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1 Introduction

As has long been known, the evaluation of multi-loop Feynman integrals is an important

component of many high-precision collider physics calculations. Even at the two-loop level,

both purely-virtual and cut Feynman integrals often provide a remarkable computational

challenge. This is particularly true if one proceeds analytically, and, as a consequence,

a number of specialized techniques have been developed to aid in the evaluation of such

integrals. Most direct analytic integration techniques have traditionally employed some

variant of the well-known Feynman (or Schwinger) parametric representation [1] as a start-

ing point in the purely-virtual case, due to the fact that it makes the dependence of the

integral on Lorentz-invariant quantities manifest. The aim of this paper is to supply an

analogous framework for cuts which is suitable not only for the direct calculation of real

radiative master integrals, but also for the maximally-cut integrals relevant to the study of
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purely-virtual Feynman integrals in the method of differential equations [2–8]. As we shall

see, our work is a natural out-growth of earlier work on the subject of integral reduction

which we apply in a novel way to evaluate various types of cut Feynman integrals.

It is unfortunately the case that phenomenologically-relevant multi-loop integration by

parts reductions [9, 10] often require dedicated effort and substantial resources to compute.

Although it is probably fair to say that most recent higher-order perturbative calculations

rely on some variant of Laporta’s algorithm [11–14], several other interesting and useful

algorithms have been worked out and implemented over the years (see e.g. [15–24]). How-

ever, even very different approaches, such as the one advocated by Baikov [16], sometimes

turn out to have ramifications for Laporta’s method as well. Some time ago, the derivation

of the Baikov formula for purely-virtual Feynman integrals was clarified by Lee and then

used to great effect as a generating function for integration by parts relations [25]. The

product of his analysis, what we shall hereafter refer to as the Baikov-Lee representation,

will be of great interest to us in this work. Larsen and Zhang argued in [21] that evaluating

the integration by parts relations generated by the Baikov representation on the support of

various cuts dramatically improves the approach to integral reduction originally advocated

by Gluza, Kajda, and Kosower [17]. In fact, from their work and a similar study by Ita [20],

one can readily guess that the Baikov-Lee representation ought to offer a useful starting

point for the evaluation of cut Feynman integrals.

Even though cut Feynman integrals play every bit as important a role as purely-virtual

Feynman integrals in the perturbative computation of collider observables, methods for

their direct evaluation have not been as thoroughly developed.1 It is entirely possible that,

at least in part, this state of affairs has persisted due to the fact that it is not completely

trivial to write down a Baikov representation for Feynman integrals directly in Minkowski

space. The issue is that the standard derivation of the Baikov-Lee representation (see

e.g. [28] for a detailed exposition) relies heavily upon Euclidean geometric intuition which

does not immediately generalize. In this paper, we write down a simple recipe for the

analytical continuation of the Euclidean Baikov-Lee formula by drawing an analogy to the

more familiar situation that one encounters in the derivation of the Feynman parametric

representation. To pass from uncut to cut propagators, we use sequential applications

of Cauchy’s residue theorem to implement a natural generalization of Cutkosky’s cutting

rule [29, 30].2 Finally, the integration region is determined by analyzing the analytical

structure of the integrand and applying the available constraints from physics. At each

step of the calculation, one integrates between branch points of the integrand with respect

to the current variable of integration. This procedure allows one to write down Baikov-Lee

representations for a wide class of cut Feynman integrals. Crucially, this approach makes

the dependence of the cut integral on the kinematic invariants of the problem manifest and

1Certainly, we do not wish to suggest that such techniques do not exist. For instance, reference [26]

describes some pertinent traditional and state-of-the-art direct integration techniques in great detail. In

fact, a setup which bears at least some rudimentary resemblance to the one discussed in this paper was

developed for tree-level cross section calculations in d = 4 long ago [27].
2Due to the fact that the generalized Cutkosky rule of reference [30] is actually written in terms of delta

distributions and their derivatives, certain subtleties apply. To be consistent, one must first integrate out a

complete set of scalar products localized by the distributions before attempting any of the more non-trivial

integrations over scalar products. We would like to thank Ruth Britto for emphasizing this point to us.
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eliminates the need to set up a convenient reference frame to carry out integrations over

the components of the cut loop momenta.3

As mentioned above, the Baikov-Lee representation for cut Feynman integrals also has

important applications to the more indirect method of differential equations. Writing differ-

ential equations with respect to the available kinematic parameters allows for the complete

determination of a large class of Feynman integrals in terms of an appropriate set of iterated

integrals, order-by-order in the parameter of dimensional regularization, ε. For simple fam-

ilies of Feynman integrals with relatively few ratios of scales, the function space associated

to Feynman integrals is spanned by iterated integrals with rational integrating factors. This

set of iterated integrals, comprised of the well-known multiple polylogarithms [33], has been

studied and popularized by many authors ([34–36] to name a few). In the polylogarithmic

case, it is always possible, by suitably choosing the basis of Feynman integrals [37–39], to

reduce the problem to one which admits an elementary formal solution in terms of Chen it-

erated integrals [40]. Using the symbol-coproduct calculus [41–44], performance-optimized

solutions which can be readily interfaced with a Monte Carlo integration program may be

constructed for the purposes of phenomenology (see e.g. [45–48]). Even through to weight

four, this is not always straightforward to do in practice, despite the fact that the weight

four function space has been studied extensively and is in principle well-understood [49].

For general Feynman integrals, far more complicated analytic structures may appear;

even simple-looking two-loop integrals which depend on sufficiently many kinematic vari-

ables may already involve elliptic polylogarithms and related functions [50–55]. In this

context, maximally-cut Feynman integrals play an important role because they satisfy the

homogeneous differential equations for the associated uncut Feynman integrals [30, 31].4

This property is particularly useful when Feynman integrals cannot be expressed in terms

of multiple polylogarithms, and iterated integrals over special functions need to be con-

sidered [59–65]. In fact, higher-order differential equations appear in non-polylogarithmic

cases, and, at the present time, no general solution algorithm is known. Nevertheless, it

was observed by Primo and Tancredi in [31] that, upon setting ε to zero, maximally-cut

Feynman integrals can often be computed in closed form, allowing one to find at least a

single homogeneous solution to the higher-order differential equations under consideration

by direct integration. Provided that a complete, linearly independent set of homogeneous

solutions can be found, the full solution can finally be determined using the variation of pa-

rameters technique. In our opinion, it is of great importance to supply an algorithm which

comes up with not just one, but rather a complete set of homogeneous solutions. We pro-

vide a general prescription5 and show that it allows for the straightforward construction of

complete sets of homogeneous solutions for the non-polylogarithmic examples of section 4.

3To appreciate this point, we invite the reader to compare and contrast the maximally-cut Feynman

integral calculation which appears in both references [31] and [32].
4Although, we will leave a detailed discussion for future work, there is nothing stopping us from applying

this technique also to the differential equations satisfied by multi-scale cut Feynman integrals in the reverse-

unitarity method [56–58].
5A few days prior to the appearance of this paper, we became aware of a recent preprint, [66], which dis-

cusses many of the same technical issues for non-polylogarithmic Feynman integrals. In fact, the maximally-

cut case was also discussed recently in the Baikov approach by yet another group [67], with, however, a

different set of physical problems in mind.
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The plan of this paper is as follows. In section 2, we explain in detail how to write

down Baikov-Lee representations for Feynman integrals cut in a single kinematic channel

and how to work out an explicit description of the relevant integration domain. Our focus

will be on the physical case relevant to cross section calculations because the procedure

for maximally-cut Feynman integrals is closely analogous and has already been discussed

in reference [32]. Although we do not have a computer program which finds the integra-

tion limits for arbitrarily complicated cut Feynman integrals, we have a solid conceptual

understanding which could in the future lead us to an explicit algorithm. In section 3, we

go through a number of well-studied one- and two-loop examples of Feynman integrals cut

in a single kinematic channel in order to give the reader a feeling for how explicit com-

putations typically proceed when one adopts a Baikov-Lee representation as the starting

point. To the best of our knowledge, our treatment of classical cut Feynman integrals in

the Baikov-Lee representation is new and effectively extends the work of Frellesvig and Pa-

padopoulos [32] beyond the maximally-cut case. Although we work with generic values of

the spacetime dimension for pedagogical purposes, our calculations strongly suggest that,

in practice, an expansion in ε under the integral sign must be the way to go for all but the

very simplest of cut Feynman integrals.

In section 4, we move on to maximally-cut Feynman integrals which evaluate to com-

plete elliptic integrals. We discuss a general solution strategy applicable to many problems

of practical interest and then demonstrate the general procedure by focusing on examples

which are suitable for exposition. We emphasize in particular the utility of integrating out

one loop at a time, as this generically leads to simpler Baikov-Lee representations. Finally,

we conclude in section 5 and outline our plans for future research. We also include a num-

ber of appendices for pedagogical purposes and cross-checks. To streamline the exposition

in the body of the paper, we summarize a number of purely mathematical results from

the theory of hypergeometric-like functions in appendix A. In appendix B, we reproduce

physical-region results from the literature for the uncut versions of the integrals considered

in section 3. This allows the reader to easily verify our results using the classical relation

between discontinuities and cuts in a given kinematic channel (see e.g. [68–70]). Finally, in

appendix C, we evaluate a simple uncut Feynman integral using the Baikov-Lee setup to

help the less familiar reader understand the relation between our prescriptions for cut Feyn-

man integrals and the usual prescriptions for Baikov’s method in the purely-virtual case.

2 General formalism

In this section, we define our notation, recall some results from the literature, and explain

how we generalize the Baikov-Lee representation to the case of cut Feynman integrals.

2.1 Preliminaries

Let us begin by discussing our notation for purely-virtual, L-loop Feynman integrals and

recalling some useful facts about them. For the direct integration of purely-virtual Feyn-

man integrals, a very common starting point is the Feynman (or Schwinger) parametric

representation (see e.g. [71] for a detailed exposition). In many cases, it is convenient to

– 4 –



J
H
E
P
0
6
(
2
0
1
7
)
0
4
9

write down the Feynman parametric representation in Euclidean space, treating all n ex-

ternal momenta, {pi}, on an equal footing by taking them all to be outgoing. In the most

general case [72], it suffices to consider Feynman integrals of the form

IE =

∫
ddk1 · · ·

∫
ddkL

N∏
`=1

(
Q2
` (ki, pj) +m2

`

)−ν` , (2.1)

where Q`(ki, pj) denotes the momentum of the `-th propagator and the N propagators

in (2.1) are linearly independent. It is often the case that one can profitably work with the

Feynman representation for the all-plus metric and ultimately obtain results which differ

from the Minkowski space results in an appropriate Euclidean kinematic region only by

trivial phases.6

This approach has been used to great effect in recent years by Brown, Panzer, and

others [73–80], culminating recently in an impressive calculation of the six-loop β function in

φ4 theory [81]. Working through the details of the straightforward derivation (see e.g. [71]),

one finds the all-plus Feynman parametrization

IE =
π
Ld
2 Γ
(
ν − Ld

2

)∏N
i=1 Γ(νi)

[
N∏
j=1

∫ ∞
0

dxj

]
δ(1− xN )Uν−(L+1)d/2

E FLd/2−νE

N∏
k=1

xνk−1
k , (2.2)

where UE and FE are respectively the first and second Symanzik polynomials [82] in Eu-

clidean space and ν =
∑N

i=1 νi. However, for the evaluation of Feynman integrals relevant

to the computation of collider observables, it is arguably more natural to work in Minkowski

space from the very beginning, considering Feynman integrals of the form

IM =

∫
ddk1 · · ·

∫
ddkL

N∏
`=1

(
Q2
` (ki, pj)−m2

` + i0
)−ν` (2.3)

with a momentum flow suitable for the description of a scattering experiment.

