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1 Introduction

One of the earliest examples of the AdS/CFT correspondence [1] is the D1/D5 system

on K3 or T 4. There, we expect that a marginal deformation of a 2d CFT with target

SymN (K3) is dual to large radius gravity on AdS3 × S3 ×K3 (and similarly for T 4). In

particular, there should be a region in the conformal moduli space where the low-lying CFT

spectrum matches the 6d supergravity Kaluza-Klein spectrum. A very nontrivial check of

this conjecture was done in [2, 3] where the elliptic genus of SymN (K3) was calculated at

the symmetric orbifold point, and compared to the supergravity elliptic genus, and the two

were found to match.

More generally, one can look at the growth of the low-lying states in a 2d CFT and

see if it is consistent for it to be dual to large-radius gravity. In particular, elliptic genus

of a purported 2d CFT dual to large-radius gravity must have the number of low-lying

states grow subexponentially with dimension [4]. The growth of the low-lying states in the

elliptic genus of SymN (K3) is given by [5]

ρEG
SymN (K3)

(n) ∼ Nexp
(√

48π
√
n
)

(1.1)
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where ρEG
SymN (K3)

(n) counts states n above the vacuum in the NS-sector elliptic genus of

SymN (K3), and crucially 1� n� c = 6N .1

In this paper, instead of simply computing the elliptic genus (a signed count of

quarter-BPS states) of SymN (K3), we will compute the recently introduced “Hodge el-

liptic genus” [6], which counts quarter-BPS states without cancellations. We compute this

object at various points in the symmetric orbifold moduli space, and see the growth of

the low-lying states. In particular, we will find that at the supergravity point, the Hodge

elliptic genus grows as

ρHEG
sugra,K3(n) ∼ N exp

(
4
√

2π

33/4
n3/4

)
(1.2)

which is parametrically faster than (1.1). Thus we expect a very large number of can-

cellations in the quarter-BPS spectrum, even at the supergravity point in moduli space.

From dimensional analysis arguments, we expect the total partition function of the six-

dimensional supergravity to grow as

ρPF
sugra,K3(n) ∼ exp

(
n5/6

)
. (1.3)

The mismatch between (1.3) and (1.2) can be understood as restricting our attention to

BPS states; the mismatch between (1.2) and (1.1) can be understood as cancellations

between said BPS states. We pause to emphasize that the refined count of states we

propose is counting not black hole states in the gravity description, but low-lying KK

modes. Indeed, in the known examples where the elliptic genus already gets the black hole

entropy correct (such as the D1/D5 system on K3 [7]), the Hodge elliptic genus and the

elliptic genus must have the same parametric growth when counting black hole states.

The organization of this note is as follows. In section 2 we will study the growth of the

Hodge elliptic genus for both SymN (K3) and SymN (T 4) at the symmetric orbifold point

and at the supergravity point. In section 3 we decompose the various Hodge elliptic genera

calculated into N = 4 characters and see how the decomposition changes at different points

in the moduli space. Suggestive relations to symmetry groups including the sporadic finite

group M22 are found in the decomposition. In section 4 we give some concluding remarks.

2 Growth of BPS states

The Hodge elliptic genus, introduced in [6], is defined for theories with at least N = (2, 2)

supersymmetry as

ZHEG(τ, z, ν) = TrRR

(
(−1)FL+FRqL0− c

24 yJ0uJ̄0
) ∣∣∣∣

h̄= c
24

(2.1)

where trace is taken only over right-moving Ramond ground states, which have h̄ = c
24 .

Here and throughout this paper, we define q = e2πiτ , y = e2πiz, u = e2πiν . By definition,

1The divergence as N goes to infinity is simply due to the large number of right-moving Ramond ground

states that all contribute to the genus.

– 2 –
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this object only counts quarter-BPS states, since we only take contributions from right-

moving supersymmetric states. Note that the Hodge elliptic genus is not an index; as we

vary around points in the CFT moduli space, various short multiplets can combine to form

long multiplets in a way that does not leave (2.1) invariant. If we take y = u = −1 in (2.1),

then this reduces to

ZHEG (τ, 1/2, 1/2) = TrRR

(
qL0− c

24

) ∣∣
h̄= c

24
, (2.2)

in other words a simple count of the quarter-BPS spectrum of the theory.

2.1 K3

We will first investigate the growth of coefficients of the Hodge elliptic genus in SymN (K3).

We study the growth at three points in the moduli space: at the symmetric orbifold point

of the T 4/Z2 orbifold; at the symmetric orbifold point of a generic K3 surface; and at the

supergravity description. Much of this analysis will be quite similar to that in [5].

