This computation is
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exponentially sensitive to some uncertainties (see ref. [77]) and thus should be interpreted

only as an order of magnitude estimate. At a more conceptual level, even the idea of energy

loss via neutrinos has been questioned in the literature [79]. New laboratory constraints

that are able to explore this region are therefore required.

Globular-cluster star bounds: relaxions can be produced in globular-cluster (GC)

stars via processes involving the relaxion electron coupling, gφe, such as the Compton

and bremsstrahlung processes. Requiring that the total cooling rate is not faster than

expected [80, 81] gives us the bound

gφe < 1.3× 10−14 ⇒ sin2 θ < 4× 10−17 (6.28)

for mφ . 10 keV. Limits can be also set on the relaxion-photon coupling considering

Primakoff photon-relaxion conversion [74, 81],

gφγ < 0.6× 10−10 GeV−1 ⇒ sin2 θ < 1× 10−11 (6.29)

for mφ . 30 keV. In figure 5 the GC limit on gφe is presented in blue and the one on gφγ
in turquoise.

CAST experiment: the CERN Axion Solar Telescope (CAST) looks via X-rays for

axion-like particles coming from the sun. The present limit on the photon-ALP coupling

is [82, 83]:

gφγ < 0.8× 10−10 GeV−1 ⇒ sin2 θ < 2× 10−11 (6.30)

for mφ < 0.02 eV. The limit is slightly weaker than the GC limit and well outside the

region of interest in eq. (5.3), hence we omit it in figure 5. In contrast, IAXO [84], the

new generation experiment, will be able to improve the limit. However, despite the future

progress in this technology this class of experiments is not likely to be relevant for our

scenario since it probes a region of the parameter space where fifth force experiments

provide very strong bounds.

7 Implications for the relaxion theory space

In this section, we collect all bounds from laboratory experiments, colliders, astrophysics

and cosmology that were shown in figures 2, 3, 4 and 5 for different mass regions and

translate them, using eq. (5.2), into the underlying theory parameters Λbr and f in figure 6.9

As a connection between both parametrisations, Λbr and f were shown as a grid of contours

in the previous plots, whereas in the (Λbr, f) plane of figure 6 we show contours mφ. While

the values we provide are for the j = 2 case, as mentioned below eq. (5.2) one can obtain

the values for the j = 1 by the simple translation Λbr →
√

2Λbr, f → 2f .

We show how these bounds push the cut-off to smaller values by the upper horizontal

axis, where we translate the Λbr scale in the lower axis to cut-off values using eq. (4.3)

for n = 3N = 330. As indicated in the figure these values can be easily rescaled for other

values of n or N .
9The color coding for the experimental bounds is the same as in the previous figures.
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Figure 5. Cosmological and astrophysical bounds on sin2 θ and mφ from 100 eV to 0.3 GeV:

globular cluster via coupling to electrons (blue) or coupling to photons (turquoise), supernova 1987a

(light blue), extragalactic background light (EBL, yellow), CMB y-distortion (light green) and µ-

distortion (green), entropy injection ∆S/S bounded by the baryon-to-photon ratio ηB (orange) and

by Neff (pink), BBN (red). The green dotted lines represent the projection for the sensitivity of

PIXIE to CMB distortions.The light gray band indicates the possible range of sin2 θ for j = 1, i.e.

the QCD case. The gray lines (from top to bottom) are contours of constant Λbr = 0.99Λmax
br (thick,

solid), and 1 GeV (dashed). Here Λmax
br is the upper bound on Λbr arising from the requirement

of a non-tachyonic φ in eq. (3.12) for sin(φ0/f) = 1/
√

2. The black lines (from left to right) are

contours of constant f = 1010 GeV, 106 GeV (thin) and f = mh (thick).

The overview presented in figure 6 shows that large areas in the Λbr − f plane are

already well covered by existing experimental and observational probes, for instance the

high-f region up to MPl is probed by the fifth force experiments, on the other hand the

cosmological, astrophysical, beam dump and collider observables constrain lower values of

f . We see that in the above f ranges, the region with electroweak scale Λbr is practically

completely ruled out apart from small gaps that still remain. We also show in figure 6 how

some of these gaps in parameter space might be covered soon by future experiments such as

SHiP, NA62 and PIXIE. However, the region between f ∼ 1010 GeV and 1014 GeV which

corresponds to relaxion masses between 0.1 eV and 1 keV, is currently barely constrained

by data.