As is well-known, the derivation of eq. (2.2) goes through with minor modifications if

one works directly in Minkowski space. The mostly-minus Feynman parameter represen-

tation has the form

IM =
iLπ

Ld
2 e−iπνΓ

(
ν − Ld

2

)∏N
i=1 Γ(νi)

[
N∏
j=1

∫ ∞
0

dxj

]
δ(1− xN )Uν−(L+1)d/2

M FLd/2−νM

N∏
k=1

xνk−1
k , (2.4)

where UM and FM are the first and second Symanzik polynomials in Minkowski space. For

our subsequent analysis of the Baikov-Lee representation, it is important to note that the

functional dependence of IE and IM on the external kinematics is nearly identical.7 Given

6Of course, certain assumptions must be satisfied. For a more in-depth discussion, see reference [73].
7At this juncture, it is of critical importance to clarify that, strictly speaking, this statement is not true.

Obviously, a vector in Euclidean space which squares to zero is identically zero, whereas this is not the case

in Minkowski space. However, one may simply write a formal expression for a Euclidean Feynman integral

with the squares of certain momenta set to zero, remembering that, to be rigorous, one would have to work

out the connection between Euclidean and Minkowski space representations with fake external masses and

then set them to zero after the fact.
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some spanning set of external kinematic invariants, {ω1, . . . , ωn(n−1)/2}, constructed along

the lines described in [5], we can straightforwardly obtain one from the other,

IM = iLe−iπνIE

∣∣∣∣
ωi→−ωi, {p∗j}→−{p∗j}

, (2.5)

provided that we remember the +i0 prescription for the external kinematic invariants and

define {p∗j} to be the set of external momenta which happen to be incoming in the physical

kinematics of interest. To understand the above relation, recall that UM = UE and that

one can generate the Minkowski space function FM from FE by flipping the signs of all

generalized Mandelstam variables and external masses which appear and, subsequently,

appropriately adjusting the signs of the external momenta which must now be regarded as

incoming.8

For what concerns the explicit examples discussed in the following sections, we essen-

tially adopt the conventions of reference [79]. That is to say, for our actual calculations,

we consider Minkowskian purely-virtual Feynman integrals of the form

I =

∫
ddk1

iπd/2
· · ·
∫

ddkL
iπd/2

N∏
`=1

(
Q2
` (ki, pj)−m2

` + i0
)−ν` (2.6)

in physical kinematics. Note that we do not include factors in the measure to prevent

the Euler-Mascheroni constant from appearing in ε-expanded expressions because, in this

paper, we either study cut Feynman integrals at O(ε0) or to all orders in ε. To simplify our

discussion later on, it is also convenient to introduce complex-conjugated purely-virtual

Feynman integrals, I†, where the +i0 prescription becomes a −i0 prescription and the

iπd/2 factors in (2.6) above are replaced by factors of −iπd/2. The maximally-cut examples

of section 4 are far less sensitive to such details because overall phases make no difference

at all if the only goal is to produce a valid solution to a given homogeneous differential

equation. For the sake of definiteness, we will use the same normalization conventions in

both sections 3 and 4.

2.2 The Euclidean Baikov-Lee representation and its analytical continuation

To write the Euclidean Baikov-Lee formula succinctly, let us first recall that the Gram

determinant on the K linearly independent vectors {qi} is given by

G(q1, . . . , qK) =

∣∣∣∣∣∣∣∣∣∣∣∣

q2
1 · · · q1 · qK

...
. . .

...

q1 · qK . . . q2
K

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.7)

8Naturally, we have assumed that Euclidean and Minkowskian generalized Mandelstam invariants are

defined in the usual way. For instance, one would have t = (p1 + p3)2 in Euclidean space but t = (p1− p3)2

in the usual physical kinematics for 2→ 2 scattering.
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If we let qi be an element of the set {k1, . . . , kL, P1, . . . , Pn−1},9 the Baikov-Lee represen-

tation of the purely-virtual Feynman integral IE defined above in eq. (2.1) is then

IE =
πL(3+2d−2n−L)/4∏L−1

r=0 Γ
(
d−n−r+1

2

)
[G(P1, . . . , Pn−1)](d−n)/2

∫
· · ·
∫

D

 L∏
i=1

n+L−1∏
j=i

d(qi · qj)

×
× [G(q1, . . . , qn+L−1)](d−n−L)/2

N∏
`=1

(
Q2
` (qi · qj) +m2

`

)−ν` , (2.8)

where D is the domain of integration.

Even if one works in Euclidean space, finding an explicit description of the integration

domain is in general a non-trivial task. To understand how this works in practice, let us

consider the evaluation of the one-loop bubble with no internal masses in the Baikov-Lee

approach. This example will both illustrate a general strategy for the determination of the

integration region (briefly discussed in [32]) and give the reader a sense as to why it is more

convenient to integrate purely-virtual Feynman integrals using Feynman parameters as a

starting point. The arguments advanced in this section are generally applicable, but it may

be quite challenging to work out the details in examples with many integration variables

and/or rich analytic structures. For future applications, we expect tools for the explicit

solution of systems of inequalities such as the Reduce routine of Mathematica to play an

important role.

For the one-loop bubble, a possible routing of the propagator momenta is

Q1 = k1 Q2 = k1 − p .

In this case, (2.8) becomes

p =

∫
D

∫
d(q2

1)d(q1 · q2)
π

3
2
−ε (p2q2

1 − (q1 · q2)2
) 1

2
−ε

Γ
(

3
2 − ε

)
(p2)1−ε q2

1

(
q2

1 − 2q1 · q2 + p2
) , (2.9)

where we have set d = 4−2ε. At this stage, it is important to note that the form of eq. (2.2)

and the definitions of UE and FE (see e.g. [82]) together imply that Euclidean Feynman inte-

grals are positive definite if all input kinematic variables are positive definite. This is a pow-

erful analytic constraint from the Baikov-Lee point of view and effectively determines the

shape of the integration region. The Baikov polynomial p2q2
1−(q1 ·q2)2 inside the integrand

above depends on the variables of integration and is raised to a non-integer power. This is

a generic feature of Baikov-Lee calculations. The point is that, in order to keep the solution

real-valued, one must consider e.g. q1 · q2 to lie between the branching points ±
√
p2q2

1.

9Here, {Pi} is nothing but a convenient permutation of the set of independent external momenta, {pi}.
This formulation is convenient because it is often desirable to eliminate a momentum other than the n-th.

Our treatment of the s-cut of the massless one-loop box integral in section 3.2 clearly illustrates this point.

– 7 –
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Apart from the obvious positivity of q2
1, there are no further constraints on the variables

of integration in this case, and we arrive at

p =

∫ ∞
0

d(q2
1)

∫ √p2q2
1

−
√
p2q2

1

d(q1 · q2)
π

3
2
−ε (p2q2

1 − (q1 · q2)2
) 1

2
−ε

Γ
(

3
2 − ε

)
(p2)1−ε q2

1

(
q2

1 − 2q1 · q2 + p2
) .

(2.10)

Although, the Baikov polynomial is no more than quadratic in the scalar products involving

the loop momenta, the situation may become more complicated once the first scalar product

is integrated out. In favorable cases, it is possible to find an analogous integration variable

at each step of the calculation. However, it is not guaranteed that all polynomial structures

remaining in the integrand after some number of integration steps have at most quadratic

dependence on the remaining variables of integration. Although it is probably clear already,

let us emphasize that the two-fold integral above is far, far more complicated than the

trivial one-fold integral which one finds in the Feynman parametric approach to this simple

problem. The evaluation of (2.10) involves non-trivial hypergeometric function identities,

and we refer the interested reader to appendix C for a detailed discussion.

As we shall see, the procedure described above for the limits of integration is conceptu-

ally even simpler for Feynman integrals cut in a single kinematic channel. In such cases, one

can also make use of the fact that the region of integration is bounded; cut Feynman inte-

grals of this type will be closely related to the real radiative master integrals for some phys-

ical decay or scattering process which has a finite amount of energy and momentum in the

initial state [69]. The story is otherwise analogous to what was described above for purely-

virtual Euclidean Feynman integrals because, up to phase, one again has a natural positivity

condition. That is to say, in favorable cases, one can integrate each variable between branch-

ing points of the current integrand and then assign a positive orientation to the integration

contour for the current variable (i.e. one must integrate q1 · q2 from −
√
p2q2

1 to
√
p2q2

1 in

the above example, not vice versa). We have applied these ideas to explicitly evaluate a

variety of Feynman integrals cut in a single kinematic channel at one, two, and three loops.

Of course, before defining the cut Baikov-Lee representation which we will study

throughout the rest of this paper, we first need to analytically continue eq. (2.8). The

key idea is to recognize that (2.2) and (2.8) are nothing but two different integral repre-

sentations of the same function, IE. Since our recipe to pass from IE to IM, eq. (2.5), does

not depend at all on the details of the Feynman representation, it is natural to apply it to

eq. (2.8) as well,10 thereby obtaining a putative physical, Minkowski space version of the

10Due to the fact that the Baikov-Lee representation utilizes scalar product integration variables which

have non-trivial dependence on the external momenta, it is not obvious that one can work in this way.

However, we have found experimentally that this prescription does in fact make sense provided that one

allows {P ∗j } → −{P ∗j } to act on the relevant scalar product integration variables as well.
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Baikov-Lee representation,

IM =
iLπL(3+2d−2n−L)/4e−iπν∏L−1

r=0 Γ
(
d−n−r+1

2

)
[G(P1, . . . , Pn−1)](d−n)/2

∫
· · ·
∫

D

 L∏
i=1

n+L−1∏
j=i

d(qi · qj)

×
× [G(q1, . . . , qn+L−1)](d−n−L)/2

N∏
`=1

(
Q2
` (qi · qj) +m2

`

)−ν` ∣∣∣∣
ωi→−ωi, {P ∗j }→−{P ∗j }

=
iLπL(3+2d−2n−L)/4e−iπν∏L−1

r=0 Γ
(
d−n−r+1

2

) [
Ḡ(P1, . . . , Pn−1)

](d−n)/2

∫
· · ·
∫

D̄

 L∏
i=1

n+L−1∏
j=i

d(qi · qj)

×
×
[
Ḡ(q1, . . . , qn+L−1)

](d−n−L)/2
N∏
`=1

(
Q̄2
` (qi · qj) +m2

`

)−ν` , (2.11)

where Ḡ(P1, . . . , Pn−1), D̄, Ḡ(q1, . . . , qn+L−1), and Q̄`(qi · qj) denote the various objects

which appear in eq. (2.11) after the replacements prescribed by (2.5) have been imple-

mented.