2.1.1 SymN(T 4/Z2)

We will first consider a T 4/Z2 orbifold as our K3 surface. The Hodge elliptic genus of this

is easily calculated from free field theory; it is calculated in [6] and is given by

ZHEG,T 4/Z2
(τ,z,ν) =8

((
θ1(τ,z)

θ1(τ)
u−

)2

+

(
θ2(τ,z)

θ2(τ)
u+

)2

+

(
θ3(τ,z)

θ3(τ)

)2

+

(
θ4(τ,z)

θ4(τ)

)2
)

=u−1y−1+uy−1+u−1y+uy+20+
(
4u−1y−1+4uy−1+4u−1y+4uy

−136y−136y−1+20y2+20y−2−8u−8u−1+232
)
q+O(q2)

:=
∑
m,`,`′

cT 4/Z2
(m,`,`′)qmy`u`

′
(2.3)

where u± := 1
2

(
u1/2 ± u−1/2

)
and the theta functions are defined in appendix A.

We can use a modification of the DMVV formula [6, 8] to get the Hodge elliptic genus

growth at the symmetric orbifold point. In particular, we have∑
n≥0

ZHEG,Symn(T 4/Z2)(τ, z, ν)pn =
∏
n>0
m≥0
`,`′

1

(1− pnqmy`u`′)cT4/Z2
(nm,`,`′)

. (2.4)

We can spectral flow to the NS-R sector2 to get∑
n≥0

ZNS
HEG,Symn(T 4/Z2)(τ, z, ν)pn =

∏
n>0
m≥0
`,`′

1

(1− pnqm+`/2+n/2y`+nu`′)
cT4/Z2

(nm,`,`′)

=
∏
n>0
m∈ Z

2

m− `
2
∈Z

1

(1− pnqmy`u`′)cT4/Z2
(nm−n`

2
,`−n,`′)

. (2.5)

2For convenience, we use a convention where the NS vacuum is at q0, not q−c/24 = q−n.
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In order to reproduce the growth of quarter-BPS states with no cancellations, we can

simply set y = u = −1, as in (2.2). After doing so, note that the only term in the product

we get with no q dependence occurs at n = 1,m = 0, ` = 0, `′ = ±1 in the product. Thus

we get∑
n≥0

ZNS
HEG,Symn(T 4/Z2)(τ, 1/2, 1/2)pn =

1

(1 + p)2

∏
n>0

m∈ Z
2 ,m>0

m− `
2∈Z

1

(1− pnqm(−1)`+`′)cT4/Z2
(nm−n`

2 ,`−n,`′)
.

(2.6)

The divergence of the BPS spectrum as n→∞ due to right-moving Ramond ground states

can be seen in the
1

(1 + p)2
= 1− 2p+ 3p2 − 4p3 + . . . (2.7)

prefactor of (2.6). At large N , the growth of states of SymN (T 4/Z2) will therefore scale

linearly with N ; to extract the coefficient, we can set p = −1 in the product in (2.6). In

other words, at large N we have

1

N
ZNS

HEG,SymN (T 4/Z2)
(τ,1/2,1/2) =

∏
n>0

m∈ Z
2
,m>0

m− `
2
∈Z

1

(1−qm(−1)n+`+`′)
cT4/Z2

(nm−n`
2
,`−n,`′)

+O(qN/4)

=
∏

m∈ Z
2
,m>0

(1+qm)
fT4/Z2

(m)

(1−qm)
gT4/Z2

(m)
+O(qN/4) (2.8)

where fT 4/Z2
(m) and gT 4/Z2

(m) are defined as

fT 4/Z2
(m) =

∑
n>0,n∈Z

`≡2m (mod 2)
`′≡2m+n+1 (mod 2)

−cT 4/Z2
(nm− n`

2
, `− n, `′)

gT 4/Z2
(m) =

∑
n>0,n∈Z

`≡2m (mod 2)
`′≡2m+n (mod 2)

cT 4/Z2
(nm− n`

2
, `− n, `′). (2.9)

Note if we consider gT 4/Z2
(m)−fT 4/Z2

(m), we are summing over `′, effectively setting u = 1

in the Hodge elliptic genus, which reproduces the K3 elliptic genus. Thus

gT 4/Z2
(m)− fT 4/Z2

(m) =
∑

n>0,n∈Z
`≡2m (mod 2)

cEG
K3(nm− n`

2
, `− n) (2.10)

where cEG
K3 measures the coefficients of the elliptic genus of K3, not the Hodge elliptic

genus. In [5], the r.h.s. of (2.10) was calculated to be 44 for all half-integer m, and 28

for integer m. The asymptotic growth of fT 4/Z2
(m) and gT 4/Z2

(m) then are the same.

Moreover, it can be shown that if fT 4/Z2
(m) + gT 4/Z2

(m) grow as mp for some p, then the

– 4 –
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m 1
2 1 3

2 2 5
2 3 7

2 4

fT 4/Z2
(m) 0 288 4416 75168 1370688 26195808 516627840 10420480416

gT 4/Z2
(m) 44 316 4460 75196 1370732 26195836 516627884 10420480444

Table 1. First few values of fT 4/Z2
(m) and gT 4/Z2

(m), defined in (2.9).

qn coefficient of (2.8) grows as exp
(
n

p+1
p+2

)
; but if it grows faster than polynomial in m,

then (2.8) exhibits Hagedorn growth3 (see appendix B).