For any f (or mφ) value, all the constraints can be evaded for sufficiently small Λbr

values (there are no bounds for Λbr . 0.3 GeV). Small Λbr values are however theoretically

disfavoured for several reasons. First of all, as we see from the Λcq contours in figure 6,

the constraints derived here push the relaxion to a region with somewhat lower values for

the upper bound on the cut-off derived from cosmological considerations during inflation.
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If one takes seriously the requirement that the relaxion should not have transplanckian

excursions, our bounds have a much stronger impact. This is because, as we see from

figure 6, our bounds already cover a large part of the parameter space outside the shaded

region where the relaxion travels transplanckian distances for any cut-off larger than 2 TeV.

Coming to the issue of the very large global charges that arises due to the compact nature

of the relaxion, we see from the upper horizontal axis that even in CKY/clockwork models

the number of sites required can become uncomfortably large for very small backreaction

scales. For N . 30 (see section 4) our bounds can significantly constrain the cut-off. For

instance for f = 1000 TeV we find Λ . 100 TeV. As shown in section 4 the simplest

clockwork models start getting tuned for N & 30. As far as the proposal to solve the

little hierarchy problem using modest n values is concerned [3], we see that such a proposal

would be completely ruled out outside the f ∼ 1010 GeV- 1014 GeV (mφ ∼ 0.1 eV - 1 keV)

region, as contrary to the philosophy of this approach, too large values of n > (v/Λbr)
4

would be required.

One should be keep in mind while interpreting these bounds within the clockwork

framework that in these models one must have f & Λ from eq. (4.10). Thus even from this

point of view the unconstrained f ∼ 1010 GeV-1014 GeV (mφ ∼ 0.1 eV-1 keV) window is an

interesting region as here the cut-off can be high in these models.

Finally let us discuss what impact the pseudoscalar couplings of the relaxion might

have on the overall bounds. As explained in appendix C, in the electroweak preserving [1, 3]

models discussed in section 3, the relaxion does not have pseudoscalar couplings larger than

the Higgs-portal ones, hence our experimental bounds would be qualitatively unchanged.

Let us briefly comment on the possible change in our bounds if the pseudoscalar coupling

to photons is larger than the one induced by Higgs mixing. As already mentioned, among

the models discussed in section 3 this holds only for the pseudoscalar diphoton coupling

in the non-QCD j = 1 model where the relaxion has a pseudoscalar coupling to photons

suppressed only by 1/f and not by the backreaction scale (see eq. (C.3)). In this case the

astrophysical and cosmological bounds discussed in section 6 will be affected. An analysis

of how the cosmological bounds change in the presence of a large g̃φγ coupling is beyond

the scope of this work. The enhanced coupling to photons will lead to a stronger bound

from globular clusters, that is f & 107 GeV, eq. (6.29). However, this is valid only provided

that the relaxion mass is lighter than 30 keV, so we immediately see from figure 6 that this

is relevant only for Λbr � v. Furthermore, the CAST experiment can put a bound on f of

similar order on the coupling to photon eq. (6.30) in the sub-eV region. For large Higgs-

relaxion mixing fifth force experiments are sensitive, hence the CAST bound is irrelevant.

However for Λbr � v, when the sensitivity to fifth force experiments ceases, the CAST

bound on the pseudo-scalar coupling can be important for sub-eV relaxions.

8 Testing for the CP violating nature of the relaxion

In this section we investigate the feasibility of detecting a signal of spontaneous CP-

violation together with a Higgs mixing signal. This would represent a smoking gun for

our scenario since what we discussed so far about relaxion phenomenology applies to any
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Figure 6. Summary of laboratory, cosmological, astrophysical and collider bounds on Λbr and

f . The upper horizontal axis bounds the cut-off Λ for N = 30 via eq. (4.9). For other Λ, the

required N is obtained via N = 4 log3

(
Λ
R

)
+ 30 where R = Λ/3(N−30)/4 is the value read off the

upper axis. Laboratory: fifth force experiments (light orange). Cosmology and astrophysics: EBL

(yellow), CMB (green), globular cluster via coupling to electrons (blue, transparent), BBN (red),

entropy injection constrained by ηB (orange) and by Neff (pink), supernova 1987a (light blue).