2.3 The cut Baikov-Lee representation and unitarity

The key ingredient missing from the discussion so far is the generalized Cutkosky cutting

rule written down by Lee and Smirnov in reference [30]. In a nutshell, they suggest that one

can treat cut Feynman integrals with propagator denominators raised to powers greater

than one by simply differentiating both sides of Cutkosky’s relation,

1

k2 + i0
− 1

k2 − i0
= −2πiθ(k0)δ

(
k2
)
, (2.12)

an appropriate number of times with respect to k2.11 To avoid digressing into a lengthy

discussion of distributional calculus,12 it is convenient to actually define our Baikov-Lee

representation for Feynman integrals cut in a single kinematic channel using the familiar

language of residue calculus. The idea is that, up to a possible overall sign, the process of

putting some number of propagators on the mass shell is completely equivalent to perform-

ing sequential residue computations which localize a subset of the scalar product integration

variables. Our logic is similar to that of reference [85], except that, for our purposes, we

find it more natural to repeatedly apply Cauchy’s residue theorem to eq. (2.11). Due to

the fact that we will use the main result of this section for the explicit examples discussed

in the following sections, we find it natural to work with the absolute normalization of

eq. (2.6) in what follows.

For the sake of discussion, suppose that a particular unitarity cut of I in the ωi chan-

nel, say the j-th out of M , puts nj propagators on shell. By assumption, these propagators

are linearly independent and there must therefore exist a subset of the scalar products

11We thank Gil Paz for pointing out that the distributional identity behind the generalized cutting rule

was available in textbooks on the subject (e.g. [83]) long before the appearance of reference [30].
12The direct integration of delta distributions and their derivatives is straightforward [84], but it seems

somewhat less convenient from the perspective of implementation in a computer algebra system.
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depending on the loop momenta which one can sequentially integrate out using nj applica-

tions of the residue theorem. To simplify our notation, let {s̄i} be the subset of the scalar

product integration variables to be localized by the cut propagators, {sk} be the set of

L(L − 1)/2 + nL − nj scalar product integration variables left over,13 and {Q̄`}
(j)
ωi−cut be

the momenta of the cut propagators. Note that, at this stage, the order of both {s̄i} and

{Q̄`}
(j)
ωi−cut should be fixed to match the order in which the localization of the propagators

and associated scalar products will be implemented by the residue theorem.

Finally, we define the Baikov-Lee representation of the j-th Feynman integral cut in

the ωi channel to be

I
(j)
ωi−cut =

(−2πi)njπL(3−2n−L)/4e−iπν∏L−1
r=0 Γ

(
d−n−r+1

2

) [
Ḡ(P1, . . . , Pn−1)

](d−n)/2

∫
· · ·
∫

D̄(j)
ωi−cut

L(L−1)/2+nL−nj∏
k=1

dsk

×
× sgn

(∣∣∣∣∣∂{Q̄2
`}

(j)
ωi−cut

∂{s̄i}

∣∣∣∣∣
)

Res
{s̄i}

{[
Ḡ(q1, . . . , qn+L−1)

](d−n−L)/2
N∏
`=1

(
Q̄2
` (s̄i, sk) +m2

`

)−ν`} ,
(2.13)

where the sgn function returns the sign of its argument and Res denotes the sequence of

residue computations which localizes the {s̄i}. The presence of the sgn factor is neces-

sary because sequential residue computations do differ from sequential localizations imple-

mented with delta distributions and their derivatives in one important aspect. The issue

is that

Res
{a}

{
f(z)

a− z

}
= −f(a), (2.14)

but ∫ ∞
−∞

dz δ(a− z)f(z) =

∫ ∞
−∞

dz δ(z − a)f(z) = f(a) (2.15)

for arbitrary test functions f(z) regular at z = a. In fact, one must include the sign of the

Jacobian factor in (2.13) above, or the definition yields nonsensical results which may vary

depending upon precisely what momentum routing is chosen for the cut Feynman integral

under consideration.

We explicitly evaluate a number of cut Feynman integrals in section 3 using eq. (2.13)

as a starting point, and we find that our definition is consistent in all cases. In particular,

we find the expected unitarity relation between sums of cut Feynman integrals and the

direct discontinuities14 of their purely-virtual counterparts [68],

Discωi (I) = −
M∑
j=1

I
(j)
ωi−cut. (2.16)

In fact, we have successfully used our framework to study a large number of other examples

of comparable complexity at one, two, and three loops. However, since we have no proof

13In some cases, such as that of the one-loop double-cut bubble integral, the set {sk} is actually empty.
14We define the direct discontinuity of a Feynman integral in appendix B.
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that our formulation is equivalent to the usual one where one considers all Feynman inte-

grals to be embedded in an ambient generalized scalar field theory, it is important to write

down a cut integral definition and associated unitarity relation along the lines of [69, 70].

If Î = iLI, then

Î
(j)
ωi−cut =

iL(2π)njπL(3−2n−L)/4e−iπν∏L−1
r=0 Γ

(
d−n−r+1

2

) [
Ḡ(P1, . . . , Pn−1)

](d−n)/2

∫
· · ·
∫

D̄(j)
ωi−cut

L(L−1)/2+nL−nj∏
k=1

dsk

×
× sgn

(∣∣∣∣∣∂{Q̄2
`}

(j)
ωi−cut

∂{s̄i}

∣∣∣∣∣
)

Res
{s̄i}

{[
Ḡ(q1, . . . , qn+L−1)

](d−n−L)/2
N∏
`=1

(
Q̄2
` (s̄i, sk) +m2

`

)−ν`}
(2.17)

and

Discωi

(
P
{
Î
}
Î
)

=

M∑
j=1

P
{
Î

(j)
ωi−cut

}
Î

(j)
ωi−cut, (2.18)

where P
{
Î
}

and P
{
Î

(j)
ωi−cut

}
are scalar field theory phase factors defined in e.g. [70].

For the purposes of this paper, we employ eq. (2.13) with the attitude that it stream-

lines the exposition in section 3 and makes it easier for the reader to check our analysis using

the results from the literature collected in appendix B (i.e. it allows us to forget about the

annoying Feynman graph-dependent phase factors on both sides of (2.18)). Before leaving

this section, let us emphasize that one can also employ the formalism discussed above to

treat maximally-cut Feynman integrals in an analogous fashion. Interesting examples of

maximally-cut Feynman integrals will be discussed in section 4.

3 Discontinuities from cuts: one- and two-loop examples

To get a feeling for the ideas put forward in section 2, we now consider a number of illustra-

tive one- and two-loop examples. In the spirit of reference [70], we compute the s-channel

cuts of selected Feynman integrals using our cut Baikov-Lee representation, eq. (2.13), and

demonstrate that, in all cases, our results match the predictions of the optical theorem (i.e.

the predictions obtained by using appendix B to compute the direct discontinuities on the

left-hand side of eq. (2.16)).

3.1 The one-external-mass one-loop triangle

In this section, we consider the s-channel cut of the one-external-mass one-loop triangle

with positive integer propagator exponents,

ν2

ν1

ν3

p1

p2

=

∫
ddk1

iπd/2
1

[(p2 − k1)2]ν1 [(p1 + k1)2]ν2 [k2
1]ν3

. (3.1)

This example clearly demonstrates the applicability of our formalism to propagators of

higher multiplicity, and its elementary nature should give the reader ample opportunity to
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adjust to our notation. Clearly, there is only one cut Feynman integral which needs to be

evaluated. We have

ν2

ν1

ν3

p1

p2

=
(−2πi)2π−1(−1)ν

Γ(1− ε) (−s2/4)1/2−ε sgn

(∣∣∣∣∂{s1 − 2s̄1, s1 + 2s̄2}
∂{s̄1, s̄2}

∣∣∣∣)×
×

∫
D̄s−cut

ds1 Res
{s̄1,s̄2}

{ (
−s̄1s̄2s− s1s

2/4
)−ε

(s1 − 2s̄1)ν1 (s1 + 2s̄2)ν2 sν3
1

}
(3.2)

in the cut Baikov-Lee representation of eq. (2.13), where s1 = k2
1, s̄1 = k1 · p2, s̄2 = k1 · p1,

and s = (p1 + p2)2.

Eq. (3.2) can be conveniently rewritten as

ν2

ν1

ν3

p1

p2

=
23−ν1−ν2π(−1)ν2+ν3i

s1−εΓ(1− ε)
×

×
∫
D̄s−cut

ds1

sν3
1

Res
{s̄1,s̄2}

{
(4s̄1s̄2 + s1s)

−ε

(s̄1 − s1/2)ν1 (s̄2 + s1/2)ν2

}
(3.3)

to make manifest the fact that its right-hand side is purely imaginary for s > 0 and to

streamline the applications of the residue theorem which follow. Using the principle of

mathematical induction, it is straightforward to evaluate the symbolic derivatives which

enter into the residue calculations. Reading the list of barred integration variables from

left to right, we find

ν2

ν1

ν3

p1

p2

= −21+ν1−ν2πΓ(ν1 − 1 + ε)(−1)νi

s1−εΓ(ε)Γ(1− ε)Γ(ν1)
×

×
∫
D̄s−cut

ds1

sν1+ν3−1+ε
1

Res
{s̄2}

{
s̄ν1−1

2 (s+ 2s̄2)1−ν1−ε

(s̄2 + s1/2)ν2

}

= − 2πΓ(ν1 − 1 + ε)(−1)ν3i

s2−ν2−εΓ(ε)Γ(1− ε)Γ(ν2)Γ(1 + ν1 − ν2)

∫
D̄s−cut

ds1

sν2+ν3−1+ε
1

×

× (s− s1)2−ν1−ν2−ε
2F1

(
1− ν2, 2− ν2 − ε; 1 + ν1 − ν2;

s1

s

)
. (3.4)

At this stage of the calculation, we have to analyze the integrand to determine the

s1 integration domain. By studying the form of eq. (3.4), we see immediately that the

integrand has precisely two branching points, at s1 = 0 and at s1 = s. From the general

discussion in section 2.2, it therefore follows that

ν2

ν1

ν3

p1

p2

= − 2πΓ(ν1 − 1 + ε)(−1)ν3i

s2−ν2−εΓ(ε)Γ(1− ε)Γ(ν2)Γ(1 + ν1 − ν2)

