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1 Introduction

It is important to understand the dynamics of higher-dimensional black objects, since it

tells us much about the nature of higher-dimensional gravitational theories and their holo-

graphically dual quantum field theories. The strong non-linearity of gravity, however, usu-

ally prevents us from understanding the dynamical properties of black objects beyond the

linear-perturbation regime without highly sophisticated skills of numerical computation.

The Gregory-Laflamme (GL) instability [1], which is a universal instability of higher-

dimensional black objects, is a good example to see the above situation. Though the GL

instability in the non-linear regime is quite interesting, its analysis needs sophisticated skills
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of numerical relativity [2]. While there exists a semi-analytic higher-order perturbation

method [3], it seems applicable only to static problems.

Recently, Emparan, Suzuki, and Tanabe showed that the Einstein equations describing

the horizon dynamics of black branes in both Minkowski and Anti-de Sitter (AdS) back-

ground are recast in the form of coupled non-linear diffusion-type equations when the num-

ber of spatial dimensions is large [4]. This result provides us with a unique approach to the

non-linear dynamics of black objects in higher dimensions. The authors indeed showed that

the unstable black strings converge to non-uniform black strings (NUBSs), which had been

predicted to happen above a critical dimension [5], by solving the diffusion equations nu-

merically with a few lines of Mathematica code. It is added that the blackfold approach [6]

is also thought to serve as a powerful approach to analyze the evolution of GL instability.

Once the simple diffusion equations were obtained [4], it is natural to ask if the non-

linear properties of black-brane dynamics can be understood analytically. In this paper, we

develop a systematic non-linear perturbation theory of asymptotically flat and AdS black

branes, allowing the perturbations to be dynamical. Using the Fourier and Laplace trans-

formation to solve the partial differential equations (PDEs), the perturbation equations are

solved order by order for given arbitrary initial conditions up to the integration associated

with the inverse transformation.

While the formulation is so general that it would be applicable to various problems,

we pick up several examples as the initial conditions, which are a Gaussian wave packet, a

step-function like shock configuration, and quite general discretely superposed sinusoidal

waves. For these examples, the integration associated with the inverse transformation is

completed up to the first or second order, and the properties of solutions are examined.

Through these examples, one will see the validity of formalism itself and some unknown, or

yet-to-be-confirmed, non-linear properties of black-brane dynamics. In particular, in the

case of asymptotically flat black branes, an interesting non-liner property of GL instability

resulting from the mode-mode coupling is unveiled at the second order. In the case of

shock propagation on asymptotically AdS black branes, the analytic description of non-

equilibrium steady state (NESS), which was recently discussed in the Riemann problem of

relativistic fluid mechanics and field theories [7], is presented.

This paper is organized as follows. In section 2, the asymptotically flat black branes

are investigated. In section 2.1, we present the perturbation equations for asymptotically

flat black branes and their general form of solutions. In section 2.2, we apply the general

result to the Gaussian wave packet. In section 2.3, we consider the discretely superposed

sinusoidal waves. In section 3, we consider the non-linear perturbation of asymptotically

AdS black branes. Here, the formulation and applications are presented in parallel with

section 2, but a new example of initial condition, the step-function like shock, is investigated

in section 3.3. Section 4 is devoted to conclusion. Throughout this paper, we follow the

notations in ref. [4].
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2 Asymptotically flat black branes

2.1 Perturbation equations and general form of solutions

In the large-D(imension) approach, the horizon dynamics of vacuum black branes without

a cosmological constant are described by two functions, m(t, z) and p(t, z), where t is time

and z is the spatial coordinate along which the horizon extends [4]. m and p represent the

mass and momentum distributions along the horizon, respectively. m → +0 corresponds

to the pinching off of the horizon. The equations of motion for these quantities take form

of coupled non-linear diffusion equations,

(∂t − ∂2
z )m+ ∂zp = 0, (2.1)

(∂t − ∂2
z )p− ∂zm = −∂z

(

p2

m

)

, (2.2)

t > 0, −∞ < z < ∞. (2.3)

A uniform black-brane solution corresponds to m(t, z) ≡ 1 and p(t, z) ≡ 0. Since we

are interested in the dynamical deformation of such a uniform solution, we introduce one-

parameter families of m(t, z) and p(t, z), and expand them around the uniform black-brane

solution,

m(t, z; ǫ) = 1 +
∞
∑

ℓ=1

mℓ(t, z)ǫ
ℓ, (2.4)

p(t, z; ǫ) =
∞
∑

ℓ=1

pℓ(t, z)ǫ
ℓ, (2.5)

where ǫ is a constant parameterizing the families. Substituting these expansions into

eqs. (2.1) and (2.2), we obtain the equations of motion at O(ǫℓ) (ℓ ∈ N),

ṁℓ −m′′
ℓ + p′ℓ = 0, (2.6)

ṗℓ − p′′ℓ −m′
ℓ = ψℓ, (2.7)

where the dot and prime denote the derivatives with respect to t and z, respectively. The

right-hand side of eq. (2.7), ψℓ(t, z), which we call a source term, is a polynomial of the

lower-order perturbations and their first spatial derivatives,

ψ1 ≡ 0, (2.8)

ψℓ = ψℓ(m1, p1,m
′
1, p

′
1, · · · ,mℓ−1, pℓ−1,m

′
ℓ−1, p

′
ℓ−1), ℓ ≥ 2. (2.9)

For example, the source terms for ℓ = 2 and ℓ = 3 are given by

ψ2 = −2p1p
′
1, (2.10)

ψ3 = 2m1p1p
′
1 +m′

1p
2
1 − 2p1p

′
2 − 2p′1p2. (2.11)

In the rest of this section, we are looking for the general form of solutions to the

perturbation equations (2.6) and (2.7), combining the Fourier and Laplace transformations
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(see, e.g., [8]). A similar technique is found to be used in refs. [9, 10] to analyze the higher-

order perturbation of surface-diffusion equation, which is a single non-linear PDE.

Before starting to solve eqs. (2.6) and (2.7), let us introduce the notations associated

with the Fourier and Laplace transformations. For a given function, say f(t, z), we shall de-

note its Fourier transformation with respect to z by f̄(t, k), and its Laplace transformation

with respect to t by the corresponding capital letter F (s, z). Namely,

f̄(t, k) := F [f(t, z)] =

∫ ∞

−∞
f(t, z)e−ikzdz, i :=

√
−1, (2.12)

F (s, z) := L[f(t, z)] =
∫ ∞

0
f(t, z)e−stdt. (2.13)

Then, a capital letter with a bar denotes a Fourier-Laplace transformation as

F̄ (s, k) := (L ◦ F)[f(t, z)]. (2.14)

In addition, we define two kind of convolutions,

f(t, z) ∗ g(t, z) :=
∫ t

0
f(t− τ, z)g(τ, z)dτ, (2.15)

f(t, z) ⋆ g(t, z) :=

∫ ∞

−∞
f(t, z − ξ)g(τ, ξ)dξ. (2.16)

With the notations introduced above, the Fourier-Laplace transformed version of

eqs. (2.6) and (2.7) are written as coupled algebraic equations in a matrix form

A

(

M̄ℓ(s, k)

P̄ℓ(s, k)

)

=

(

m̄ℓ(0, k)

p̄ℓ(0, k) + Ψ̄ℓ(s, k)

)

, (2.17)

A :=

(

s+ k2 ik

−ik s+ k2

)

, (2.18)

where we have used F [∂n
z f(t, z)] = (ik)nf̄(t, k) (n ∈ N) and L[∂tf(t, z)] = sF (s, z)−f(0, z).

