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1 Introduction

The high-energy limit of gauge-theory scattering amplitudes has long been understood to

offer a unique insight into gauge dynamics. In this kinematic limit, amplitudes drastically

simplify and factorise in rapidity, giving rise to new degrees of freedom in two dimensions.

Within perturbative QCD, BFKL [1, 2] and related rapidity evolution equations allow
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us to translate concepts from Regge theory [3] into calculation tools, leading to concrete

predictions. The simplest example is that of the Reggeized gluon, the effective interaction

which governs the behaviour of 2 → 2 scattering amplitudes in QCD in the limit where

the energy s is much larger than the momentum transfer −t. In the leading logarithmic

approximation the exchange of a single Reggeized gluon leads to a trivial evolution equation

in rapidity, which amounts to straightforward exponentiation of logarithms of |s/t| to all

orders in the coupling. At higher logarithmic accuracy more complex analytic structure

emerges, which can be understood in QCD as compound states of two or more Reggeized

gluons [4–6]. In contrast to the single Reggeon case, these are difficult to solve in general [7,

8]. Nevertheless, they can be integrated iteratively, thus generating perturbative high-

energy amplitudes order-by-order in the coupling.

Taking the high-energy limit, s� −t, a fast moving projectile can be seen as a cloud

of partons, each of which is dressed by a Wilson line, sourcing additional radiation. The

high-energy limit corresponds to forward scattering, where recoil is neglected, hence the

effective description is in terms of straight infinite lightlike Wilson lines [9, 10]. The number

and transverse positions of these Wilson lines are not fixed, since the projectile can contain

an arbitrary number of quantum fluctuations. The evolution of the system in rapidity

is controlled by the Balitsky-JIMWLK equation [11–15]. In ref. [16] it was shown how

to translate the latter into evolution equations controlling a given number of Reggeized

gluons. These equations are in general coupled, and in particular, the evolution of three

Reggeized gluons involves mixing with a single Reggeized gluon. In the present paper

we explore this mixing for the first time. We use the leading-order Balitsky-JIMWLK

equation to derive the effective Hamiltonians governing the diagonal and next-to-diagonal

evolution terms describing k Reggeized gluon evolution into k and k+ 2 ones, respectively,

and use symmetry considerations to obtain the mixing into k − 2 ones. We then use these

evolution equations to explicitly compute three-loop corrections to the signature odd 2 → 2

amplitude in the high-energy limit, and compare them to other recent results.

It is well known that gauge-theory amplitudes have long-distance singularities, which

cancel in physical observables such as sufficiently inclusive cross sections. Owing to the

factorization properties of fixed-angle scattering amplitudes [17, 18] these singularities are

largely process-independent. Furthermore, they admit evolution equations leading to expo-

nentiation. Of special interest are soft singularities, which in contrast to collinear ones, are

sensitive to the colour flow of the underlying hard process. Soft singularities can be com-

puted by considering correlators of semi-infinite Wilson lines [19–27]. The corresponding

soft anomalous dimension encodes the structure of these singularities to all orders in per-

turbation theory. In recent years there has been significant progress [28–36] in determining

the precise structure of long-distance singularities to massless gauge theories. Through a

recent explicit computation of the soft anomalous dimension, these are now known in full

for amplitudes with any number of legs in general kinematics through three loops [35, 36].

While infrared factorization of fixed-angle scattering and high-energy factorization

start from different kinematic set ups, and are based on different evolution equations, they

lead to partially overlapping predictions for the structure of scattering amplitudes. In

recent years the complementary nature of these two factorization pictures has been put
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to use [16, 37–40]. For example, refs. [37, 38] showed that infrared factorization excludes

the simplest form of Regge factorization where the amplitude in the high-energy limit is

governed by a so-called Regge pole, and predicts that contributions associated with a Regge

cut appear starting from the next-to-leading logarithmic (NLL) accuracy for the imaginary

part of the amplitude and starting from the next-to-next-to-leading logarithmic (NNLL)

accuracy for its real part. Conversely, it was shown how the Regge limit can constrain

the (then unknown) three-loop soft anomalous dimension. Ref. [16] used the Balitsky-

JIMWLK equation to compute the first few orders in the Regge cut of the signature even

part of the amplitude at NLL accuracy, and predicted a corresponding correction to the

soft anomalous dimension in the high-energy limit at four loops. In this paper we use a

similar technique to predict the signature odd amplitude at NNLL accuracy. This requires

us to address for the first time the effect of non-diagonal terms in the effective Hamiltonian.

We are then able to compute three-loop corrections generated by the evolution of three

Reggeized gluons and their mixing with a single Reggeized gluon. Finally, we contrast

our result with other recent calculations at three loops. First, the infrared singularities

are compared with predictions based on the soft anomalous dimension [35, 36], finding full

consistency. Second, considering the case of gluon scattering in N = 4 Supersymmetric

Yang-Mills theory (SYM), we find full agreement with the results of ref. [41], expanded in

the high-energy limit. The latter, in combination with the Regge cut we computed, allows

us to fix the three-loop gluon Regge trajectory in this theory.

The outline of the paper is as follows. Section 2 introduces the relevant aspects of

Regge and BFKL theory. This includes, in section 2.1, a review and analysis of the rela-

tion between reality properties and signature within Regge theory. Section 2.2 then focuses

on reviewing the perturbative description of gluon Reggeisation and the structure of 2 → 2

scattering amplitudes in the high-energy limit. We conclude the introduction in section 2.3

where we explain how we use the Balitsky-JIMWLK equation to obtain information on the

(non-diagonal) evolution of states with a fixed number of Reggeized gluons. The computa-

tion itself is described in section 3, which starts with a derivation of the explicit form of the

Hamiltonian for k goes to k, k+ 2 and k− 2 Reggeized gluons, and concludes with a calcu-

lation of all the relevant signature-odd matrix elements contributing through three loops.

Finally, section 4 is dedicated to a detailed comparison between the results of section 3

with the theory of infrared factorization. We begin by reviewing the latter, specializing the

results of [35, 36] to the high-energy limit. We then systematically determine the “infrared

renormalized” hard function based on our results of section 3 for the amplitude in the

high-energy limit, and verify that the result is indeed finite. Explicit expressions for the

anomalous dimensions are quoted in appendix A, while appendices B and C collect the hard

function in QCD gluon-gluon scattering in the t-channel colour flow basis and the “trace”

basis, respectively. Finally appendix D collects the results for high-energy factorization in

N = 4 SYM. Our conclusions and some open questions are discussed in section 5.
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2 Aspects of 2 → 2 scattering amplitudes in the high-energy limit

In this paper we explore properties of 2→ 2 QCD scattering amplitudes in the high-energy

limit. This kinematical configuration is interesting because of the appearance of large

logarithms of the centre of mass energy s over the momentum transfer t, log |s/t|. It is a

well-known fact that these logarithms exponentiate at leading logarithmic (LL) accuracy,

and also at the next-to-leading logarithmic (NLL) order, for some parts of the amplitude. A

deeper understanding of their factorisation and exponentiation relies however on non-trivial

properties of scattering amplitudes, that we discuss in this section.

Our starting point is the study of analytic properties of scattering amplitudes. This

is historically one of the first approaches to the study of amplitudes, which leads to the

concepts of signature and of Regge poles, Regge cuts and Regge trajectories, that we briefly

review below. Next, we explain how these concepts relate to the standard calculation of

QCD scattering amplitudes as a perturbative expansion in the strong coupling constant.

We introduce then the modern framework in which the factorisation of amplitudes in

the high-energy limit needs to be discussed, namely, the treatment of QCD radiation as

originating from Wilson lines associated to the direction of the incoming and outgoing

quarks and gluons. This framework allows one to link the origin of high-energy logarithms

to the renormalisation-group evolution of amplitudes with respect to the rapidity, which is

governed by BFKL theory, more specifically by the Balitsky-JIMWLK equation.

2.1 Signature and the high-energy limit of 2 → 2 amplitudes

We consider 2→ 2 scattering amplitudes,Mij→ij , where i, j can be a quark or a gluon. In

the following we will suppress these indices i, j, unless explicitly needed. In the high-energy

limit the Mandelstam variables satisfy s� −t > 0. The various terms of the amplitude will

have definite reality properties, which are related to the properties of the amplitude under

crossing. This is a consequence of the analytic structure, which is conveniently summarised

via dispersion relations:

M(s, t) =
1

π

∫ ∞
0

dŝ

ŝ− s− i0 Ds(ŝ, t) +
1

π

∫ ∞
0

dû

û+ s+ t− i0 Du(û, t) , (2.1)

where Ds and Du are the discontinuities of M(s, t) in the s- and u-channels, respectively.

In general the lower limit of integration should of course be a positive threshold, and there

could be subtraction terms, but this would not matter for our discussion. The important

fact is that the discontinuities Ds and Du are real, having a physical interpretation as

spectral density of positive energy states propagating in the s and u channel respectively.

To see the consequence on the amplitude, let us parametrize the discontinuities as a sum

of power laws by means of a Mellin transformation:

asj(t) =
1

π

∫ ∞
0

dŝ

ŝ
Ds(ŝ, t)

(
ŝ

−t

)−j
, (2.2a)

Ds(s, t) =
1

2i

∫ γ+i∞

γ−i∞
dj asj(t)

(
s

−t

)j
, (2.2b)
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and similarly for au and Du. Note that the reality condition of Ds(s, t) implies that the

Fourier coefficients admit (
asj∗(t)

)∗
= asj(t) , (2.3)

and similarly for auj (t). Substituting the inverse transform eq. (2.2b) into the dispersive

representation eq. (2.1), swapping the order of integration and performing the ŝ and û

integrals, one obtains a Mellin representation of the amplitude:

M(s, t) =
−1

2i

∫ γ+i∞

γ−i∞

dj

sin(πj)

(
asj(t)

(−s− i0
−t

)j
+ auj (t)

(
s+ t− i0
−t

)j)
. (2.4)

Since the coefficients as,uj are real (for real j), and (−s− i0)j = e−iπj |s|j for s > 0, we see

that the phase of each power law contribution is related to its exponent. The statement

simplifies when one projects the amplitude onto eigenstates of signature, that is crossing

symmetry s↔ u:

M(±)(s, t) =
1

2

(
M(s, t)±M(−s− t, t)

)
, (2.5)

where M(+), M(−) are referred to, respectively, as the even and odd amplitudes. Re-

stricting to the region s > 0 and working to leading power as s � |t|, the formula then

evaluates to

M(+)(s, t) = i

∫ γ+i∞

γ−i∞

dj

sin(πj)
cos

(
πj

2

)
a

(+)
j (t) ejL, (2.6a)

M(−)(s, t) =

∫ γ+i∞

γ−i∞

dj

sin(πj)
sin

(
πj

2

)
a

(−)
j (t) ejL, (2.6b)

where we have defined a
(±)
j (t) ≡ 1

2

(
asj(t) ± auj (t)

)
and L is the natural signature-even

combination of logarithms:

L ≡ log

∣∣∣∣st
∣∣∣∣− iπ2

=
1

2

(
log
−s− i0
−t + log

−u− i0
−t

)
.

(2.7)

Let us interpret eq. (2.6). First of all, we notice that the reality properties of asj(t),

auj (t) stated in eq. (2.3) implies that the coefficients of powers of L in M(+) and M(−)

are imaginary and real, respectively. Note, however, that it is important for these reality

properties to express results in terms of L defined in eq. (2.7), which has an extra imaginary

part, rather than in terms of the large logarithm log |s/t| itself. This simple observation

will remove many explicit iπ’s from expressions in this paper, and facilitate non-trivial

checks of the results. Moreover, for gluon scattering, invoking Bose symmetry we deduce

that M(+), which is symmetric under permutation of the kinematic variables s and u,

picks out the colour component which are symmetric under permutation of the indices of

particles 2 and 3, andM(−), which is antisymmetric upon swapping s and u, picks out the

colour-antisymmetric part.
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p1 p2

p3p4

t channel

s channel

Figure 1. The t-channel exchange dominating the high-energy limit, s� −t > 0. The figure also

defines our conventions for momenta assignment and Mandelstam invariants. We shall assume that

particles 2 and 3 are of the same type, and similarly for particles 1 and 4.

In this paper we focus on the leading power in t/s, and in this limit the Mellin variable

j used above is identical to the spin j which enters conventional partial wave functions.1

This explains our notation. One could easily extend the above discussion to subleading

powers, but one would have to replace the Mellin transform by the partial wave expansion.

For example, (s/t)−j−1 and (s/t)j in eqs. (2.2a) and (2.4) would be replaced respectively

by the associated Legendre function Qj(1 + 2s/t) and Legendre polynomials Pj(1 + 2s/t),

see [3].

The simplest conceivable asymptotic behaviour would be a pure power law, whose

Mellin transform is a simple Regge pole, namely

a
(−)
j (t) ' 1

j − 1− α(t)
. (2.10)

The leading perturbative behaviour is obtained upon taking the residue of eq. (2.6b) about

the Regge pole, getting

M(−)(s, t)|Regge pole '
π

sin π α(t)
2

s

t
eLα(t) + . . . , (2.11)

1The standard partial wave decomposition of a 2→ 2 scattering amplitude is given by (see e.g. [3])

Mj(t) =
1

16π

1

2

∫ 1

−1

dztPj(zt)M
(
s(zt, t), t

)
, j = 0, 1, 2, . . . (2.8a)

M(s, t) = 16π
∞∑
j=0

(2j + 1)Mj(t)Pj(zt) , (2.8b)

where Pj(zt) are Legendre polynomials obeying Pj(−z) = (−1)jPj(z), and zt = cos(θt) where θt is the

t-channel scattering angle (namely, using the conventions of figure 1, it is the angle between the p1 and p2

in the centre-of-mass frame of p1 and p4). For massless scattering considered here, where s+ t+ u = 0,

zt = 1 +
2s

t
= −1− 2u

t
. (2.9)

The symmetry zt → −zt relates scattering with angle θt to scattering with angle π − θt; in terms of the

Mandelstam invariants, it corresponds to s ↔ u. We see that under an s ↔ u interchange Mj(t) of

eq. (2.8a) is even for even j and odd for odd j.

– 6 –



J
H
E
P
0
6
(
2
0
1
7
)
0
1
6

where the ellipsis indicated subleading contributions. Regge poles give the correct be-

haviour of the 2 → 2 amplitude at leading logarithm accuracy in perturbation theory,

where α(t) is interpreted as the gluon Regge trajectory, α(t) ≡ αg(t) ∼ O
(
αs(t)

)
. In order

to get the precise behavior at higher orders in perturbation theory one needs to take into

account the contribution of Regge cuts, which arises from a
(−)
j (t) of the form

a
(−)
j (t) ' 1(

j − 1− α(t)
)1+β(t)

, (2.12)

which has a branch point from 1 + α(t) to −∞, or a multiple pole if β(t) is a positive

integer. Integrating along the discontinuity one gets

M(−)(s, t)|Regge cut '
π

sin π α(t)
2

s

t

1

Γ
(
1 + β(t)

)Lβ(t) eLα(t) + subleading logs . (2.13)

While Regge poles contribute to LL accuracy, therefore to the odd amplitude, Regge cuts

start contributing at the NLL order, to the even amplitude. A complete treatment of

scattering amplitudes up to NNLL accuracy requires to take into account the contribution

of Regge cuts both to the odd and the even amplitude. In order to clarify this structure, we

are now going to explore the implications of Regge poles and cuts in perturbation theory.

2.2 The Regge limit in perturbation theory

We write the perturbative expansion of a 2 → 2 scattering amplitude in the high-energy

limit as

M(s, t) = 4παs

∞∑
n=0

(
αs
π

)n
M(n)(s, t) , (2.14)

where we systematically neglect any powers suppressed terms in t/s. This perturbative

expansion correspond to the ultraviolet-renormalised scattering amplitude, with the strong

coupling αs renormalized for convenience at the momentum-transfer scale, µ2 = −t. In-

frared divergences are regulated in d = 4− 2ε dimensions.

In the previous section we have shown that an amplitude can always be written as the

sum of its signature odd and even component,

M(s, t) =M(−)(s, t) +M(+)(s, t) , (2.15)

as defined in eq. (2.5). Moreover, the reality condition in eq. (2.3) guarantees that, upon

expressing the amplitude in terms of the variable L defined in eq. (2.7), its real and imagi-

nary parts are separately fixed by its odd and even components, respectively, see eq. (2.6).

As a consequence, the perturbative expansion of M(−) and M(+) is of the form

M(±)(s, t) = 4παs
∑
l,m

(
αs
π

)l
LmM(±,l,m), (2.16)

where the coefficients M(−,l,m) and M(+,l,m) are purely real and imaginary, respectively.

At tree level, in the high-energy limit, the amplitude reduces to the t-channel exchange

represented in figure 2. Moreover, only helicity conserving scattering processes are leading

– 7 –
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p1, a1 p2, a2

p3, a3p4, a4

time

Figure 2. Tree-level t-channel exchange contributing in the high-energy limit to quark-quark,

quark-gluon or gluon-gluon scattering. The solid external lines represent either quarks or gluons,

depending on the process considered.

in the high energy limit. This gives

M(0)
ij→ij =M(−,0)

ij→ij =
2s

t
(T bi )a1a4(T bj )a2a3 δλ1λ4δλ2λ3 , M(+,0)

ij→ij = 0 , (2.17)

where Ti, Ti are colour generators in the representation of the corresponding particle:

(T bi )a1a4 = tba1a4
for quarks, (T bi )a1a4 = −tba4a1

for antiquarks, and (T bi )a1a4 = ifa1ba4 for

gluons, and the factor δλ1λ4δλ2λ3 represents helicity conservation. It is a well-known fact

that, at higher orders, the leading logaritmic (LL) contribution is due to a Regge pole term

of the type in eq. (2.10). Such term contributes to the odd part of the amplitude, and

one has

Mij→ij
∣∣
LL

=M(−)
ij→ij

∣∣
LL

=

(
s

−t

)αs
π
CA α

(1)
g (t)

4παsM(0)
ij→ij , (2.18)

which is interpreted as the exchange of a Reggeized gluon, or “Reggeon”, as represented by

the double wavy line in diagram (a) of figure 4. The function α
(1)
g (t) in eq. (2.18) represents

the leading order contribution to the gluon Regge trajectory2

αg(t) =

∞∑
n=1

(
αs
π

)n
α(n)
g (t) , α(1)

g (t) =
rΓ

2ε

(−t
µ2

)−ε
µ2→−t

=
rΓ

2ε
, (2.19)

where rΓ is a ubiquitous loop factor

rΓ = eεγE
Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)
≈ 1− 1

2
ζ2 ε

2 − 7

3
ζ3 ε

3 + . . . (2.20)

At next to leading logarithmic (NLL) accuracy the single Reggeon exchange described

by eq. (2.18) receives corrections, which, based on our discussion in section 2.1, are expected

to be of the form

M(−)
ij→ij ∼ eCA αg(t)L Zi(t)Di(t)Zj(t)Dj(t) 4παsM(0)

ij→ij , (2.21)

2Compared to the standard definition in literature, we single out a factor CA from the definition of the

Regge trajectory, see eq. (2.18), in order to simplify comparison with the infrared factorisation formula in

section 4.
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(a) (b) (c) (d)

Figure 3. A few sample one-loop diagrams contributing to quark and gluon scattering at next-to-

leading order, in the high-energy limit. Diagrams such as (a) and (b) have the same colour structure

of the tree-level diagram, and contribute to the one-Reggeon impact factor. Diagrams such as (c)

and (d) introduce colour structures different from the colour structure of the tree-level amplitude,

and contribute to the two-Reggeon exchange.

where αg(t) is the Regge trajectory defined in eq. (2.19), and the factors Zi/j(t)Di/j(t)

represent corrections to the scattering amplitude independent of the centre of mass energy s.