∫ s

0

ds1

sν2+ν3−1+ε
1

×

× (s− s1)2−ν1−ν2−ε
2F1

(
1− ν2, 2− ν2 − ε; 1 + ν1 − ν2;

s1

s

)
. (3.5)
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For ε such that Re(ν1 + ν2 + ε) < 3 and Re(ν2 + ν3 + ε) < 2, the above integral converges

and we find that

ν2

ν1

ν3

p1

p2

= −2πs2−ν−εΓ(ν1 − 1 + ε)Γ(3− ν1 − ν2 − ε)Γ(2− ν2 − ν3 − ε)(−1)ν3i

Γ(ε)Γ(1− ε)Γ(ν2)Γ(1 + ν1 − ν2)Γ(5− ν1 − 2ν2 − ν3 − 2ε)
×

× 3F2(1− ν2, 2− ν2 − ε, 2− ν2 − ν3 − ε; 1 + ν1 − ν2, 5− ν1 − 2ν2 − ν3 − 2ε; 1). (3.6)

Under an additional assumption, eq. (3.6) can be simplified using the Saalschütz sum-

mation formula. For ν2 > 1, eq. (A.7) implies that

ν2

ν1

ν3

p1

p2

= −2i sin(πε)s2−ν−εΓ(2− ν1 − ν3 − ε)Γ(2− ν2 − ν3 − ε)Γ(ν − 2 + ε)

Γ(ν1)Γ(ν2)Γ(4− ν − 2ε)
. (3.7)

Actually, the principle of analytical continuation allows us to conclude that eq. (3.7) is

not only valid for arbitrary positive integer propagator exponents as desired, but that it

even furnishes a definition of the cut Feynman integral for generic complex values of the

propagator exponents. In fact, this analytical continuation of the above result will prove

useful later on in section 3.3. Finally, one can readily check using (3.7) and the s > 0

evaluation of (3.1) given in eq. (B.2) that

Discs

 ν2

ν1

ν3

p1

p2

 = −

 ν2

ν1

ν3

p1

p2

 . (3.8)

3.2 The massless one-loop box

For our next example, we consider the s-channel cut of the massless one-loop box integral,

p3

p4

p2

p1

=

∫
ddk1

iπd/2
1

k2
1(k1 + p1)2(k1 + p1 + p2)2(k1 + p4)2

. (3.9)

Although it is again the case that just one cut Feynman integral needs to be evaluated,

it is useful to study this example because it illustrates the applicability of our framework

to multi-scale problems. In fact, it is not obvious to us that this cut can be computed

to all orders in ε using traditional cut parameterizations. We shall see that it is also not

entirely straightforward in the Baikov-Lee approach; the cut Feynman integral of interest

here contains structures which bear a remarkable resemblance to those which appeared

during the evaluation of certain three-loop, single-scale cut Feynman integrals [86].

From eq. (2.13), we obtain

p3

p4

p2

p1

= −4π1/2(−su(s+ u))εi

Γ(1/2− ε)

∫ ∫
D̄s−cut

ds1ds2× (3.10)

× Res
{s̄1,s̄2}


(
− s̄1su(s+ u)− s2

1(s+ u)2 − (s̄2u+ s2s)
2 − 2s1(s+ u)(s̄2u− s2s)

)−1/2−ε

s̄1 (s̄1 + 2s1) (s̄2 + s1 − s/2 + s̄1/2) (s̄1 + 2s2)
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for our cut Baikov-Lee representation after performing some trivial manipulations to mas-

sage the expressions into a more convenient form. In eq. (3.10), we have made the definitions

s1 = k1 · p1, s2 = k1 · p4, s̄1 = k2
1, s̄2 = k1 · p2, s = (p1 + p2)2, and u = (p1 − p4)2. Carrying

out the residue computations, we find

p3

p4

p2

p1

= −π
1/2(−su(s+ u))εi

Γ(1/2− ε)

∫ ∫
D̄s−cut

ds1

s1

ds2

s2
×

×Res
{s̄2}


(
− s2

1(s+ u)2 − (s̄2u+ s2s)
2 − 2s1(s+ u)(s̄2u− s2s)

)−1/2−ε

s̄2 + s1 − s/2


= −21+2επ1/2(−u(s+ u))εi

s1/2Γ(1/2− ε)

∫ ∫
D̄s−cut

ds1

s1

ds2

s2
×

×
(

16s1s2u− s
(
u2 + 4(s1 + s2)u+ 4(s1 − s2)2

) )−1/2−ε
. (3.11)

Next, we integrate out the variable s2. As explained in section 2.2, the integration

runs between the real zeros of the polynomial from the last line of eq. (3.11),

s±2 =
s1(s+ 2u)− su/2±

√
−2u(s+ u)

√
s1(s− 2s1)

s
. (3.12)

In fact, by observing that the s2 integration is completely analogous to the integration with

respect to q1 · q2 carried out in appendix C, we can already anticipate from the branch cut

structure of the s±2 (with respect to s1) that the s1 integration will run between 0 and s/2.

We therefore readily obtain

p3

p4

p2

p1

= −21+2επ1/2(−u(s+ u))εi

s1/2Γ(1/2− ε)

∫ s/2

0

ds1

s1

∫ s+2

s−2

ds2

s2
×

×
(

16s1s2u− s
(
u2 + 4(s1 + s2)u+ 4(s1 − s2)2

) )−1/2−ε

=
4πs−2−εi

uΓ(1− ε)

∫ s/2

0
ds1

(
2s1
s

)−1−ε (
1− 2s1

s

)−ε(√
s+u
−u

2s1
s +

√
1− 2s1

s

)2×

× 2F1

1,
1

2
− ε; 1− 2ε;

4
√

s+u
−u

2s1
s

(
1− 2s1

s

)
(√

s+u
−u

2s1
s +

√
1− 2s1

s

)2


=

2πs−1−εi

uΓ(1− ε)

∫ 1

0
dx

x−1−ε (1− x)−ε(√
s+u
−u x+

√
1− x

)2×

× 2F1

1,
1

2
− ε; 1− 2ε;

4
√

s+u
−u x (1− x)(√

s+u
−u x+

√
1− x

)2

 , (3.13)
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where we have made the change of variables s1 = s/2x in the last line.

At this point, the above result may be rewritten to exhibit a 2F1 of argument 4z
(1+z)2 ,

where z can be chosen to be either
√

1−x
s+u
−u x

or its reciprocal. From this observation, we

see that a simple strategy to eliminate the square roots appearing in eq. (3.13) is to split

the integral at the point where z = 1 and then apply a quadratic hypergeometric function

transformation which is valid for |z| < 1 (i.e. eq. (A.5)) to both terms. Carrying out these

steps, we find

p3

p4

p2

p1

=
2πs−1−εi

uΓ(1− ε)

∫ −u/s
0

dx
x−1−ε (1− x)−1−ε(

1 +

√
s+u
−u x

1−x

)2 ×

× 2F1

1,
1

2
− ε; 1− 2ε;

4

√
s+u
−u x

1−x(
1 +

√
s+u
−u x

1−x

)2


− 2πs−1−εi

(s+ u)Γ(1− ε)

∫ 1

−u/s
dx
x−2−ε (1− x)−ε(

1 +
√

1−x
s+u
−u x

)2×

× 2F1

1,
1

2
− ε; 1− 2ε;

4
√

1−x
s+u
−u x(

1 +
√

1−x
s+u
−u x

)2

 (3.14)

=
2πs−1−εi

uΓ(1− ε)

∫ −u/s
0

dx x−1−ε (1− x)−1−ε
2F1

(
1, 1 + ε; 1− ε;

s+u
−u x

1− x

)

− 2πs−1−εi

(s+ u)Γ(1− ε)

∫ 1

−u/s
dx x−2−ε (1− x)−ε 2F1

(
1, 1 + ε; 1− ε; 1− x

s+u
−u x

)
.

Now that the square root structures have been eliminated, we can deal with the two

terms in (3.14) above by mapping them to linear combinations of known generalized Euler

integrals. The first step is to make the change of variables x = y
s+u
−u +y

in the first integral

and the change of variables x = 1
1+ s+u
−u y

in the second integral to bring them into the

generalized Euler form. In fact, after making these transformations, one can immediately

evaluate the second integral by applying integration formula (A.10):

p3

p4

p2

p1

= −2πs−1−ε(−u)−1−εi

(s+ u)−εΓ(1− ε)

∫ 1

0
dy y−1−ε

(
1− u

s+ u
y

)2ε

2F1 (1, 1 + ε; 1− ε; y)

− 2πs−1−ε(−u)−1+εi

(s+ u)εΓ(1− ε)

∫ 1

0
dy y−ε

(
1− s+ u

u
y

)2ε

2F1 (1, 1 + ε; 1− ε; y)
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= −2πs−1−ε(−u)−1−εi

(s+ u)−εΓ(1− ε)

∫ 1

0
dy y−1−ε

(
1− u

s+ u
y

)2ε

2F1 (1, 1 + ε; 1− ε; y)

− 2πΓ(−2ε)s−1+ε(−u)−1−εi

(s+ u)εΓ(1− ε)Γ(1− 2ε)
3F2

(
1,−2ε,−2ε; 1− 2ε, 1− ε; 1 +

u

s

)
. (3.15)

In our opinion, it is most convenient to deal with the remaining integral by replacing

2F1 (1, 1 + ε; 1− ε; y) with its integral representation, eq. (A.1), and then applying eq. (A.2)

to integrate out the variable y with an Appell series. This yields

p3

p4

p2

p1

= −2πs−1−ε(−u)−1−εi

(s+ u)−εΓ(1− ε)

∫ 1

0
dt (1− t)−1−εF1

(
−ε;−2ε, 1 + ε; 1− ε; u

s+ u
, t

)

− 2πΓ(−2ε)s−1+ε(−u)−1−εi

(s+ u)εΓ(1− ε)Γ(1− 2ε)
3F2

(
1,−2ε,−2ε; 1− 2ε, 1− ε; 1 +

u

s

)
. (3.16)

In this case, the sum of the second and third parameters of the F1 is equal to the fourth

parameter and reduction formula (A.9) therefore immediately leads to

p3

p4

p2

p1

= −2πs−1−ε(−u)−1−εi

(s+ u)−εΓ(1− ε)

∫ 1

0

dt

1− t 2F1

(
−ε,−2ε; 1− ε;

u
s+u − t
1− t

)

− 2πΓ(−2ε)s−1+ε(−u)−1−εi

(s+ u)εΓ(1− ε)Γ(1− 2ε)
3F2

(
1,−2ε,−2ε; 1− 2ε, 1− ε; 1 +

u

s

)
. (3.17)

Finally, we can map the remaining integral onto a linear combination of standard Euler

integrals via connection formula (A.4),

p3

p4

p2

p1

=
2πΓ(−ε)s−εi
suΓ(−2ε)

∫ 1

0
dt (1− t)−1−ε

(
1−

(
1 +

s

u

)
t
)ε

+
2πs−1+ε(−u)−1−εi

(s+ u)εΓ(1− ε)