The green dotted lines represent the projection for the sensitivity of PIXIE to CMB distortions.

Beam dump experiments: CHARM (dark red) and projections for SHiP (dark red, dotted). For

the beam dump projections at NA62 and SeaQuest, see figure 3. Flavour: rare K-meson decays at

E949/787, NA48/2, KTEV (dark blue) and projection for NA62 (dark blue, dotted), rare B-meson

decays at Belle and LHCb (turquoise). Higgs production and decay at colliders: LEP (green), LHC

(purple). The vertical gray band indicates exclusion due to Λbr > Λmax
br (here Λmax

br is the upper

bound on Λbr arising from the requirement of a non-tachyonic φ in eq. (3.12) for sin(φ0/f) = 1/
√

2).

The dashed, black lines show (from top to bottom) contours of Λ = {145 GeV, 2 TeV, 100 TeV} for

∆φ = MPl from the transplanckian (“tp”) condition in eq. (1.9). The same contours are obtained

for Λ ' 107 GeV, 108 GeV, 109 GeV from the cosmological classical-vs.-quantum (“cq”) condition in

eq. (1.8). The thin, black lines indicate mφ from 10−15 GeV (uppermost) to 1 GeV (lowest) with a

spacing factor of 103.
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scalar mixed with the Higgs. However, as already discussed in appendix C, the strength

of the relaxion pseudo-scalar couplings depend on the details of the back-reaction sector.

Couplings to fermions are typically very suppressed (compared to the one from Higgs-

relaxion mixing), while the coupling to photon g̃φγ is in many cases only as large as the

scalar one, that is g̃φγ ∼ 10−5 sin θ. In the electroweak breaking non-QCD model discussed

in section 3, instead, the coupling to photons is in principle larger since it is not suppressed

by the backreaction scale. Despite the model dependence, it is still an interesting question

whether a CP-violating signal could be detected at the precision frontier. Let us inves-

tigate the relaxion contribution to the electric dipole moments (EDM). In our scenario

the leading contribution to the electric dipole moment is generated through its couplings

to fermions via Higgs mixing and with the pseudoscalar coupling to photons, g̃φγ .We will

focus on the electron EDM, following [85], but similar results hold for the neutron EDM.

The first step is to understand in which relaxion mass range this probe can be effective.

To this end let us estimate the strength of g̃φγ×gφe since the relaxion one-loop contribution

to the electron EDM will be proportional to it. The current upper bound on the electron

EDM is de/e ∼ 8× 10−29cm [86], which corresponds to g̃φγge ∼ 5× 10−14 GeV−1 [85], and

improvements of one order of magnitude are expected in the coming years [87]. Let us then

see how this compares to relaxion models. For the non-QCD electroweak breaking model

we get:

g̃φγgφe .
α

4π

me

v

sin θ

f
∼ 3× 10−16

(
mφ

1GeV

)2

GeV−1 , (8.1)

where we used eq. (2.6) and eq. (C.3).

The electroweak preserving models [1, 3] have an additional Λ4
br/v

4 suppression from

the backreaction scale due to the suppression in g̃φγ in eq. (C.2) as compared to eq. (C.3).

We see that in both cases, a relaxion with mφ ' 1 GeV yields a contribution to the de
that is below the current (and near future) sensitivity. The parameter space constrained

is therefore in the few GeV region.

9 Conclusions

We study various phenomenological aspects of relaxion models. We focus on models where

the rolling of the relaxion field stops due to the presence of a Higgs-relaxion backreaction

term. We show that the relaxion generically stops its rolling at a point that breaks the

CP symmetry, leading to relaxion-Higgs mixing. We investigate then the implications of

this mixing, and analyse current and near future probes involving laboratory, cosmolog-

ical and astrophysical measurements in terms of reach and sensitivity. In most parts of

the parameter space, these observational constraints put the most stringent bound on the

backreaction scale, Λbr . On the theoretical front, we show that simple multiaxion (clock-

work) UV completions suffer from a fine tuning problem, which increases with the number

of sites.