The solution to eqs. (2.6) and (2.7) are obtained after multiplying eq. (2.17) by A−1

from left and inversely transforming it,

(

mℓ(t, z)

pℓ(t, z)

)

= (F−1 ◦ L−1)

[

A−1

(

m̄ℓ(0, k)

p̄ℓ(0, k) + Ψ̄ℓ(s, k)

)]

. (2.19)

By simple algebra, the inverse matrix A−1 is found to be decomposed into two parts,

A−1 =
∑

σ=+,−

1

s− sσ(k)
Bσ, (2.20)

Bσ :=
1

2

(

1 −σi

σi 1

)

, (2.21)

sσ(k) := k(σ1− k). (2.22)
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Figure 1. Dispersion relations s = s+(k) (black solid) and s = s
−
(k) (red dashed), defined by

eq. (2.22).

See figure 1 for plot of s = s±(k), which corresponds to the dispersion relation of waves.

After this decomposition, one can perform the inverse Laplace transformation L−1 in

eq. (2.19) to obtain
(

mℓ(t, z)

pℓ(t, z)

)

=
∑

σ=+,−
Bσ

(

F−1[esσ(k)tm̄ℓ(0, k)]

F−1[esσ(k)tp̄ℓ(0, k) + esσ(k)t ∗ ψ̄ℓ(t, k)]

)

(2.23)

=
∑

σ=+,−
Bσ

(

F−1[esσ(k)t] ⋆ mℓ(0, z)

F−1[esσ(k)t] ⋆ pℓ(0, z) + F−1[esσ(k)t] ⋆ ∗ψℓ(t, z)

)

. (2.24)

Here, we have used L−1[ 1
s−a

] = eat, L−1[F (s, z)G(s, z)] = f(t, z) ∗ g(t, z), and

F−1[f̄(t, k)ḡ(t, k)] = f(t, z) ⋆ g(t, z).

Equations (2.23) and (2.24) are exactly what we wanted, namely, the general form of

solutions to the perturbation equations (2.6) and (2.7) for given arbitrary initial conditions,

mℓ(0, z) and pℓ(0, z) (ℓ ∈ N). It depends on the problem which expression, (2.23) or (2.24),

is easier to compute. For all examples considered in this paper, eq. (2.23) seems easier to

compute. Using eq. (2.22), one can easily obtain

F−1[esσ(k)t] =
1√
4πt

exp

[

−(σt+ iz)2

4t

]

, (2.25)

which is useful when one uses expression (2.24).

In principle, one can obtain the arbitrary-order solutions, mℓ(t, z) and pℓ(t, z), by

computing the right-hand side of eq. (2.23) or (2.24) order by order. However, as the source

term ψℓ(t, z) becomes complicated as ℓ increases, it is fare to say that to obtain the solutions

analytically until arbitrary order is impossible in general. In addition, when the initial

condition is a complicated function, even the first-order solution can be impossible to obtain

analytically. Namely, the inverse Fourier transformation in eq. (2.23) cannot be performed

analytically in such a case. In the rest of this section, we shall consider two examples of

initial conditions, for which the first few-order solutions are analytically obtainable.

2.2 Gaussian wave packet

As the first example, we adopt the Gaussian wave packet as the initial perturbation given

to the asymptotically flat black brane. For this perturbation, the inverse Fourier transfor-
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mation at the first order in eqs. (2.23) and (2.24) can be computed analytically. Since the

unperturbed black brane is unstable, the perturbation of course grows unboundedly and

nothing unexpected happens in this sense. However, one can see how to use the general

results obtained in the previous section and the validity of the method. In particular,

comparing the perturbative solution with a full numerical solution, the perturbative so-

lution turns out to be effective even for finite-amplitude dynamics. In other words, the

convergence of ǫ-expansion (2.4) and (2.5) is rapid enough at least for this example.

Let us assume that the situation where the black brane is given O(ǫ)-perturbation

taking form of a Gaussian wave packet,

m1(0, z) =
β√
2πb

exp

[

−(z − z0)
2

2b2

]

, (2.26)

p1(0, z) = m′
1(0, z), (2.27)

where β, b (> 0), and z0 are real constants. Obviously, b and z0 parameterize how much

the wave packet spatially extends and the central position of the wave packet, respectively.

β is just a normalization constant to give
∫∞
−∞m1(0, z)dz = β. The initial perturbation of

p1 is given by the spatial derivative of m1 for simplicity, though their initial conditions can

be independent in nature.

The Fourier transformation of the above initial conditions are

m̄1(0, k) = β exp

[

−b2k2

2
− ikz0

]

, (2.28)

p̄1(0, k) = ikm̄1(0, k). (2.29)

2.2.1 First-order solutions

Since we have no source term at O(ǫ), ψ1(t, z) ≡ 0, we see from eq. (2.23) that what

to compute is the inverse Fourier transformation of initial spectra, m̄1(0, k) and p̄1(0, k),

multiplied by esσ(k)t. One can compute such quantities as

F−1[esσ(k)tm̄1(0, k)] =
β

√

2π(b2 + 2t)
exp

[

t2 − (z − z0)
2

2(b2 + 2t)
+ iσ

t(z − z0)

b2 + 2t

]

, (2.30)

F−1[esσ(k)tp̄1(0, k)] = −β[(z − z0)− iσt]
√

2π(b2 + 2t)3
exp

[

t2 − (z − z0)
2

2(b2 + 2t)
+ iσ

t(z − z0)

b2 + 2t

]

. (2.31)

Substituting these results into eq. (2.23), we obtain the first-order solutions

(

m1(t, z)

p1(t, z)

)

= β

√

(b2 + 3t)2 + (z − z0)2

2π(b2 + 2t)3
exp

[

t2 − (z − z0)
2

2(b2 + 2t)

]





cos
[

t(z−z0)
b2+2t

+Θ
]

− sin
[

t(z−z0)
b2+2t

+Θ
]



 ,

(2.32)

where

cosΘ :=
b2 + 3t

√

(b2 + 3t)2 + (z − z0)2
, sinΘ :=

z − z0
√

(b2 + 3t)2 + (z − z0)2
. (2.33)
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We believe that this is the first example describing the non-trivial evolution of GL

instability analytically in time domain, which is realized by virtue of the large-D method

and perturbation theory developed in this paper.

Like the diffusion phenomenon of a Gaussian wave packet according to an ordinary

diffusion equation, solutions (2.32) have temporal decay factor, which behaves as 1√
b2+2t

,

and spatial decay factor exp[− (z−z0)2

2(b2+2t)
]. The sinusoidal parts represent spatial oscillation

with time-dependent wavelength 2π(b2+2t)
t

, which interestingly asymptotes to a universal

value 4π as t → +∞.