∫ 1

0
dt (1− t)−1−2ε

2F1

(
1,−2ε; 1− ε; (1− t)

(
1 +

u

s

))
− 2πΓ(−2ε)s−1+ε(−u)−1−εi

(s+ u)εΓ(1− ε)Γ(1− 2ε)
3F2

(
1,−2ε,−2ε; 1− 2ε, 1− ε; 1 +

u

s

)
=

2i sin(πε)s−εΓ2(−ε)Γ(ε)

suΓ(−2ε)
2F1

(
1,−ε; 1− ε; 1 +

s

u

)
+

2πs−1+ε(−u)−1−εi

(s+ u)εΓ(1− ε)

∫ 1

0
dr r−1−2ε

2F1

(
1,−2ε; 1− ε; r

(
1 +

u

s

))
− 2πΓ(−2ε)s−1+ε(−u)−1−εi

(s+ u)εΓ(1− ε)Γ(1− 2ε)
3F2

(
1,−2ε,−2ε; 1− 2ε, 1− ε; 1 +

u

s

)
, (3.18)

where we have obtained the second equality by evaluating the integral on the first line of

eq. (3.18) with the help of (A.1). Applying eq. (A.3) to the final integral remaining on the

right-hand side of (3.18), we see that the cut Feynman integral evaluates to

p3

p4

p2

p1

=
2i sin(πε)s−εΓ2(−ε)Γ(ε)

suΓ(−2ε)
2F1

(
1,−ε; 1− ε; 1 +

s

u

)
. (3.19)
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Note that the final integral on the right-hand side of (3.18) exactly cancels the 3F2 term,

thereby removing all dependence on the generalized hypergeometric series from the result.

One can check using (3.19) and the physical region (s > 0 and −s < u < 0) evaluation

of (3.9) given in eq. (B.3) that

Discs

 p3

p4

p2

p1

 = −

 p3

p4

p2

p1

 . (3.20)

3.3 The one-external-mass six-line two-loop double triangle

Our final example will be the s-channel cut of the one-external-mass six-line two-loop

double triangle,

p1

p2

=

∫
ddk1

iπd/2

∫
ddk2

iπd/2
1

(p1 + k1)2(p1 + k2)2(k1 − k2)2k2
2k

2
1(p2 − k1)2

. (3.21)

The s-channel cut of this integral was chosen because three cut Feynman integrals con-

tribute to it and one of these integrals has an integration domain which is non-trivial to

determine. This example will show the reader what Baikov-Lee computations look like be-

yond one loop, where irreducible scalar products and real-virtual contributions come into

play for the first time. As before, we begin with eq. (2.13). This time, however, we must

enumerate the distinguishable cut Feynman integrals which contribute. Let us consider the

triple cut first and the double cut second. The conjugate of the double-cut contribution

can be obtained from the double cut without any additional calculation.15

After performing some trivial manipulations, we obtain a cut Baikov-Lee representation

of the form

p1

p2

= −22−4εs−1+2εi

Γ(1− 2ε)

∫ ∫ ∫ ∫
D̄(1)
s−cut

ds1ds2ds3ds4 Res
{s̄1,s̄2,s̄3}

 (3.22)

(
− s2(s̄2

2 − s̄1s2)/4 + s(s̄1s̄3s1 − s̄2(s̄3s3 + s1s4) + s2s3s4)− (s̄3s3 − s1s4)2
)−1/2−ε

(s2 + 2s1) (s̄1 + 2s3) (s̄2 − s2/2− s̄1/2) s̄1s2 (s̄3 − s2/2)


for the triple-cut contribution. In eq. (3.22), we have made the definitions s1 = k1 · p1,

s2 = k2
1, s3 = k2 · p1, s4 = k2 · p2, s̄1 = k2

2, s̄2 = k1 · k2, s̄3 = k1 · p2, and s = (p1 + p2)2.

15By virtue of the +i0 in eq. (2.3), the double cut contribution and its conjugate are distinguishable.
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Carrying out the residue computations, we find

p1

p2

=
21−4εs−1+2εi

Γ(1− 2ε)

∫ ∫ ∫ ∫
D̄(1)
s−cut

ds1ds2ds3ds4

s2s3 (s2 + 2s1)
Res
{s̄2,s̄3}

 (3.23)

(
− s2(s̄2

2 + 2s2s3)/4 + s(s2s3s4 − s̄2(s̄3s3 + s1s4)− 2s̄3s1s3)− (s̄3s3 − s1s4)2
)−1/2−ε

(s̄2 − s2/2 + s3) (s̄3 − s2/2)


=

21−4εs−1+2εi

Γ(1− 2ε)

∫ ∫ ∫ ∫
D̄(1)
s−cut

ds1ds2ds3ds4

s2s3 (s2 + 2s1)
Res
{s̄3}

{
1

(s̄3 − s2/2)

(
− (s̄3s3 − s1s4)2

+s(s2s3s4 − (s2 − 2s3)(s̄3s3 + s1s4)/2− 2s̄3s1s3)− s2(s2 + 2s3)2/16
)−1/2−ε

}
=

21−4εs−1+2εi

Γ(1− 2ε)

∫ ∫ ∫ ∫
D̄(1)
s−cut

ds1ds2ds3ds4

s2s3 (s2 + 2s1)

(
− (s2s3 − 2s1s4)2/4

+ s(s2s3s4 − (s2 − 2s3)(s2s3 + 2s1s4)/4− s1s2s3)− s2(s2 + 2s3)2/16
)−1/2−ε

.

We begin our treatment of the unbarred integration variables with s4. Following the

discussion of section 2.2, we obtain our integration domain by studying the zeros of poly-

nomial structures inside the integrand. Due to the fact that the polynomial

−(s2s3 − 2s1s4)2/4 + s(s2s3s4 − (s2 − 2s3)(s2s3 + 2s1s4)/4− s1s2s3)− s2(s2 + 2s3)2/16

is raised to the power −1/2 − ε, the integrand obtained above in (3.23) has the branch

points

s±4 =
(s1s2 + s(s1 + s2))s3 − s1s2s/2±

√
s
√
s2(2s1 + s2)s3(s3 − s1)(2s1 + s)

2s2
1

(3.24)

in s4. As in the previous example, we can actually deduce the limits of integration on

the remaining variables by simply looking at the branch cut structure of s±4 .16 First, the

polynomial structures s2(2s1 + s2) and s3(s3 − s1) under the radical tell us that the limits

of integration for s2 are either [0,−2s1] or [−2s1, 0] and that the limits of integration for

s3 are either [0, s1] or [s1, 0]. The only question that remains is whether s1, what we shall

consider to be the final variable of integration, is positive or negative.17 In the physical

region, the polynomial 2s1 + s under the radical implies that the variable s1 is a negative

number which runs between −s/2 and 0. Finally, we conclude that the s2 integration runs

16It is worth pointing out that our logic here is similar to that used to formulate the compatibility graphs

method for purely-virtual Feynman integrals [75]. Namely, we do not expect new singularity structures to

arise beyond those which are already encoded in the analytical structure of the initial integrand.
17All possible limits of integration for s2 and s3 force one of the s1 integration limits to be 0.
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between 0 and −2s1 and that the s3 integration runs between s1 and 0. The upshot is that

p1

p2

=
21−4εs−1+2εi

Γ(1− 2ε)

∫ 0

−s/2
ds1

∫ −2s1

0
ds2

∫ 0

s1

ds3

∫ s+4

s−4

ds4×

× 1

s2s3 (s2 + 2s1)

(
− (s2s3 − 2s1s4)2/4− s2(s2 + 2s3)2/16

+ s(s2s3s4 − (s2 − 2s3)(s2s3 + 2s1s4)/4− s1s2s3)
)−1/2−ε

. (3.25)

In this case, all of the remaining integrations are elementary. The s4 integration is

closely analogous to the integration with respect to q1 · q2 carried out in appendix C and

the other integrations may be carried out with the help of a computer algebra system such

as Mathematica. We find

p1

p2

=
2πs−1+εi

Γ2(1− ε)

∫ 0

−s/2
ds1(−s1)−1+2ε(2s1 + s)−ε

∫ −2s1

0
ds2s

−1−ε
2 ×

×
∫ 0

s1

ds3

(
s3 − s1

)−ε(
s3(2s1 + s2)

)−1−ε

=
2πs−1+εi

εΓ(1− 2ε)

∫ 0

−s/2

ds1

s1
(2s1 + s)−ε

∫ −2s1

0
ds2 s

−1−ε
2 (−2s1 − s2)−1−ε

=
2−1−2επΓ2(−ε)s−1+εi

ε2Γ2(−2ε)

∫ 0

−s/2
ds1(−s1)−2−2ε(2s1 + s)−ε

= −2i sin(2πε)s−2−2εΓ(−1− 2ε)Γ(1 + 2ε)Γ3(−ε)
Γ(1− 2ε)Γ(−3ε)

(3.26)

for the triple-cut contribution.

Our next task is to calculate the double-cut contribution. In fact, we can write down

the answer immediately by recycling calculations that we have already carried out. We

require only the result obtained in section 3.1 for the s-channel cut of the one-external-

mass one-loop triangle integral together with the well-known result for its purely-virtual

counterpart. The key observation is that, on the support of the double cut, the virtual part

of the cut one-external-mass six-line two-loop double triangle is precisely a purely-virtual

one-loop triangle with external mass k2
1. From eq. (B.2), we see that18

k1 =
eiπεΓ(1 + ε)Γ2(−ε)
Γ(1− 2ε)

(
k2

1

)1+ε . (3.27)

It therefore follows that we can treat the integration over k1 using eq. (3.7) with propagator

exponents ν1 = 1, ν2 = 1, and ν3 = 2 + ε. The desired result is

p1

p2

=
eiπεΓ(1 + ε)Γ2(−ε)

Γ(1− 2ε)


2 + ǫ

p1

p2


= −2ieiπε sin(πε)s−2−2εΓ2(−1− 2ε)Γ(1 + ε)Γ(2 + 2ε)Γ2(−ε)

Γ(−3ε)Γ(1− 2ε)
. (3.28)

18Here, the +i0 prescription for the propagator plays a crucial role.
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The final cut Feynman integral of interest is the conjugate double-cut contribution.

The result may be simply obtained by taking the complex conjugate of the virtual part of

the double-cut contribution. We have

p1

p2

=
e−iπεΓ(1 + ε)Γ2(−ε)

Γ(1− 2ε)


2 + ǫ

p1

p2


= −2ie−iπε sin(πε)s−2−2εΓ2(−1− 2ε)Γ(1 + ε)Γ(2 + 2ε)Γ2(−ε)

Γ(−3ε)Γ(1− 2ε)
. (3.29)

Finally, the sum of the three contributions to the s-channel cut, eqs. (3.26), (3.28),

and (3.29), may be rewritten as

p1

p2

+

p1

p2

+

p1

p2

= (3.30)

− 2i sin(2πε)s−2−2εΓ(−1− 2ε)Γ(1 + 2ε)Γ2(−ε)
Γ(1− 2ε)Γ(−3ε)

(
Γ(−ε)− Γ(1 + ε)Γ(−2ε)

)
.