These corrections contain in general collinear divergences, which factorise according to the

infrared factorisation formula, [30–32], to be introduced in section 4.1, see in particular

eq. (4.14). Anticipating our analysis below, it proves useful to make the form of this

factorisation manifest, such that the factors Zi/j(t) contain the collinear singularities, while

the terms Di/j(t), to which we will refer in the following as “impact factors”, represent the

finite correction. In perturbation theory these objects are calculated as an expansion in

the strong coupling constant, according to

Zi(t) =
∞∑
n=0

(
αs
π

)n
Z

(n)
i (t) , Di(t) =

∞∑
n=0

(
αs
π

)n
D

(n)
i (t) . (2.22)

A graphical representation of these corrections is given in diagram (a) of figure 4. More

in details, Eq. (2.21) involves three types of subleading corrections to eq. (2.18): first of

all, there is a NLL contribution which arises because of the exponentiation pattern, which

involve L = log |s/t| − iπ/2 instead of just log |s/t|, as a consequence of symmetry with

respect to the signature, discussed in section 2.1. Next, there are contributions arising from

higher-order corrections to the gluon Regge trajectory, indicated as a shaded blob denoted

by αg in diagram (a) of figure 4. At NLL, such a correction arises from the next-to-leading

order (NLO) contribution O(α2
s) to the Regge trajectory, i.e. α

(2)
g (t) in eq. (2.19). As we

will discuss below, beyond NLO the Regge trajectory corresponding to a single Reggeon

exchange is not uniquely defined; clarifying this issue is one of the goals of this papers.

For now, it suffices to say that eq. (2.21) can be interpreted consistently only up to NLL

accuracy. The third type of subleading corrections is due to the impact factor Di(t),

which can be seen as an “effective vertex” associated to the emission (or absorption) of a

single Reggeon, indicated by the shaded blobs in diagram (a) of figure 4. These type of

corrections, which depend only on the momentum transfer t (and not on the energy s),

arise in perturbation theory for instance from diagrams like (a) and (b) in figure 3.

– 9 –
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. . .

. . .

. . .

Di Djαg

(a) (b) (c)

Figure 4. From left to right, exchange of one, two and three Reggeized gluons, respectively.

We draw the Reggeized gluons as double wavy lines, in order to distinguish them from standard

gluon exchange in perturbation theory. Single Reggeon exchange in the first diagram contribute

at LL accuracy, while two-Reggeon exchange in the second diagram contribute at NLL accuracy.

Last, three Reggeons exchange start contributing at NNLL accuracy. The shaded blobs in the

first and second diagram account for single- and two-Reggeon impact factors, which give additional

contributions at subleading logaritmic accuracy to these diagrams.

Starting at NLL accuracy there are new corrections, which cannot be interpreted

as the exchange of a single-Reggeized gluon, and originate instead from Regge cuts as

in eq. (2.13) corresponding to the exchange of two or more Reggeized gluons, as indicated

by diagrams (b) and (c) in figure 4. This paper focuses on the determination of these

corrections.

Restricting for now to NLL accuracy, the Regge cut contribution involves the ex-

change of two Reggeized gluons, and the symmetry properties of this state dictate that

it contributes to the even amplitude, i.e. to M(+)
ij→ij . From the point of view of per-

turbation theory this can be understood by inspecting diagrams (c) and (d) in figure 3.

These diagrams introduce new colour structures compared to the tree-level colour factor

(T bi )a1a4(T bj )a2a3 in eq. (2.17). To proceed and characterise these corrections, let us briefly

review some aspects of colour decomposition of scattering amplitudes.

Scattering amplitudes can be seen as vectors in colour-flow space,

M(s, t) =
∑
i

c[i]M[i](s, t) , (2.23)

where c[i] represent the elements of a colour basis, and M[i](s, t) are the corresponding

amplitude coefficients. Examples of colour bases are the t-channel exchange orthonormal

basis provided in appendix B, or the “trace” basis provided in appendix C. From the point

of view of Regge theory it is convenient to focus on the former, in which the colour operator

(defined in (2.30)) in the t channel, T2
t , is diagonal (see in (B.3)), hence providing insight

into the factorisation structure of the amplitude in the high-energy limit.

An orthonormal colour basis in the t-channel can be obtained by decomposing the di-

rect product of the colour representations associated to the incoming and outgoing particle

1 and 4 (see figure 2) into a direct sum. For instance, in case of gluon-gluon scattering the

amplitude lives in the space of the 8⊗8 colour representation. An orthonormal colour basis
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is obtained decomposing it into a direct sum, i.e. 8⊗8 = 1⊕8s⊕8a⊕10⊕10⊕27⊕0. At this

point it is useful to make contact with the discussion following eq. (2.7): because of Bose

symmetry, the symmetry of the colour structure mirrors the signature of the corresponding

amplitude coefficients, which can thus be separated into signature odd and even:

odd: M[8a],M[10+10], even: M[1],M[8s],M[27],M[0] (gg scattering) . (2.24)

Here 8s and 8a represent respectively a symmetric and antisymmetric octet representation,

and 0 is a “null” representation, which is present in general for SU(N), and vanishes for

N = 3. A more exhaustive discussion on how to decompose the amplitude into orthonormal

colour basis, together with explicit expressions for the orthonormal colour basis of quark-

quark, quark-gluon and gluon-gluon scattering have been given in [40, 42, 43], to which we

refer for further details, as well as appendix B.

For our discussion, it suffices to note that the exchange of one Reggeized gluon con-

tributes only to the antisymmetric octet, so that at leading-log order only this structure is

nonzero:

Mgg→gg(s, t)
∣∣
LL

= c[8a]M[8a](s, t)|LL =
2s

t
(T bi )a1a4(T bj )a2a3 δλ1λ4δλ2λ3 . (2.25)

At NLL order, certain diagrams like (a) and (b) in figure 3 contribute only to the 8a colour

structure also, but others like (c) and (d) contribute in addition to the even structures

listed in eq. (2.24). These signature-even contributions represent the exchange of a pair

of Reggeized gluons and do not exponentiate in a simple way. Rather they contribute a

Regge cut which can be calculated order by order in perturbation theory within a framework

developed in [16], based on BFKL theory, and reviewed shortly.

This paper will focus on the three-Reggeon exchange at the NNLL order, which con-

tributes to both the 8a and 10 + 10 colour structures. At NNLL order, presently unknown

corrections to single-Reggeon exchange also enter but they only contribute to the 8a colour

structure. We will therefore unambiguously predict the 10 + 10 amplitude. Furthermore,

the relationship between the 8a contributions to gluon-gluon, quark-gluon and quark-quark

amplitudes will be unambiguously predicted.

In order to display the Regge-cut contributions in the most transparent way, it proves

useful to define a “reduced” amplitude by removing from it the Reggeized gluon and

collinear divergences as follows:

M̂ij→ij ≡ (ZiZj)
−1 e−T2

t αg(t)LMij→ij , (2.26)

where T2
t represents the colour charge of a Reggeized gluon exchanged in the t channel (see

eq. (2.30) below) and Zi and Zj stand for collinear divergences, defined in (4.14) below.

At tree-level one obviously has M̂(0) =M(0), and based on our discussion so far the odd

component of the reduced amplitude up to NLL reads [16, 44]

M̂(−)
ij→ij

∣∣
NLL

=

[
1 +

αs
π

(
D

(1)
i (t) +D

(1)
j (t)

)]
4παs M̂(0)

ij→ij , (2.27)

where D
(1)
i/j(t) are the finite single-Reggeon impact factors evaluated at one loop. Notice

that all the logarithms have disappeared thanks to the definition in eq. (2.26). In contrast,
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the even amplitude at NLL accuracy is not a simple exponential but rather is a Regge cut,

and to parametrize it we need to specify independent data at each loop order:

M̂(+)
ij→ij

∣∣
NLL

= iπ
∞∑
`=1

1

`!

(
αs
π

)̀
L`−1 × d` × 4παs M̂(0)

ij→ij . (2.28)

Setting the renormalization scale to µ2 = |t|, the coefficients d` depend only on ε and colour

operators. They have been computed up to fourth order in [16] using BFKL theory, to be

reviewed in section 2.3 below. One has, for instance,

d1 = d1T
2
s−u , d1 = rΓ

1

2ε
,

d2 = d2[T2
t ,T

2
s−u] , d2 = (rΓ)2

(
− 1

4ε2
− 9

2
εζ3 −

27

4
ε2ζ4 +O(ε3)

)
, (2.29)

d3 = d3[T2
t , [T

2
t ,T

2
s−u]] , d3 = (rΓ)3

(
1

8ε3
− 11

4
ζ3 −

33

8
εζ4 −

357

4
ε2ζ5 +O(ε3)

)
.

T2
s−u in eq. (2.29) represents a colour operator acting on the tree-level vector of amplitudes

in eq. (2.24), according to the colour-space formalism introduced in [28, 45, 46]. With this

notation, a colour operator Ti corresponds to the colour generator associated with the

i-th parton in the scattering amplitude, which acts as an SU(Nc) matrix on the colour

indices of that parton. More in details, one assigns (Ta
i )αβ = taαβ for a final-state quark or

initial-state anti-quark, (Ta
i )αβ = −taβα for a final-state anti-quark or initial-state quark,

and (Ta
i )bc = −ifabc for a gluon. We also use the notation Ti ·Tj ≡ Ta

iT
a
j summed over a.

Generators associated with different particles trivially commute, Ti ·Tj = Tj ·Ti for i 6= j,

while T2
i = Ci is given in terms of the quadratic Casimir operator of the corresponding

colour representation, i.e. Cg = CA for gluons. In the high-energy limit the colour factors

can be simplified considerably, by using the basis of Casimirs corresponding to colour flow

through the three channels [38, 47]:

Ts = T1 + T2 = −T3 −T4

Tu = T1 + T3 = −T2 −T4

Tt = T1 + T4 = −T2 −T3 (2.30)

and using the colour conservation identity (T1 + T2 + T3 + T4)M = 0 to rewrite in terms

of signature eigenstates. One obtains T2
s + T2

u + T2
t =

∑4
i=1Ci ≡ Ctot. One may then

define a colour operator that is odd under s↔ u crossing:

T2
s−u ≡

1

2
(T2

s −T2
u) , (2.31)

which is the operator used to describe the NLL even amplitude in eq. (2.29). Useful

relations are given by

T1 ·T2 + T3 ·T4 = T2
s −

1

2
Ctot = T2

s−u −
1

2
T2
t ,

T1 ·T3 + T2 ·T4 = −T2
s−u −

1

2
T2
t , (2.32)

T1 ·T4 + T2 ·T3 = T2
t −

1

2
Ctot .
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The goal of this paper is to provide for the first time a systematic derivation of the

contributions arising at the NNLL accuracy. Based on our discussion so far, we can an-

ticipate that one has to consider the following contributions: on the one hand, there will

be a contribution to the even amplitude, in the form of corrections to the two-Reggeon

exchange. These corrections are expected to be of similar origin as the ones arising for the

single-Reggeon exchange at NLL. Namely, there will be a next-to-leading order correction

to the exchange of two Reggeons; there will be a correction accounted for by the iπ/2

factor included in the expansion parameter L; and there will be a correction in the form

of impact factors for the two-Reggeon exchange, as indicated by the shaded blobs in the

diagram at the centre of figure 4.

More interesting, however, are the corrections concerning the odd amplitude at NNLL

accuracy, which, for this reason, are the focus of this paper. In this case one has to take

into account for the first time the exchange of three Reggeized gluons, as indicated by the

right diagram in figure 4. This implies that, starting at NNLL, one has mixing between

one- and three-Reggeons exchange. Schematically, this can be encoded by writing the full

amplitude as

M̂ij→ij |NNLL = M̂(−)
ij→ij |1-Reggeon + 3-Reggeon + M̂(+)

ij→ij |2-Reggeon . (2.33)

The mixing between one- and three-Reggeons exchange has significant consequences. First

of all, it is at the origin of the breaking of the simple power law one finds at NLL accuracy

in eq. (2.27). Such a breaking appears for the first time at two loops, and has been singled

out for the first time in a perturbative calculation in [44], and investigated further from

the point of view of the infrared factorisation formula in [39, 40]. Second, it implies that,

starting at three loops, there will be a single-logarithmic contribution originating from the

three-Reggeon exchange, and from the interference of the one- and three-Reggeon exchange

as well. As a consequence, the interpretation of the Regge trajectory at three loops, i.e.

the coefficient α
(3)
g , needs to be clarified. Understanding these issues requires to investigate

the structure of the amplitude in the context of the BFKL theory, which we are going to

introduce in the next section.

2.3 BFKL theory abridged

The modern approach to high-energy scattering can be formulated in terms of Wilson lines:

U(z⊥) = P exp

[
igs

∫ +∞

−∞
dx+Aa+(x+, x−= 0, z⊥)T a

]
. (2.34)

The Wilson lines follow the paths of colour charges inside the projectile, and are thus null

and labelled by transverse coordinates z⊥. The idea is to approximate, to leading power,

the fast projectile and target by Wilson lines and then compute the scattering amplitude

between Wilson lines. An important feature of this limit is that the full transverse structure

needs to be retained, because the high-energy limit is taken with fixed momentum transfer.

This has nontrivial implications since, due to quantum fluctuations, a projectile necessarily

contains multiple colour charges at different transverse positions: the number of Wilson
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lines cannot be held fixed. However, in perturbation theory, the unitary matrices U(z) are

close to the identity and can therefore be usefully parametrized by a field W as follows

U(z) = eigs T
aWa(z). (2.35)

Physically, the colour-adjoint field W a, which is propagating in the transverse space (from

now on we drop the ⊥ subscript), is interpreted as source for a BFKL Reggeized gluon [16].

The latter concept is unambiguous at leading and next-to-leading logarithmic accuracy, and

in this paper we will generally identify to a state created by W a as a “Reggeized gluon”

also beyond this accuracy.

A generic projectile, created with four-momentum p1 and absorbed with p4, can thus

be expanded at weak coupling as

|ψi〉 ≡
Z−1
i

2p+
1

ai(p4)a†i (p1)|0〉 ∼ gsDi,1(t) |W 〉+ g2
s Di,2(t) |WW 〉+ g3

s Di,3(t) |WWW 〉+ . . .

≡ |ψi,1〉+ |ψi,2〉+ |ψi,3〉+ . . . , (2.36)

where the factor Z−1
i removes collinear divergences from the wavefunction |ψi〉, and is

related to our definition of the reduced amplitude in eq. (2.26). The factors Di,j depend on

the transverse coordinates of the W fields, suppressed here, but not on the center of mass

energy. They correspond to the impact factors for the exchange of one-, two- and three-

Reggeons discussed in section 2.2 and represented in figure 4. A more precise definition with

exact momentum dependence will be given in section 3. The energy dependence enters from

the fact that the Wilson lines have rapidity divergences which must be regulated, which

leads to a rapidity evolution equation:

− d

dη
|ψi〉 = H |ψi〉 . (2.37)

The Hamiltonian, known as the Balitsky-JIMWLK equation, is given in the next section.

A key feature for our perturbative purposes is that it is diagonal at leading order in g2
s :

H


W

WW

WWW

· · ·

 ≡

H1→1 0 H3→1 . . .

0 H2→2 0 . . .

H1→3 0 H3→3 . . .

· · · · · · · · · · · ·




W

WW

WWW

· · ·



∼


g2
s 0 g4

s . . .

0 g2
s 0 . . .

g4
s 0 g2

s . . .

· · · · · · · · · · · ·




W

WW

WWW

· · ·

 . (2.38)

Notice, moreover, that only even transition n → n ± 2 are allowed: odd transition of the

type n → n ± 1 are forbidden by the signature symmetry, because they would originate

transitions between even and odd parts of the amplitude.

After using the rapidity evolution equation eq. (2.37) to resum all logarithms of the

energy, the amplitude is obtained from the scattering amplitude between equal-rapidity
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Wilson lines, which depends only on the transverse scale t:

i(ZiZj)
−1

2s
Mij→ij = 〈ψj |e−HL|ψi〉 . (2.39)

The prefactor on the left comes simply from the terms like Z−1
i /(2p+

1 ) in eq. (2.36), which

we have included in order to remove trivial tree-level factors and factorized collinear di-

vergences. In fact, we can go further and make contact with the reduced amplitude M̂ of

eq. (2.26), by removing the Regge trajectory from the evolution:

i

2s
M̂ij→ij = 〈ψj |e−ĤL|ψi〉 , Ĥ ≡ H + T2

t αg(t) . (2.40)

In these expressions we have identified the evolution variable, the rapidity η, with the

signature-even logarithm appearing in eq. (2.7):

η = L ≡ log

∣∣∣∣st
∣∣∣∣− i π2 . (2.41)

The essential requirement is that η increases by one unit under boost of the projectile by

one e-fold compared to the target, which L can be verified to do due to the log s. The t in

the denominator is arbitrary and could be replaced by any other boost-invariant scale, for

example µ2, since different choices represent simply different conventions for the impact

factors |ψi〉. Choosing t however avoids introducing much artificial infrared dependence.

The −iπ/2 term is a similarly arbitrary choice, but it ensures that the coefficients of

powers of L have simple reality properties, as discussed previously, which greatly minimize

the number of iπ’s appearing in equations. All these conventions, embodied in eq. (2.40),

will go a long way toward simplifying the higher-loop BFKL calculations.

The inner product in eq. (2.40) is by definition the scattering amplitude of Wilson

lines renormalized to equal rapidity. It must be calculated within the full QCD theory

and therefore cannot be predicted within the effective theory of Wilson lines that we are

working in. For our purposes of this paper, however, it will suffice to know that it is

Gaussian to leading-order:

G11′ ≡ 〈W1|W1′〉 = i
δa1a′1

p2
1

δ(2−2ε)(p1 − p′1) +O(g2
s) . (2.42)

Multi-Reggeon correlators are obtained by Wick contractions, e.g.

〈W1W2|W1′W2′〉 = G11′G22′ +G12′G21′ +O(g2
s) ,

〈W1W2W3|W1′W2′W3′〉 = G11′G22′G33′ + (5 permutations) +O(g2
s) ,

etc. (2.43)

We believe that the O(g2
s) corrections could be extracted, if needed, from the results of [48].