What crucially different from the ordinary diffusion is that the solutions temporally

grow exponentially due to factor exp[ t2

2(b2+2t)
]. It is stressed that this exponential growing

happens eventually irrespective of b, which characterizes the extension of the initial wave

packet. Substituting z = z0 into eq. (2.32), we can see the time dependence of the peak

height,

m1(t, z0) = β

√

(b2 + 3t)2

2π(b2 + 2t)3
exp

[

t2

2(b2 + 2t)

]

. (2.34)

For b >
√
3, this is monotonically increasing in time. For 0 < b <

√
3, although it is initially

decreasing, it turns increasing at t = 1
3(3− 2b2 +

√
b4 − 3b2 + 9) to diverge eventually.

Thus, while the GL instability is generally said to be a long-wavelength instability, the

initial perturbation taking form of a Gaussian wave packet necessarily grows exponentially

however the ‘scale’ of perturbation b is small. The reason is that the Fourier spectrum

of any Gaussian wave packet necessarily contains the GL mode k ∈ (−1, 1) \ {0} (see

section 2.3.1). This is quite reasonable but might be a somewhat interesting point.

Three-dimensional plots of 1 + m1(t, z) and p1(t, z) are presented in figures 2(a)

and 2(b), respectively. One can observe the growth and oscillation described above. In ad-

dition, snapshots of 1+m1(t, z) and p1(t, z) at selected moments, compared with numerical

solutions, are presented in figures 2(c) and 2(d), respectively. Compared with the full nu-

merical solutions, which are obtained by directly solving original equations (2.1) and (2.2)

with the same initial conditions, i.e., m(0, z) = 1+m1(0, z) and p(0, z) = p1(0, z), one can

observe that the first-order solutions almost completely capture the qualitative features of

the full solution during the time domain considered. Note that the deviation from the full

solution, however, becomes large as the time proceeds, which results in the divergence of

m and p.

2.2.2 Notes on second-order perturbation

The comparison between the first-order solution and full solution above tells us that O(ǫ2)

perturbations are negligible during the amplitudes of m and p are O(1) in the current

example despite the ordinary expectation that the perturbation becomes invalid for such

a large amplitude. We will see in section 3 that O(ǫ) approximation is more accurate for

the Gaussian perturbation to the asymptotically AdS brane than the present case.

For the aim to see the non-linear effects at the second order, it is natural to assume that

the initial perturbation at the second order vanishes, m2(0, z) = p2(0, z) = 0. The reason is

thatm2(t, z) and p2(t, z) are composed of two independent parts as seen in eq. (2.23): one is

– 7 –
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(a) (b)

(c) (d)

Figure 2. Three-dimensional plots of (a) 1+m1(t, z) and (b) p1(t, z), given by eqs. (2.32) with β =

b = 1, z0 = 0. The comparison between first-order solution (c) 1 +m1(t, z) (resp. (d) p1(t, z)) and

non-perturbative solution m(t, z) (resp. p(t, z)) obtained by numerically solving eq. (2.1) and (2.2).

The blue-dashed curve represents initial configuration m(0, z) (resp. p(0, z)). The green, red, and

black solid curves represent the first-order solutions at t = 3.3, 6.7, and 10, respectively. The (green,

red, and black) dashed curves represent the full numerical solutions at the corresponding time.

the contribution from initial perturbation m2(0, z) and p2(0, z), and the other is that from

the source term ψ2(t, z). The former clearly has the same time dependence as the first term

from eq. (2.23). Namely, if we prepare the Gaussian wave packet as the initial condition

of second-order perturbation, the second-order perturbation evolves in the exactly same

way as the O(ǫ) perturbation described above. Only the latter, the contribution from the

source term, can have a different time dependence from the first-order perturbation. This

will be seen explicitly in section 2.3.

From the reason described above, we should assume that the initial perturbations

vanish at O(ǫ2), m2(0, z) = p2(0, z) = 0. Then, we see from eq. (2.23) that what to compute

at O(ǫ2) is only the inverse Fourier transformation of the convolution between esσ(k)t and

the spectrum of source term ψ̄2(t, k). Unfortunately, however, such a convolution in the

present example involves the Gauss error function, not written in terms of elementary

functions. Thus, it seems difficult to obtain the second-order solutions analytically, and

therefore we stop the analysis on this example here.

– 8 –
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2.3 Superposed sinusoidal waves

As the second example, we consider the situation where the black brane is initially given an

O(ǫ)-perturbation being a superposition of an arbitrary number of sinusoidal waves. This

example is simple but interesting enough to see what happens in the non-linear regimes.

We set the following initial conditions

m1(0, z) =

N
∑

n=1

an cos(knz + ϕn), (2.35)

p1(0, z) = m′
1(0, z), (2.36)

mℓ(0, z) = pℓ(0, z) = 0, ∀ℓ ≥ 2, (2.37)

where an, kn, and ϕn (n = 1, 2, · · · , N) are real constants. It is noted that the right-

hand side of eq. (2.35) is not written as the general form of Fourier series expansion of

a periodic function. However, choosing appropriate wave number kn and phase ϕn, and

taking summation over n from 0 to infinity, rather than from 1 to N , eq. (2.35) can

cover the Fourier series expansion of arbitrary piecewise continuous periodic function. The

assumption that the second and higher order perturbations vanish initially are adopted

from the same reason as the previous example in section 2.2.

The Fourier transformations of the above initial configurations are

m̄1(0, k) = π
N
∑

n=1

an[e
iϕnδ(k − kn) + e−iϕnδ(k + kn)], (2.38)

p̄1(0, k) = ikm̄1(0, k), (2.39)

m̄ℓ(0, k) = p̄ℓ(0, k) = 0, ∀ℓ ≥ 2. (2.40)

In the rest of this section, we shall compute the right-hand side of eq. (2.23) order by order

for these initial conditions.

2.3.1 First-order solutions

Since we have no source term at O(ǫ), ψ1 ≡ 0, we see from eq. (2.23) that what to compute

is only the inverse Fourier transformation of the initial spectra, m̄1(0, k) and q̄1(0, k),

multiplied by esσ(k)t. These are easily computed to give

F−1[esσ(k)tm̄1(0, k)] =
1

2

N
∑

n=1

an[e
sσ(kn)tei(knz+ϕn) + es−σ(kn)te−i(knz+ϕn)], (2.41)

F−1[esσ(k)tp̄1(0, k)] =
i

2

N
∑

n=1

knan[e
sσ(kn)tei(knz+ϕn) − es−σ(kn)te−i(knz+ϕn)], (2.42)

– 9 –
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where we have used sσ(−k) = s−σ(k). Substituting these results into eq. (2.23), we obtain

the first-order solutions,

m1(t, z) =
1

2

N
∑

n=1

an[(1 + kn)e
s+(kn)t + (1− kn)e

s−(kn)t] cos(knz + ϕn), (2.43)

p1(t, z) = −1

2

N
∑

n=1

an[(1 + kn)e
s+(kn)t − (1− kn)e

s−(kn)t] sin(knz + ϕn). (2.44)

Equations (2.43) and (2.44) represent O(ǫ) approximate time evolution of the ini-

tial perturbation, which takes the form of superposed sinusoidal waves (2.35) and (2.36).

Since the initial conditions (2.35) and (2.36) are quite general, so are the solutions (2.43)

and (2.44).