Using (3.30) and the s > 0 evaluation of (3.21) given in eq. (B.4), the reader can check

that

Discs

 p1

p2

 = −

 p1

p2

+

p1

p2

+

p1

p2

 . (3.31)

4 Maximally-cut Feynman integrals and differential equations

As mentioned in the introduction, it was observed in [31] that maximally-cut Feynman inte-

grals [87, 88] in the ε→ 0 limit solve the homogeneous parts of the differential equations sat-

isfied by their uncut counterparts. In non-polylogarithmic cases, it was furthermore shown

explicitly that maximally-cut Feynman integrals in the ε→ 0 limit may often be computed

by direct integration. However, complete solution sets of their homogeneous differential

equations were obtained indirectly by using a convenient mathematical property of the

complete elliptic integral of the first kind. Subsequently, it was shown in [32] that Baikov’s

method may be applied to maximally-cut Feynman integrals and offers conceptual advan-

tages relative to the traditional approach to maximally-cut Feynman integrals. However

only one solution of their higher-order homogeneous differential equations was provided.

We explain in this section how one can directly obtain the necessary, complete solution

sets for a class of interesting non-polylogarithmic Feynman integrals. As we shall see, the

key idea is to again employ our cut Baikov-Lee representation, eq. (2.13), but to allow for

more general integration domains than have so far been considered. For all of the classical

unitarity cuts studied in section 3, a unique solution was obtained via a generalized phase-

space volume computation. However, the criteria that we employed to determine the

integration domain must now be generalized further to allow for multiple solutions, due to

the fact that the differential equations satisfied by non-polylogarithmic Feynman integrals
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are of order greater than one. Although the primary focus of this section will be on

maximally-cut Feynman integrals which evaluate to generic complete elliptic integrals, the

ideas discussed here apply to maximally-cut Feynman integrals which evaluate to complete

hyperelliptic integrals as well [89].

Let us consider the following family of elliptic curves,

y(x, t) =

√(
x− a1(t)

)(
x− a2(t)

)(
x− a3(t)

)(
x− a4(t)

)
, (4.1)

where t is a parameter and {ai(t)} is the set of branch points of y(x, t), with ai(t) 6= aj(t)

for i 6= j. Now, for some Feynman integral, I, let us suppose that we are able to obtain a

one-fold integral representation for its maximal cut, Ī, of the form

Ī =

∫
D̄{s̄i}

dxR(x, y(x, t), t), (4.2)

where R(x, y(x, t), t) is a rational function of its arguments. If R(x, y(x, t), t) has no poles

in x, it is then the case that a complete set of solutions to the homogeneous part of the

differential equations satisfied by I may be obtained by considering

Ī(ai(t), aj(t)) =

∫ aj(t)

ai(t)
dxR(x, y(x, t), t) (4.3)

for i 6= j. If poles are present, one must also consider closed contour integrals around each

pole,

Ī(γk) =

∮
γk

dxR(x, y(x, t), t), (4.4)

to find all possible solutions. In (4.4), γk denotes a closed contour which encircles the k-th

pole of R(x, y(x, t), t), but no other pole or branch point of the integrand. Note that, quite

generically, the set of solutions obtained in this manner will actually be overcomplete.

By using properties of elliptic curves we can argue that (4.3) and (4.4) represent

a complete set of solutions. Integrals Ī(ai(t), aj(t)) for i 6= j and Ī(γk) are periods of

the elliptic curve y(x, t) [90] and the given homogeneous differential equation for I with

respect to t is nothing but the associated Picard-Fuchs equation.19 By construction, these

differential equations are the same for every period, and a complete set of periods provides

a complete set of solutions to the Picard-Fuchs equation (for a comprehensive review of

the subject of periods see [90] and the references therein).

The prescription described above represents a substantial generalization of that de-

scribed in section 2.2. When considering a cut Feynman integral associated with the

unitarity cut in some physical kinematic channel, one naturally expects to obtain a result

which is real-valued up to an overall phase; in this context, however, no such constraint ap-

plies and the integration domain is no longer uniquely determined. Indeed, eq. (4.3) implies

that, in the elliptic case, we can integrate the maximal cut of I over six distinct domains

19It has been clear for a long time that Picard-Fuchs equations play a very important role in the theory

of Feynman integrals (see e.g. [91, 92]).
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and this obviously leads to some solutions which possess both real and imaginary parts. If

the integrand has poles one must also include solutions of the form (4.4). This would be

relevant, for example, when considering a complete elliptic integral of the third kind.

In the absence of poles, complete elliptic integrals admit a simple description as closed

contour integrals which wrap the torus [89]. As claimed above, it is clear from this point

of view that our solutions cannot form a linearly independent set. To see this, recall that

the fundamental group of the torus, Z × Z, is isomorphic to the first homology group

(Hurewicz’s theorem [93]). This means that, in the absence of poles, the torus admits just

two independent cycles for us to integrate along. We can therefore conclude that four of

the six functions generated by applying the prescription given in (4.3) above are actually

spurious and may be disposed of. In general, one must also check whether contour integrals

of the form (4.4) around different poles of the integrand yield linearly dependent results.

The above discussion generalizes and systematizes the analysis of, e.g., [94] to generic

complete elliptic integrals of the form (4.2). Moreover, it is possible to generalize it to

curves of higher genus, i.e. when the square of (4.1) is a polynomial of degree greater than

four, by considering the set of periods over the relevant higher-genus Riemann surface. The

application of these techniques to curves of genus greater than one goes beyond the scope

of the present paper but will likely play a role in future calculations. In the following, we

consider illustrative examples taken from the virtual corrections to Higgs + jet with exact

top mass dependence.

4.1 A Higgs + jet non-polylogarithmic three-point function

As a first example, we consider the maximal cut of the two-loop crossed form factor,

p1

p2

=

∫
ddk1

iπd/2
ddk2

iπd/2

6∏
i=1

D−1
i , (4.5)

where we have made the definitions,

D1 = (k2 + p1)2 −m2 D2 = (k1 − k2 − p1 − p2)2 D3 = k2
2 −m2

D4 = (k1 − p2)2 −m2 D5 = (k1 − k2)2 D6 = k2
1 −m2. (4.6)

The evaluation of this Feynman integral is relevant to the calculation of the non-planar

part of the two-loop virtual corrections to Higgs + jet with exact top mass dependence.

Its maximal cut was considered in [31], where it was evaluated with a traditional cut

parametrization in an effort to obtain a solution to the homogeneous part of the associated

system of differential equations. Using eq. (2.13), we arrive at the following one-fold integral

representation of the maximally-cut Feynman integral,

p1

p2

=
24−2επ3

(s− p2
2)1−2εΓ (1− 2ε)

×

×
∫
D̄{s̄i}

ds1

(
s1

(
s− p2

2 + 2s1

) (
2m2s− s1

(
s− p2

2 + 2s1

)))−1/2−ε
, (4.7)
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where we have made the definitions s1 = k1 · p1 and s = (p1 + p2)2, and we have chosen to

work in the physical region above threshold where s > p2
2 > 0 and m2 > 0.

We now take the first step towards finding a complete set of solutions to the homoge-

neous differential equation for the uncut integral by computing the maximal cut in d = 4.

We have,

lim
ε→0


p1

p2

 =
16π3

s− p2
2

∫
D̄{s̄i}

ds1

y
(
s1,m2, p2

2, s
) , (4.8)

where

y
(
s1,m

2, p2
2, s
)

=
√
s1

(
s− p2

2 + 2s1

) (
2m2s− s1

(
s− p2

2 + 2s1

))
. (4.9)

Following our general prescription, concrete results are obtained by integrating between

branch points of the integrand. In other words, we obtain six possible solutions by picking

distinct pairs of elements from the set of branch points of the integrand,{
p2

2 − s− ρ
4

,
p2

2 − s
2

, 0,
p2

2 − s+ ρ

4

}
, (4.10)

where we have introduced the convenient shorthand

ρ =

√
16m2s+

(
s− p2

2

)2
(4.11)

in (4.10). Note that, in the kinematic region that we are working in, the elements of (4.10)

are real-valued and ordered from smallest to largest.

As discussed above, the solutions to our homogeneous differential equations will be

complete elliptic integrals and these may be thought of as periods of the torus. The torus

admits two linearly independent cycles and we therefore expect to find just two linearly

independent periods. As we shall see, it is convenient to take

f1 ≡
16π3

s− p2
2

∫ 0

(p2
2−s)/2

ds1

y
(
s1,m2, p2

2, s
) (4.12)

f2 ≡
16π3

s− p2
2

∫ (p2
2−s+ρ)/4

0

ds1

y
(
s1,m2, p2

2, s
) (4.13)

to be our independent basis elements.

That f1 and f2 are actually independent periods may be seen by writing them in

a standard form. For f1, this is easily achieved by making the appropriate analytical

continuation of eq. (4.9) and then changing variables according to [31]

s1 =

p2
2−s
2 t2

1− 2(s−p2
2)

s−p2
2−ρ

(1− t2)
.

The result is

f1 = − 64π3i(
s− p2

2

) (
s− p2

2 + ρ
) K ( 4ρ

(
s− p2

2

)(
s− p2

2 + ρ
)2
)

(4.14)
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in the physical kinematic region of interest.20 Similar considerations lead to

f2 =
32π3(

s− p2
2

)√
ρ
(
s− p2

2

) K
(
−
(
s− p2

2 − ρ
)2

4ρ
(
s− p2

2

) ) , (4.15)

again in the kinematic region of interest. The other possible solutions may be written as lin-

ear combinations of f1 and f2 and it is clear that some of them will have both real and imag-

inary parts. For example, we have from (4.10) and the explicit expressions for f1 and f2 that

16π3

s− p2
2

∫ (p2
2−s+ρ)/4

(p2
2−s)/2

ds1

y
(
s1,m2, p2

2, s
) = f1 + f2, (4.16)

where f1 is purely imaginary and f2 is purely real in the region where s > p2
2 > 0 and

m2 > 0.

Finally, let us point out that we have explicitly checked that the maximal cut calculated

in this section solves the associated homogeneous differential equation. A more non-trivial

Higgs + jet four-point function is discussed in the next section as a further application

of our ideas. The following calculation demonstrates the utility of integrating out cut

loops one at a time. As pointed out in [32], working in this way often allows one to write

down a more compact integrand than in the straightforward all-at-once approach to the

construction of a cut Baikov-Lee representation adopted so far in this paper.