There are also off-diagonal elements, which can be defined to have zero overlap:

〈W1W2W3|W4〉 = 〈W4|W1W2W3〉 = 0 ; (2.44)
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in other words, we assume the Reggeons to be free fields. This is an implicit assumption

in the classic BFKL literature. In the Wilson line approach it can be justified by noticing

that, starting from a scheme in which the inner products in eq. (2.44) is different from zero,

it is always possible to perform a scheme transformations (redefinition of the W field, for

instance WWW 7→WWW−g2
sGW ) such as to reduce to eq. (2.44). It is possible to derive

the transformation G only by calculating the inner product in eq. (2.44) in full QCD in a

given scheme. While we leave this calculation to be investigated in future work, we notice

that the precise form of G is not needed in order to obtain quantitative predictions for

NNLL amplitudes. Indeed, choosing the 1-W and 3-W states to be orthogonal, combined

with symmetry of the Hamiltonian, which in turn is a consequence of boost invariance:

d

dη
〈O1|O2〉 = 0 ⇔ 〈HO1|O2〉 = 〈O1|HO2〉 ≡ 〈O1|H|O2〉 , (2.45)

where O1, O2 represent an arbitrary number of W fields, implies that in this scheme one

has H1→3 = H3→1, and more in general Hk→k+2 = Hk+2→k. This relation is known as

projectile-target duality. As we will see in the next section, it is actually essential in order to

obtain predictions at NNLL accuracy based only on the leading order BFKL hamiltonian.

As an additional comment, we note that in principle one could diagonalize the Hamiltonian

in eq. (2.38), given the fact that it is symmetrical with respect to the inner product, so

there is no invariant meaning to its “off-diagonal elements being nonzero”. In practice,

however, this would require inverting its (complicated) diagonal terms, and for this reason

we work with the undiagonalized Hamiltonian.

We can finally list the ingredients which build up the amplitude up to three loops.

Since the odd and even sectors are orthogonal and closed under the action of Ĥ (as a

consequence of signature symmetry), we have

i

2s
M̂ij→ij

Regge−−−→ i

2s

(
M̂(+)

ij→ij+M̂
(−)
ij→ij

)
≡ 〈ψ(+)

j |e−ĤL|ψ
(+)
i 〉+〈ψ

(−)
j |e−ĤL|ψ

(−)
i 〉 . (2.46)

Using that multi-Reggeon impact factors are coupling-suppressed, |ψik〉 ∼ gk, and using

the suppression eq. (2.38) of off-diagonal elements in the Hamiltonian, the signature even

amplitude becomes to three loops:

i

2s
M̂(+) 1-loop

ij→ij = 〈ψj,2|ψi,2〉(LO), (2.47a)

i

2s
M̂(+) 2-loops

ij→ij = −L〈ψj,2|Ĥ2→2|ψi,2〉(LO) + 〈ψj,2|ψi,2〉(NLO), (2.47b)

i

2s
M̂(+) 3-loops

ij→ij =
L2

2
〈ψj,2|(Ĥ2→2)2|ψi,2〉(LO) − L〈ψj,2|Ĥ2→2|ψi,2〉(NLO)

+ 〈ψj,4|ψi,4〉(LO) + 〈ψj,2|ψi,2〉(NNLO). (2.47c)

Here “LO” means that all ingredients are needed only to leading nonvanishing order. The

first term was analyzed in ref. [16] and found to be quite powerful: it predicted that there

should be no ∼ α3
sL

2 corrections to the dipole formula. At four loops, a similar leading-

logarithmic computation predicted a non-vanishing Γ ∼ α4
sL

3 correction to the dipole

formula, which hopefully will be tested in the future.
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In this paper we analyze the similar expansion for the signature odd sector:

i

2s
M̂(−) tree

ij→ij = 〈ψj,1|ψi,1〉(LO), (2.48a)

i

2s
M̂(−) 1-loop

ij→ij = −L〈ψj,1|Ĥ1→1|ψi,1〉(LO) + 〈ψj,1|ψi,1〉(NLO), (2.48b)

i

2s
M̂(−) 2-loops

ij→ij = +
1

2
L2〈ψj,1|(Ĥ1→1)2|ψi,1〉(LO) − L〈ψj,1|Ĥ1→1|ψi,1〉(NLO)

+ 〈ψj,3|ψi,3〉(LO) + 〈ψj,1|ψi,1〉(NNLO), (2.48c)

i

2s
M̂(−) 3-loops

ij→ij = −1

6
L3〈ψj,1|(Ĥ1→1)3|ψi,1〉(LO) +

1

2
L2〈ψj,1|(Ĥ1→1)2|ψi,1〉(NLO)

− L
{
〈ψj,1|Ĥ1→1|ψi,1〉(NNLO) +

[
〈ψj,3|Ĥ3→3|ψi,3〉+ 〈ψj,3|Ĥ1→3|ψi,1〉

+ 〈ψj,1|Ĥ3→1|ψi,3〉
](LO)}

+ 〈ψj,3|ψi,3〉(NLO) + 〈ψj,1|ψi,1〉(N
3LO),

(2.48d)

where, for illustrative purposes, we have listed all terms that need to be considered by

taking into account eq. (2.44), but without any specific assumption about the form of

Ĥ. Inspecting eq. (2.40), we notice now that the 1 → 1 transition is given, according

to eq. (2.21), by the Regge trajectory H1→1 = −CA αg(t). As a consequence one has

Ĥ1→1 = 0, and this set to zero all terms of the type

〈ψj,1|(Ĥ1→1)n|ψi,1〉(...) = 0 , (2.49)

in eq. (2.48). Starting from NNLL order, the “gluon Regge trajectory” is scheme-dependent.

In this paper we define it to be −H1→1/CA in the scheme defined below eq. (2.44), so

that Ĥ1→1 identically vanishes. Excluding these terms, subleading logarithms in the re-

duced amplitude arise from roughly two mechanisms: corrections to the single-Reggeon

exchange in the form of impact factors, such as for instance the term 〈ψj,1|ψi,1〉(NNLO) in

eq. (2.48), and exchanges of multiple Reggeized gluons, such as terms like 〈ψj,3|ψi,3〉(LO)

and 〈ψj,3|Ĥ1→3|ψi,1〉(LO).

The key observation for us will be that the NLO and NNLO effects are strongly con-

strained by factorization: for example, since the elementary Reggeon is colour-adjoint, any

term in the (full) amplitude related to the exchange of a single Reggeon vanishes upon pro-

jecting the amplitude onto other colour structures. Due to this, as noted below eq. (2.25),

many formally NNLL (∼ L1) terms in the three-loop amplitude can be predicted using only

the LO BFKL theory! In the next section we quantitatively work out these predictions.

3 The Balitsky-JIMWLK equation and the three-loop amplitude

The BFKL prediction eq. (2.48) for the three-loop amplitude involves the rapidity evolution

H and impact factors |ψ〉. We now describe both to the relevant order in perturbation

theory.

The evolution equation takes a simple and compact form in the planar limit, known

as the Balitsky-Kovchegov equation [11, 12, 49–51]:

H Uij =
αsCA
2π2

∫
d2z0 z

2
ij

z2
i0z

2
0j

[Uij − Ui0U0j ] +O(α2
s) , (3.1)
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where Uij = 1
Nc

Tr[U(zi)U(zj)
†] is the trace of a colour dipole and zij = zi−zj is a transverse

distance. Physically, this accounts for radiation of a gluon at the impact parameter z0 and

its effect on the perceived colour charge density of a projectile.

This form holds for a colour singlet projectile, but a similar equation can also be

derived for scattering of coloured partons. However, since Uij = 1 +O(1/N2
c ) in the planar

limit, the equation turns out to linearize and its solution for 2 → 2 scattering is essentially

trivial: a pure Regge pole M ∝ sCA αg(t) to any order in the ‘t Hooft coupling g2
sNc. We

refer to section 3 of [16] for more details.

The effects we focus on in this paper are fundamentally non-planar. To describe them

we will need the finite Nc generalization of eq. (3.1), known as the Balitsky-JIMWLK

equation, which involves a sum over all possible colour attachments of the radiated gluon:

H =
αs
2π2

∫
[dzi][dzj ][dz0]Kij;0

[
T ai,LT

a
j,L + T ai,RT

a
j,R

− Uabad(z0)(T ai,LT
b
j,R + T aj,LT

b
i,R)
]

+O(α2
s) . (3.2)

Anticipating infrared divergences, here we have switched to dimensional regularization:

[dz] ≡ d2−2εz, where we recall that z parametrizes the transverse impact parameter plane.

Uabad is the adjoint Wilson line associated with the radiated gluon, and the TL/R’s are

generators for left and right colour rotations:

T ai,L = [T aU(zi)]
δ

δU(zi)
, T ai,R(z) = [U(zi)T

a]
δ

δU(zi)
. (3.3)

These act on the projectile and target impact factors |ψ〉, which are represented as func-

tionals of Wilson lines U(z). (In perturbation theory these are just polynomials, so the i

and j integrals effectively represent discrete sums.) The O(α2
s) correction in eq. (3.2) has

been recently determined by three groups [52–57]. In the following, however, we will need

only the leading-order dimensionally-regulated kernel Kij;0, which turns out to admit a

simple, dimension-independent expression in momentum space (see ref. [16]):

R(q, p) =
(q + p)2

q2p2
. (3.4)

The corresponding coordinate space expression is then

Kij;0 ≡ Sε(µ2)

∫
[d̄q][d̄p] eiq·(zi−z0)eip·(zj−z0)(−2π2)R(q, p) = Sε(µ

2)
Γ(1−ε)2

π−2ε

z0i · z0j

(z2
0iz

2
0j)

1−ε ,

(3.5)

where we have defined the integration measure [d̄q] ≡ d2−2εq
(2π)2−2ε , and Sε(µ

2) =
( µ2

4πe−γE

)ε
is

the usual MS loop factor. As ε→ 0 this reduces indeed to the well-known four-dimensional

formula (compare for instance with eq. (2.7) of [16]). We note that in computing this

Fourier transform we have dropped contact terms δ2−2ε(z0−zi), which vanish in eq. (3.2)

as a result of the colour identities Uab(zi)T
b
i,R = T ai,L and Uab(zi)T

a
i,L = T bi,R, see [16].

The corrections to the Balitsky-JIMWLK Hamiltonian eq. (3.2) are suppressed by αs
in a power-counting where the Wilson lines are generic, U ∼ 1. This is more general than
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the perturbative counting of the preceding section, where 1−U ∼ gsW ∼ gs, implying that

the equation resums infinite towers of Reggeon iterations. The relationship will be clarified

shortly. First of all, one expands the Wilson line U in terms of the Reggeon field W :

U = eigsW
aTa = 1 + igsW

a T a − g2
s

2
W aW b T aT b − i g

3
s

6
W aW bW c T aT bT c

+
g4
s

24
W aW bW cW d T aT bT cT d +O(g5

sW
5) . (3.6)

Then, to extract the interactions efficiently, we simply use the Campbell-Baker-Hausdorf

formula to convert the rotations defined by eq. (3.3) to derivatives with respect to W :

iT aj,L/R =
1

gs

δ

δW a
j

± 1

2
fabxW x

j

δ

δW b
j

− gs
12
W x
j W

y
j (F xF y)ab

δ

δW b
j

− g3
s

720
W x
j W

y
jW

z
jW

t
j (F

xF yF zF t)ab
δ

δW b
j

+ . . . , (3.7)

where we have introduced the Hermitian colour matrix (F x)ab ≡ ifaxb. It is then a straight-

forward, if lengthy, exercise in algebra to expand the Hamiltonian eq. (3.2) in powers of gs:

H = Hk→k +Hk→k+2 + . . . (3.8)

For the diagonal terms, commuting δ/δW ’s to the right of W ’s by using

δW b(z′)

δW a(z)
≡ δabδ2−2ε(z−z′) , (3.9)

one finds [16]:

Hk→k =
αsCA
2π2

∫
[dzi][dz0]Kii;0 (Wi−W0)a

δ

δW a
i

− αs
2π2

∫
[dzi][dzj ][dz0]Kij;0(Wi−W0)x(Wj−W0)y(F xF y)ab

δ2

δW a
i δW

b
j

. (3.10)

For the first nonlinear corrections, not previously written in the literature, we find:

Hk→k+2 =
α2
s

3π

∫
[dzi][dz0]Kii;0 (Wi−W0)xW y

0 (Wi−W0)z Tr[F xF yF zF a]
δ

δW a
i

(3.11)

+
α2
s

6π

∫
[dzi][dzj ][dz0]Kij;0 (F xF yF zF t)ab

[
(Wi−W0)xW y

0W
z
0 (Wj−W0)t

−W x
i (Wi−W0)yW z

0 (Wj−W0)t−(Wi−W0)xW y
0 (Wj−W0)zW t

j

] δ2

δW a
i δW

b
j

.

We have included the second term, which contributes for example to the 2 → 4 transition,

for future reference only: in this paper we will only need the 1 → 3 transition, entirely

generated by the first line. (We observe, a posteriori, that the two terms are not completely

independent: the first can be obtained from the second by moving δ/δWj to the left and

letting it act on Wi.)

– 19 –



J
H
E
P
0
6
(
2
0
1
7
)
0
1
6

Finally, let us explain the relationship between the Balitsky-JIMWLK power counting

(U ∼ 1) and the BFKL power-counting (W ∼ 1), and how it justifies our extraction

of the multi-Reggeon vertices. The key is to substitute eqs. (3.6) and (3.7) into (3.2),

which show that an m→m+k transition taken from the `-loop Balitsky-JIMWLK equation

is proportional to g2`+k
s . Thus for k ≥ 0, all the leading interactions can be extracted

from just the leading-order equation. On the other hand, because of the symmetry of

H (2.45), interactions with k < 0 are suppressed by at least g
2+|k|
s , which means that

they can first appear in the (|k|+1)-loop Balitsky-JIMWLK Hamiltonian. Thus to obtain

the m→m−2 transition by direct calculation of the Hamiltonian would require a rather

formidable three-loop non-planar computation. However, this is unnecessary, since the

symmetry of H predicts the result; this is carried out explicitly in the following subsection

(see eq. (3.18)).

3.1 Evolution in momentum space

Due to the simple form eq. (3.4) of the kernel in momentum space, the perturbative cal-

culation will be easier in this space. Let us thus introduce the Fourier transform:

W a(p) =

∫
[dz] e−ipzW a(z) , W a(z) =

∫
[d̄p] eipzW a(p) . (3.12)

Substituting into eq. (3.10), and using the Fourier representation of the kernel eq. (3.5),

one finds, after a bit of algebra again,

Hk→k = −
∫

[dp]CA αg(p)W
a(p)

δ

δW a(p)
(3.13)

+ αs

∫
[d̄q][dp1][dp2]H22(q; p1, p2)W x(p1+q)W y(p2−q)(F xF y)ab

δ

δW a(p1)

δ

δW b(p2)
,

where the gluon Regge trajectory and pairwise interactions come out as some specific

combinations of the momentum space kernel R of eq. (3.4) (see [16] for more details).

Given that we consider here only the leading order contribution to the kernel Kij;0 in

eq. (3.2), the gluon Regge trajectory in eq. (3.13) is actually the leading-order trajectory

defined in eq. (2.19), that we recall here for the reader’s convenience:

αg(p) =
αs
π
α(1)
g (p2) +O(α2

s)

= −αs(µ)Sε(µ
2)

∫
[d̄q]

p2

q2(p− q)2
+O(α2

s) =
αs(µ) rΓ

2πε

(
µ2

p2

)ε
+O(α2

s) . (3.14)

The solution to the single-Reggeon part of the evolution equation above, in which one

consider the LO Regge trajectory, is responsible for the leading-logarithmic behaviour of

the amplitude. Below we will analyse the structure of the scattering amplitude up to NNLL

accuracy, which means that we will need also the first two corrections to αg(p
2), namely

α
(2)
g (p2) and α

(3)
g (p2). The NLO Regge trajectory α

(2)
g (p2) has been calculated in [58–61];

it can also be extracted from two-loop calculations of 2→ 2 scattering amplitudes, see [44].

The NNLO correction to the Regge Trajectory α
(3)
g (p2) is instead not yet known in full

QCD, though it will be possible to extract it below at least in N = 4 SYM from a recent
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+ − −

Figure 5. Diagrams representing the kinematical structure of the 1 → 3 and 3→ 1 evolution, i.e.

the factor H13(p1, p2, p3) in eq. (3.17). The hamiltonian H13(p1, p2, p3) is derived in the context of

an effective field theory in 2 − 2ε dimensions, therefore the vertices indicated by black dots must

be thought as effective vertices. The actual colour structure associated to the 1 → 3 and 3 → 1

evolution is given by the diagrams in figure 7.

three-loop calculation [41]. As we will discuss below, it is not even possible to define it

precisely, beyond the planar limit, without taking into account the mixing in the evolution

between one- and three-Reggeon exchange given by H1→3 and H3→1. The other ingredient

appearing in eq. (3.13) is then the leading-order momentum kernel for the evolution of two

Reggeon states, [16], i.e.

H22(q; p1, p2) =
(p1 + p2)2

p2
1p

2
2

− (p1 + q)2

p2
1q

2
− (p2 − q)2

q2p2
2

. (3.15)

These ingredients are of course precisely as in the classic BFKL equation [1, 2], and

eq. (3.13) encapsulates in a concise way its generalization to multi-Reggeon states [62–

64]. Here they has been obtained in a systematic and straightforward way by linearizing

the non-planar version of our starting point, the Balitsky-Kovchegov equation (3.1).

The less familiar ingredient we will need is the 1→ 3 transition, obtained again as the

Fourier transform of eq. (3.11):

H1→3 = α2
s

∫
[d̄p1][d̄p2][dp] Tr[F aF bF cF d]W b(p1)W c(p2)W d(p3)H13(p1, p2, p3)

δ

δW a(p)
,

(3.16)

where p3 = p− p1 − p2 and the kernel is (see figure 5)

H13(p1, p2, p3) =
2π

3
Sε(µ

2)

∫
[d̄q]

[
(p1+p2)2

q2(p1+p2−q)2
+

(p2+p3)2

q2(p2+p3 − q)2

− (p1+p2+p3)2

q2(p1+p2+p3−q)2
− p2

2

q2(p2−q)2

]
(3.17)

=
rΓ

3ε

[(
µ2

(p1+p2+p3)2

)ε
+

(
µ2

p2
2

)ε
−
(

µ2

(p1+p2)2

)ε
−
(

µ2

(p2+p3)2

)ε]
.

Taking its transpose with respect to the inner product eq. (2.42) then gives the conjugate

vertex:

H3→1 = α2
s

∫
[dp1][dp2][dp3] Tr[F aF bF cF d]W d(p1+p2+p3)

δ

δW a(p1)

δ

δW b(p2)

δ

δW c(p3)

× (−1)
(p1+p2+p3)2

p2
1p

2
2p

2
3

H13(p1, p2, p3) . (3.18)
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This was obtained simply by equating the matrix elements(
〈WWW |H

)
|W 〉 = 〈WWW |

(
H|W 〉

)
,

taking into account the mismatching propagators, i
(p1+p2+p3)2 compared with i3

p2
1p

2
2p

2
3
.

Eq. (3.11) describes not only the 1 → 3, but also 2 → 4 transitions in position space.