Since we are considering linear equations of motion, there is no mode-mode coupling

appearing in non-linear regime, and therefore eqs. (2.43) and (2.44) have simple interpre-

tation. The factor of cos(knz + ϕn) in eq. (2.43) represents the time-dependent amplitude

of the initially given mode cos(knz + ϕn). Each mode evolves independently according to

its growth or damping rate determined by es+(kn)t and es−(kn)t. From the concrete form of

s±(k) in eq. (2.22), one can see that if kn ∈ (−1, 0) (resp. kn ∈ (0, 1)), such a mode grows

exponentially due to es−(kn)t (resp. es+(kn)t), which represents the GL instability.

2.3.2 Second-order solutions

Since we assume that the initial perturbations vanish at O(ǫ2), m2(0, z) = p2(0, z) = 0,

we see from eq. (2.23) that what to compute is the inverse Fourier transformation of

the convolution between esσ(k)t and the Fourier spectrum of source term ψ̄2(t, k). Using

eqs. (2.10) and (2.44), such a quantity is computed and written down in a simple form as

F−1[esσ(k)t∗ψ̄2(t, k)] =
i

8

N
∑

n=1

N
∑

n′=1

anan′kn′

×
(

C
(σ)(+)
nn′ ei[(kn+k

n
′ )z+(ϕn+ϕ

n
′ )] + C

(σ)(−)
nn′ ei[(kn−k

n
′ )z+(ϕn−ϕ

n
′ )]

− C
(−σ)(−)
nn′ e−i[(kn−k

n
′ )z+(ϕn−ϕ

n
′ )] − C

(−σ)(+)
nn′ e−i[(kn+k

n
′ )z+(ϕn+ϕ

n
′ )]
)

(2.45)

by defining a function of time,

C
(σ)(σ′)
nn′ :=

(1 + kn)(1 + kn′)

s+(kn) + s+(kn′)− sσ(kn + σ′kn′)
(e[s+(kn)+s+(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

− (1 + kn)(1− kn′)

s+(kn) + s−(kn′)− sσ(kn + σ′kn′)
(e[s+(kn)+s−(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

− (1− kn)(1 + kn′)

s−(kn) + s+(kn′)− sσ(kn + σ′kn′)
(e[s−(kn)+s+(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

+
(1− kn)(1− kn′)

s−(kn) + s−(kn′)− sσ(kn + σ′kn′)
(e[s−(kn)+s−(k

n
′ )]t − esσ(kn+σ′k

n
′ )t). (2.46)
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Substituting the above result (2.45) into eq. (2.23), we obtain the second-order solutions,

m2(t, z) =
1

8

n
∑

n=1

N
∑

n′=1

anan′kn′

(

[C
(+)(+)
nn′ − C

(−)(+)
nn′ ] cos[(kn + kn′)z + (ϕn + ϕn′)] (2.47)

+[C
(+)(−)
nn′ − C

(−)(−)
nn′ ] cos[(kn − kn′)z + (ϕn − ϕn′)]

)

,

p2(t, z) = −1

8

n
∑

n=1

N
∑

n′=1

anan′kn′

(

[C
(+)(+)
nn′ + C

(−)(+)
nn′ ] sin[(kn + kn′)z + (ϕn + ϕn′)] (2.48)

+[C
(+)(−)
nn′ + C

(−)(−)
nn′ ] sin[(kn − kn′)z + (ϕn − ϕn′)]

)

.

Note that m(t, z) = 1 + m1(t, z) + m2(t, z) and p(t, z) = p1(t, z) + p2(t, z) with

eqs. (2.43), (2.44), (2.47), and (2.48), represent O(ǫ2) approximate time evolution of the

initial perturbation, which takes the form of superposed sinusoidal waves (2.35), (2.36),

and (2.37). Since the initial conditions (2.35) and (2.36) are quite general, so are these

approximate solutions.

Since the initial perturbations are assumed to vanish at O(ǫ2), m2(0, z) = p2(0, z) = 0,

the above O(ǫ2) solutions contain only the contribution from the source term ψ2 = −2p1p
′
1.

If one prepares for non-vanishing initial conditions at the second order, its contribution is

simply added to the above solution, but such a contribution will exhibit no interesting

behavior since it has the time dependence similar to that of O(ǫ) solution.

In general, the multiple summation of any quantity with two indices
∑

n,n′ Tnn′ can be

decomposed as
∑

n,n′ Tnn′ =
∑

n Tnn +
∑

n<n′(Tnn′ + Tn′n). Here,
∑

n<n′ represents the

summation over all n and n′ satisfying 1 ≤ n < n′ ≤ N . Using this decomposition, one

can decompose the multiple summation in eqs. (2.47) and (2.48) as

m2(t, z) =
1

8

N
∑

n=1

a2nkn

(

[C(+)(+)
nn − C(−)(+)

nn ] cos[2(knz + ϕn)] + [C(+)(−)
nn − C(−)(−)

nn ]
)

+
1

8

∑

n<n′

anan′

(

kn′ [C
(+)(+)
nn′ − C

(−)(+)
nn′ ] + kn[C

(+)(+)
n′n − C

(−)(+)
n′n ]

)

× cos[(kn + kn′)z + (ϕn + ϕn′)]

+
1

8

∑

n<n′

anan′

(

kn′ [C
(+)(−)
nn′ − C

(−)(−)
nn′ ] + kn[C

(+)(−)
n′n − C

(−)(−)
n′n ]

)

× cos[(kn − kn′)z + (ϕn − ϕn′)], (2.49)

p2(t, z) = −1

8

N
∑

n=1

a2nkn[C
(+)(+)
nn + C(−)(+)

nn ] sin[2(knz + ϕn)]

− 1

8

∑

n<n′

anan′

(

kn′ [C
(+)(+)
nn′ + C

(−)(+)
nn′ ] + kn[C

(+)(+)
n′n + C

(−)(+)
n′n ]

)

× sin[(kn + kn′)z + (ϕn + ϕn′)]

− 1

8

∑

n<n′

anan′

(

kn′ [C
(+)(−)
nn′ + C

(−)(−)
nn′ ]− kn[C

(+)(−)
n′n + C

(−)(−)
n′n ]

)

× sin[(kn − kn′)z + (ϕn − ϕn′)]. (2.50)
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(a) (b)

(c) (d)

Figure 3. Three-dimensional plots of (a) 1+m1(t, z)+m2(t, z) and (b) p1(t, z)+p2(t, z), given by

eqs. (2.43), (2.44), (2.49), and (2.50) with N = 2, a1 = a2 = 1, k1 = 1.3, k2 = 1.2, ϕ1 = ϕ2 = 0.

Snapshots of (c) 1+m1(t, z)+m2(t, z) and (d) p1(t, z)+p2(t, z) at t = 0 (blue dotted), t = 8 (green

dashed), t = 28 (red dot-dashed), and t = 40 (black solid).

The first term of eqs. (2.49) and (2.50) represents the self-interference of each mode kn
(n = 1, 2, · · · , N). On the other hand, the second and third terms represent the interference

between kn and kn′ (n < n′).