We can of course do a very similar analysis for any symmetric orbifold SymN (X). We

would then define the analogous functions fX(m) and gX(m) as in (2.9):

fX(m) =
∑

n>0,n∈Z
`≡2m (mod 2)

`′≡2m+n+1 (mod 2)

−cX(nm− n`

2
, `− cn

6
, `′)

gX(m) =
∑

n>0,n∈Z
`≡2m (mod 2)

`′≡2m+n (mod 2)

cX(nm− n`

2
, `− cn

6
, `′). (2.11)

where cX are the coefficients of the seed theory X and c is the central charge of the seed

theory X. At large N , the number of BPS states n above the vacuum is similarly given by

the qn term of ∏
m∈ Z

2
,m>0

(1 + qm)fX(m)

(1− qm)gX(m)
. (2.12)

In fact, we can show that at any symmetric orbifold point, fX(m) will grow as e2πm,

which will give us a Hagedorn density of BPS states. In particular, every term in both sums

of (2.11) is manifestly nonnegative. First, fX(m) only gets contributions from terms with

odd eigenvalue under J0 + J̄0, which therefore gets a minus sign under the (−1)F in (2.1)

that cancels the sign in the definition of fX(m). Likewise gX(m) only gets contributions

from terms with even eigenvalue under the same operator, so each term comes positive.

Thus we can get no cancellations, and can put a lower bound on the growth by looking at

one term in the sum. In [5], this was estimated from the Cardy formula of the seed theory,

which gives fX(m) growing as e2πm at large m. Note that unlike in [5], no cancellations

are allowed in fX(m) and gX(m); thus, we cannot get sub-Hagedorn growth.

To illustrate, we show the first few values of fT 4/Z2
(m) and gT 4/Z2

(m) in table 1, and

plot the sum in figure 1.

2.1.2 SymN(generic K3)

The T 4/Z2 theory is at a very special point in the K3 moduli space. We can also consider

the symmetric orbifold of a generic K3 surface. The Hodge elliptic genus for a generic K3

3We know it cannot grow superexponentially since the partition function itself at any symmetric orbifold

point has a Hagedorn density of states [9–12], which provides an upper bound.

– 5 –
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Figure 1. A plot of log (fT 4/Z2
(m) + gT 4/Z2

(m)) up to m = 5 for T 4/Z2. Note the exponential

growth in m.

was recently computed in [13], by making the simple assumption that at a generic point in

the K3 moduli space, the chiral algebra should not enhance: for all integers n > 0, there

should be no states with h = n, h̄ = 0 (or the reverse).

For K3, it turns out that this assumption, combined with knowledge of the elliptic

genus, is enough to fix the Hodge elliptic genus. It is given by [13]

ZHEG,K3(τ, z, ν) = (2− u− u−1)χvac(τ, z) + ZEG,K3(τ, z)

= u−1y−1 + uy−1 + u−1y + uy + 20 +
(
u−1y−1 + uy−1 + u−1y + uy

− 130y − 130y−1 + 20y2 + 20y−2 − 2u− 2u−1 + 220
)
q +O(q2)

:=
∑
m,`,`′

cK3(m, `, `′)qmy`u`
′

(2.13)

where ZEG,K3(τ, z) is the elliptic genus of a K3 surface and χvac(τ, z) is the Ramond

vacuum character of the N = 4 algebra at c = 6.4

The analysis of the growth follows exactly the same as in section 2.1.1, with

1

N
ZNS

HEG,SymN (K3)
(τ, 1/2, 1/2) =

∏
m∈ Z

2
,m>0

(1 + qm)fK3(m)

(1− qm)gK3(m)
+O(qN/4), (2.14)

and fK3(m) and gK3(m) defined as in (2.11) (with cX replaced with cK3). The first few

values are plotted below in table 2, and plotted in figure 2.

2.1.3 Supergravity

Finally we can also analyze the growth of the Hodge elliptic genus at the supergravity point

in moduli space. Here, unfortunately, the conformal field theory becomes very strongly

coupled, and intractable; however, we can obtain the BPS spectrum by looking at the

4This is given in (3.3), by taking χs,R
0 with m = 1.

– 6 –
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m 1
2 1 3

2 2 5
2 3

fK3(m) 0 264 4160 71984 1328848 25602688

gK3(m) 44 292 4204 72012 1328892 25602716

Table 2. First few values of fK3(m) and gK3(m), defined in (2.11) for a generic K3 surface.

� � � � �
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���( ���(�) + ���(�))

Figure 2. A plot of log (fK3(m) + gK3(m)) up to m = 3 for a generic K3. Note the exponential

growth in m.

supergravity Kaluza-Klein modes. The 6d N = (2, 0) supergravity KK spectrum on AdS3×
S3 was computed in [2, 3], and is organized into representations of SU(1, 1|2)× SU(1, 1|2).

The KK spectrum has only short representations of SU(1, 1|2) × SU(1, 1|2), which are

labelled in [2] by (j, j′)S . This represents a chiral primary state on both the left and right,

with L0 eigenvalue j/2 and J0 eigenvalue j; and L̄0 eigenvalue j′/2 and J̄0 eigenvalue j′.