The latter are not necessary for the calculation of the odd contribution to the amplitude

at three loops: 2 → 4 transitions start contributing only at four loops. It is however

straightforward to derive their representation in momentum space, and we list it here for

future reference. One has

H2→4 =
πα2

s

3
Sε(µ

2)

∫
[d̄p1][d̄p2][d̄p3][d̄p4][dpa][dpb](2π)2−2εδ2−2ε(p1+p2+p3+p4−pa−pb)

×H24(pi) (F xF yF zF t)abW x(p1)W y(p2)W z(p3)W t(p4)
δ

δW a(pa)

δ

δW b(pb)
,

(3.19)

where:

H24(pi) = 2R(pa, pb−p4) + 2R(pa−p1, pb)−R(pa, pb)

− 3R(pa−p1, pb−p4) +R(pa−p1, pb−p4−p3)−R(pa, pb−p4−p3)

+R(pa−p1−p2, pb−p4)−R(pa−p1−p2, pb) , (3.20)

and we recall that R(p, q) = (p+q)2

p2q2 from eq. (3.4). Similarly, taking its transpose,

H4→2 =
πα2

s

3

∫
[d̄pa][d̄pb][dp1][dp2][dp3][dp4](2π)2−2εδ2−2ε(pa+pb−p1−p2−p3−p4)

× (−1)
p2
a p

2
b

p2
1 p

2
2 p

2
3 p

2
4

H24(pi) (F xF yF zF t)abW a(pa)W
b(pb)

× δ

δW x(p1)

δ

δW y(p2)

δ

δW z(p3)

δ

δW t(p4)
. (3.21)

3.2 Impact factors

Given the Hamiltonian, all one needs to compute the amplitude are the target and projectile

impact factors. At leading order these follow simply from the naive eikonal approximation:

|ψi〉(LO) =

∫
[dz]eip·zUi(z) , (3.22)

where the Wilson line is in the representation of particle i, and p in the transferred mo-

mentum, p2 = −t. Expanding in powers of the Reggeon field according to eq. (3.6), and

going to momentum space, this can also be written to NNLL accuracy as

|ψi〉(LO) = igs Ta
iW

a(p)− g2
s

2
Ta
iT

b
i

∫
[d̄q]W a(q)W b(p−q) (3.23)

− ig3
s

6
Ta
iT

b
iT

c
i

∫
[d̄q1][d̄q2]W a(q1)W b(q2)W c(p−q1−q2) +O(N3LL) ,

where we have dropped the coefficient of the unit operator.
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At higher orders in the coupling, the colour charge of the projectile is no longer con-

centrated at a single point. Hence, multi-Reggeon impact factors acquire nontrivial mo-

mentum dependence, which can in principle be computed from the perturbative expansion

of the projectile lightcone wavefunction. Restricting again to NNLL accuracy, the relevant

corrections at relative order αs can be parametrized as

|ψi〉(NLO) =
αs
π

[
igs Ta

iW
a(p)D

(1)
i (p) (3.24)

− g2
s

2
Ta
iT

b
i

∫
[d̄q]ψ

(1)
i (p, q)W a(q)W b(p−q) +O(N3LL)

]
,

and at the next order one has:

|ψi〉(NNLO) =

(
αs
π

)2[
igs Ta

iW
a(p)D

(2)
i (p) +O(N3LL)

]
. (3.25)

The presently unknown impact factor ψ(1)(p, q) does not contribute to the odd amplitude

considered in this paper.

3.3 Odd amplitude up to two loops

According to eq. (2.48), to get the signature-odd amplitude to two loops we need exchanges

of one and three Reggeons, the latter first appearing at two loops. Let us consider first the

single Reggeon exchange.

W → W amplitude. Concerning the reduced amplitude, the one-Reggeon exchange

is rather simple, since the Regge trajectory is subtracted to all loop, see eq. (2.49). As

a consequence, the 1 → 1 transitions involves only the impact factors, and is given by a

generalisation of eq. (2.27) to include NNLL effects. In terms of transitions between Wilson

lines it is given by

〈ψj,1|e−Ĥ1→1L|ψi,1〉 = Di(t)Dj(t)
i

2s
4παs M̂(0)

ij→ij , (3.26)

where M̂(0)
ij→ij =M(0)

ij→ij has been defined in eq. (2.17). Effects up to NNLL are retained

by considering impact factors Di/j up to NNLO. At tree level one trivially has

〈ψj,1|ψi,1〉(LO) =
i

2s
4παs M̂(0)

ij→ij , (3.27)

while at one and two loops one obtains

〈ψj,1|ψi,1〉(NLO) =
αs
π

(
D

(1)
i (t) +D

(1)
j (t)

) i
2s

4παs M̂(0)
ij→ij , (3.28)

〈ψj,1|ψi,1〉(NNLO) =

(
αs
π

)2(
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j

) i
2s

4παs M̂(0)
ij→ij . (3.29)
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3W → 3W amplitude. The exchange of three Reggeons contributes to the amplitude

starting at two-loops, and is given according to eq. (2.48c) by a simple Wick contraction

of free propagators:

〈ψj,3|ψi,3〉(LO) = −iπ2 (rΓ)2 I[1]
g2
s

t

(
αs
π

)2

C
(2)
33 , (3.30)

where C
(2)
33 represents the colour factor, to be discussed below, and we have defined the

basic two-loop integral

I[N ] ≡
(

4πSε(p
2)

rΓ

)2∫
[d̄p1][d̄p2]

p2

p2
1p

2
2(p−p1−p2)2

N , (3.31)

where N should be understood to be a function of the momenta p1, p2 and p. Integrals

of the type I[N ] are trivial to calculate, because they correspond to bubble integrals of

the type∫
d2−2εk

(2π)2−2ε

1

[k2]α[(p− k)2]β
=
Bα,β(ε)

(4π)1−ε (p2)1−ε−α−β

with Bα,β(ε) ≡ Γ(1− α− ε)Γ(1− β − ε)Γ(α+ β − 1 + ε)

Γ(α)Γ(β)Γ(2− 2ε− α− β)
.

(3.32)

In particular, in case of eq. (3.30) we need the case N = 1, for which we get

I[1] =
4

ε2
B1,1+ε(ε)

B1,1(ε)
=

3

ε2
− 18εζ3 − 27ε2ζ4 + . . . (3.33)

This is a nice feature of the Regge limit: a two-loop amplitude has been reduced to essen-

tially a free theory computation in the effective Reggeon theory. The more difficult aspect

is to deal with the colour factor:

C
(2)
33 =

1

36

∑
σ∈S3

(
T
σ(a)
i T

σ(b)
i T

σ(c)
i

)
a1a4

(
Ta
jT

b
jT

c
j

)
a2a3

. (3.34)

Our strategy, keeping in mind our goal to compare the infrared divergent part, is to ex-

press this as some kind of operator acting on the tree colour factor. Fortunately, there

is a systematic way to do so: we iteratively peel off contracted indices, starting from the

outermost ones, and re-express them in terms of Casimirs, for example[
(Ta

i · · · )a1a4(Ta
j · · · )a2a3

]
=

1

2
(T2

s − Ci − Cj)
[
( · · · )a1a4( · · · )a2a3

]
. (3.35)

With the help of the identities used in eq. (2.32), the Casimirs can be further decomposed

into signature even and odd combinations, which gives us the following two useful formulas:

[
(Ta

i · · · )a1a4(Ta
j · · · )a2a3

]
=

1

2

(
T2
s−u −

1

2
T2
t

)[
( · · · )a1a4( · · · )a2a3

]
,

[
(Ta

i · · · )a1a4( · · ·Ta
j )a2a3

]
=

1

2

(
T2
s−u +

1

2
T2
t

)[
( · · · )a1a4( · · · )a2a3

]
. (3.36)
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By repeatedly applying these formulas it is now a simple exercise to obtain that

C
(2)
33 =

1

24

[
(T2

s−u)2 − 1

12
(CA)2

]
(T bi )a1a4(T bj )a2a3 , (3.37)

and substituting into (3.30) gives the two-loop amplitude:

〈ψj,3|ψi,3〉(LO) = −π
2

24

(
αs
π

)2

(rΓ)2 I[1]

[
(T2

s−u)2 − 1

12
(CA)2

]
i

2s
4παs M̂(0)

ij→ij . (3.38)

Total to two loops. Adding the results of eqs. (3.27), (3.28), (3.29) and (3.38) as in-

dicated in eq. (2.48) we get the total contribution to the odd amplitude at one and two

loops. Explicitly, expanding the reduced amplitude in powers of αs/π as defined for the

complete amplitude in eq. (2.14), we have

M̂(−,1)
ij→ij =

(
D

(1)
i +D

(1)
j

)
M̂(0)

ij→ij , (3.39a)

M̂(−,2)
ij→ij =

[
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j + π2R(2)

(
(T2

s−u)2 − 1

12
(CA)2

)]
M̂(0)

ij→ij , (3.39b)

where we have introduced the function

R(2) ≡ − 1

24
(rΓ)2 I[1] = −(rΓ)2

6ε2
B1,1+ε(ε)

B1,1(ε)
= (rΓ)2

(
− 1

8ε2
+

3

4
εζ3 +

9

8
ε2ζ4 + . . .

)
, (3.40)

where Bα,β(ε) is given in eq. (3.32). Here we have factored out π2 to emphasize that this

term originates as a Regge cut proportional to (iπ)2. This formula, in particular the fact

that R(2) multiplies the nontrivial colour factor (T2
s−u)2, is responsible for the breakdown of

Regge pole factorization as will be discussed in section 4. The fact that with two unknown

impact factors D
(2)
g , D

(2)
q , this formula can describe the three processes of gluon-gluon,

gluon-quark and quark-quark scattering is highly nontrivial.

3.4 Odd amplitude at three loops

The calculation of the three-loop amplitude through NNLL requires the evaluation of the

triple, double and single L coefficients in eq. (2.48d).

W → W amplitude. Once again, given eq. (2.49), the contribution of the 1 → 1

transition to the reduced amplitude is given by the higher-orders corrections to the impact

factors, according to eq. (3.26). This equation does not involve evolution, and therefore at

three loops it contributes only at N3LO:

〈ψj,1|ψi,1〉(N
3LO) =

(
αs
π

)3(
D

(3)
i +D

(3)
j +D

(2)
i D

(1)
j +D

(1)
i D

(2)
j

) i
2s

4παs M̂(0)
ij→ij . (3.41)

This is beyond the logarithmic accuracy which is the target of this paper, and therefore we

will not consider this contribution further.
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Figure 6. Example of a diagram involved in the calculation of the three-Reggeon cut at three loops.

This diagram, together with all the other diagrams obtained by inserting a rung in all possible

ways between the three Reggeons, and considering all possible permutation of the three Reggeons

themselves, arises from the insertion of a single factor of Ĥ3→3, as discussed below eq. (3.42).

3W → 3W amplitude. We start by considering the single logarithmic term originating

by applying the diagonal term Hk→k given in (3.13) to the wavefunction |ψi,3〉. A major

simplification is that only the leading order wavefunction eq. (3.23) is required, whose

momentum and colour dependence are separately permutation invariant. This allows the

sum over pairwise colour factors in the Hamiltonian (3.13) to be simplified in terms of the

total Casimir in the t-channel (a typical graph is shown in figure 6). After a computation

we find

Ĥ3→3W
a(p1)W b(p2)W c(p3)

∣∣
S3 '

αsrΓ

2πε

[
T2
t − 3CA

(
p2

p2
1

)ε]
W a(p1)W b(p2)W c(p3)

− αs(T2
t − 3CA)Sε

∫
[d̄q]H22(q; p1, p2)W a(p1+q)W b(p2−q)W c(p3) , (3.42)

where H22 is the BFKL kernel in eq. (3.15). We emphasize that the simplification of the

Hamiltonian is only valid for permutation invariant momentum dependence. Contracting

the W ’s against the target then gives the colour factor derived in eq. (3.37), times three

propagators, which produce simple two-dimensional integral:

〈ψj,3|Ĥ3→3|ψi,3〉 =
π2

48

(
αs
π

)3

(rΓ)3
[
T2
t (2Ib−Ia−Ic) + 3CA (Ic − Ib)

]
·
[
(T2

s−u)2 − 1

12
(CA)2

]
i

2s
4παs M̂(0)

ij→ij . (3.43)

Here, using the elementary bubble integral in eq. (3.31), we have expressed all integrals in

terms of three basic ones:

Ia ≡ I
[

1

ε

]
=

4

ε3
B1,1+ε(ε)

B1,1(ε)
=

3

ε3
− 18ζ3 − 27εζ4 + . . . (3.44a)

Ib ≡ I
[

1

ε

(
p2

p2
1

)ε]
=

4

ε3
B1+ε,1+ε(ε)

B1,1(ε)
=

2

ε3
− 44ζ3 − 66εζ4 + . . . (3.44b)

Ic ≡ I
[

1

ε

(
p2

(p1 + p2)2

)ε]
=

4

ε3
B1,1+2ε(ε)

B1,1(ε)
=

8

3ε3
− 128

3
ζ3 − 64εζ4 + . . . . (3.44c)
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Figure 7. Diagrams representing the colour structure of the 1 → 3 and 3→ 1 transitions. Notice

that these diagrams are different from the ones representing the kinematical structure of the 1 → 3

and 3 → 1 transitions, i.e. H13(p1, p2, p3) in eq. (3.17). This is a consequence of the fact that the

BFKL evolution derived in section 3.1 represents an effective field theory in 2 − 2ε dimensions, in

which the longitudinal degrees of freedom have been integrated out.

While the integrals Ia,b,c are readily available in terms of Bα,β(ε) of eq. (3.32) to all orders

in ε, here we chose to display the first few orders in their expansion, which will be used

below.

3W → W and W → 3W amplitudes: transition vertices. The next contribution

comes from the off-diagonal 1→ 3 and 3→ 1 terms in the Hamiltonian, given in eqs. (3.16)

and (3.18). These produce the colour factor (represented by the graphs in figure 7):

C
(3)
13+31 ≡

1

6

∑
σ∈S3

Tr
[
F aF σ(b)F σ(c)F σ(d)

][
(T ai )a1a4(T bj T

c
j T

d
j )a2a3 + (T bi T

c
i T

d
i )a1a4(T aj )a2a3

]
.

(3.45)

Multiplying with the propagators according to our master equation (2.48d), and collecting

the integrals, this contribution to the reduced amplitude is again written in terms of the

same elementary integrals:

〈ψj,3|Ĥ1→3|ψi,1〉+ 〈ψj,1|Ĥ3→1|ψi,3〉 =
i

12

(
αs
π

)3

π2 (rΓ)3
[
2Ic−Ia−Ib

] g2
s

t
C

(3)
13+31 . (3.46)

The main nontrivial task is to simplify the colour factor. Again we would like to obtain a

colour operator acting on the tree amplitude. This can be achieved by a simple systematic

algorithm: move all fabc’s onto the external states by using the Jacobi identity:

fabcT ci = −i
[
T ai , T

b
i

]
. (3.47)

In fact this can be done in multiple distinct ways, since one can applies this on the i or j

leg. This makes it possible to arrange to get 4 colour generators to act on each of the i

and j legs, which then enable to use eq. (3.36) to read off the result in terms of quadratic

Casimirs. In fact, we find that for the 1→ 3 and 3→ 1 transitions separately, the quadratic

Casimir operators do not provide a sufficient basis since the nesting for some terms does

not allow to extract any generator acting from the outside. However, the obstruction is

odd under interchange of i and j, and upon adding the two diagrams we do find a compact
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expression:

C
(3)
13+31 =

1

4

(
2T2

s−u[T2
t ,T

2
s−u]− [T2

t ,T
2
s−u]T2

s−u

− (T2
s−u)2CA −

1

12
(CA)3

)
(T bi )a1a4(T bj )a2a3 , (3.48)

thus leading to

〈ψj,3|Ĥ1→3|ψi,1〉+ 〈ψj,1|Ĥ3→1|ψi,3〉 =

π2

48

(
αs
π

)3

(rΓ)3(2Ic−Ia−Ib)
(

2T2
s−u[T2

t ,T
2
s−u]− [T2

t ,T
2
s−u]T2

s−u (3.49)

− (T2
s−u)2CA −

1

12
(CA)3

)
i

2s
4παs M̂(0)

ij→ij .

Adding the results in eqs. (3.43) and (3.49), and expressing the colour operators in a

common basis, we get:

〈ψj,3|Ĥ3→3|ψi,3〉+ 〈ψj,3|Ĥ1→3|ψi,1〉+ 〈ψj,1|Ĥ3→1|ψi,3〉 =

π2

48

(
αs
π

)3

(rΓ)3

[
3(Ic−Ia) T2

s−u[T2
t ,T

2
s−u] + 3(Ib−Ic) [T2

t ,T
2
s−u]T2

s−u

− 1

6
(2Ic−Ia−Ib) (CA)3

]
i

2s
4παs M̂(0)

ij→ij .

(3.50)

3.5 Result: the three-loop reduced amplitude to NNLL accuracy

To summarize, in this section we used BFKL theory to calculate the signature odd part

of the 2 → 2 amplitude to NNLL accuracy. The result at one- and two-loop is recorded

in eq. (3.39), while the three-loop result is obtained by multiplying the preceding equation

with the appropriate minus sign and factor from eq. (2.48):

M̂(−,3,1)
ij→ij = π2

(
R

(3)
A T2

s−u[T2
t ,T

2
s−u]+R

(3)
B [T2

t ,T
2
s−u]T2

s−u+R
(3)
C (CA)3

)
M̂(0)

ij→ij , (3.51)

where we have introduced the functions

R
(3)
A =

1

16
(rΓ)3(Ia−Ic) = (rΓ)3

(
1

48ε3
+

37

24
ζ3 + . . .

)
,

R
(3)
B =

1

16
(rΓ)3(Ic−Ib) = (rΓ)3

(
1

24ε3
+

1

12
ζ3 + . . .

)
,

R
(3)
C =

1

288
(rΓ)3(2Ic−Ia−Ib) = (rΓ)3

(
1

864ε3
− 35

432
ζ3 + . . .

)
. (3.52)

This equation is the main result of this section. The integrals Ia,b,c are defined in eq. (3.44)

where they are evaluated, using the bubble integral (3.32), to all orders in ε in terms of Γ

functions. Here we will be interested in particular in their ε → 0 limit, hence we quote

their expansion through finite terms.

We note that all the integrals entering M̂(−,3,1)
ij→ij in eq. (3.51) are of uniform polyloga-

rithmic weight 3 (as usual in this context, ε is assigned weight −1). Given that M̂(−,3,1)
ij→ij is
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itself the coefficient of a single (high-energy) logarithm, and taking into account the overall

factor of π2 in eq. (3.51), we see that the weight adds up to 6, which is the maximal weight

at three loops. Such a uniform maximal weight structure is expected in N = 4 SYM theory,

while in general not in QCD. However, as we have seen, M̂(−,3,1)
ij→ij is fully determined by

gluon interactions, and therefore entirely independent of the matter contents of the theory.

Thus, it is indeed expected that the result, which is valid for any gauge theory, should

retain the uniform maximal weight nature characteristic of N = 4 SYM.

We further emphasise that these results are valid for arbitrary projectiles (quarks or

gluons) in arbitrary representation of the gauge group; only the impact factors D
(1)
i and

D
(2)
i in eq. (3.39) depend upon this choice. In the next section we discuss our predictions

for the amplitude itself, and discuss its nontrivial consistency with infrared exponentiation

theorems.

Finally note that the gluon Regge trajectory does not enter the above formulae, because

it is subtracted in the definition of the reduced amplitude, eq. (2.26). This definition is also

the reason why terms with more logarithms are absent: M̂(−,1,1)
ij→ij = M̂(−,2,2)

ij→ij = M̂(−,3,3)
ij→ij = 0

and well as M̂(−,2,1)
ij→ij = M̂(−,3,2)

ij→ij = 0. The logarithm-free term at three loops, M̂(−,3,0)
ij→ij , is

beyond our current NNLL accuracy. The presently known results from BFKL theory in

the even sector, which hold to NLL accuracy, have been reviewed in eq. (2.28).