The non-linear source term involves the mode-mode coupling, which is absent at the

linear order. This coupling excites the terms of cos[(kn ± kn′)z] and sin[(kn ± kn′)z] in

eqs. (2.47) and (2.48). For example, let us see the structure of m2(t, z). From eqs. (2.46)

and (2.47), one can see that both cos[(kn + kn′)z] and cos[(kn − kn′)z] terms involve the

following three kind of time dependence,

e[s+(kn)+s+(k
n
′ )]t, e[s+(kn)+s−(k

n
′ )]t, e[s−(kn)+s−(k

n
′ )]t. (2.51)

In addition, one can see that cos[(kn + kn′)z] and cos[(kn − kn′)z] terms involve

es+(kn+k
n
′ )t, es−(kn+k

n
′ )t and es+(kn−k

n
′ )t, es−(kn−k

n
′ )t, (2.52)

respectively. Thus, the second-order solutions exhibit a variety of dispersion given by the

exponents of quantities (2.51) and (2.52).

2.3.3 Notes on Gregory-Laflamme instability

Let us consider the meaning to investigate the higher-order perturbations from the stability

point of view. The asymptotically flat black brane we consider here is essentially unstable.
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Namely, as seen in section 2.3.1, if the initial perturbation contains any mode of which

wave number kn ∈ (−1, 1) \ {0}, such a mode grows unboundedly. However, we consider

the black brane in the large-D limit, namely, above the critical dimension [5]. Thus, the

GL instability initially grows but it gradually damps in non-linear regimes, and eventually

the horizon converges to non-uniform configuration [4].

It is pointed out that the second-order perturbation cannot stabilize the first-order

instability because the first-order perturbation is treated as the fixed background, which

appears as the source term, when we solve the second order. Nevertheless, one might

expect if there appears the sign of the convergence to the non-uniform horizon at the

second order. Although such a sign can appear at the second order, we cannot catch the

sign in the result (2.49) and (2.50) unfortunately.

On the other hand, a black brane that is linearly stable can become unstable at the

second order. If the initial perturbation does not contain any unstable mode, the initial per-

turbation will damp exponentially at linear level, as seen in the results of section 2.3.1. How-

ever, the second-order perturbation involves various time dependence as seen in eqs. (2.51)

and (2.52). In order to see directly this situation, let us focus on a simple case as follow.

Suppose that the initial perturbation is the superposition of two modes k1 and k2 both

of which are stable modes, k1 > k2 > 1. In addition, assume that their difference is smaller

than unity, k1 − k2 ∈ (0, 1). In this case, the term of C
(+)(−)
21 cos[(k1 − k2)z + (ϕ1 − ϕ2)] in

eq. (2.49) includes terms having growing factor es+(k1−k2)t, as seen from eq. (2.46). Thus,

the perturbation does not grow at O(ǫ) but does at O(ǫ2).

The above phenomenon is an interesting aspect of the GL instability, which was re-

vealed for the first time by the present non-linear perturbation theory in time domain. It

is intuitively understandable. The superposition of the two modes forms the beat. For

simplicity, assume a1 = a2 ( 6= 0) in eq. (2.35), then the superposed wave is written as

2a1 cos

[

(k1 + k2)z + (ϕ1 + ϕ2)

2

]

cos

[

(k1 − k2)z + (ϕ1 − ϕ2)

2

]

. (2.53)

This exhibits the fast spatial oscillation with the large wave number k1+k2
2 which is en-

veloped by the slow oscillation with the small wave number k1−k2
2 , which is called the

beat phenomenon especially when the difference of the wave numbers is rather small

k1−k2 ≪ k1+k2. This slow oscillation is nothing but the origin of the GL instability at the

second order. In figure 3, we present the three-dimensional plots of 1 +m1(t, z) +m2(t, z)

and p1(t, z) + p2(t, z) and their snapshots at selected moments. One can observe that the

beat formed by the superposition of two modes at t = 0. As soon as the dynamics starts,

such an initial wave rapidly damps as predicted by the first-order perturbation. As the

time proceeds, however, the waves of which scale is the same order as that of the beat

begin to grow and eventually diverge.

3 Asymptotically AdS black branes

In this section, we consider the non-linear perturbation of the asymptotically AdS black

branes in the large-D limit. The governing equations of motion are almost the same as
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those in the asymptotically flat case except for a sign of one term. Thus, the formulation of

the perturbation theory proceeds completely in parallel with the asymptotically flat case.

What different from the asymptotically flat black brane in the previous section is that

the AdS black branes are stable: they are not suffered from the GL instability at least

linearly. In addition, the gravitational phenomena in AdS background are interpreted

as corresponding phenomena in the dual field theories via the AdS/CFT dictionary, and

therefore have much more applications than the asymptotically flat case. In fact, we will

apply the result of general perturbation theory to the problem of shock-wave propagation,

which has been discussed in the context of AdS/CFT [7], in sections 3.3 and 3.4 in addition

to the Gaussian wave packet and general superposed sinusoidal waves.

3.1 Perturbation equations and general form of solutions

For the asymptotically AdS neutral black branes in the large-D limit of general relativity,

the mass and momentum distribution, m(t, z) and p(t, z), obey eq. (2.1) and the following

equation [4, 7] with the domain (2.3),

(∂t − ∂2
z )p+ ∂zm = −∂z

(

p2

m

)

. (3.1)

Substituting the expansion (2.4) and (2.5) into eqs. (2.1) and (3.1), we obtain eq. (2.6) and

ṗℓ − p′′ℓ +m′
ℓ = ψℓ, (3.2)

where the source term ψℓ is the same as those in the asymptotically Minkowski case,

eqs. (2.8)–(2.11).

Performing the Laplace and Fourier transformation in eqs. (2.6) and (3.2), we obtain

a couple of algebraic equations, which is written as eq. (2.17) with A replaced by the

following matrix,

D :=

(

s+ k2 ik

ik s+ k2

)

. (3.3)

The inverse matrix D−1 is decomposed into two parts,

D−1 =
∑

σ=+,−

1

s− sσ(k)
Eσ, (3.4)

Eσ :=
1

2

(

1 −σ1

−σ1 1

)

, (3.5)

sσ(k) := k(σi− k). (3.6)

After this decomposition, one can perform the inverse Laplace transformation L−1 in

eq. (2.19) with A replaced by D. Then, the general form of solution is given by
(

mℓ(t, z)

pℓ(t, z)

)

=
∑

σ=+,−
Eσ

(

F−1[esσ(k)tm̄ℓ(0, k)]

F−1[esσ(k)tp̄ℓ(0, k) + esσ(k)t ∗ ψ̄ℓ(t, k)]

)

(3.7)

=
∑

σ=+,−
Eσ

(

F−1[esσ(k)t] ⋆ mℓ(0, z)

F−1[esσ(k)t] ⋆ pℓ(0, z) + F−1[esσ(k)t] ⋆ ∗ψℓ(t, z)

)

. (3.8)

– 14 –



J
H
E
P
0
6
(
2
0
1
7
)
0
3
3

(a) (b)

(c) (d)

Figure 4. Three-dimensional plots of (a) 1 + m1(t, z) and (b) p1(t, z), given by eq. (3.12) with

β = b = 1, z0 = 0. The comparison between first-order solution (c) 1 + m1(t, z) (resp. (d)

p1(t, z)) and full solution m(t, z) (resp. p(t, z)) obtained by solving eqs. (2.1) and (3.1) numerically.

Snapshots of (c) 1 +m1(t, z) and (d) p1(t, z) at t = 0 (blue-dashed), t = 0.67 (green-solid), t = 2.0

(red-solid), and t = 10 (black-solid). Non-perturbative solutions obtained by solving eqs. (2.1)

and (3.1) numerically are drawn by (green, red, and black) dashed curves too, but can be hardly

distinguished from the first-order solutions.