The supergravity multiplet is then obtained by acting with global part of the N = (4, 4)

algebra. In [3], agreement with the elliptic genus is obtained by introducing an exclusion

principle, which introduces a “degree” to each multiplet (j, j′). At finiteN , the supergravity

quarter-BPS spectrum is given by multiparticle states whose total degree is equal to N .

The short multiplets and their degrees are given in eq. (2.8) of [3]; we reproduce it

below, where each triplet (j, j′; d)S gives the spins of each chiral primary, and the degree:

(m− 1,m+ 1;m)S

(m+ 1;m+ 1;m)S

20(m,m;m)S

(m,m;m+ 1)S

(m+ 1,m− 1;m)S . (2.15)

In (2.15), m = 1, 2, 3, . . ..

– 7 –
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To get the full BPS spectrum, we need to include multiparticle states as well. This is

given then by

∑
n≥0

ZHEG,sugra,n(τ, z, ν)pn =
∏

n>0,m,`,`′

1

(1− pnqmy`u`′)csugra(n,m,`,`′)
(2.16)

where csugra(n,m, `, `′) is counting single-particle states in the Hilbert space with degree

n, L0 eigenvalue m, J0 eigenvalue `, and J̄0 eigenvalue `′, weighted with a (−1)F , and only

getting contributions from supersymmetric states on the right.

If we write a generating function for the states contributing from a chiral primary of

spin j, we get (see eq. (2.1) in [3])

Tr(j)S (−1)F qL0yJ0 =
qj/2

(1− q)(y − y−1)

(
(yj+1 − yj−1)− 2q

1
2 (yj − y−j) + q(yj−1 − y1−j)

)
.

(2.17)

Now we need to sum over all the left-moving states that appear in (2.15), and include both

the degree and the u-dependence from the right-moving ground states. The supergravity

calculation is interpreted as the NS-NS sector of the CFT [14], so to match to the NS-

R elliptic genus, we spectral flow the right-movers by 1/2 unit. This is done by shifting

the J̄0 eigenvalue by N , which we interpret as the degree. This means that for each line

in (2.15), we only get one charge under the J̄0 after spectral flow. Our final expression for

csugra(n,m, `, `′) is then

∑
n,m,`,`′

csugra(n,m, `, `′)pnqmy`u`
′

=
1

(1− q)(y − y−1)

(
(u+ u−1)p2

1− q1/2yp
(y2q1/2 − 2yq + q3/2)

− (u+ u−1)p2

1− q1/2y−1p
(y−2q1/2 − 2y−1q + q3/2) +

(u+ u−1)p

1− q1/2yp
(y3q − 2y2q3/2 + yq2)

− (u+ u−1)p

1− q1/2y−1p
(y−3q − 2y−2q3/2 + y−1q2) +

20p

1− q1/2yp
(y2q1/2 − 2yq + q3/2)

− 20p

1− q1/2y−1p
(y−2q1/2 − 2y−1q + q3/2)

)
+ (u+ u−1)p. (2.18)

The first two terms in (2.18) correspond to the first and fourth lines of (2.15); the next

two correspond to the second and fifth lines; and the next two correspond to the third line.

Note that setting u = 1 indeed reproduces eq. (5.9) of [3].

To find the unsigned growth of the quarter-BPS states, we can simply take (2.16), and

set y = u = −1, as seen from (2.2). This gives

∑
n≥0

ZHEG,sugra,n(τ, 1/2, 1/2)pn =
∏

n>0,m,`,`′

1

(1− pnqm(−1)`+`′)csugra(n,m,`,`′)
(2.19)

=
1

(1 + p)2

∏
n>0,m>0,`,`′

1

(1− pnqm(−1)`+`′)csugra(n,m,`,`′)
.

– 8 –
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To extract the large N behavior of (2.19), we can set p to −1 in the product. Using the

form of csugra in (2.18) we then get at large N ,

1

N
ZHEG,sugra,N (τ, 1/2, 1/2) =

∏
n>0,m>0,`,`′

1

(1− qm(−1)n+`+`′)csugra(n,m,`,`′)

=
∞∏
m=1

(1 + qm−
1
2 )48m2−48m

(1− qm−
1
2 )48m2−48m+44

(1 + qm)48m2−4

(1− qm)48m2+24
(2.20)

= 1 + 44
√
q + 1106q + 20520q3/2 + 310735q2 +O(q5/2).

The form of (2.20) is very similar to that of (2.12), but with the analogous f(m)+g(m)

growing as m2, so the qn coefficient grows as exp
(
n3/4

)
.5 In appendix B, we show it grows

in particular like exp
(

4
√

2π
33/4

n3/4
)

. Note that this is parametrically faster than the elliptic

genus, which grows as exp
(
n1/2

)
, which means that even at the supergravity point, there

must be substantial cancellations between the supersymmetric states in the theory. We

will explicitly see some of these cancellations in section 3. Finally we note that we can see

the exp
(
n3/4

)
growth in the supergravity KK spectrum from a naive counting argument.6

From dimensional grounds the number of states in the full CFT at the supergravity should

grow as exp
(
n5/6

)
(due to arguments from scaling of the 6d supergravity). However, we

count only BPS states, which gives us two constraints: h̄ = q̄/2 (BPS condition), and

|h− h̄| ≤ 2 (absence of higher spin). This brings us down to the exp (n3/4) growth seen.