4 Comparison between Regge and infrared factorisation

As mentioned in the introduction, the structure of infrared divergences in massless scat-

tering amplitudes is known in full to three-loop order [35]. The prediction for the reduced

amplitude presented in the previous section is based solely on evolution equations of the

Regge limit, and has taken no input from the theory of infrared divergences. It is therefore a

highly nontrivial consistency test that this prediction is consistent with the known exponen-

tiation pattern and the anomalous dimensions governing infrared divergences. Conversely,

the prediction of the previous section can also be seen as a constraint on the soft anoma-

lous dimension: the high-energy limit of the latter has a very special structure, which may

ultimately help in determining it beyond three loops.

The possibility of performing a systematic comparison between results obtained in the

context of Regge theory and the infrared factorisation theorem has been considered in the

past [16, 37–40]. Given our calculation of the reduced amplitude up to NNLL within the

Regge theory, we are now able to extend this analysis systematically to this logarithmic

accuracy. In the following section we exploit this possibility by performing a comparison

up to three loops: this will allow us to check consistency with the structure of infrared

divergences in the first place; moreover, we will be able to use our result obtained in the

context of Regge theory to extract the infrared renormalised amplitudes, i.e. the so-called

hard functions, up to three loops.

We start this discussion by reviewing the structure of infrared divergences in the high-

energy limit. In particular, the expansion of the quadrupole correction at three loops in

this limit has not been presented elsewhere.
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4.1 Infrared renormalization and the soft anomalous dimension

The infrared divergences of scattering amplitudes are controlled by a renormalization group

equation, whose integrated version takes the form

Mn

(
{pi}, µ, αs(µ2)

)
= Zn

(
{pi}, µ, αs(µ2)

)
Hn
(
{pi}, µ, αs(µ2)

)
, (4.1)

where Mn represents now an n-point scattering amplitude, and Zn is given as a path-

ordered exponential of the soft-anomalous dimension:

Zn
(
{pi}, µ, αs(µ2)

)
= P exp

{
− 1

2

∫ µ2

0

dλ2

λ2
Γn
(
{pi}, λ, αs(λ2)

)}
, (4.2)

where the dependence on the scale is both explicit and via the 4−2ε dimensional coupling,

which obeys the renormalization group equation

β(αs, ε) ≡
dαs
d lnµ

= −2ε αs −
α2
s

2π

∞∑
n=0

bn

(
αs
π

)n
, (4.3)

with b0 = 11
3 CA − 2

3nf . The soft anomalous dimension for scattering of massless partons

(p2
i = 0) is an operator in colour space given, through three loops, by [30–32, 35, 65]

Γn
(
{pi}, λ, αs(λ2)

)
= Γdip.

n

(
{pi}, λ, αs(λ2)

)
+ ∆n

(
{ρijkl}

)
(4.4)

with Γdip.
n

(
{pi}, λ, αs(λ2)

)
= −γK(αs)

2

∑
i<j

log

(−sij
λ2

)
Ti ·Tj +

∑
i

γi(αs) ,

where Γdip.
n involves only pairwise interactions amongst the hard partons, and is therefore

referred to as the “dipole formula” [30–32, 65], while the term ∆n

(
{ρijkl}

)
involves in-

teractions of up to four partons, and is called the “quadrupole correction”. In eq. (4.4)

one defines the kinematic variables −sij = 2|pi · pj |e−iπλij with λij = 1 if partons i and

j both belong to either the initial or the final state and λij = 0 otherwise; Ti represent

colour change operators [28] in an arbitrary representation, according to the notation in-

troduced in section 2.2. The function γK(αs) in eq. (4.4) is the (lightlike) cusp anomalous

dimension [19–21], divided by the quadratic Casimir of the corresponding Wilson lines.

The universality of γK (so-called Casimir scaling) may be broken at four loops and be-

yond. Corresponding corrections may be induced in Γn in eq. (4.4), but these will not

be discussed here, since we restrict explicit computations to three loops. In turn, γi(αs)

represent the field anomalous dimension corresponding to the parton i, which governs hard

collinear singularities. The coefficients of both γK and γi are known through three loops

and are summarized in appendix A.

The quadrupole correction ∆n

(
{ρijkl}

)
, which appears first at three loops, depends

on the cross ratios ρijkl =
(−sij)(−skl)
(−sik)(−sjl) , which are invariant under rescaling of any of the

momenta. The quadrupole correction is expanded in powers of αs/π as follows:

∆n

(
{ρijkl}

)
=

∞∑
i=3

(
αs
π

)i
∆(i)
n

(
{ρijkl}

)
. (4.5)
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The leading contribution has been computed for the first time only recently [35], and is

given by

∆(3)
n

(
{ρijkl}

)
=

1

4
fabef cde

∑
1≤i<j<k<l≤n

[
Ta
iT

b
jT

c
kT

d
l F(ρikjl, ρiljk)

+ Ta
iT

b
kT

c
jT

d
l F(ρijkl, ρilkj) + Ta

iT
b
lT

c
jT

d
k F(ρijlk, ρiklj)

]
− C

4
fabef cde

n∑
i=1

∑
1≤j<k≤n,
j,k 6=i

{Ta
i ,T

d
i }Tb

jT
c
k , (4.6)

where F is a function of two cross-ratios and C is a constant:

F(ρikjl, ρilkj) = F (1− zijkl)− F (zijkl) ,

C = ζ5 + 2ζ2ζ3 , (4.7)

with zijkl z̄ijkl = ρijkl and (1− zijkl)(1− z̄ijkl) = ρilkj . In turn one has

F (z) = L10101(z) + 2ζ2

(
L001(z) + L100(z)

)
, (4.8)

where the functions Lw(z) are Brown’s single-valued harmonic polylogarithms [66] (see

also [67]) in which w is a word made out of 0’s and 1’s. The function F implicitly depends

on z̄ as well, but it is initially defined in the part of the Euclidean region where z̄ = z∗,

where it is single valued. One may then analytically continue the function beyond this

region, treating z and z̄ as independent variables. It can then be seen that F develops

discontinuities, with three branch points for z and z̄ equals {0, 1,∞} corresponding to

forward or backward scattering.

Focusing now on the case of 2 to 2 scattering amplitudes, we restrict the index n in

eq. (4.1) above to n = 4, and drop the index n from now on. The dipole contributions

to the anomalous dimension for 2 → 2 scattering with timelike s = s12 > 0 and spacelike

t = s14 < 0 and u = s13 < 0, is

Γdip.
(
{p}, λ, αs(λ2)

)
=

− γK(αs)

2

[
(T1 ·T2 + T3 ·T4) log

s e−iπ

λ2
(4.9)

+ (T1 ·T3 + T2 ·T4) log
−u
λ2

+ (T1 ·T4 + T2 ·T3) log
−t
λ2

]
+

4∑
i=1

γi(αs) .

In the high-energy limit u ≈ −s this expression simplifies significantly. In particular, by

expressing it in terms of the colour operators introduced in eq. (2.30) one obtains

Γdip.
(
{pi}, λ, αs(λ2)

) Regge−−−→ γK(αs)

2

[
LT2

t + iπT2
s−u +

Ctot

2
log
−t
λ2

]
(4.10)

+

4∑
i=1

γi(αs) +O
(
t

s

)
,
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where L = log
∣∣ s
t

∣∣− iπ2 is the natural signature-even combination of logarithms introduced

in eq. (2.7).

Obtaining ∆(3) in the high-energy limit requires some more work [35, 68]. This function

is initially defined in Euclidean kinematics where the invariants are all spacelike, and the

momenta of the coloured partons pi are not required to admit momentum conservation.

One therefore needs to first analytically continue the functions F in eq. (4.6) across the cut

to the region where p1 and p2 are incoming while p3 and p4 outgoing. Once this is done,

one imposes the momentum conserving limit where one identifies s = s12 = s34 > 0 and

t = s14 = s23 < 0, and the variables z and z̄ approach the real axis from opposite sides

and coincide, such that z, z̄ → s/(s+ t). At the final stage one takes the high-energy limit

where s� −t. Details of these calculations will be presented elsewhere. One obtains

∆(3) = iπ [T2
t , [T

2
t ,T

2
s−u]]

1

4

[
ζ3L+ 11ζ4

]
+

1

4
[T2

s−u, [T
2
t ,T

2
s−u]]

[
ζ5 − 4ζ2ζ3

]
− ζ5 + 2ζ2ζ3

8

{
fabef cde

[
{Ta

t ,T
d
t }
(
{Tb

s−u,T
c
s−u}+ {Tb

s+u,T
c
s+u}

)
+ {Ta

s−u,T
d
s−u}{Tb

s+u,T
c
s+u}

]
− 5

8
C2
AT2

t

}
, (4.11)

where we introduced the colour operators

Ta
s−u ≡

1√
2

(Ta
s −Ta

u) , Ta
s+u ≡

1√
2

(Ta
s + Ta

u) . (4.12)

Note that the second and third lines in (4.11) correspond to the kinematics-independent

term C in the quadrupole correction of eq. (4.6); it appears that it cannot be written in

terms of quadratic invariants. The symmetry properties of (4.11) under s to u exchange,

are nevertheless clear, and as expected (recall that the hard function on which this operator

will act is colour odd) the imaginary part is colour odd while the real part is colour even. We

observe that this expression contains only a single factor of L, with an imaginary coefficient.

Therefore the quadrupole contribution to the even amplitude M(+) starts at NNLL while

for the odd amplitude M(−) it starts only at N3LL. The evaluation of the colour operator

in the second and third line of eq. (4.11) in an explicit colour basis is provided in the

appendices. More specifically, in appendix B we provide it in an orthonormal colour basis

in the t-channel, while in appendix C we give it in a “trace” colour basis.

The anomalous dimension would be straightforward to exponentiate according to

eq. (4.2), were it not for the fact that T2
t , T2

s−u and the colour operators in ∆(3) do

not commute. This non-commutativity by itself implies that the amplitude projected on

the tree-level colour factor cannot be written as a simple power law, that is, it cannot be

interpreted as exchange of a single Reggeized gluon [16, 38], as discussed in section 2.2.

The last two terms in the dipole formula Eq. (4.10) do not depend on colours nor or

the total energy s, which suggests to attribute them to the projectile and target separately

and write Z factor in eq. (4.2) in the following factorized form:

Z
(
{pi}, µ, αs(µ2)

)
= Z̃

(
s

t
, µ, αs(µ

2)

)
Zi
(
t, µ, αs(µ

2)
)
Zj
(
t, µ, αs(µ

2)
)
, (4.13)
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where the Zi/j are just scalar factors that depend only on either the projectile or target:

Zi = exp

{
−
∫ µ2

0

dλ2

λ2

[
γK
(
αs(λ

2)
)

4
Ci log

−t
λ2

+ γi
(
αs(λ

2)
)]}

. (4.14)

The more interesting factor is Z̃ which is a colour operator given to three-loop accuracy as:

Z̃

(
s

t
, µ, αs(µ

2)

)
= exp

{
K
(
αs(µ

2)
)
[LT2

t + iπT2
s−u] +Q

(3)
∆

}
, (4.15)

with K
(
αs(µ

2)
)

defined as the integral over the cusp anomalous dimension:

K
(
αs(µ

2)
)

= −1

4

∫ µ2

0

dλ2

λ2
γK
(
αs(λ

2)
)

=
1

2ε

αs(µ
2)

π
+ . . . , (4.16)

while Q
(3)
∆ represent the contribution of the quadrupole correction at three loops,

Q
(3)
∆ = −∆(3)

2

∫ µ2

0

dλ2

λ2

(
αs(λ

2)

π

)3

=
∆(3)

6ε

(
αs(µ

2)

π

)3

. (4.17)

The extra logarithm of λ in the integration in eq. (4.14) is responsible for double

poles combining infrared and collinear singularities. Thus we see that all double poles are

included in the factors Zi/j , while the factor K (and consequently Z̃) contains at most a

single infrared pole per loop order. To three loops one has

K(αs) =
αs
π

γ
(1)
K

4ε
+

(
αs
π

)2(γ(2)
K

8ε
− b0 γ

(1)
K

32ε2

)
,

+

(
αs
π

)3(γ(3)
K

12ε
− b0 γ

(2)
K + b1 γ

(1)
K

48ε2
+
b20 γ

(1)
K

192ε3

)
+O(α4

s) , (4.18)

where explicit expressions for the αs expansion of the cusp anomalous dimensions γK , as

well as the quark and gluon anomalous dimension γi and the scalar factor Zi/j are provided

in appendix A.

The scalar factors Zi removed in eq. (4.13) are the same as those we removed from the

reduced amplitude eq. (2.26) in the BFKL context, and in fact, at leading log accuracy the

exponent of eq. (4.15) is also very similar to the gluon Regge trajectory subtracted in the

reduced amplitude. This makes the relation between the “infrared-renormalized” ampli-

tude (hard function) Hij→ij and reduced matrix element particularly simple. Comparing

eq. (4.1) with eq. (2.26) and using eqs. (4.13) and (4.15), we indeed find

Hij→ij
(
{pi}, µ, αs(µ2)

)
= exp−1

{
K
(
αs(µ

2)
)
[LT2

t + iπT2
s−u] +Q

(3)
∆

}
· exp

{
αg(t)LT2

t

}
M̂ij→ij

(
{pi}, µ, αs(µ2)

)
. (4.19)

This equation allows us to pass from directly from the reduced amplitude M̂ij→ij , predicted

in the previous section using BFKL theory, to the more conventional scattering amplitude

or hard function. In particular, the statement that the left-hand-side Hij→ij is finite, which

is equivalent to the exponentiation of infrared divergences, is a highly nontrivial constraint

on our result.
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4.2 Expansion of the hard amplitude

Similarly to eq. (2.14), we introduce a power expansion for the hard function:

Hij→ij
(
{pi}, µ, αs(µ2)

)
= 4παs

∞∑
n=0

n∑
k=0

(
αs
π

)n
LkH(n,k)

(−t
µ2

)
. (4.20)

In the rest of this section we derive the coefficients H(n,k) order by order in perturbation

theory, applying eq. (4.19) to the results of the preceding section. The colour factors in

the exponent do not commute, but the formula can be expanded in perturbation theory

by repeatedly applying the Baker-Campbell-Hausdorff formula. Up to three loops we find

explicitly:

Hij→ij
(
{pi}, µ, αs(µ2)

)
=

(
1 +

K3(αs)

3!

(
2π2 L [T2

s−u, [T
2
t ,T

2
s−u]]− i πL2 [T2

t , [T
2
t ,T

2
s−u]]

)
+ iπ

K2(αs)

2
L [T2

t ,T
2
s−u]−Q(3)

∆

)
· exp

{
− iπ K(αs) T2

s−u
}

· exp
{(
αg(t)−K(αs)

)
LT2

t

}
M̂ij→ij

(
{pi}, µ, αs(µ2)

)
. (4.21)

Notice that we have combined the exponent containing the Regge trajectory with the

T2
t term in the infrared factorisation formula, since they have the same colour structure.

Because of the structure of this exponent, the combination αg(t)−K(αs) frequently appears

in the following. For this reason, it proves useful to introduce the short-hand notation

α̂g(t) = αg(t)−K(αs) , (4.22)

to indicate the “finite” Regge trajectory divided by Nc. Expanding in the coupling, we

write

α̂g(t) = α̂(n)
g

(
αs(−t)
π

)n
. (4.23)

The fact that the combination entering the hard function is the difference between the

Regge trajectory and K(αs) is a manifestation of the relation between the divergent part

of the gluon Regge trajectory and the cusp anomalous dimension discovered in refs. [9, 10].

Below we will see that this relation breaks down as a consequence of the Regge cut, and

in our scheme α̂g(t) will not be finite at three loops.

At one- and two-loops, using the known trajectory in eq. (A.6) and cusp anomalous

dimension in eq. (A.2) we get α̂g(t) with

α̂(1)
g =

1

2ε
(rΓ − 1) = −1

4
ζ2 ε−

7

6
ζ3 ε

2 +O(ε3) , (4.24a)

α̂(2)
g = CA

(
101

108
− ζ3

8

)
− 7nf

54
+O(ε) . (4.24b)

This is nicely infrared finite. The first term would in fact vanish if we worked in a scheme

where the coupling is αsrΓ instead of αs, which would simplify many of our predictions.

However, to simplify comparisons with the literature, we will stick with the standard MS

coupling αs.
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At leading logarithmic accuracy, and to any order in the coupling, only the rightmost

exponential factor in (4.21) is relevant, and we obtain

H(n,n)
ij→ij =

1

n!

(
α̂(1)
g

)n
(T2

t )
n M̂(0)

ij→ij , (4.25)

which is of course finite. At NLL accuracy and beyond the expansion of (4.21) requires

input with regards to the coefficients of M̂ij→ij . The computation is significantly simplified

here by working with the reduced amplitude, whose leading logarithms M̂(n,n)
ij→ij vanish, and

whose next-to-leading logarithms beyond one loop are purely imaginary and are given by

eq. (2.28) above (the real part of M̂(n,n−1)
ij→ij for n ≥ 2 vanishes by construction). Next-to-

next-to-leading logarithms in the real part of M̂ij→ij are determined by the BFKL analysis

of the previous section.

An important feature visible in eq. (4.21) is that the conversion to the hard function

does not commute with the projection onto even and odd signatures. Specifically, the odd

part of the hard function at NNLL receives some contamination from the even reduced

amplitude at NLL, multiplied by iπK(αs)T
2
s−u or iπK

2(αs)
2 [T2

t ,T
2
s−u]. This is not going

to pose a problem, because these ingredients are already known.

Our comparison between Regge and infrared factorization below follows closely the

analysis in [40] (see also [16]). Nevertheless, there are several new elements allowing us to

make a significant step forward: first, our present analysis makes a clear and transparent

separation between signature odd and even, corresponding respectively to real and imagi-

nary parts of the amplitude expressed in terms of L ≡ log
∣∣ s
t

∣∣− iπ2 ; second is the possibility

to compare the infrared factorisation formula with the contribution originating from three

Reggeon exchange at two and three loops, which we have calculated here for the first time;

third is the availability of the complete infrared structure at three loops, i.e. eq. (4.11)

based on [35, 68], which implies, in particular, that the odd amplitude receives no new

NNLL high-energy corrections beyond the dipole formula through three loops, while the

even amplitude does; a final new ingredient is the availability of the N = 4 SYM result

for 2 → 2 gluon-gluon scattering amplitude [41], which beyond consistency checks, also

provides new information on the odd amplitude at NNLL: together with the computation

of the three-Reggeon cut performed here, it allows us to fix the three-loop gluon Regge

trajectory in this theory.

4.3 Comparison at one loop

At tree level one has H(0) = M̂(0) = M(0). Comparison at one loop is simple, and

completely equivalent to the discussion in [16, 40]. We repeat it here in order to adapt it

to the conventions used in this paper, in particular, the fact that we expand the amplitude

in powers of L = log |s/t| − iπ/2 instead of powers of log |s/t|.
Expanding eq. (4.21) to one loop, and suppressing the indices ij → ij for brevity,

we get

H(1,1) = α̂(1)
g T2

t M̂(0), (4.26a)

H(1,0) = M̂(1,0) − iπ K(1) T2
s−u M̂(0). (4.26b)
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As anticipated (see the discussion regarding eq. (4.22)) the fact that the hard function

must be finite relates to the connection between the divergent part of α
(1)
g and the cusp

anomalous dimension [9, 10]. The vanishing of α̂
(1)
g in the four-dimensional limit, as shown

in eq. (4.24a), reflects the fact that gluon Reggeisation at this order is determined entirely

by soft corrections, hence no high-energy logarithms arise in the hard function at one loop

in the ε→ 0 limit.