While it depends on the chosen initial condition which expression between (3.7)

and (3.8) is easier to compute, eq. (3.7) is solely used in the rest of this paper. Using

eq. (3.6), the inverse Fourier transformation of esσ(k)t is easily computed as

F−1[esσ(k)t] =
1√
4πt

exp

[

−(σt+ z)2

4t

]

. (3.9)

This will be useful when one uses expression (3.8).

3.2 Gaussian wave packet

As in section 2.2, we investigate the Gaussian wave packet as the initial perturbation given

to the asymptotically AdS black brane. Compared with the full-order numerical solution,

the linear-order approximation turns out to be rather accurate approximation in this case.
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3.2.1 First-order solutions

For the initial perturbation given by the Gaussian wave packet, eqs. (2.26) and (2.27), one

can compute the following quantities

F−1[esσ(k)tm̄1(0, k)] =
β

√

2π(b2 + 2t)
exp

[

− t2 + (z − z0)
2

2(b2 + 2t)
− σ

t(z − z0)

b2 + 2t

]

, (3.10)

F−1[esσ(k)tp̄1(0, k)] = −β(z − z0 + σt)
√

2π(b2 + 2t)3
exp

[

− t2 + (z − z0)
2

2(b2 + 2t)
− σ

t(z − z0)

b2 + 2t

]

. (3.11)

Substituting these quantities into eq. (3.7), we obtain the first-order solution,

(

m1(t, z)

p1(t, z)

)

= β

√

(b2 + 3t)2 − (z − z0)2

2π(b2 + 2t)3
exp

[

− t2 + (z − z0)
2

2(b2 + 2t)

]





cosh
[

t(z−z0)
b2+2t

− Ξ
]

sinh
[

t(z−z0)
b2+2t

− Ξ
]



 ,

(3.12)

where

coshΞ :=
b2 + 3t

√

(b2 + 3t)2 − (z − z0)2
, sinhΞ :=

z − z0
√

(b2 + 3t)2 − (z − z0)2
. (3.13)

Like the diffusion phenomenon of a Gaussian wave packet according to an ordinary

diffusion equation, solutions (3.12) have temporal decay factor, which behaves as 1√
b2+2t

,

and spatial decay factor exp[− (z−z0)2

2(b2+2t)
]. What crucially different from the ordinary diffusion

is that the solution temporally damps rapidly due to factor exp[− t2

2(b2+2t)
].

Three-dimensional plots of 1 + m1(t, z) and p1(t, z) are presented in figures 4(a)

and 4(b), respectively. One can observe the fast damping described above. In addition,

snapshots of 1 +m1(t, z) and p1(t, z) at selected moments, compared with numerical solu-

tions, are presented in figures 4(c) and 4(d), respectively. Compared with the full numerical

solutions, which are obtained by directly solving original equations (2.1) and (3.1) with the

same initial conditions, i.e., m(0, z) = 1 +m1(0, z) and p(0, z) = p1(0, z), one can observe

that the first-order solution completely captures the full solution throughout the time do-

main considered. In other words, the higher-order perturbations are negligible, meaning

that the ǫ-expansion eqs. (2.4) and (2.5) converges rapidly for this example.

3.3 Shock wave

Here, let us consider the step-function like shock as the initial perturbation to the asymp-

totically AdS black brane. The propagation of this kind of shock is known as the Riemann

problem in fluid mechanics. This classic problem attracts attentions recently in relativis-

tic hydrodynamics since it makes us understand the non-equilibrium physics of quantum

field theories. See the introduction of ref. [7] for a brief but nice review for the recent

development.

Assume that the black brane is given O(ǫ) perturbation as follows,

m1(0, z) = α sgn(z), p1(0, z) = 0, (3.14)
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Figure 5. Three dimensional plots of (a) 1 + m1(t, z) and (b) p1(t, z), given by eqs. (3.19)

and (3.20) with α = −1/2, respectively. The comparison between first-order solution (c)

1 + m1(t, z) (resp. (d) p1(t, z)) and full-order numerical solution m(t, z) (resp. p(t, z)), obtained

by solving eqs. (2.1) and (3.1). The blue-dashed curve represents initial configuration m(0, z)

(resp. p(0, z)). The green, red, and black solid curves represent the first-order solutions at t = 7.3,

14, and 22, respectively. The (green, red, and black) dashed curve represents the full numerical

solution at the corresponding time.

where α is a real constant and sgn denotes the sign function,

sgn(z) :=















−1 (z < 0)

0 (z = 0)

+1 (z > 0)

. (3.15)

The assumption that p1 initially vanishes is adopted to reproduce a situation considered

in ref. [7] (see the left panel of figure 5 in [7]). The Fourier transformation of the above

initial conditions are

m̄1(0, k) = −2iα

k
, p̄1(0, k) = 0. (3.16)

3.3.1 First-order solutions

Using eqs. (3.6) and (3.16), one obtains

F−1[esσ(k)tm̄1(0, k)] = α erf

(

σt+ z

2
√
t

)

, F−1[esσ(k)tp̄1(0, k)] = 0, (3.17)
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where erf(x) := 2√
π

∫ x

0 e−x2

dx is the Gauss error function. Here, we have used the following

formula
∫ ∞

−∞

e−a(k−ib)2

k
dk = iπeab

2

erf(
√
ab2), a > 0, b ∈ R. (3.18)

Substituting eq. (3.17) into eq. (3.7), one obtains the first-order solution,

m1(t, z) =
α

2

[

erf

(

t+ z

2
√
t

)

− erf

(

t− z

2
√
t

)]

, (3.19)

p1(t, z) = −α

2

[

erf

(

t− z

2
√
t

)

+ erf

(

t+ z

2
√
t

)]

. (3.20)

Using the fact that the Gauss error function is an odd function, one can immediately show

that m1(t,−z) = −m1(t, z) and p1(t,−z) = p1(t, z) hold. Namely, m1(t, z) and p1(t, z) are

spatially odd and even functions, respectively.

In figure 5, three-dimensional plots of 1+m1(t, z) and p1(t, z), where the parameter is

chosen as α = −1/2, and their snapshots at selected moments are presented, compared with

the non-perturbative numerical solutions obtained by directly solving eqs. (2.1) and (3.1)

with the initial condition similar to eq. (3.14). Since the sign function is difficult to treat

in numerical computations, we replace sgn(z) by tanh(cz) with a large positive number c

(say, c = 50), based on the fact that limc→+∞ tanh(cz) = sgn(z).

In figure 5, one can see that as soon as the dynamics begins, the discontinuity separates

into two shock fronts moving to left and right, where the former and latter are called the

rarefaction wave and shock wave, respectively [7]. The point is that the rarefaction and

shock is interpolated by an expanding plateau region with a non-zero constant flux, called

the non-equilibrium steady state (NESS).

While it is interesting that we obtained the semi-analytic results (3.19) and (3.20) de-

scribing the shock propagation and NESS, they are not satisfactory from some viewpoints.