2.2 T 4

We can repeat the above analysis for the D1/D5 system on T 4. Here the elliptic genus

vanishes due to right-moving fermion zero-modes (though one can define a modified index

that does not vanish [15]).

2.2.1 SymN(T 4)

To get the Hodge elliptic genus at the symmetric orbifold point, we again need the Hodge

elliptic genus for the seed theory. In [6], this was computed for a generic T 4 as

ZHEG,T 4(τ,z,ν) =

(
4
θ1(τ,z)

θ1(τ)
u−

)2

=u−1y−1+u−1y+uy−1+uy−2u−1−2u−2y−1−2y+4+(
−2u−1y−2−2u−1y2−2uy−2−2uy2+8u−1y−1+8u−1y+8uy−1+8uy

−12u−1−12u−16y−1−16y+4y−2+4y2+24
)
q+O(q2)

:=
∑
m,`,`′

cT 4(m,`,`′)qmy`u`
′
. (2.21)

5In section 2.1.1, we showed that any symmetric orbifold has fX(m)+gX(m) growing exponentially with

m which leads to a Hagedorn density of states. Here, near the supergravity point, we find the analogous

f(m) + g(m) growing polynomially with m, which leads to a sub-Hagedorn density of states. There is no

contradiction, of course, because we are not at the orbifold point in moduli space.
6We thank Christoph Keller for explaining to us this argument.
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m 1
2 1 3

2 2 5
2 3 7

2 4

fT 4(m) 12 76 652 6988 87180 1207500 18021132 284382028

Table 3. First few values of fT 4(m) for T 4.

� � � � � �
�

�

��

��

��

��

�

���(� ���(�))

Figure 3. A plot of log (2fT 4(m)) up to m = 5 for T 4. Note the exponential growth in m.

Again, we repeat the analysis in section 2.1.1 to get the growth of states in the

SymN (T 4) theory. This time however, the r.h.s. of (2.10) vanishes, since all the coeffi-

cients cEG
T 4 vanish (due to the elliptic genus of T 4 being zero). Thus the growth for the

quarter BPS spectrum goes as

1

N
ZNS

HEG,SymN (T 4)
(τ, 1/2, 1/2) =

∏
n>0

m∈ Z
2
,m>0

m− `
2
∈Z

1

(1− qm(−1)n+`+`′)cT4 (nm−n`
2
,`−n,`′)

+O(qN/4)

=
∏

m∈ Z
2
,m>0

(
1 + qm

1− qm

)fT4 (m)

+O(qN/4). (2.22)

The first few values of fT 4(m) are listed in table 3 and plotted in figure 3.

2.2.2 Supergravity

We can also analyze the 6d N = (2, 2) supergravity spectrum on AdS3 × S3. The KK

spectrum will decompose as short representations of SU(1, 1|2) × SU(1, 1|2). The table of

representations that show, as well as the degree we associate to each, is

(m,m;m+ 1)S

2(m− 1,m;m)S
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2(m,m− 1;m)S

(m− 1,m+ 1;m)S

(m+ 1,m− 1;m)S

4(m,m;m)S

2(m,m+ 1;m)S

2(m+ 1,m;m)S

(m+ 1,m+ 1;m)S , (2.23)

m = 1, 2, . . .. (The states with a 2 in front have the highest weight state fermionic, so they

will come with a sign when we count.) Counting the single-particle states weighted with a

(−1)F then gives∑
n,m,`,`′

csugra(n,m,`,`′)pnqmy`u`
′
=

1

(1−q)(y−y−1)

(
(u+u−1−2)p2+(4−2u−1−2u)p

1−q1/2yp
(y2q1/2−2yq+q3/2)

− (u+u−1−2)p2+(4−2u−1−2u)p

1−q1/2y−1p
(y−2q1/2−2y−1q+q3/2)

+
(u+u−1−2)p

1−q1/2yp
(y3q−2y2q3/2+yq2)− (u+u−1−2)p

1−q1/2y−1p
(y−3q−2y−2q3/2+y−1q2)

)
+(u+u−1−2)p. (2.24)

We then get∑
n≥0

ZHEG,sugra,n(τ, 1/2, 1/2)pn =
∏

n>0,m,`,`′

1

(1− pnqm(−1)`+`′)csugra(n,m,`,`′)
(2.25)

=
(1− p)2

(1 + p)2

∏
n>0,m>0,`,`′

1

(1− pnqm(−1)`+`′)csugra(n,m,`,`′)
.

Again, we can extract the large N behavior by setting p = −1 in the product in (2.25).

This gives

1

N
ZHEG,sugra,N (τ, 1/2, 1/2) = 4

∏
n>0,m>0,`,`′

1

(1− qm(−1)n+`+`′)csugra(n,m,`,`′)
(2.26)

= 4
∞∏
m=1

(
1 + qm/2

1− qm/2

)8m2+4

= 4 + 96
√
q + 1440q + 16768q3/2 + 165024q2 +O(q5/2).