Let us describe in more detail our main results on the observational probes of relaxion-

Higgs mixing. The constraints/discovery prospects derived by us are summarised in fig-

ures 2–5. In the sub-eV mass range the relaxion lifetime is much larger than the age of the
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Universe and thus cosmological or direct laboratory probes are not effective. Fifth force

experiments, however, are sensitive in large regions of the parameter space in the sub-eV

region because of the low mass of the relaxion and the CP-even nature of its couplings

to SM particles via Higgs mixing (see figure 2). The eV-MeV region is practically uncon-

strained by laboratory probes, but a subset of this region (keV-MeV) can be constrained

by astrophysical and cosmological probes as shown in figure 5. The cosmological probes

are relevant here because this is the region of parameter space where the relaxion life-

time is between 1 s and 1026 s and thus is tested by a variety of cosmological probes, such

as entropy injection constraints from Neff and ηB measurements, BBN observables, CMB

spectral distortions and EBL distortions. Turning to the MeV-GeV region we find that in

some parts of this mass range, the relaxion lifetime is just right for beam dump experiments

(O(100 m) in the lab frame) such as the CHARM experiment and experiments probing in-

visible rare meson decays. We also find that future data from beam dump experiments like

SeaQuest and especially SHiP and the currently running ultra-rare kaon decay experiment

NA62 can probe new and interesting regions of the relaxion parameter space. In other

parts of this MeV-GeV mass region visible rare meson decays also put significant bounds.

Finally, for relaxion masses above 5 GeV the constraints arise from LEP bounds on the

Higgs-strahlung process and LHC Higgs coupling bounds on the new channel, h→ φφ, as

shown in figure 4. In figure 6, we translate these bounds to the relaxion theory space and

discuss the theoretical implications. We finally comment that, while the relaxion-Higgs

mixing requires CP violation, most of the probes discussed above do not form a strong

test of the CP nature of the relaxion. The pseudoscalar couplings of the relaxion tend to

be more model-dependent. For instance, in the familon model that was constructed in [3]

the relaxion does not couple to FµνF̃
µν (with F being the QED field strength) at one loop

but only to the orthogonal combination of the electroweak field strengths. We find that, in

existing models, probes of CP violation are sensitive only for GeV scale relaxion masses.
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A Relaxion mass and mixing for the case of j = 1

In this appendix we present the mass matrix for the j = 1 case. The potential in this

case is,

V =
[
−Λ2 + gΛφ+ . . .

]
ĥ2 − M̃3ĥ cos

(
φ

f

)
+ λĥ4 + rgΛ3φ+ rg2Λ2φ2 . (A.1)

Expanding around their vacuum expectation values (VEVs),

φ = φ0 + φ′ , ĥ =
vH + h′√

2
, (A.2)

and imposing the minimisation conditions, we get

λv2
H − Λ2 + gΛφ0 −

M̃3

√
2vH

cos

(
φ0

f

)
= 0 , (A.3)

rgΛ3 + 2rg2Λ2φ0 +
gΛv2

H

2
+
M̃3vH√

2f
sin

(
φ0

f

)
= 0 , (A.4)

where φ0 ∼ Λ/g and φ0/f is expected to be an O(1) phase. Now we calculate the φ′ − h′

mass matrix,

M2
h′h′ ≡

∂2V

∂h′∂h′
= 3λv2

H − Λ2 + gΛφ = 2λv2
H +

M̃3

√
2vH

cos

(
φ0

f

)
, (A.5)

M2
h′φ′ ≡

∂2V

∂h∂φ′
= gΛvH +

M̃3

√
2f

sin

(
φ0

f

)
' M̃3

√
2f

sin

(
φ0

f

)
, (A.6)

M2
φ′φ′ ≡

∂2V

∂φ′∂φ′
=
M̃3vH√

2f2
cos

(
φ0

f

)
+ 2rg2Λ2 ' M̃3vH√

2f2
cos

(
φ0

f

)
, (A.7)

where we have used eq. (A.3), eq. (A.4) and Λ2 � rv2
H to obtain the approximations above.

For any given M̃ (or Λbr) and f the exact relaxion mass and mixing can be determined

by diagonalising the above mass matrix after setting λ by requiring the heavier eigenvalue

to be the physical Higgs mass, mh = 125 GeV. Note that we always have,

m2
h > M2

h′h′ = 2λv2
H +

M̃3

√
2vH

cos

(
φ0

f

)
, (A.8)

a fact we use in section 3 .