In figure 5, one can observe that the full solution becomes asymmetric with respect to z →
−z, though the linear solutions (3.19) and (3.20) continue to be symmetric. Thus, for ex-

ample, the value of m at the NESS, which is always unity at O(ǫ), deviates between the first

order and full solutions. These suggest that the higher-order perturbations are necessary to

fill the above gaps. It seems impossible, however, to obtain the second-order solutions an-

alytically since the first-order solution involves the error function. Thus, we will return to

the Riemann problem in the next section as the example of the superposed sinusoidal waves.

3.4 Superposed sinusoidal waves

We consider the initial condition which is the superposition of sinusoidal waves like

eqs. (2.35)–(2.37). For later purpose, however, let us assume the O(ǫ) initial momentum

vanishes

p1(0, z) = 0, (3.21)

which is assumed instead of eq. (2.36). The first- and second-order solutions satisfying

initial conditions (2.35)–(2.37) are presented in appendix A.
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3.4.1 First-order solutions

For the initial perturbation which is the superposition of sinusoidal waves (2.35) and (3.21),

we obtain

F−1[esσ(k)tm̄1(0, k)] =
1

2

N
∑

n=1

an[e
sσ(kn)tei(knz+ϕn) + es−σ(kn)te−i(knz+ϕn)], (3.22)

F−1[esσ(k)tp̄1(0, k)] = 0, (3.23)

where we have used sσ(−k) = s−σ(k). Substituting these results into eq. (3.7) and using

the concrete form of the dispersion relation sσ(k), we obtain the first-order solutions,

m1(t, z) =
N
∑

n=1

ane
−k2

n
t cos(knt) cos(knz + ϕn), (3.24)

p1(t, z) =
N
∑

n=1

ane
−k2

n
t sin(knt) sin(knz + ϕn). (3.25)

These results (3.24) and (3.25) tell us that the initial perturbation necessarily exhibits

the damped oscillation for arbitrary non-zero wave number kn ∈ R \ {0} (n = 1, 2, · · · , N),

showing the black brane to be linearly stable.

3.4.2 Second-order solutions

Since we assume that the initial values vanish at O(ǫ2), m2(0, z) = p2(0, z) = 0, we see

from eq. (3.7) that what to compute is the inverse Fourier transformation of the convolu-

tion between esσ(k)t and the Fourier spectrum of source term ψ̄2(t, k). Using eqs. (2.10)

and (3.25), such a quantity is computed and written down in a simple form as

F−1[esσ(k)t∗ψ̄2(t, k)] = − i

8

N
∑

n=1

N
∑

n′=1

anan′kn′

×
(

F
(σ)(+)
nn′ ei[(kn+k

n
′ )z+(ϕn+ϕ

n
′ )] + F

(σ)(−)
nn′ ei[(kn−k

n
′ )z+(ϕn−ϕ

n
′ )]

− F
(−σ)(−)
nn′ e−i[(kn−k

n
′ )z+(ϕn−ϕ

n
′ )] − F

(−σ)(+)
nn′ e−i[(kn+k

n
′ )z+(ϕn+ϕ

n
′ )]
)

(3.26)

by defining a function of time,

F
(σ)(σ′)
nn′ :=

1

s+(kn) + s+(kn′)− sσ(kn + σ′kn′)
(e[s+(kn)+s+(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

− 1

s+(kn) + s−(kn′)− sσ(kn + σ′kn′)
(e[s+(kn)+s−(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

− 1

s−(kn) + s+(kn′)− sσ(kn + σ′kn′)
(e[s−(kn)+s+(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

+
1

s−(kn) + s−(kn′)− sσ(kn + σ′kn′)
(e[s−(kn)+s−(k

n
′ )]t − esσ(kn+σ′k

n
′ )t). (3.27)
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Substituting the above result (3.26) into eq. (3.7), we have the second-order solutions as

m2(t, z) =
i

8

n
∑

n=1

N
∑

n′=1

anan′kn′

(

[F
(+)(+)
nn′ − F

(−)(+)
nn′ ] cos[(kn + kn′)z + (ϕn + ϕn′)]

+[F
(+)(−)
nn′ − F

(−)(−)
nn′ ] cos[(kn − kn′)z + (ϕn − ϕn′)]

)

, (3.28)

p2(t, z) =
1

8

n
∑

n=1

N
∑

n′=1

anan′kn′

(

[F
(+)(+)
nn′ + F

(−)(+)
nn′ ] sin[(kn + kn′)z + (ϕn + ϕn′)]

+[F
(+)(−)
nn′ + F

(−)(−)
nn′ ] sin[(kn − kn′)z + (ϕn − ϕn′)]

)

. (3.29)

Note that m(t, z) = 1 + m1(t, z) + m2(t, z) and p(t, z) = p1(t, z) + p2(t, z) with

eqs. (3.24), (3.25), (3.28), and (3.29), represent O(ǫ2) approximate time evolution of the

initial perturbation, which takes the form of superposed sinusoidal waves (2.35), (3.21),

and (2.37). These approximate solutions are rather general in the sense that initial condi-

tion (2.35) is general.

Since the initial perturbations are assumed to vanish at O(ǫ2), m2(0, z) = p2(0, z) = 0,

the above solutions contain only the contribution from the source term ψ2 = −2p1p
′
1. If one

prepares for non-vanishing initial conditions at the second order, its contribution is simply

added to the above solution, but such a contribution will exhibit no interesting behavior

since it has the time dependence similar to that in O(ǫ) solution.

3.4.3 Shock wave

We re-investigate the Riemann problem in section 3.3, by choosing appropriate parameters

(an, kn, ϕn) in initial condition (2.35). In order to do so, the sign function, sgn(z), in initial

condition (3.14) is replaced by the following function,

sgnL(z) :=















−1 (−L < z < 0)

0 (z = 0)

+1 (0 < z < L)

, (3.30)

where L is a positive constant and the periodic extension to entire R with period 2L is

assumed. Since this function has the following Fourier series expansion,

sgnL(z) =
∞
∑

n=1

4

(2n− 1)π
sin

[

(2n− 1)π

L
z

]

, (3.31)

the parameters in initial condition (2.35) should be

an =
4

(2n− 1)π
, kn =

(2n− 1)π

L
, θn = −π

2
(3.32)

for n = 1, 2, · · · , N with the limit N → ∞. Taking large L and focusing on the spatial

region around the center z = 0, there must be no difference in the dynamics during a

finite interval of time between ones using sgn(z) and sgnL(z), due to the (non-relativistic)

causality encoded in the equations of motion.
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(a) (b)

(c) (d)

Figure 6. Three-dimensional plots of full-order numerical solution (a) m(t, z) and (b) p(t, z),

obtained by solving eqs. (2.1) and (3.1) with initial condition eq. (3.15) where sgn(z) is replaced by

finite Fourier series of sgn
L
(z) given by eqs. (3.31)–(3.33). The comparison between second-order

solution (c) 1 + m1(t, z) + m2(t, z) (resp. (d) p1(t, z) + p2(t, z)) and full-order numerical solution

m(t, z) (resp. p(t, z)), obtained by solving eqs. (2.1) and (3.1). The blue-dashed curve represents

initial configuration m(0, z) (resp. p(0, z)). The green, red, and black solid curves represent the

second-order solutions at t = 83.3, 167, and 250, respectively. The (green, red, and black) dashed

curve represents the full numerical solution at the corresponding time.