As far as asymptotics, the qn term in (2.26) grows as exp
(

4π(23/4)
3 n3/4

)
. (See appendix B

for derivation.)7

7See also [16, 17] for analysis of the quarter-BPS spectrum at the supergravity point.
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3 Character decomposition

In this section we now decompose the various Hodge elliptic genera computed into char-

acters of the N = 4 algebra. These representations and their characters were studied

in [18–20], we review some results below.

3.1 N = 4 characters

We label the representations of the N = 4 superconformal algebra by the L0 and J0 eigen-

values of their highest weight state (h and j respectively). The representations come in

two types: short (or BPS) representations which have h = j
2 , and long (or non-BPS)

representations which have h > j
2 . There are m + 1 different short representation, corre-

sponding to j = 0, 1, . . . ,m, and there are m families of long representations labelled by

j = 0, 1, . . . ,m− 1, where c = 6m. The characters of each representation r, defined as

χ(τ, z) = Trr
(
(−1)F yJ0qL0

)
, (3.1)

are given by

χs,NS
j (τ, z) = qj/2(−1)j

(
−iq1/4θ4(τ, z)2

θ1(τ, 2z)η(τ)3

)
∑
k∈Z

q(m+1)k2+(j+1)k

(
y2(m+1)k+j+1

(1− yqk+ 1
2 )2
− y−2(m+1)k−j−1

(1− y−1qk+ 1
2 )2

)

χ`,NS
j,h (τ, z) = qj/2+h(−1)j

(
−iq1/4θ4(τ, z)2

θ1(τ, 2z)η(τ)3

)
∑
k∈Z

q(m+1)k2+(j+1)k
(
y2(m+1)k+j+1 − y−2(m+1)k−j−1

)
(3.2)

where χs,NS
j is a short representation with highest weight state of spin and weight j/2,

and χ`j,h is a long representation with highest weight state of spin j/2 and weight j/2 + h.

In (3.2), all the characters are computed in the NS sector Hilbert space. To get the R

sector character, one simply spectral flows by 1/2 unit. The R sector characters are given

by8

χs,Rj (τ, z) = (−1)j+m
iθ1(τ, z)2

θ1(τ, 2z)η(τ)3∑
k∈Z

q(m+1)k2+ky2(m+1)k+1

(1− yqk)2

(
ym−j+1qk(m−j+1) − y−(m−j+1)q−k(m−j+1)

)
χ`,Rj,h (τ, z) = qh(−1)j+m

iθ1(τ, z)2

θ1(τ, 2z)η(τ)3∑
k∈Z

q(m+1)k2y2(m+1)k
(
qk(m−j)ym−j − q−k(m−j)y−(m−j)

)
(3.3)

8For convenience, our convention is that in the R sector, the characters are not defined as

Trr
(
(−1)F yJ0qL0

)
, but rather as Trr

(
(−1)F yJ0qL0− c

24

)
. This way, both the NS vacuum character and R

vacua characters start at q0. Also note that we label each character by j which is twice the spin in the NS

sector. The spin of the highest weight state in the R sector is (m− j)/2, not j/2.
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Evaluating the long characters at z = 0 reduces to calculating the Witten index, which

vanishes for long representations, and equals a constant for short representations.

χs,Rj (τ, 0) = (m+ 1− j)(−1)j+m

χ`,Rj,h (τ, 0) = 0. (3.4)

Moreover, some short multiplets can combine to form long multiplets. In particular,

χsj + 2χsj+1 + χsj+2 = χ`j,0 (3.5)

for j = 0, 1, . . . ,m− 2, and

χsm−1 + 2χsm = χ`m−1,0. (3.6)

Note that (3.5), (3.6) have vanishing l.h.s. when setting z = 0, which means the elliptic

genus is invariant when these short multiplets pair up.

Since we are decomposing the NS-R Hodge elliptic genus, we will use NS characters

on the left, and R characters on the right. Moreover, we only get short representations

on the right by definition of the Hodge elliptic genus, which means we only get integral

h long representations on the left (by modular invariance). Thus a general decomposition

will look like

ZHEG(τ, z, ν) =
∑
j,j̄

cj,j̄χ
s,NS
j (τ, z)χ̄s,R

j̄
(τ̄ , ν) +

∑
j,h,j̄

dj,h,j̄χ
`,NS
j,h (τ, z)χ̄s,R

j̄
(τ̄ , ν)

∣∣∣∣
h̄= c

24

. (3.7)

3.2 K3 decomposition

Now we will decompose the SymN (K3) Hodge elliptic genus into N = 4 characters at the

three regions in moduli space we calculated in section 2.1: SymN (T 4/Z2), SymN (K3), and

supergravity.