B Relaxion mass and mixing for the case of j = 2

In this appendix we derive the relevant relation for j = 2 models. To obtain this we expand

the potential V (h, φ),

V =
[
−Λ2 + gΛφ+ . . .

]
ĥ2 − M̃2ĥ2 cos

(
φ

f

)
+ λĥ4 + rgΛ3φ+ rg2Λ2φ2 . . . . (B.1)
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around the minimum (vH , φ0). In these models vH = v = 246 GeV. The minimisation

conditions yields,

λv2 − Λ2 + gΛφ+ g2φ2 − M̃2 cos

(
φ0

f

)
= 0 , (B.2)

rgΛ3 +
gΛv2

2
+
M̃2v2

2f
sin

(
φ0

f

)
= 0 , (B.3)

where φ0 ∼ Λ/g as in section 1, and the trigonometric functions have O(1) values. The

φ̂− h mass matrix results in

M2
h′h′ ≡

∂2V

∂h′∂h′
= 3λv2 − Λ2 + gΛφ− M̃2 cos

(
φ0

f

)
= 2λv2 ,

M2
h′φ′ ≡

∂2V

∂h′∂φ̂
= gΛv +

M̃2v

f
sin

(
φ0

f

)
' M̃2v

f
sin

(
φ0

f

)
,

M2
φ′φ′ ≡

∂2V

∂φ′∂φ′
=
v2

2

M̃2

f2
cos

(
φ0

f

)
+ 2rg2Λ2 ' v2

2

M̃2

f2
cos

(
φ0

f

)
. (B.4)

where we have used eq. (B.2), eq. (B.3) and Λ2 � rv2 to obtain the approximations above.

For any given M̃ (or Λbr) and f , the exact relaxion mass and mixing can be determined

by diagonalising the above mass matrix after setting λ by requiring the heavier eigenvalue

to be the physical Higgs mass, mh = 125 GeV.

C Pseudoscalar couplings of the relaxion

In this appendix we discuss the pseudoscalar couplings of the relaxion that can arise from

the backreaction sector. As already mentioned in section 2, these couplings are model-

dependent so our discussion here would be limited to the specific models in section 3,

namely the j = 1 non-QCD backreaction model and the j = 2 axion-like and familon

models. As far as low energy probes are concerned, the important couplings are the ones

to light fermions, photons and gluons. In all the above models, the exotic fermions10 can

induce a pseudoscalar coupling of the relaxion to light fermions, g̃φf , that is proportional to

the light fermion mass as well as the shift symmetry breaking spurion (∼ Λ4
br) that generates

the relaxion mass; thus it has the same suppressions as the Higgs portal coupling, gφf in

section 2. Furthermore, as the above models involve sequestered sectors, one can check

by inspection that these couplings are generated at least one loop order higher than the

corresponding Higgs-portal coupling so that

g̃φf ∼
gφf

16π2
. (C.1)

As far as the coupling to photons is concerned we need to distinguish between the

j = 1 and j = 2 models. By inspection we see that in both the j = 2 models the
g̃φγ
4 φFF̃ coupling can be possibly induced but only with the same shift symmetry breaking

10In the non-perturbative j = 1, 2 models it is the analog of the pion and /or η′ that get the loop induced

couplings (to both fermions and photons) and the relaxion obtains its coupling via mixing with these states.

– 40 –



J
H
E
P
0
6
(
2
0
1
7
)
0
5
0

suppression (∼ Λ4
br/v

4) and at the same order in perturbation theory as the Higgs portal

coupling (in the non-perutbative model the coupling can arise via mixing with the analog

of the η′ and in the perturbative familon model via a 2-loop level diagram),

g̃φγ ∼
Λ4

br

v4

αem
4πf

∼ gφγ . (C.2)

In the non-QCD j = 1 model, however, it is possible to have g̃φγ � gφγ because this

backreaction sector is just a scaled-up version of QCD. Thus, as is the case for QCD axions,

the relaxion will get an anomaly-induced coupling of the same order via mixing with the

η′ and pion analogs of the new strong sector. This generates

g̃φγ ∼
αem
4πf

, (C.3)

which can be larger than the Higgs portal coupling, gφγ , for values of Λbr � v.

It is important to mention that while the pseudoscalar coupling of the relaxion to

photons is smaller than the Higgs-portal one in the existing j = 2 models, an anomaly

induced coupling of the size in eq. (C.3) would exist in simple variants where the relaxion

couples directly to the electroweak doublet fermions.