The finite part in eq. (4.26b) contains informations both its in real and imaginary parts.

Using the direct correspondence between the real and imaginary parts of the amplitude,

respectively, and its odd and even signature parts, we get

Re[H(1,0)] = M̂(−,1,0), (4.27a)

i Im[H(1,0)] = M̂(+,1,0) − iπ K(1) T2
s−u M̂(0). (4.27b)

Using the results for M̂(−,1,0) and M̂(+,1,0) in eqs. (3.39a) and (2.28) one explicitly gets

Re[H(1,0)] =
(
D

(1)
i +D

(1)
j

)
M̂(0), (4.28a)

i Im[H(1,0)] = iπ
(
d1 −K(1)

)
T2
s−u M̂(0) = iπ α̂(1)

g T2
s−u M̂(0), (4.28b)

where d1 = rΓ
2ε is the one-loop coefficient in eq. (2.29); in the last expression in eq. (4.28b)

we used (4.24) to replace the difference of divergent coefficients d1 − K(1) by the O(ε)

coefficient α̂
(1)
g . This replacement will be used in what follows to obtain simpler expressions

at higher orders.

Infrared factorization tells us that both of the equations in eq. (4.28) are finite as

ε→ 0. This is evidently satisfied for the imaginary part, eq. (4.28b). Finiteness of the real

part in eq. (4.28a) in turn implies that the impact factors Di must also be finite — indeed

they are, as we have already extracted the divergences into the factors Zi of eq. (4.14)

(see eq. (2.21)). A systematic way to extract these, which will work to higher orders as

well, is to consider the fixed-order hard functions projected onto the colour octet (see e.g.

eq. (2.24)). Then we have simply

D
(1)
i =

1

2

Re
[
H(1,0)[8a]
ii→ii

]
H(0)[8a]
ii→ii

. (4.29)

Explicitly, using the one-loop gluon-gluon and quark-quark octet hard function from

ref. [40], converting to the convention where the amplitude is expanded in powers of

L = log |s/t| − iπ/2 instead of powers of log |s/t|, we extract the results for the one-loop
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impact factors, which are indeed finite:

D(1)
g = −Nc

(
67

72
− ζ2

)
+

5

36
nf + ε

[
Nc

(
− 101

54
+

11

48
ζ2 +

17

12
ζ3

)
+ nf

(
7

27
− ζ2

24

)]
+ ε2

[
Nc

(
− 607

162
+

67

144
ζ2 +

77

72
ζ3 +

41

32
ζ4

)
+ nf

(
41

81
− 5

72
ζ2 −

7

36
ζ3

)]
+O(ε3) ,

(4.30a)

D(1)
q = Nc

(
13

72
+

7

8
ζ2

)
+

1

Nc

(
1− 1

8
ζ2

)
− 5

36
nf + ε

[
Nc

(
10

27
− ζ2

24
+

5

6
ζ3

)
+

1

Nc

(
2− 3

16
ζ2−

7

12
ζ3

)
+nf

(
− 7

27
+
ζ2

24

)]
+ε2

[
Nc

(
121

162
− 13

144
ζ2−

7

36
ζ3+

35

64
ζ4

)
+

1

Nc

(
4− ζ2

2
− 7

8
ζ3 −

47

64
ζ4

)
+ nf

(
− 41

81
+

5

72
ζ2 +

7

36
ζ3

)]
+O(ε3) . (4.30b)

Note that, with these two coefficients extracted, the quark-gluon amplitude is then pre-

dicted unambiguously and correctly, as explicitly shown in ref. [40] (see eq. (4.17) there).

4.4 Comparison at two loops

At two-loops, the expansion of eq. (4.21) gives

H(2,2) =
1

2

(
α̂(1)
g

)2
(T2

t )
2 M̂(0), (4.31a)

H(2,1) = M̂(2,1) + α̂(1)
g T2

t M̂(1,0) + α̂(2)
g T2

t M̂(0)

+ iπK(1)

[
1

2
K(1)[T2

t ,T
2
s−u]− α̂(1)

g T2
s−uT

2
t

]
M̂(0), (4.31b)

H(2,0) = M̂(2,0) − π2

2

(
K(1)

)2
(T2

s−u)2M̂(0) − iπ
[
K(2)T2

s−uM̂(0) +K(1)T2
s−uM̂(1,0)

]
.

(4.31c)

We recall that the left-hand-side and α̂(1), α̂(2) (defined in eq. (4.22)) are finite, while the

reduced amplitude M̂, which we computed from BFKL theory, has infrared divergences.

These must therefore cancel on the right-hand-side of eqs. (4.31) with the singularities

contained in K(1) = 1/(2ε) and K(2) given in eq. (4.18). This cancellation provides a

nontrivial consistency check. Note that the leading-log term of eq. (4.31) is a simple

exponentiation of eq. (4.26a). More interesting are the lower-logarithmic terms of the

amplitude. Using explicitly the information for M̂(1,0) and M̂(2,1) in eq. (2.27), (2.28)

and (3.39b) we obtain

Re[H(2,1)] =
[
α̂(2)
g + α̂(1)

g

(
D

(1)
i +D

(1)
j

)]
T2
t M̂(0), (4.32a)

i Im[H(2,1)] = iπ

[(
1

2
d2 +

1

2

(
K(1)

)2
+K(1)α̂(1)

g

)
[T2

t ,T
2
s−u] +

(
α̂(1)
g

)2
T2
tT

2
s−u

]
M̂(0).

(4.32b)

Finiteness of the first line is manifest, and finiteness of the second line is a constraint on

the divergent part of d2, which again is satisfied by the explicit expression in eq. (2.29);

this was also verified in ref. [16].
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Considering finally the coefficient of the zero-th order logarithm, i.e. eq. (4.31c), the

operator (T2
s−u)2 makes its first appearance. We focus on the odd component, i.e. M̂(−,2,0),

which we have calculated in eq. (3.39b). Inserting this result along with the previous result

for the one-loop even amplitude we obtain

Re[H(2,0)] =

[
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j − π2R(2) 1

12
(CA)2

+ π2

(
R(2) +

1

2

(
K(1)

)2
+K(1)α̂(1)

g

)
(T2

s−u)2

]
M̂(0). (4.33)

It is clear at this point that the term proportional to (T2
s−u)2 in the infrared factorisation

formula can be attributed to multi-Reggeon exchange, and this is confirmed by the fact

that the quantity in squared brackets in eq. (4.33) proportional to (T2
s−u)2 is finite. Upon

explicit substitution of R(2) in eq. (3.40), we get

R̂(2) ≡ R(2) +
1

2

(
K(1)

)2
+K(1)α̂(1)

g =
3

4
εζ3 +

67

64
ε2ζ4 + . . . (4.34)

which is indeed finite, as required for the infrared renormalized amplitude Re[H(2,0)].

This equation can thus be used to extract the impact factors at two loops from the

known two-loop fixed-order amplitudes. As before, it suffices to consider the projection of

the amplitude onto the adjoint channel, but the projection of the colour factor (T2
s−u)2

needs to be carried out on a case-by-case basis. This can be done using the matrices given

in appendix B. For gluon-gluon scattering with SU(Nc) gauge group, we get:

2D(2)
g =

H(2,0)[8a]
gg→gg

H(0)[8a]
gg→gg

−
(
D(1)
g

)2
+ π2R(2)N

2
c

12
− π2R̂(2)N

2
c + 24

4
, (4.35)

where in turn D
(1)
g can be found in eq. (4.30a). The impact factor D

(2)
g would be finite,

were it not for the double pole originating from the R(2) ≈ − 1
8ε2

term. For quark-gluon

scattering we find:

D(2)
q +D(2)

g =
H(2,0)[8a]
qg→qg

H(0)[8a]
qg→qg

−D(1)
q D(1)

g + π2R(2)N
2
c

12
− π2R̂(2)N

2
c + 4

4
. (4.36)

Finally, for quark-quark scattering, we find instead:

2D(2)
q =

Re[H(2,0)[8a]
qq→qq ]

H(0)[8a]
qq→qq

−
(
D(1)
q

)2
+ π2R(2)N

2
c

12
− π2R̂(2)N

4
c − 4N2

c + 12

4N2
c

. (4.37)

The important thing to notice is that the coefficient of the R̂(2) term, which represents the

colour structure (T2
s−u)2 attributed to three-Reggeon exchange, is different in each case.

This contribution (in addition to the extra factors of (T2
s−u)2 coming from the infrared

renormalization) explains why the amplitude does not take a simple factorized form, as

was first observed in ref. [44] based on explicit computations of two-loop amplitudes for

gluon-gluon, quark-gluon and quark-quark scattering (for the departure from simple Regge-

pole factorization see also [16, 37–40]). Quantitatively, it is a highly nontrivial check on
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the BFKL formalism that the three equations (4.35) through (4.37) can be solved for the

two unknowns D
(2)
g and D

(2)
q . By using the explicit result for the two-loop gluon-gluon and

quark-quark hard functions H(2,0)[8a]
ij→ij provided in ref. [40], and expanding them in powers

of L = log |s/t| − iπ/2 we find:

D(2)
g = − ζ2

32ε2
N2
c +N2

c

(
− 26675

10368
+

335

288
ζ2 +

11

18
ζ3 −

ζ4

64

)
+Ncnf

(
2063

3456
− 25

144
ζ2 +

ζ3

72

)
+
nf
Nc

(
− 55

384
+
ζ3

8

)
− 25

2592
n2
f +O(ε) , (4.38a)

D(2)
q = − ζ2

32ε2
N2
c +N2

c

(
22537

41472
+

87

64
ζ2 +

41

144
ζ3 −

15

256
ζ4

)
+

28787

10368
+

19

32
ζ2

− 205

288
ζ3 −

47

128
ζ4 +

1

N2
c

(
255

512
+

21

64
ζ2 −

15

32
ζ3 −

83

256
ζ4

)
+Ncnf

(
− 325

648
− ζ2

4
− 23

144
ζ3

)
+
nf
Nc

(
− 505

1296
− ζ2

16
− 19

144
ζ3

)
+

25

864
n2
f +O(ε) .

(4.38b)

Remarkably, these impact factors then correctly predict the quark-gluon amplitude accord-

ing to eq. (4.36), as it should!

Finally, we comment on the infrared divergences in D
(2)
i , which contrast with the

finite D
(1)
i . We believe one should not be overly concerned about this, because of the

arbitrary basis choice in eq. (2.44) which has forced the physics into a very specific basis,

where one- and three-Reggeon states are orthogonal to each other, therefore removing

1 → 3 and 3 → 1 correlators of Wilson lines. In practice, the colour factors ∼ (CA)2 of

such correlators would not be distinguishable from single-Reggeon exchange at this order.

It seems plausible that, in a more natural basis, the infrared divergences would appear

only in these off-diagonal contributions rather than being pushed into the 1 → 1 single-

Reggeon transition, thus leaving finite impact factors which may be closer to the ones

defined empirically in ref. [40]. We leave this for future investigation: since the choice used

in this paper corresponds to a well-defined basis, it should always be possible to convert

the result to other schemes.

4.5 Comparison at three loops

Let us now turn to the comparison between the BFKL results and infrared factorization

at three loops. Because the expressions are rather lengthy, we will discuss the various

logarithmic orders in turn. At leading logarithmic accuracy the expansion of the infrared

factorisation formula in eq. (4.21) gives

H(3,3) =
1

6

(
α̂(1)
g

)3
(T2

t )
3M̂(0), (4.39)
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as anticipated in eq. (4.25). At next-to-leading logarithmic accuracy, the infrared factori-

sation in formula in eq. (4.21) gives

H(3,2) = M̂(3,2) + α̂(1)
g T2

t M̂(2,1) +
1

2

(
α̂(1)
g

)2
(T2

t )
2M̂(1,0) + α̂(1)

g α̂(2)
g (T2

t )
2 M̂(0)

+ iπ

(
− 1

2

(
α̂(1)
g

)2
K(1)T2

s−u(T2
t )

2 +
1

2
α̂(1)
g

(
K(1)

)2
[T2

t ,T
2
s−u]T2

t (4.40)

− 1

6

(
K(1)

)3
[T2

t , [T
2
t ,T

2
s−u]]

)
M̂(0).

Inserting the explicit results for the M̂(n,n−1) terms as given in eqs. (3.39) and (2.28) the

hard function can be brought into the form

Re[H(3,2)] = α̂(1)
g

[
α̂(2)
g +

1

2
α̂(1)
g

(
D

(1)
i +D

(1)
j

)]
(T2

t )
2 M̂(0), (4.41a)

i Im[H(3,2)] = iπ

[
1

6

(
d3 −

(
K(1)

)3 − 3K(1)
(
α̂(1)
g

)2 − 3
(
K(1)

)2
α̂(1)
g

)
[T2

t , [T
2
t ,T

2
s−u]]

+
1

2
α̂(1)
g

(
d2 +

(
K(1)

)2
+ 2K(1)α̂(1)

g

)
T2
t [T

2
t ,T

2
s−u]

+
1

2

(
α̂(1)
g

)3
(T2

t )
2T2

s−u

]
M̂(0). (4.41b)

It is easy to check by explicit substitution of the functions involved in eq. (4.41) that

H(3,2) is indeed finite. The only O(ε0) contribution is given by Im[H(3,2)], i.e. one has

Re[H(3,2)] = O(ε) ,

i Im[H(3,2)] = iπ

(
− 11

24
ζ3 +O(ε)

)
[T2

t , [T
2
t ,T

2
s−u]] +O(ε) . (4.42)

More interesting is the amplitude at NNLL, since at this logarithmic accuracy we can

confront our new predictions concerning the three-Reggeon exchange to the infrared fac-

torisation formula. Starting from the latter, eq. (4.21) gives

H(3,1) = M̂(3,1) + α̂(1)
g T2

tM̂(2,0) + α̂(2)
g T2

tM̂(1,0) + α̂(3)
g T2

tM̂(0)

+
π2

6

[
−3α̂(1)

g

(
K(1)

)2
(T2

s−u)2T2
t +
(
K(1)

)3(
2T2

s−u[T2
t ,T

2
s−u]+[T2

t ,T
2
s−u]T2

s−u
)]
M̂(0)

+ iπ

[
−K(1)T2

s−uM̂(2,1) +

(
1

2

(
K(1)

)2
[T2

t ,T
2
s−u]−K(1)α̂(1)

g T2
s−uT

2
t

)
M̂(1,0)

+

(
K(1)K(2)[T2

t ,T
2
s−u]−K(2)α̂(1)

g T2
s−uT

2
t −K(1)α̂(2)

g T2
s−uT

2
t

− ζ3

24ε
[T2

t , [T
2
t ,T

2
s−u]]

)
M̂(0)

]
. (4.43)

Note that the last term this equation, proportional to ζ3/ε, originates from the recently-

computed quadrupole correction [35], as shown in section 4.1 (see eqs. (4.11) and (4.17)

above), while all other terms in eq. (4.43), which involve K(n), originate in the dipole

formula Γdip.. Eq. (4.43) shows explicitly that, in the high-energy limit, the quadrupole
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correction contributes first at NNLL, and it only contributes at this logarithmic order to

the even part of the amplitude.

Our prediction from BFKL theory concerns the odd amplitude, hence we focus now on

the real part of eq. (4.43). Inserting results for the amplitude coefficients M̂(n,k) determined

in the previous section, we get

Re[H(3,1)] =
[
α̂(3)
g + α̂(2)

g

(
D

(1)
i +D

(1)
j

)
+ α̂(1)

g

(
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j

)]
T2
t M̂(0)

+ π2

[
R

(3)
C −

1

12
α̂(1)
g R(2)

]
(T2

t )
3 M̂(0) + π2 α̂(1)

g R̂(2) T2
t (T

2
s−u)2 M̂(0) (4.44)

+ π2

[
R

(3)
A +

1

6
K(1)

(
2
(
K(1)

)2
+ 3α̂(1)

g K(1) + 3d2

)]
T2
s−u[T2

t ,T
2
s−u]M̂(0)

+ π2

[
R

(3)
B −

1

3
K(1)

((
K(1)

)2
+ 3α̂(1)

g K(1) + 3
(
α̂(1)
g

)2)]
[T2

t ,T
2
s−u]T2

s−u M̂(0).

In this equation, the parameters α̂
(i)
g are related to the perturbative expansion of the

Regge trajectory, representing the one-Reggeon evolution, according to the definition in

eq. (4.22). As already discussed, these parameters are unknown in our formulation of the

Regge theory, beyond α̂
(1)
g . However, α̂

(2)
g can be determined from the two loop analysis,

see eq. (4.24b), which means that only α
(3)
g is unknown in eq. (4.44). We discuss below

how this parameter can be extracted from a three-loop calculation. Similarly, the impact

factors D
(n)
i/j represent corrections to the one-Reggeon wavefunction, and can be determined

by matching with explicit calculations. Eq. (4.44) depends on the impact factors up to two

loops, and these have all been determined through the one- and two-loop analysis, see

eqs. (4.29) and (4.35) through (4.37). The two terms proportional to T2
s−u[T2

t ,T
2
s−u] and

[T2
t ,T

2
s−u]T2

s−u depend only on quantities which have been calculatated explicitly: the

loop functions R
(3)
A,B,C originating from the BFKL evolution of the 1 → 3, 3 → 1 and

3 → 3 Reggeon exchange, terms from the one-loop soft anomalous dimension cubed, plus

the signature-odd log part of the quadrupole correction eq. (4.11) (which turns out to be

zero). The fact that these terms add up to something finite is therefore a highly non-trivial

check of both BFKL theory and of the specific form of the quadrupole correction. Indeed,

expanding explicitly to O(ε0) one finds

Re[H(3,1)] =

[
α̂(3)
g + α̂(2)

g

(
D

(1)
i +D

(1)
j

)
+ α̂(1)

g

(
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j

)
+ C2

A

π2

864

(
1

ε3
− 15ζ2

4ε
− 175ζ3

2

)]
CA M̂(0) (4.45)

+ π2 5ζ3

12
T2
s−u[T2

t ,T
2
s−u]M̂(0) + π2 ζ3

12
[T2

t ,T
2
s−u]T2

s−u M̂(0) +O(ε) ,

where the term proportional to C2
A originates in the combination π2

[
R

(3)
C − 1

12 α̂
(1)
g R(2)

]
in

eq. (4.44). Here we recall again that α̂
(1)
g , α̂

(2)
g and D(1) are finite, while D(2), which is

sensitive to the three-Reggeon cut, is infrared divergent in our scheme (see eq. (4.38)). We

will shortly see that also α̂
(3)
g is divergent in this scheme.

We stress that the colour operators T2
s−u[T2

t ,T
2
s−u] and [T2

t ,T
2
s−u]T2

s−u originate,

within the infrared factorisation approach, only from the expansion of the “dipole term”
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in eq. (4.10), since, as discussed after eq. (4.43), the quadrupole correction turns out to

contribute at NNLL only to the even amplitude. The fact that the calculation of the odd

amplitude at NNLL within the Regge theory matches exactly the poles originating from

the dipole contribution can be seen as an indirect confirmation of the result in ref. [35]; in

the computation of the previous section, the fact that the quadrupole contribution to the

odd amplitude vanishes can be seen to be a reflection of the absence of 1/ε single poles in

the bubble integrals of eq. (3.44). Finiteness of the left-hand-side also predicts the infrared

poles of the presently unknown “trajectory” α̂3.