The first observation we make is that the coefficients cj,j̄ in (3.7) are independent of the

moduli. These coefficients count half-BPS states, and are fully determined by the Hodge

diamond of SymN (K3) which is independent of moduli and given by [21]

∞∑
n=0

χHodge, Symn(K3)(z, ν)pn

=
∞∏
k=1

1

(1− u−1y−1pk)(1− u−1ypk)(1− uy−1pk)(1− uypk)(1− pk)20
. (3.8)

The quarter-BPS state character decomposition does depend on moduli. We will look

at the characters contributing to low-lying states in the Hodge elliptic genus. In (3.7), a long

multiplet χ`,NS
j,h starts at qj/2+h. The lightest quarter-BPS states thus have h = 1, j = 0.

We show the multiplicities of all right-moving short characters multiplying χ`0,1 in table 4.

We pause to make two points. First, at the symmetric orbifold points, we have many

more states than at the supergravity point. This is indeed consistent with what was seen in

section 2.1, where we showed at the symmetric orbifold point, the quarter-BPS states grew

exponentially; compared to the subexponential growth at the supergravity region. Second,
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Theory χ`0,1χ̄
s
0 χ`0,1χ̄

s
1 χ`0,1χ̄

s
2 χ`0,1χ̄

s
3 χ`0,1χ̄

s
4 χ`0,1χ̄

s
>4

SymN (T 4/Z2) 3 102 428 142 44 0

↓ 3 ↓ 6 ↓ 3

SymN (K3) 0 90 410 130 41 0

↓ 90 ↓ 20

Supergravity 0 0 210 0 21 0

Table 4. Coefficients of all short characters multiplying χ`
0,1 for SymN (T 4/Z2), SymN (K3), and

the supergravity region. These are the coefficients d0,1,j̄ in (3.7) for j̄ = 0, 1, 2, . . . N . A number n

next to a downward-pointing arrow below short multiplet χ̄s
j represents 2n short multiplets of type

j combining with n of type j − 1 and j + 1 to form n long multiplets.

Long χ̄s0 χ̄s1 χ̄s2 χ̄s3 χ̄s4 χ̄s5 χ̄s6 χ̄s7 χ̄s8 χ̄s9 χ̄s10 χ̄s>10

χ`0,1 0 0 210 0 21 0 0 0 0 0 0 0

χ`1,1 0 0 0 3542 0 484 0 22 0 0 0 0

χ`2,1 0 0 21 0 36961 0 6281 0 506 0 22 0

χ`0,2 0 0 231 2660 21526 420 3796 0 275 0 1 0

Table 5. Coefficients of all short characters multiplying the first four long characters that at the

supergravity region in SymN (K3). Note that cancellations can (but do not) occur for χ`
0,2.

at the supergravity point, no more cancellations can occur amongst BPS states with χ`0,1
on the left. For BPS states to “pair up”, we need two of type j to combine with one of

type j − 1 and j + 1; this is impossible in the third line of table 4. We will see, however,

that this not always true in the supergravity. In table 5, we show the multiplicities of all

right-moving short characters multiplying χ`0,1 (q above the vacuum in the NS sector), χ`1,1
(q3/2 above the vacuum in the NS sector), χ`2,1 (q2 above the vacuum in the NS sector),

and χ`0,2 (q2 above the vacuum in the NS sector) at the supergravity point.

For quarter-BPS states with χ`0,2 on the left, we see from table 5 that cancellations can

occur but do not (for instance, χ̄s2, 2χ̄s3, and χ̄s4 can pair up 231 times). In fact, this appears

to be a general statement for all states with χ`j,h>1 on the left.9 Assuming that supergravity

has the slowest growth of low-lying states in the moduli space of SymN (K3), this implies

that at a generic point in the moduli space, it is not the case that short multiplets that

can pair up always do pair up. It would be interesting to understand if there was, e.g. an

extra symmetry that protected some of the short multiplets that do not pair up in table 5.

Another logical possibility is that there is a point in the moduli space with slower growth

than supergravity, in which all short multiplets that can cancel do cancel.

Finally we end this section with a curious numerological observation. Many of the

9In fact, we knew that at the supergravity point, we had to have cancellations possible in the character

decomposition — if cancellations could never occur, then the growth of the total number of quarter BPS-

states would be the same as the growth of the signed sum of quarter BPS-states. But in fact the former

grows as exp
(
n3/4

)
and the latter as exp

(
n1/2

)
.
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multiplicities in table 5 decompose very nicely under sizes of irreducible representations of

the sporadic Mathieu group M22. For instance,

210 = 210, 21 = 21, 484 = 99 + 385, 22 = 1 + 21, 231 = 231

506 = 1 + 21 + 99 + 385, 420 = 210 + 210, 275 = 1 + 1 + 21 + 21 + 231. (3.9)

where the bolded numbers in (3.9) are irreducible representations of M22. It would be

interesting if there were some CFT in the moduli space with a natural M22 symmetry

(for instance, some point in the moduli space where the supergravity interactions break a

naive symmetry of the states in the 6d (2, 0) supergravity theory into an M22). Relations

between the elliptic genus of K3 and the related Mathieu group M24 have been discussed

in many papers, starting with [22].