4.2 A Higgs + jet non-polylogarithmic four-point function

We consider the following two-loop Higgs + jet integral, denoted in [64] as fA66,

p3

p4

p1

p2

=

∫
ddk1

iπd/2
ddk2

iπd/2

6∏
i=1

D−1
i , (4.17)

with propagators,

D1 = (k1 + p3 + p4)2 −m2 D2 = (k1 + p1)2 −m2 D3 = k2
1 −m2

D4 = (k2 + k1 + p3 + p4)2 −m2 D5 = (k2 + k1 + p3)2 −m2 D6 = k2
2. (4.18)

As usual, the kinematics is

s = (p1 + p2)2 t = (p1 − p3)2 u = (p1 − p4)2 p2
4 = s+ t+ u. (4.19)

The maximal cut of this Feynman integral was also considered more recently in both

references [31] and [32]. For the purposes of our analysis in this section, it is convenient to

work in the kinematic region where s > p2
4 > 0, s > 4m2 > 0, and p2

4 − s > t.

20In eqs. (4.14) and (4.15), K(z) is the complete elliptic integral of the first kind,

K(z) =

∫ 1

0

dt√
(1− t2)(1− z t2)

.
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As we are considering a four-point function at two loops, there are nine scalar prod-

uct integration variables, and it would therefore seem that we must consider a three-fold

integral representation of the maximal cut. Fortunately, one can obtain a one-fold inte-

gral representation of the maximal cut by proceeding recursively loop-by-loop. First, we

integrate out the one-loop triangle subintegral defined by the propagators D4, D5, and D6,

p4

k1
p3

=

∫
ddk2

iπd/2
1

k2
2 ((k2 + k1 + p3)2 −m2) ((k2 + k1 + p3 + p4)2 −m2)

, (4.20)

by localizing k2
2, k2 · p3, and k2 · p4. To do so, we evaluate the maximal cut of (4.20) using

eq. (2.13), our cut Baikov-Lee representation. Of course, the maximal cut of a one-loop

triangle involves no non-trivial integrations and one immediately finds

p4

k1
p3

=
4π2

Γ(1− ε)

((
s− p2

4 − 2 k1 · p4

)2
+ 4

(
k2

1 + 2 k1 · p3

)
p2

4

)−1/2+ε
× (4.21)

×
(
−m2 (s− 2 k1 · p4)2 − p2

4

(
k2

1 + 2 k1 · p3 +m2
) (
k2

1 + 2 k1 · p3 + 2 k1 · p4 − s+m2
))−ε

after carrying out the residue computations.

We now integrate out the remaining loop by localizing k2
1, k1 · p1, and k1 · p4 with

the remaining cut conditions. A moment’s thought reveals that eq. (2.13) may still be

straightforwardly applied to loop-by-loop Baikov-Lee calculations; the only difference is

that the results of the previous loop integrations appear in the current integrand. In other

words, if we make the definitions s1 = k1 ·p3, s̄1 = k2
1, s̄2 = k1 ·p1, and s̄3 = k1 ·p4, we have

p3

p4

p1

p2

= − 8π3/2i

Γ (1/2− ε)
[
Ḡ(p1, p3, p4)

]−ε ∫
D̄{s̄i}

ds1 × (4.22)

× Res
{s̄1,s̄2,s̄3}

{ [
Ḡ(k1, p1, p3, p4)

]−1/2−ε

(s̄1 +m2) (s̄1 + 2s̄2 +m2) (s̄1 + 2s̄3 + 2s1 − s+m2)

(
p4

k1
p3

)}
and can immediately write

lim
ε→0


p3

p4

p1

p2

 = 32π3

∫
D̄{s̄i}

ds1

y
(
s1,m2, p2

4, s, t
) , (4.23)

where

y
(
s1,m

2, p2
4, s, t

)
=

√(
p2

4 + 2s1

)2 − 4m2p2
4

√
s
(
4m2t

(
s+ t− p2

4

)
− s(t+ 2s1)2

)
(4.24)

in the region of interest.

We now turn to the problem of finding a complete set of homogeneous solutions to the

differential equations for the uncut integral, proceeding as described at the beginning of

section 4. Possible solutions are obtained by integrating between the branch points of the

integrand, {
−p

2
4

2
− σ,−p

2
4

2
+ σ,− t

2
− τ

s
,− t

2
+
τ

s

}
, (4.25)
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where we have set

σ =
√
m2p2

4 and τ =
√
m2st

(
s+ t− p2

4

)
. (4.26)

In the kinematic region that we have chosen to work in, the elements of (4.25) are real-

valued and ordered from smallest to largest.

As guaranteed by the form of eqs. (4.23) and (4.24), we again find just two linearly

independent solutions,

g1 ≡ 32π3

∫ − t
2
− τ
s

−
p24
2

+σ

ds1

y
(
s1,m2, p2

4, s, t
) (4.27)

and

g2 ≡ 32π3

∫ − t
2

+ τ
s

− t
2
− τ
s

ds1

y
(
s1,m2, p2

4, s, t
) . (4.28)

That these two solutions are actually linearly independent follows from the explicit formulas

written in terms of complete elliptic integrals of the first kind,

g1 = −
32π3iK

(
1− 16στ

s(p2
4−t)2+8στ−4m2(s p2

4+t(s+t−p2
4))

)
√
s
(
s
(
p2

4 − t
)2

+ 8στ − 4m2
(
s p2

4 + t
(
s+ t− p2

4

))) (4.29)

and

g2 =

32π3K

(
16στ

s(p2
4−t)2+8στ−4m2(s p2

4+t(s+t−p2
4))

)
√
s
(
s
(
p2

4 − t
)2

+ 8στ − 4m2
(
s p2

4 + t
(
s+ t− p2

4

))) , (4.30)

which may be derived by making appropriate changes of variables in eqs. (4.27) and (4.28).21

We have explicitly checked that g1 and g2 satisfy the appropriate homogeneous second-order

differential equations.

5 Conclusions

In this paper, we formulated and studied cut Baikov-Lee representations, both for Feynman

integrals cut in a single kinematic channel and for maximally-cut Feynman integrals. For

a wide class of interesting problems, our framework provides a convenient setup for the

explicit computation of cut Feynman integrals. It makes the dependence on the Lorentz-

invariant kinematic variables manifest and may be used directly or in conjunction with other

methods such as sector decomposition [95, 96]. Although some elements of our analysis

in section 2 relied upon physically-motivated plausibility arguments and experimentation,

we subsequently presented a substantial amount of evidence in sections 3 and 4 that our

master formula, eq. (2.13), is correct.22

21To derive (4.29), one must analytically continue the second square root structure in eq. (4.24) above.
22Although we have employed eq. (2.13) throughout this paper, eq. (2.17) is actually on more solid ground

from the theoretical point of view. The difference is that we have included all of the phases in eq. (2.17)

which one would find by considering the relevant Feynman integrals to be Feynman graphs inside of an

appropriate generalized scalar field theory. It is not clear to us why eq. (2.13) works as well as it does.
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It would be very interesting in future work to consider still more non-trivial examples23

such as the s-channel cut of the massless two-loop non-planar double box; as discussed

in [79], examples for which one cannot avoid imaginary parts on the mass shell require

special care and may be instructive. In an effort to remove as many superfluous assumptions

as possible from the formulation given in section 2, it would of course also be desirable to

put the theoretical foundations of the cut Baikov-Lee representation on a firmer footing.

Although we have employed the familiar language of classical complex analysis throughout

this work, it might be interesting to reformulate our finding in more modern language along

the lines of [85, 98]. It is unclear to us, however, that such a reformulation will immediately

lead to clarifications.

In fact, there exist several interesting classes of cut Feynman integrals which were not

discussed in this work at all. First of all, it would be interesting to study representative

sequential cuts of the type discussed in reference [70]. One should also check whether a cut-

discontinuity relation of the type discussed in [70] also exists for “crossed” sequential cuts

such as the s-channel + t-channel cut of the massless one-loop box of section 3.2. Although

success is less certain, it might be interesting to use the Baikov-Lee formalism developed

in this work to study iterated cuts in a single channel. As a start, one could consider the

Feynman integral analog of the double two-particle cuts at two loops discussed in [99]. For

such iterated cuts, it is not obvious that a cut-discontinuity relation exists at all, and it

would therefore be interesting to take a fresh look at the problem using our Baikov-Lee

machinery. Finally, it goes almost without saying that we would very much like to apply

our techniques to the evaluation of the master integrals relevant to the current generation

of phenomenologically-important unsolved problems in perturbative quantum field theory.
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A Mathematical relations for hypergeometric-like functions

In this appendix, we review some well-known facts used in this paper about hypergeometric

functions and their generalizations. First of all, let us recall the usual integral representa-

tion of the hypergeometric function which provides the analytical continuation of the hy-

23When a reference evaluation is not available, it is important to check analytical results numerically. We

therefore note that the recently-released program pySecDec [97] should allow for the evaluation of a wide

class of cut Feynman integrals numerically (up to some fixed order in ε) with moderate user input.
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pergeometric series in non-exceptional cases. For |arg(1− z)| < π and Re(c) > Re(a) > 0,

we have [102]

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
dt ta−1(1− t)c−a−1(1− tz)−b. (A.1)

In fact, for |arg(1 − z1)| < π, |arg(1 − z2)| < π, and Re(c) > Re(a) > 0, a completely

analogous formula holds for the Appell F1 function [103]:

F1(a; b1, b2; c; z1, z2) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
dt ta−1(1− t)c−a−1(1− tz1)−b1(1− tz2)−b2 . (A.2)

We also encounter the generalized hypergeometric function 3F2, which, for the purposes of

this paper, may be defined via the integral representation

3F2(a1, a2, a3; b1, b2; z) =
Γ(b2)

Γ(a3)Γ(b2 − a3)

∫ 1

0
dt ta3−1(1− t)b2−a3−1

2F1(a1, a2; b1; tz),

(A.3)

which is valid for |arg(1− z)| < π and Re(b2) > Re(a3) > 0 [102].

In Lebedev [102], one also finds a very clear discussion of both linear and quadratic

transformations of the hypergeometric function 2F1. Of particular interest to us are,

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1− z)−a2F1

(
a, c− b; a− b+ 1;

1

1− z

)
(A.4)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(1− z)−b2F1

(
b, c− a; b− a+ 1;

1

1− z

)
,

2F1

(
a, b; 2b;

4z

(1 + z)2

)
= (1 + z)2a

2F1

(
a, a− b+

1

2
; b+

1

2
; z2

)
, (A.5)

and

2F1

(
a, a+

1

2
; c; z

)
=

(
1 +
√

1− z
2

)−2a

2F1

(
2a, 2a− c+ 1; c;

1−
√

1− z
1 +
√

1− z

)
. (A.6)

Eq. (A.4) is valid for non-integral a − b, |arg(1 − z)| < π, and |arg(−z)| < π, whereas

eq. (A.5) is valid for 2b 6= −1,−3,−5, . . . and, crucially, |z| < 1. Eq. (A.6) is valid so long

as the condition |arg(1− z)| < π is satisfied.