One can proceed along the same lines to show that the pseudoscalar coupling of the

relaxion to gluons is at least one loop suppressed with respect to the Higgs portal induced

coupling to gluons because of the sequestering. We see, therefore, that apart from the

g̃φγ coupling in the j = 1 model, the pseudoscalar couplings of the relaxion are either

suppressed or of the same order as the Higgs portal coupling in the models in section 3.

Our results would thus be qualitatively unchanged by the presence of these couplings apart

from the one exception above, on which we comment in the text.

D The hφφ coupling in j = 2 models

In this appendix we present the expression for the hφφ coupling in j = 2 models. To obtain

this we expand the potential V (h, φ) in eq. (2.1) around the minimum (v, φ0) to obtain all

cubic terms and then substituting the gauge eigenstates in terms of the mass eigenstates

φ′ = −sθ h+ cθ φ̂ ,

h′ = cθ h+ sθ φ̂ . (D.1)

In order to reduce the complexity the full expression while accounting for the leading mixing

effects, we take sin(φ0/f) = cos(φ0/f) = 1/
√

2 to finally obtain

ghφφ '
M̃2

√
2f

(
−
v2sθc

2
θ

4f2
+
vc3
θ

2f
−
vs2
θcθ
f

+
s3
θ

2
− sθc2

θ

)
+ 3λvs2

θcθ , (D.2)

where all the terms proportional to powers of g such as the leading contribution ∆ghφφ ∼
gΛsθc

2
θ can be shown to be sub-dominant compared to the terms in eq. (D.2), using eq. (B.3)

and assuming Λ2 � v2. We use this expression to derive bounds on the decay of h→ φφ,

BR(h→ φφ) in section 5.2.1. In a similar manner we can derive the hφφ coupling for the

j = 1 case. While we do not perform the full computation here, we note that the leading

term in that case would be ghφφ ∼ M̃3c3
θ/f

2.
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E Expressions for relaxion partial widths and lifetime

In this appendix we provide the expressions for the relaxion partial widths for different

channels. The dilepton (ll̄) and diphoton (γγ) partial widths are given by

Γ(φ→ ll̄) = sin2 θ
m2
l

v2

mφ

8π

(
1−

4m2
l

m2
φ

)3/2

,

Γ(φ→ γγ) = sin2 θ
g2
φγm

3
φ

64π
. (E.1)

As far as colored states are concerned we use the perturbative description above mφ =

1 GeV. The partial width to quarks (qq̄) and gluons (gg) is given by

Γ(φ→ qq̄) = sin2 θ
3m2

q

v2

mφ

8π

(
1−

4m2
q

m2
φ

)3/2

,

Γ(φ→ gg) =
g2
φgm

3
φ

8π
,

Γ(φ→ γγ) =
g2
φγm

3
φ

64π
. (E.2)

For mφ < 1 GeV the only hadronic state we consider is the decay to pions. Different

estimates of the partial width to pions vary over nearly two orders of magnitude [32]. Here

we use the leading order calculation of ref. [88] which gives

Γ(φ→ ππ) = sin2 θ
3

32πv2mφ

(
1− 4m2

π

m2
φ

)1/2(
2m2

φ + 11m2
π

9

)2

. (E.3)

For mφ > 1 GeV one should use the partial width to kaons, η-mesons etc, but as no reliable

estimate exists in this regime [32], our perturbative estimate is sufficient in this context.

For a given mass, the total width, Γφ, can now be obtained by summing over all the

kinematically relevant decay modes. Analyzing the ratio Γφ/Mφ, we find that the relaxion

is very narrow throughout the whole parameter space of our interest. For example,

Γφ
mφ
'
{

2 · 10−13, 10−5
}
· sin2 θ for mφ = {0.1, 5} GeV . (E.4)

For lighter masses, this ratio becomes even smaller. Hence, potential width effects do

not arise. The ratio for intermediate masses between the two example values in eq. (E.4)

highly depend on the thresholds of those particles that the relaxion can decay into. The

relaxion lifetime, τφ = 1/Γφ, is crucial in determining the applicability of various observa-

tional constraints. We show the lifetime as a function of mφ for different sin2 θ values in

figure 1(b).
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