Eq. (4.44) represents not only a check of the infrared factorisation formula, but also a

prediction for the real part of the infrared-finite amplitude, in the high-energy limit, up to

three loops. In order to show what parts of the amplitude are predicted, we focus now on

gluon-gluon scattering. Recalling our discussion in section 2.2, in particular eq. (2.24), we

see that the real part of the hard function corresponds to the antisymmetric octet 8a and

the 10 + 10 components of the amplitude. Evaluating the colour operators in eq. (4.45) in

the orthonormal colour basis in the t-channel defined in appendix B we find

Re[H(3,1),[8a]] =

{
CA
[
α̂(3)
g + α̂(2)

g

(
D

(1)
i +D

(1)
j

)
+ α̂(1)

g

(
D

(2)
i +D

(2)
j +D

(1)
i D

(1)
j

)]
+ C3

A

π2

864

(
1

ε3
− 15ζ2

4ε
− 175ζ3

2

)
− CAπ2 2ζ3

3
+O(ε)

}
M̂(0),[8a] ,

(4.46a)

Re[H(3,1),[10+10]] =
√

2CA

√
C2
A − 4

{
11π2ζ3

24
+O(ε)

}
M̂(0),[8a] . (4.46b)

Concerning the antisymmetric octet component, we see that it involves the Regge trajectory

at three loops, α̂
(3)
g , which is unknown within our formalism. Given that the impact factors

up to two loops are known from our previous analysis, see in particular eq. (4.35), this

means that, knowing Re[H(3,1),[8a]], eq. (4.46a) can be used to extract α̂
(3)
g . We will take

this point of view below. Before, however, we note that α̂
(3)
g does not contribute to the

10+10 component of the amplitude. Therefore, in our formalism we are able to predict this

term unambiguously, and in eq. (4.46b) we have provided the explicit result up to three

loops. As already mentioned, this result does not depend on the matter contents of the

theory. Indeed, we find that our prediction agrees perfectly with a recent calculation [41]

of 2→ 2 gluon-gluon scattering amplitude at three loops in N = 4 SYM!

In appendix B we provide an explicit prediction for the gluon-gluon hard amplitude

up to three loops in perturbation theory, which is based on the combination of the BFKL

theory developed in section 3 and the comparison with the infrared factorisation formula

discussed in this section. The hard function is provided in appendix B in an orthonormal

colour basis in the t-channel, while in appendix C we provide the same quantity in the

“trace” basis commonly used in literature, see ref. [69].

For completeness, we end this section by quoting the infrared factorisation result for

the N3LL coefficient of the hard function, namely, H(3,0). This result relies on the 3-loop
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soft anomalous dimension described in eq. (4.11) but not on BFKL theory. One has

H(3,0) = M̂(3,0) − π2

2

(
K(1)

)2
(T2

s−u)2M̂(1,0) − π2K(1)K(2)(T2
s−u)2M̂(0)

− 1

6ε

[
[T2

s−u, [T
2
t ,T

2
s−u]]

ζ5 − 4ζ2ζ3

4

− ζ5 + 2ζ2ζ3

8

{
fabef cde

[
{Ta

t ,T
d
t }
(
{Tb

s−u,T
c
s−u}+ {Tb

s+u,T
c
s+u}

)
+ {Tb

s−u,T
c
s−u}{Tb

s+u,T
c
s+u}

]
− 5

8
C2
AT2

t

}]
M̂(0)

− iπ
{
K(1)T2

s−uM̂(2,0) +K(2)T2
s−uM̂(1,0) + 6K(3)T2

s−uM̂(0)

− π2
(
K(1)

)3
(T2

s−u)3 M̂(0) − 11ζ4

24ε
[T2

t , [T
2
t ,T

2
s−u]]M̂(0)

}
. (4.47)

This result is interesting on its own, because it provides the structure of infrared divergences

at three loops, for a 2 → 2 scattering amplitude in the high energy limit, including the

quadrupole correction calculated in [35]. The explicit structure can be obtained in the

orthonormal colour basis in the t-channel defined in eq. (B.1), or in the “trace” basis defined

in eq. (C.1), by substituting the colour operators with their explicit matrix representations

in that basis, which are also provided in the appendices B and C. The structure of infrared

singularities in eq. (4.47) agrees with the calculation of gluon gluon scattering at three

loops in N = 4 SYM presented in [41]. Eq. (4.47) is however more general, as it predicts

the infrared structure for any 2 → 2 scattering amplitude in QCD, thus including also

quark-quark and quark-gluon scattering.

Three-loop gluon Regge trajectory. Finally, let us state the precise relation between

the three-loop “gluon Regge trajectory” and the logarithmic terms in the three-loop am-

plitude. Starting from three loops the “gluon Regge trajectory” is scheme-dependent. In

this paper we pragmatically defined it to be the one-to-one matrix element of the Hamilto-

nian, αg(t) = −H1→1/CA, in the scheme defined by eq. (2.44) where states corresponding

to a different number of Reggeon are orthogonal, as discussed following eq. (2.48). This

can be related to fixed-order amplitudes by taking the logarithm of the reduced amplitude

projected onto the signature-odd adjoint channel. When projected onto that channel, the

full amplitude and reduced amplitude defined in eq. (2.26) differ by a simple multiplicative

factor whose logarithm is linear in L. Therefore, evaluating the prediction eq. (3.51) in the

adjoint representation using the matrices given appendix B, we find

log
M[8a]

gg→gg

M(0)[8a]
gg→gg

= L

{
−H1→1(t) +

(
αs
π

)3

π2
[
Nc

(
− 2R

(3)
A + 2R

(3)
B

)
+N3

cR
(3)
C

]}
+O(L0, α4

s) ,

(4.48)

where the constants R
(3)
A , R

(3)
B , R

(3)
C are given in eq. (3.52).

While this paper was in preparation, a remarkable calculation of the non-planar three-

loop gluon-gluon amplitude in N = 4 SYM appeared [41], which yields, in terms of the MS
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coupling at scale −t,

log
M[8a],N=4

gg→gg

M(0)[8a]
gg→gg

∣∣∣∣
L

= Nc

[
αs
π
k1 +

(
αs
π

)2

k2 +

(
αs
π

)3

k3 + · · ·
]

(4.49)

with

k1 =
1

2ε
− εζ2

4
− ε2 7

6
ζ3 − ε3

47

32
ζ4 + ε4

(
7

12
ζ2ζ3 −

31

10
ζ5

)
+O(ε5) (4.50)

k2 = Nc

[
− ζ2

8

1

ε
− ζ3

8
− ε 3

16
ζ4 + ε2

(
71

24
ζ2ζ3 +

41

8
ζ5

)
+O(ε3)

]
k3 = N2

c

[
11ζ4

48

1

ε
+

5

24
ζ2ζ3 +

1

4
ζ5 +O(ε)

]
+

[
ζ2

4

1

ε3
− 15ζ4

16

1

ε
− 77

4
ζ2ζ3 +O(ε)

]
.

Using (4.48) we are therefore able to obtain, in this theory, the “trajectory” αg(t)Nc =

−H1→1 to three loop:

−HN=4 SYM
1→1 = Nc

[
αs
π
α(1)
g |N=4 SYM +

(
αs
π

)2

α(2)
g |N=4 SYM +

(
αs
π

)3

α(3)
g |N=4 SYM + · · ·

]
(4.51)

with the first two coefficients, α
(1)
g |N=4 SYM = k1 and α

(2)
g |N=4 SYM = k2 given in eq. (4.50),

while the three-loop one given instead by

α(3)
g |N=4 SYM = N2

c

[
− ζ2

144

1

ε3
+

49ζ4

192

1

ε
+

107

144
ζ2ζ3 +

ζ5

4
+O(ε)

]
+N0

c

[
0 +O(ε)

]
. (4.52)

It is important to stress that, even though to three loop accuracy the adjoint amplitude

may look like a Regge pole, e.g. a pure power-law, it is actually not: starting from two-

loops it is really a sum of multiple powers. Simply exponentiating the exponent defined by

eq. (4.49) would predict a definitely incorrect four-loop amplitude. The correct, predictive,

procedure is to exponentiate the action of the Hamiltonian following eq. (2.39). With the

“trajectory” eq. (4.51) now fixed, this procedure will not require any new parameter for

the odd amplitude at NNLL to all loop orders.

Finally, we comment on the fact that the trajectory of eq. (4.51), minus single-poles

from the cusp anomalous dimension, is not finite. Superficially, this would seem to contra-

dict the prediction of ref. [10]. However, it is important to stress that α
(3)
g is not physically

observable by itself and in the present BFKL framework, it depends on an arbitrary choice

of scheme used to separate one- and three-Reggeon contributions. As explained below

eq. (4.38), it is likely that our (arbitrary) choice to force the physics into a somewhat

peculiar basis, in which multi-Reggeon states are orthogonal, is causing these spurious di-

vergences in the intermediate quantity H1→1. In fact this can be seen clearly in the planar

limit, where general arguments show that in the U -basis the evolution is trivial and the

amplitude is a pure Regge pole [16], whereas in the present W -basis this pole is split be-

tween 1 → 1, 1 → 3 and 3 → 3 transitions. Thus our H1→1, even in the planar limit, is

not equal to the position of this pure Regge pole.

Despite the not entirely satisfactory properties of the basis we used with regards to the

simplicity of the large-Nc limit, nor the relation between the singularities of the trajectory
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and the cusp anomalous dimension, it is important to stress that the basis is well-defined

and sufficient to provide a fully predictive framework to all loop orders. A non-trivial

confirmation is the fact that the 10 + 10 amplitude component eq. (4.46b) is predicted

correctly. Furthermore, one would expect the ambiguities from the choice of basis described

below in eq. (2.44) to be proportional to C3
A, which is completely consistent with the fact

that the N0
c part of eq. (4.52) is finite. In fact, we see that the subleading colour term

proportional to N0
c is zero, up to O(ε). This is an interesting result, which would be

important to understand further, especially in light of the integrability properties of the

planar amplitude [7, 8].

5 Conclusions

In this paper we have analyzed parton-parton scattering in gauge theories in the high-

energy limit (Regge limit), pushing the accuracy to the next-to-next-to-leading logarithmic

order. Our main tool has been BFKL theory, or more precisely its modern formulation

as an effective theory of Wilson lines reviewed in section 2. An important observation is

that many terms at this order can be fully predicted using only leading-order ingredients.

These terms are distinguished, for example, by their colour factors, and this paper has

focused on such terms. Our predictions provide stringent constraints that the Regge limit

of three-loop 2→ 2 QCD amplitudes must satisfy. Specifically, the odd reduced amplitude

is predicted in eq. (3.51) to all order in ε.

An interesting feature of the Regge limit is the reduction to a two-dimensional effective

theory. Technically, this dramatically simplifies the loop integrals, and indeed the most

complicated integral we needed in this paper is the standard bubble integral in eq. (3.32).

The main work is reduced to the bookkeeping of colour factors.

The NNLL amplitude is conceptually interesting from the BFKL perspective because

it exhibits a new phenomenon: the mixing between one- and three- Reggeon states, both

contributing to the odd part of the amplitude. To deal with this we used the symmetry

property of the Hamiltonian, eq. (2.45), also known as target-projective duality, to obtain

the 3→ 1 terms in the Hamiltonian from the 1→ 3 terms. This is the first time that this

symmetry property is tested quantitatively. The tests described below can therefore be

viewed as a nontrivial check of this symmetry.

As a consequence of the mixing between one- and three- Reggeon states, starting at

NNLL the gluon Regge pole is not physically distinct from the Regge cut. In particular,

in the t-channel colour flow basis, the antisymmetric octet colour component receives con-

tributions from both the pole corresponding to 1 → 1 Reggeon transition and the 3 → 3

as well as the 1→ 3 and 3→ 1 cut components. In general, using this formalism one may

compute the signature odd NNLL 2→ 2 amplitude in QCD to all loop orders up to a sin-

gle presently unknown parameter, the three-loop gluon Regge trajectory. The other colour

component of the odd amplitude, 10 + 10, is entirely determined by the cut contributions,

and hence it is fully predicted already, see eq. (4.46b). Because of the mentioned mixing,

the result in either channel does not take the form of a single exponential (except in the

planar limit), rather what exponentiates is the Hamiltonian in eq. (2.46).
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Our results have been tested in two ways. First, the infrared divergent part of the

result is in agreement with predictions from the general theory, including the recently

computed three-loop soft anomalous dimension [35, 36]. Conversely, our results provide

a valuable test of the latter. Second, our predictions, which are general and valid in any

theory, turn out to agree with a recent explicit three-loop calculation in N = 4 super

Yang-Mills. This comparison also allows us to fix in this theory the one free parameter we

have left, the three-loop gluon Regge trajectory in eq. (4.51), thereby making the formalism

fully predictive at higher loop orders. Our predictions for the odd part of the three-loop

amplitude are summarised in appendices B and C in a t−channel orthonormal basis and in

a trace basis, respectively. These explicit results may be used as a stringent test of future

multiloop amplitude computations.

To complete the NNLL description of 2 → 2 amplitudes, the only missing ingredient

is in the even sector, namely the NLO impact factor to two gluons, which would thus be

interesting to compute in the future. More generally, we have seen that the BFKL theory

is consistent with infrared exponentiation, such that the hard function H (see eq. (4.1)) is

finite; it would thus be interesting to understand how to setup the BFKL calculation of

H in a manifestly finite way, which would alleviate the need to ε-expand all intermediate

quantities. This would make it possible to exploit the integrability of the Hamiltonian in

two dimensions [7, 8].

Note added. While this paper was being completed, partially overlapping results were

announced in ref. [70].
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A Anomalous dimensions, renormalization group factors and Regge tra-

jectory

We write the αs expansion of the anomalous dimension (in the MS scheme) as

γi(αs) =

∞∑
k=1

γ
(k)
i

(
αs
π

)k
. (A.1)
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With this notation, the coefficients of the cusp anomalous dimension (with the quadratic

Casimir factor Ci removed) read [19, 71, 72]

γ
(1)
K = 2 ,

γ
(2)
K =

(
67

18
− ζ2

)
CA −

10

9
TRnf ,

γ
(3)
K =

C2
A

96

(
490− 1072

3
ζ2 + 88ζ3 + 264ζ4

)
+
CFTRnf

32

(
− 220

3
+ 64ζ3

)
+
CATRnf

96

(
− 1672

9
+

320

3
ζ2 − 224ζ3

)
−

2T 2
Rn

2
f

27
, (A.2)

where TR = 1/2. The coefficients of the quark and gluon anomalous dimension are given

by [73, 74]

γ(1)
q = −3

4
CF ,

γ(2)
q =

C2
F

16

(
− 3

2
+ 12ζ2 − 24ζ3

)
+
CACF

16

(
− 961

54
− 11ζ2 + 26ζ3

)
+
CFTRnf

16

(
130

27
+ 4ζ2

)
, (A.3)

and

γ(1)
g = −b0

4
,

γ(2)
g =

C2
A

16

(
− 692

27
+

11

3
ζ2 + 2ζ3

)
+
CATRnf

16

(
256

27
− 4

3
ζ2

)
+
CFTRnf

4
. (A.4)

The scalar factors in eq. (4.14) start at O(α0
s). In terms of the coefficients in eqs. (A.3)

and (A.4), and setting µ2 = −t, they are:

Z
(0)
i = 1 ,

Z
(1)
i = −Ci γ(1)

K

1

4ε2
+
γ

(1)
i

ε
,

Z
(2)
i = C2

i

(
γ

(1)
K

)2 1

32ε4
+ Ci

[
1

ε3
γ

(1)
K

4

(
3b0
16
− γ(1)

i

)
− 1

ε2
γ

(2)
K

16

]
(A.5)

+
1

ε2
γ

(1)
i

2

(
γ

(1)
i −

b0
4

)
+
γ

(2)
i

2ε
.

Finally, we quote the one- and two-loop gluon Regge trajectory (divided by CA) in terms

of the coupling at scale µ2 = −t [58–61]:

α(1)
g (t) =

rΓ

2ε
,

α(2)
g (t) = − b0

16ε2
+

1

8ε

[(
67

18
− ζ2

)
CA −

10TRnf
9

]
(A.6)

+ CA

(
101

108
− ζ3

8

)
− 7TRnf

27
+O(ε) .
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B The hard function for gluon-gluon scattering in an orthonormal t-

channel colour basis

Predictions for the infrared renormalised amplitude (hard function) based on the Regge

theory developed in this paper have been presented in section 4. These predictions have

been given in colour space notation, i.e., writing the amplitude in terms of colour operators

acting on a vector amplitude. Predictions for the single components can be obtained by

choosing a specific colour basis. In this appendix and the next we provide explicit results

within two colour basis widely considered in literature. Here we focus on the orthonormal

colour basis in the t-channel, which, as discussed in the main text, is particularly useful to

highlight the factorisation properties of the amplitude in the high-energy limit. In the next

appendix we will focus on a “trace” basis, which has been typically used in the context of

multi-loop calculations.

Before proceeding, we stress once more that the calculations performed on this paper

are based solely on the BFKL evolution at leading order. The corrections Di to the impact

factors, defined in eqs. (3.24) and (3.25), as well as the higher-loop corrections to the

gluon Regge trajectory αg (more precisely H1→1 in the scheme eq. (2.44)) are therefore

kept in this appendix as free parameters. Their values can be obtained by matching with

fixed-order amplitudes and are listed in appendix D.

Definition of the t-channel colour basis. We consider gluon-gluon scattering with

external legs labelled as in figure 2. Within SU(Nc), an orthonormal colour basis in the

t-channel can be obtained decomposing the colour representations 8 ⊗ 8 of legs one and

four into the direct sum 1⊕8s⊕8a⊕10+10⊕27⊕0. Such basis has been provided in [40],

and we repeat it here for the reader convenience:

c[1] =
1

N2
c − 1

δa4
a1 δ

a3
a2 ,

c[8s] =
Nc

N2
c − 4

1√
N2
c − 1

d a1a4b d a2a3
b ,

c[8a] =
1

Nc

1√
N2
c − 1

f a1a4b f a2a3
b ,

c[10+10] =

√
2

(N2
c − 4)(N2

c − 1)

[
1

2
(δa1

a2 δ
a3
a4 − δa3

a1 δ
a4
a2)− 1

Nc
f a1a4b f a2a3

b

]
,

c[27] =
2

Nc

√
(Nc + 3)(Nc − 1)

[
− Nc + 2

2Nc(Nc + 1)
δa4

a1 δ
a3
a2

+
Nc + 2

4Nc
(δa1

a2 δ
a3
a4 + δa3

a1 δ
a4
a2)− Nc + 4

4(Nc + 2)
d a1a4b d a2a3

b

+
1

4
(d a1a2b d a3a4

b + d a1a3b d a2a4
b)

]
, (B.1)
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c[0] =
2

Nc

√
(Nc − 3)(Nc + 1)

[
Nc − 2

2Nc(Nc − 1)
δa4

a1 δ
a3
a2

+
Nc − 2

4Nc
(δa1

a2 δ
a3
a4 + δa3

a1 δ
a4
a2) +

Nc − 4

4(Nc − 2)
d a1a4b d a2a3

b

− 1

4
(d a1a2b d a3a4

b + d a1a3b d a2a4
b)

]
.