4 Discussion

In this paper, we analyzed the recently introduced Hodge elliptic genus [6] at various

points in the moduli space of a 2d CFT with target SymN (K3) and SymN (T 4). We

showed that at the symmetric orbifold point of any supersymmetric sigma model with

target SymN (X), the entropy of the low-lying quarter-BPS spectrum grows exponentially

with the dimension. However, after a deformation to the large-radius supergravity point

for both K3 and T 4, the total entropy of the quarter-BPS spectrum scales as exp
(
n3/4

)
.

This is to be contrasted with the signed quarter-BPS spectrum (the elliptic genus), whose

growth scales as exp
(
n1/2

)
. This means that at the supergravity point, there are still many

cancellations that do occur between BPS states.

We can make this more precise by looking at the character decomposition of this

quantity. We decompose the Hodge elliptic genera computed at various points in the

SymN (K3) moduli space into N = 4 characters. As we move from the symmetric orbifold

point to the large radius supergravity, we can explicitly see short multiplets pair up to form

long multiplets, which vanish in the genus (see table 4). However, even at the supergravity

point, we see many short multiplets that could potentially pair up that do not. Finally,

we note that at the supergravity point, the Hodge elliptic genus decomposed into N = 4

characters suggest a possible relation to the sporadic group M22. We conclude with a list

of potentially interesting questions:

• Is the growth exhibited at the supergravity point generic in the SymN (K3) and

SymN (T 4) moduli space? If not, is there a point that grows slower than supergravity?

• Is there some extra symmetry preventing more quarter-BPS states from combining

into nonsupersymmetric states at a generic point?

• Is there any relation between the group M22 and the D1/D5 system?

• Do we get anything interesting studying the decomposition of SymN (T 4) Hodge el-

liptic genera into contracted large N = 4 characters?
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• Is there an interpretation for places in the moduli space where the Hodge elliptic

genus “jumps”?

• Can the Hodge elliptic genus provide a more refined count to the black hole entropy

when the elliptic genus gets the count wrong due to too many cancellations (see

e.g. [23])?

• Can cancellations at generic points in the Hodge elliptic genus be used to understand

the BPS spectrum in the S-dual of the D1/D5 system [24]?10
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A Theta functions

We define the standard Jacobi theta functions

θ1(τ, z) = −iq
1
8 y

1
2

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1)

θ2(τ, z) = q
1
8 y

1
2

∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn−1)

θ3(τ, z) =

∞∏
n=1

(1− qn)(1 + yqn−
1
2 )(1 + y−1qn−

1
2 )

θ4(τ, z) =

∞∏
n=1

(1− qn)(1− yqn−
1
2 )(1− y−1qn−

1
2 ). (A.1)

With the second argument suppressed, we are taking it at z = 0, except for θ1, where

we remove the zero-mode. More explicitly

θ1(τ) = −2iq
1
8

∞∏
n=1

(1− qn)3

θ2(τ) = θ2(τ, 0) = 2q
1
8

∞∏
n=1

(1− qn)(1 + qn)2

θ3(τ) = θ3(τ, 0) =

∞∏
n=1

(1− qn)(1 + qn−
1
2 )2

θ4(τ) = θ4(τ, 0) =
∞∏
n=1

(1− qn)(1− qn−
1
2 )2. (A.2)

10See also [16, 17].
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Finally we define the Dedekind eta function as

η(τ) = q1/24
∞∏
n=1

(1− qn). (A.3)

B Derivation of prefactor

In this appendix we derive the growth of the qn coefficient of

∞∏
m=1

1

(1− qm)amp (B.1)

and
∞∏
m=1

(1 + qm)am
p

(B.2)

which has been used often in section 2. Let’s first consider (B.1) where we take q = 1− ε:
∞∏
m=1

1

(1− qm)amp = exp

(
−
∞∑
m=1

amp log (1− qm)

)

= exp

( ∞∑
m=1

∞∑
n=1

amp

n
qnm

)

∼ exp

( ∞∑
n=1

ap!

n(1− qn)p+1

)

∼ exp

( ∞∑
n=1

ap!

n(nε)p+1

)

∼ exp

(
ap!ζ(p+ 2)

(− log q)p+1

)
. (B.3)

The qx coefficient is given by doing the integral

1

2πi

∮
dq exp

(
ap!ζ(p+ 2)

(− log q)p+1
− x log q

)
(B.4)

which can be evaluated by saddle to give

a
1

p+2 (p!)
1

p+2 ζ(p+ 2)
1

p+2

(
p+ 2

(p+ 1)
p+1
p+2

)
x

p+1
p+2 . (B.5)

We can evaluate the qx growth of (B.2) using the same strategy; the final answer gives

(1− 2−p−1)
1

p+2a
1

p+2 (p!)
1

p+2 ζ(p+ 2)
1

p+2

(
p+ 2

(p+ 1)
p+1
p+2

)
x

p+1
p+2 . (B.6)

This is the same as (B.5), but with a→ (1−2−p−1)a. In (2.20), we can therefore take (B.5)

with a = 96 + 96(1 − 2−p−1) and p = 2, giving 4
√

2π
33/4

for the prefactor in the exponential.

Similarly, in (2.26), we can take (B.5) with a = 64+64(1−2−p−1) and p = 2, giving 4π(23/4)
3

as the prefactor in the exponential.
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