In figures 6(a) and 6(b), we present the three-dimensional plots of full-order numerical

solutions of m(t, z) and p(t, z), respectively, starting from the initial condition m(0, z) =

1 + m1(0, z) and p(0, z) = 0, where m1(0, z) is given by eqs. (2.35) and (3.32). The rest

parameters and the cutoff of N are chosen as follow,

α = −1

2
, L = 1000, N = 45. (3.33)

In figures 6(c) and 6(d), we compare these full solutions with the second-order solutions,

i.e., 1 + m1(t, z) + m2(t, z) and p1(t, z) + p2(t, z) provided by eqs. (3.24), (3.25), (3.28),

and (3.29) with initial conditions given by (2.35), (3.32), and (3.33).

Unlike the O(ǫ) approximation in section 3.3, the O(ǫ2) approximation presented here

captures the spatially asymmetric features under the reflection z → −z of full solution.

Furthermore, the error of values of m and p at the plateau of NESS between the O(ǫ2) so-

lution and full solutions are within a few percent (1.2% and 5.0% for m and p, respectively,

for the above choice of parameters), which were inadequately large for the O(ǫ) approxi-

mation in section 3.3. This is by virtue of the second-order solutions, which appropriately

take into account the ‘back-reaction’ of the first-order solution through the source term.
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Due to the Gibbs phenomenon, there appears the oscillation near the jump in the initial

shock. Such oscillations stem from the artificial cutoff of the Fourier series expansion. As

the time proceeds, the ‘horns’ as the remnant of Gibbs oscillations can be observed to

propagate near the front of rarefaction and shock waves, and to be amplified. This artifact

due to the cutoff will not be a problem when one treats the solution exactly.

4 Conclusion

In the large-D(dimension) limit of general relativity, the Einstein equations describing the

horizon dynamics of asymptotically flat (resp. AdS) black branes are written in the form

of coupled diffusion equations (2.1) and (2.2) (resp. (2.1) and (3.1)) [4, 7]. While these

equations are much simpler than the original Einstein equations, there is a non-linear term,

making it difficult to solve exactly. Therefore, we have formulated the perturbation theory

in this paper making it possible to obtain analytic results on the black-brane dynamics.

The metric functions m(t, z) and p(t, z), which represent the mass and momentum

distributions in the direction of horizon z, respectively, were expanded around a uni-

form black-brane solution with formal small parameter ǫ as eqs. (2.4) and (2.5). Then,

the perturbative equations of motion were obtained, and solved order by order using the

Laplace and Fourier transformation with respect to t and z, respectively. As the result,

the general form of solutions mℓ(t, z) and pℓ(t, z) in the flat (resp. AdS) background were

obtained (2.23) (resp. (3.7)), in which the inverse Fourier transformation of initial spec-

tra m̄ℓ(0, k) and p̄ℓ(0, k), and the spectrum of source term ψ̄ℓ(t, k), being a polynomial of

lower-order perturbations, were left to be computed.

As the example of initial conditions of perturbation, the Gaussian wave packet was

considered for both the asymptotically flat and AdS black branes in sections 2.2 and 3.2,

respectively, and the first-order solutions were written down explicitly. The resulting dy-

namics from this initial condition was not surprising itself. Namely, the wave pack grows

and damps rapidly for the asymptotically flat and AdS black branes, respectively, which is

expected from their known stability. A remarkable point revealed by this example is that

the first-order solution captures the features of full-order solution rather accurately even

for a finite amplitude. Thus, the convergence of expansion by ǫ (i.e., amplitude) is rather

rapid and can be used for finite-amplitude perturbations for a certain class of problems.

Only for the asymptotically AdS black brane, the step-function like initial condition

was considered in order to investigate the shock propagation in section 3.3, and the first-

order solution was explicitly written down. While the solution captures the emergence and

propagation of NESS (non-equilibrium steady state) qualitatively, the first-order solution

is not enough to reproduce the properties of NESS such as the values of metric functions

and asymmetry of the full solution.

The discretely superposed sinusoidal waves, which can be the Fourier series expan-

sion of an arbitrary piecewise continuous periodic function, were considered for both the

asymptotically flat and AdS black branes in sections 2.3 and 3.4, respectively, and the first-

and second-order solutions were written down explicitly. For the black brane in the flat

background, the non-trivial feature of GL (Gregory-Laflamme) instability was revealed.
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Namely, the mode-mode coupling at the second order can make the perturbation grows

even if the initial perturbation damps at the first order. For the black brane in the AdS

background, the shock propagation considered in section 3.3 was re-investigated. Thanks

to the second-order contribution, the values and asymmetric features of the full solution

were reproduced, illustrating the usefulness of the formalism in this paper.

There are many things to do by applying and generalizing the formulation presented

in this paper. For instance, (i) it would be interesting to investigate further why the sign

of convergence to non-uniform black string (NUBS) of asymptotically flat black string does

not appear even in the second-order perturbation. (ii) One is able to investigate the various

type of shock-wave propagation such as those discussed in ref. [7] if one slightly changes

the ansatz of expansion (2.4) and (2.5), which is straightforward. (iii) Including 1/D

corrections and charges of background black branes [11–13] would increase the problems

to be worked by our formalism.
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A Sinusoidal waves in AdS with p1(0, z) = ∂zm1(0, z)

For the initial perturbation to the asymptotically AdS black branes which is the superpo-

sition of sinusoidal waves (2.35)–(2.37), we obtain

m1(t, z) =
1

2

N
∑

n=1

an[(1− ikn)e
s+(kn)t + (1 + ikn)e

s−(kn)t] cos(knz + ϕn), (A.1)

p1(t, z) = − i

2

N
∑

n=1

an[(1− ikn)e
s+(kn)t − (1 + ikn)e

s−(kn)t] sin(knz + ϕn). (A.2)

Using the concrete form of the dispersion relation sσ(k), we obtain the following form of

first-order solution,

m1(t, z) =
N
∑

n=1

√

1 + k2nane
−k2

n
t cos(knt+ ϑn) cos(knz + ϕn), (A.3)

p1(t, z) =

N
∑

n=1

√

1 + k2nane
−k2

n
t sin(knt+ ϑn) sin(knz + ϕn), (A.4)

where

cosϑn :=
1

√

1 + k2n
, sinϑn := − kn

√

1 + k2n
. (A.5)
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Equations (3.26), (3.28), and (3.29) hold just by replacing F
(σ)(σ′)
nn′ for the following F̃

(σ)(σ′)
nn′ ,

F̃
(σ)(σ′)
nn′ :=

(1− ikn)(1− ikn′)

s+(kn) + s+(kn′)− sσ(kn + σ′kn′)
(e[s+(kn)+s+(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

− (1− ikn)(1 + ikn′)

s+(kn) + s−(kn′)− sσ(kn + σ′kn′)
(e[s+(kn)+s−(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

− (1 + ikn)(1− ikn′)

s−(kn) + s+(kn′)− sσ(kn + σ′kn′)
(e[s−(kn)+s+(k

n
′ )]t − esσ(kn+σ′k

n
′ )t)

+
(1 + ikn)(1 + ikn′)

s−(kn) + s−(kn′)− sσ(kn + σ′kn′)
(e[s−(kn)+s−(k

n
′ )]t − esσ(kn+σ′k

n
′ )t). (A.6)
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