We also require some reduction identities, two for the generalized hypergeometric func-

tion 3F2 and one for the Appell F1 function. The Saalschütz summation formula [104],

3F2 (a1, a2, a3; b1, b2; 1) =
Γ(b1)Γ(1 + a1 − b2)Γ(1 + a2 − b2)Γ(1 + a3 − b2)

Γ(1− b2)Γ(b1 − a1)Γ(b1 − a2)Γ(b1 − a3)
, (A.7)

applies if b1+b2−a1−a2−a3 = 1 and one element of {a1, a2, a3} is a negative integer. A more

non-trivial summation formula involving two 3F2 functions on the left-hand side is [105]

− Γ(1− a2)Γ(1 + a3)Γ(a3 − a1)Γ(b1)

Γ(a3)Γ(1 + a1 − a2)Γ(1− a1 + a3)Γ(b1 − a1)
×

× 3F2 (a1, a1 − a3, 1 + a1 − b1; 1 + a1 − a2, 1 + a1 − a3; 1) + 3F2 (a1, a2, a3; b1, 1 + a3; 1)

=
Γ(b1)Γ(1− a2)Γ(1 + a3)Γ(a1 − a3)

Γ(a1)Γ(1− a2 + a3)Γ(b1 − a3)
. (A.8)
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Eq. (A.8) is valid for Re(1 + b1 − a1 − a2) > 0 and may be verified using the techniques

described in [106]. Finally, the Appell F1 function collapses to a 2F1 if c = b1 + b2 [103],

F1 (a; b1, b2; b1 + b2; z1, z2) = (1− z2)−a 2F1

(
a, b1; b1 + b2;

z1 − z2

1− z2

)
. (A.9)

The standard integral representation given above for the generalized hypergeometric

function 3F2 is only one of a number of Euler integrals involving 2F1 which may be evaluated

using the 3F2 series. Many evaluations of such generalized Euler integrals are given in

reference [107]. The main result of interest to us is∫ 1

0
dt tγ−1(1− t)ρ−1(1− tz)−σ2F1(α, β; γ; t) =

Γ(γ)Γ(ρ)Γ(γ + ρ− α− β)

Γ(γ + ρ− α)Γ(γ + ρ− β)
×

× (1− z)−σ3F2

(
ρ, σ, γ + ρ− α− β; γ + ρ− α, γ + ρ− β;

z

z − 1

)
, (A.10)

which is valid for |arg(1− z)| < π, Re(γ) > 0, Re(ρ) > 0, and Re(γ + ρ−α− β) > 0 [108].

B All-order-in-ε results for selected purely-virtual Feynman integrals

In this appendix, we collect some useful results from the Feynman integral literature. All

results which follow are presented in the normalization of eq. (2.6) and are valid to all orders

in the parameter of dimensional regularization, ε, for generic phase-space points in physical

kinematics. In order to compare with the cut calculations performed in section 3, we must

explain how to parse the Disc operation introduced in section 2. The direct discontinuity

of Feynman integral I in the s-channel is simply

Discs(I) = I (s+ i0; {vj} \ s)− I (s− i0; {vj} \ s) , (B.1)

where {vj} denotes the set of variables (the parameter of dimensional regularization, gen-

eralized Mandelstam variables, and, in general, internal masses) that I is a function of.

B.1 The one-external-mass one-loop triangle

The one-external-mass one-loop triangle with generic propagator exponents is given by [71]

ν2

ν1

ν3

p1

p2

=
eiπεs2−ν−εΓ(2− ν1 − ν3 − ε)Γ(2− ν2 − ν3 − ε)Γ(ν − 2 + ε)

Γ(ν1)Γ(ν2)Γ(4− ν − 2ε)
, (B.2)

to all orders in ε, where s = (p1 + p2)2 > 0 and ν =
∑3

i=1 νi.

B.2 The massless one-loop box

The massless one-loop box is given by [71, 109]

p3

p4

p2

p1

= −Γ2(−ε)Γ(ε)

suΓ(−2ε)

[
(−u)−ε2F1

(
1,−ε; 1− ε; 1 +

u

s

)
+ eiπεs−ε2F1

(
1,−ε; 1− ε; 1 +

s

u

)]
(B.3)

to all orders in ε, where s = (p1 + p2)2 and u = (p1 − p4)2. In the physical region, s > 0

and −s < u < 0.
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B.3 The one-external-mass six-line two-loop double triangle

The purely-virtual counterpart of the one-external-mass six-line two-loop double triangle

integral studied in section 3 is given by

p1

p2

=
e2iπεs−2−2εΓ(−1− 2ε)Γ(1 + 2ε)Γ2(−ε)

Γ(1− 2ε)Γ(−3ε)

(
Γ(−ε)− Γ(1 + ε)Γ(−2ε)

)
(B.4)

to all orders in ε, where s = (p1 + p2)2 > 0. To our knowledge, eq. (B.4) was first derived

by van Neerven [109]. His idea was to first calculate all s-channel cuts and then deduce

the associated purely-virtual result using unitarity. Consequently, to obtain (B.4) without

referring to cuts, it was necessary for us to evaluate the integral ourselves using Feynman

parameters. This exercise is elementary and may be carried out using the loop-by-loop

integration strategy suggested in [110].

C Baikov-Lee for the purely-virtual one-external-mass one-loop bubble

In this appendix, we complete the calculation of the Euclidean purely-virtual one-loop

bubble integral with no internal masses which was initiated in section 2. Our point of

departure will be eq. (2.10),

p =

∫ ∞
0

d(q2
1)

∫ √p2q2
1

−
√
p2q2

1

d(q1 · q2)
π

3
2
−ε (p2q2

1 − (q1 · q2)2
) 1

2
−ε

Γ
(

3
2 − ε

)
(p2)1−ε q2

1

(
q2

1 − 2q1 · q2 + p2
) .
(C.1)

The first step is to map the domain of the first integration variable, q1 · q2, onto the

unit interval. This can be achieved straightforwardly by making the change of variables

q1 · q2 = 2
√
p2q2

1z −
√
p2q2

1.24 We arrive at

p =

∫ ∞
0

d(q2
1)

∫ 1

0
dz

22−2επ
3
2
−ε (q2

1

)−ε
(z(1− z))

1
2
−ε

Γ
(

3
2 − ε

) (
q2

1 + 2(1− 2z)
√
p2q2

1 + p2
) . (C.2)

By comparing eq. (C.2) to the form of eq. (A.1), it is now obvious that the z integral may

be evaluated in terms of the 2F1 series.

The one-fold integral that remains,

p =

∫ ∞
0

d(q2
1)

π2−ε (q2
1

)−ε
Γ(2− ε)(q2

1 + p2)
2F1

(
1,

1

2
; 2− ε; 4q2

1p
2

(q2
1 + p2)2

)
, (C.3)

is most naturally evaluated by splitting the integral at the point q2
1 = p2 and then mapping

both the integral from 0 to p2 and the integral from p2 to∞ onto the unit interval. This will

allow for the simultaneous application of quadratic transformation (A.6) to both integrals.

24A variable change of this form often allows one to recognize the definite integrals which arise from

all-orders-in-ε Feynman integral calculations as Euler integrals of hypergeometric type (see e.g. [69]).
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Making the change of variables q2
1 = p2x in the first integral and the change of variables

q2
1 = p2/x in the second integral, we find

p =

∫ 1

0
dx

π2−ε (p2
)−ε

Γ(2− ε)(1 + x)

(
x−ε + x−1+ε

)
2F1

(
1,

1

2
; 2− ε; 4x

(1 + x)2

)

=

∫ 1

0
dx
π2−ε (p2

)−ε
Γ(2− ε)

(
x−ε + x−1+ε

)
2F1 (1, ε; 2− ε;x) . (C.4)

At this stage, we can straightforwardly evaluate both integrals using eq. (A.3). The

result obtained in this manner,

p =
π2−ε (p2

)−ε
Γ(2− ε)

(
1

ε
3F2 (1, ε, ε; 2− ε, 1 + ε; 1)

+
1

1− ε 3F2 (1, ε, 1− ε; 2− ε, 2− ε; 1)

)
, (C.5)

is correct but far more complicated than it needs to be. In this case, we can simplify the

result by applying summation formula (A.8) to eliminate the second 3F2 series in eq. (C.5)

above:

p =
π2−ε (p2

)−ε
Γ2(1− ε)Γ(ε)

Γ(2− 2ε)
. (C.6)

Needless to say, the above result agrees with what one obtains (far more easily) using the

Feynman representation.25

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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C. Schneider and J. Blümlein eds., Springer-Verlag, Vienna Austria, (2013), pg. 305

[arXiv:1305.1966].

[104] L.J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge

U.K., (1966), pg. 1.

[105] Wolfram Research Inc., The Wolfram Functions website, http://functions.wolfram.com/.

[106] T.H. Koornwinder, Identities of non-terminating series by Zeilberger’s algorithm, J.

Comput. Appl. Math. 99 (1998) 449 [math.CA/9805010].

[107] J. Letessier and G. Valent, Some integral relations involving hypergeometric functions,

SIAM J. Appl. Math. 48 (1988) 214.

[108] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh edition,

A. Jeffrey and D. Zwillinger eds., Academic Press, U.S.A., (2007), pg. 1.

[109] W.L. van Neerven, Dimensional regularization of mass and infrared singularities in two loop

on-shell vertex functions, Nucl. Phys. B 268 (1986) 453 [INSPIRE].

[110] R.J. Gonsalves, Dimensionally regularized two loop on-shell quark form-factor, Phys. Rev.

D 28 (1983) 1542 [INSPIRE].

– 37 –

https://doi.org/10.1007/978-3-7091-1616-6_13
https://arxiv.org/abs/1305.1966
http://functions.wolfram.com/
https://doi.org/10.1016/S0377-0427(98)00176-9
https://doi.org/10.1016/S0377-0427(98)00176-9
https://arxiv.org/abs/math.CA/9805010
https://doi.org/10.1137/0148010
http://dx.doi.org/10.1016/0550-3213(86)90165-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B268,453%22
http://dx.doi.org/10.1103/PhysRevD.28.1542
http://dx.doi.org/10.1103/PhysRevD.28.1542
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D28,1542%22

	Introduction
	General formalism
	Preliminaries
	The Euclidean Baikov-Lee representation and its analytical continuation
	The cut Baikov-Lee representation and unitarity

	Discontinuities from cuts: one- and two-loop examples
	The one-external-mass one-loop triangle
	The massless one-loop box
	The one-external-mass six-line two-loop double triangle

	Maximally-cut Feynman integrals and differential equations
	A Higgs + jet non-polylogarithmic three-point function
	A Higgs + jet non-polylogarithmic four-point function

	Conclusions
	Mathematical relations for hypergeometric-like functions
	All-order-in-epsilon results for selected purely-virtual Feynman integrals
	The one-external-mass one-loop triangle
	The massless one-loop box
	The one-external-mass six-line two-loop double triangle

	Baikov-Lee for the purely-virtual one-external-mass one-loop bubble