We treat the two decuplet representations together, since they always contribute to the

amplitude with the same coefficients. The tensors c[8a] and c[10+10] are odd under the ex-

changes a1 ↔ a4 and a2 ↔ a3, while c[1], c[8s], c[27] and c[0] are even. The last representation

does not contribute for Nc = 3, since its dimensionality is given by

dim[0] =
N2
c (Nc − 3)(Nc + 1)

4
, (B.2)

and it vanishes for SU(3). In the orthormal basis defined by eq. (B.1) (in that order), the

diagonal matrix T2
t evaluates to

(T2
t )gg = diag[0, Nc, Nc, 2Nc, 2(Nc + 1), 2(Nc − 1)] , (B.3)

while Ts−u can be calculated starting from Ts provided in [40], by exploiting the relation

T2
t + T2

s + T2
u = Ctot. Ts−u is symmetric and traceless, and reads

(T2
s−u)gg =



0 0 T1,8a 0 0 0

0 0 T8s,8a T8s,10 0 0

T1,8a T8s,8a 0 0 T8a,27 T8a,0

0 T8s,10 0 0 T10,27 T10,0

0 0 T8a,27 T10,27 0 0

0 0 T8a,0 T10,0 0 0


, (B.4)

where

T1,8a = − 2Nc√
N2
c − 1

, T8s,8a = −Nc

2
, T8s,10 = −Nc

√
2

N2
c − 4

,

T8a,27 = −
√
Nc + 3

Nc + 1
, T8a,0 = −

√
Nc − 3

Nc − 1
, (B.5)

T10,27 = −
√

(Nc + 3)(Nc + 1)(Nc − 2)

2(Nc + 2)
, T10,0 = −

√
(Nc − 3)(Nc − 1)(Nc + 2)

2(Nc − 2)
.
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Similarly, for the gluon-gluon amplitude we obtain also the colour matrix representing the

colour operator associated to the constant term ζ5 + 2ζ2ζ3 in eq. (4.11):

1

2

{
fabef cde

[
{Ta

t ,T
d
t }
(
{Tb

s−u,T
c
s−u}+ {Tb

s+u,T
c
s+u}

)
+ {Ta

s−u,T
d
s−u}{Tb

s+u,T
c
s+u}

]
− 5

8
C2
AT2

t

}
gg

= (B.6)

2NcT 2
1,8a NcT1,8aT8s,8a 0 0 −2T1,8aT8a,27 2T1,8aT8a,0

NcT1,8aT8s,8a 2NcT 2
8s,10 0 0 T8a,27TA T8a,0TB

0 0 14Nc − N2
c

T8s,10
0 0

0 0 − N2
c

T8s,10
5Nc 0 0

−2T1,8aT8a,27 T8a,27TA 0 0 TC −2NcT8a,27T8a,0

2T1,8aT8a,0 T8a,0TB 0 0 −2NcT8a,27T8a,0 TD


,

where we have introduced the colour factors

TA =
8Nc + 6N2

c −N3
c

2(2 +Nc)
TB =

8Nc − 6N2
c −N3

c

2(2 +Nc)
,

TC =
26Nc + 31N2

c + 10N3
c +N4

c

(1 +Nc)(2 +Nc)
TD =

26Nc − 31N2
c + 10N3

c −N4
c

(1 +Nc)(2 +Nc)
. (B.7)

For quark-quark scattering, the representations are more limited and we let simi-

larly [40]

c[1]
qq =

1

Nc
δa4

a1δ
a3
a2 , c[8a]

qq =
2√

N2
c − 1

(Tb)a4
a1(Tb)a3

a2 , (B.8)

and one finds

(T2
t )qq = diag[0, Nc] , (T2

s−u)qq =

 0

√
N2
c−1

Nc√
N2
c−1

Nc

N2
c−4

2Nc

 . (B.9)

Finally for quark-gluon scattering we have

c[1]
qg =

1√
Nc(N2

c − 1)
δa4

a1 δ
a3
a2 , c[8s]

qg =

√
2Nc

(N2
c − 4)(N2

c − 1)
(T b)a4

a1 d
a2a3b,

c[8a]
qg =

√
2

Nc(N2
c − 1)

(T b)a4
a1 if

a2a3b, (B.10)

with

(T2
t )qg = diag[0, Nc, Nc] , (T2

s−u)qg =

 0 0 −
√

2

0 0 −1
2

√
N2
c − 4

−
√

2 −1
2

√
N2
c − 4 0

 . (B.11)

For antiquark scattering we define the same colour structures. Note that in the quark-

quark case the signature in the adjoint channel is not determined by the colour projection

and can only be determined by comparing the quark and antiquark amplitudes. In the

quark-gluon case the structures have definite signatures (respectively even, even, odd) due

to Bose symmetry on the gluon side.
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The hard function for gluon-gluon scattering. Let us now present explicit results

for the hard function components in the orthonormal t-channel basis defined above. We

restrict the discussion here to the gluon-gluon amplitude, since it should hopefully be clear

how the formulas presented below are obtained from the formulas in section 4 by evaluating

the colour operators. We decompose the hard function according to eq. (2.23), namely

Hgg→gg(s, t) =
∑
i

c[i]H[i](s, t) . (B.12)

Within the orthonormal basis eq. (B.1) the tree-level hard function in eq. (2.17) reads

H(0),[1] = H(0),[8s] = H(0),[10+10] = H(0),[27] = H(0),[0] = 0 ,

H(0),[8a] = −2
s

t
Nc

√
N2
c − 1 . (B.13)

In section 4 we have presented results up to three loops, but the Regge theory develop

in section 3 allows one to calculate higher orders, too. For feature reference, therefore, we

expand here the amplitude in powers of ε, consistently as it would be needed for a four

loop calculation. Namely, we expand the one loop functions up to power ε6, the two loop

ones up to ε4, and the three loops functions up to power ε2.

The one loop amplitude, and more in general the leading logarithmic contribution can

be expressed entirely in terms of the one-loop function defined in eq. (4.24a). Up to ε6

one has

α̂(1)
g =

1

2ε
(rΓ − 1) = −1

4
ζ2ε−

7

6
ζ3ε

2 − 47

32
ζ4ε

3 +

(
7

12
ζzζ3 −

31

10
ζ5

)
ε4

+

(
49

36
ζ2

3 −
949

256
ζ6

)
ε5 +

(
31

20
ζ2ζ5 +

329

96
ζ3ζ4 −

127

14
ζ7

)
ε6 +O(ε7) . (B.14)

In term of this function, the leading-logarithmic amplitude in components reads:

H(n,n),[1] = H(n,n),[8s] = H(n,n),[10+10] = H(n,n),[27] = H(n,n),[0] = 0 ,

H(n,n),[8a] = − 2

n!
Nn+1
c

√
N2
c − 1

(
α̂(1)
g (t)

)n s
t
. (B.15)

Next, we consider H(1,0), whose result has been obtained in eq. (4.28). In components one

obtains

H(1,0),[1] = iπ 4N2
c α̂

(1)
g

s

t
,

H(1,0),[8s] = iπ N2
c

√
N2
c − 1 α̂(1)

g

s

t
,

H(1,0),[8a] = −2Nc

√
N2
c − 1

(
D

(1)
i +D

(1)
j

)s
t

H(1,0),[10+10] = 0 , (B.16)

H(1,0),[27] = iπ 2Nc

√
(Nc + 3)(Nc − 1) α̂(1)

g

s

t
,

H(1,0),[0] = iπ 2Nc

√
(Nc − 3)(Nc + 1) α̂(1)

g

s

t
.
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At two loops the NLL term reads

H(2,1),[1] = −2iπ N3
c f

(2,1)
a

s

t
,

H(2,1),[8s] = iπ N3
c

√
N2
c − 1

(
α̂(1)
g (t)

)2 s
t
,

H(2,1),[8a] = −2N2
c

√
N2
c − 1

[
α̂(2)
g + α̂(1)

g

(
D

(1)
i +D

(1)
j

)]s
t

H(2,1),[10+10] = 0 , (B.17)

H(2,1),[27] = iπ Nc

√
(Nc + 3)(Nc − 1)

[
(Nc + 2)f (2,1)

a + 4(Nc + 1)
(
α̂(1)
g (t)

)2]s
t
,

H(2,1),[0] = iπ Nc

√
(Nc − 3)(Nc + 1)

[
(Nc − 2)f (2,1)

a + 4(Nc − 1)
(
α̂(1)
g (t)

)2]s
t
,

where we have expressed the amplitude in terms of the functions

f (2,1)
a = K(1)

(
2α̂(1)

g +K(1)
)

+ d2

= −9

2
ζ3ε−

221

32
ζ4ε

2 +

(
47

12
ζ2ζ3 −

63

2
ζ5

)
ε3

+

(
1193

36
ζ2

3 −
14585

256
ζ6

)
ε4 +O(ε5) . (B.18)

At NNLL accuracy we are able to make predictions for the real component of the hard

function only. Given that this contribution corresponds to the odd amplitude, it implies

that this correction affects only the 8a and 10 + 10 representation:

Re[H(2,0),[1]] = 0 ,

Re[H(2,0),[8s]] = 0 ,

Re[H(2,0),[8a]] = −2Nc

√
(N2

c − 1)

{
D

(1)
i D

(1)
j +D

(2)
i +D

(2)
j

− π2

(
N2
c

12
R(2) − N2

c + 24

4
R̂(2)

)}
s

t
,

Re[H(2,0),[10+10]] = −3π2Nc

√
2(N2

c − 4)(N2
c − 1) R̂(2) s

t
,

Re[H(2,0),[27]] = 0 ,

Re[H(2,0),[0]] = 0 , (B.19)

where the function R̂(2) has been defined in eq. (4.34). Explicitly, up to O(ε5) one has

R̂(2) =
3

4
ζ3ε+

67

64
ζ4ε

2 +

(
21

4
ζ5 −

25

24
ζ2ζ3

)
ε3 +

(
4423

512
ζ6 −

463

72
ζ2

3

)
ε4 +O(ε5) . (B.20)
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At three loops, the NLL component reads

H(3,2),[1] = iπ N4
c f

(3,2)
a

s

t
,

H(3,2),[8s] = iπ N4
c

√
N2
c − 1

(
α̂(1)
g (t)

)3 s
t
,

H(3,2),[8a] = −2N3
c

√
N2
c − 1 α̂(1)

g

[
α̂(2)
g +

α̂
(1)
g

2

(
D

(1)
i +D

(1)
j

)]s
t
,

H(3,2),[10+10] = 0 ,

H(3,2),[27] = iπ
Nc

2

√
(Nc − 1)(Nc + 3)

[
(Nc + 2)2f (3,2)

a + 8(Nc + 1)2
(
α̂(1)
g (t)

)3
+ (Nc + 1)(Nc + 2)f

(3,2)
b

]s
t
,

H(3,2),[0] = iπ
Nc

2

√
(Nc + 1)(Nc − 3)

[
(Nc − 2)2f (3,2)

a + 8(Nc − 1)2
(
α̂(1)
g (t)

)3
+ (Nc − 1)(Nc − 2)f

(3,2)
b

]s
t
, (B.21)

where we have expressed the amplitude in terms of the functions

f (3,2)
a = −2

3

[
K(1)

(
3
(
α̂(1)
g

)2
+ 3α̂(1)

g K(1) +
(
K(1)

)2)− d3

]
= −11

6
ζ3 −

11

4
ζ4ε+

(
11

4
ζ2ζ3 −

119

2
ζ5

)
ε2 +O(ε3) ,

f
(3,2)
b = 4α̂(1)

g

[
K(1)

(
2α̂(1)

g +K(1)
)

+ d2

]
=

9

2
ζ2ζ3ε

2 +O(ε3) . (B.22)

Notice also that
(
α̂

(1)
g (t)

)3
= O(ε3). Last, the real part of the NNLL term at three loops

reads

Re[H(3,1),[1]] = 0 ,

Re[H(3,1),[8s]] = 0 ,

Re[H(3,1),[8a]] = −2N2
c

√
N2
c − 1

[
α̂(3)
g + α̂(2)

g

(
D

(1)
i +D

(1)
j

)
+ α̂(1)

g

(
D

(2)
i +D

(2)
j

)
+ α̂(1)

g D
(1)
i D

(1)
j − π2

(
N2
c + 24

4
f (3,1)
a + 2

(
f

(3,1)
b + f (3,1)

c

)
−N2

c f
(3,1)
d

)]
s

t
,

Re[H(3,1),[10+10]] = N2
c

√
(N2

c − 4)(N2
c − 1)

2

[
24f (3,1)

a − 2f
(3,1)
b + f (3,1)

c

]s
t
,

Re[H(3,1),[27]] = 0 ,

Re[H(3,1),[0]] = 0 , (B.23)
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where we have expressed the amplitude in terms of the functions

f (3,1)
a =

1

2
α̂(1)
g

[
K(1)

(
K(1) + 2α̂(1)

g

)
+ 2R(2)

]
= − 3

16
ζ2ζ3ε

2 +O(ε3) ,

f
(3,1)
b =

1

6

[
K(1)

(
K(1)

(
3α̂(1)

g + 2K(1)
)

+ 3d2

)
+ 6R

(3)
A

]
=

5

12
ζ3 +

5

8
ζ4ε+

(
65

4
ζ5 −

19

16
ζ2ζ3

)
ε2 +O(ε3) , (B.24)

f (3,1)
c =

1

3

[
K(1)

(
K(1)

(
3α̂(1)

g + 2K(1)
)

+ 3α̂(1)
g

(
2α̂(1)

g +K(1)
))
− 6R

(3)
B

]
= −1

6
ζ3 −

1

4
ζ4ε+

(
11

2
ζ5 +

1

4
ζ2ζ3

)
ε2 +O(ε3) ,

f
(3,1)
d =

1

12

[
− α̂(1)

g R(2) + 12R(3)
c

]
=

1

864ε3
− 5

1152ε
ζ2 −

175

1728
ζ3 −

425

3072
εζ4 +

(
23

128
ζ2ζ3 −

99

64
ζ5

)
ε2 +O(ε3) .

C Gluon-gluon hard function in a “trace” colour basis

In SU(Nc) gauge theory, the four-gluon amplitude can be written in a basis of single-

and double-trace operators. We follow the definitions in [69] (with traces normalized as

Tr[1] = Nc and Tr[T aT b] = 1
2δ
ab):

c[Tr 1] = Tr[T a1T a2T a3T a4 ] + Tr[T a1T a4T a3T a2 ] ,

c[Tr 2] = Tr[T a1T a2T a4T a3 ] + Tr[T a1T a3T a4T a2 ] ,

c[Tr 3] = Tr[T a1T a4T a2T a3 ] + Tr[T a1T a3T a2T a4 ] ,

c[Tr 4] = Tr[T a1T a3 ] Tr[T a2T a4 ] ,

c[Tr 5] = Tr[T a1T a4 ] Tr[T a2T a3 ] ,

c[Tr 6] = Tr[T a1T a2 ] Tr[T a3T a4 ] . (C.1)

Within this colour basis the tree level amplitude is easily obtained by noting that

fa1a4bfa2a3b = 2
(
c[Tr 1] − c[Tr 3]

)
, (C.2)

and the amplitude reads (recall that M(0) = H(0)):

H(0),[Tr 1] = −4s

t
, H(0),[Tr 3] =

4s

t
,

H(0),[Tr 2] = H(0),[Tr 4] = H(0),[Tr 5] = H(0),[Tr 6] = 0 . (C.3)

Explicit result for the colour amplitude components in the trace colour basis can be ob-

tained either by deriving a rotation matrix, which rotates from the orthonormal basis in

eq. (B.1) to the trace basis in eq. (C.1), or by obtaining an explicit matrix representation
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for the operators T2
t and T2

s−u in the trace basis. We have performed the calculation in

both ways, and here we report about the second method.

To represent the colour Casimirs as matrices acting on this basis, the first step is to

express the generators on the external colour-adjoint gluons in terms of commutators inside

the trace, which follow from the definition:

Tb
1T

a1 ≡ −if ba1cT c = [T a1 , T b] . (C.4)

Color contractions inside the traces can then be simplified using the SU(Nc) identities

Tr[T aXT aY ] =
1

2
Tr[X] Tr[Y ]− 1

2Nc
Tr[XY ] . (C.5)

Thus, for example,

T2
t c

[Tr 1] = Tr
[
T a1(T bT bT a2T a3 − 2T bT a2T a3T b + T a2T a3T bT b)T a4

]
= Nc c

[Tr 1] − 2 c[Tr 5] . (C.6)

Proceeding similarly for the other basis elements, we obtain the matrix representation:

T2
t =



Nc 0 0 0 0 −1

0 2Nc 0 1 0 1

0 0 Nc −1 0 0

0 2 0 2Nc 0 0

−2 0 −2 0 0 0

0 2 0 0 0 2Nc


, T2

s−u =



−Nc
2 0 0 0 −1 −1

2

0 0 0 −1
2 0 1

2

0 0 Nc
2

1
2 1 0

0 1 2 Nc 0 0

−1 0 1 0 0 0

−2 −1 0 0 0 −Nc


. (C.7)

Similarly, in the trace basis the colour operator defined in eq. (B.6), and associated to the

constant term of the quadrupole correction reads

1

2

{
fabef cde

[
{Ta

t ,T
d
t }
(
{Tb

s−u,T
c
s−u}+ {Tb

s+u,T
c
s+u}

)
+ {Ta

s−u,T
d
s−u}{Tb

s+u,T
c
s+u}

]
− 5

8
C2
AT2

t

}
gg

=

9Nc −4Nc −4Nc −4 1
2(4 +N2

c ) 1
2(4 +N2

c )

−4Nc 9Nc −4Nc
1
2(4 +N2

c ) −4 1
2(4 +N2

c )

−4Nc −4Nc 9Nc
1
2(4 +N2

c ) 1
2(4 +N2

c ) −4

2 2 +N2
c 2 +N2

c 6Nc 0 0

2 +N2
c 2 2 +N2

c 0 6Nc 0

2 +N2
c 2 +N2

c 2 0 0 6Nc


. (C.8)

By using these result we obtain the following results: the LL hard function at all order

reads

H(n,n),[Tr 1] = −N
n
c

n!

(
α̂(1)
g

)n 4s

t
, H(n,n),[Tr 3] =

Nn
c

n!

(
α̂(1)
g

)n 4s

t
,

H(n,n),[Tr 2] = H(n,n),[Tr 4] = H(n,n),[Tr 5] = H(n,n),[Tr 6] = 0 . (C.9)
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Next, the we provide the NLL and the NNLL terms at each order of the perturbative

expansion, starting at one loop. We obtain

H(1,0),[Tr 1] =
[
2 iπ Nc α̂

(1)
g − 4

(
D

(1)
i +D

(1)
j

)]s
t
,

H(1,0),[Tr 2] = 0 ,

H(1,0),[Tr 3] =
[
2 iπ Nc α̂

(1)
g + 4

(
D

(1)
i +D

(1)
j

)]s
t

H(1,0),[Tr 4] = 8 iπ α̂(1)
g

s

t
,

H(1,0),[Tr 5] = 8 iπ α̂(1)
g

s

t
,

H(1,0),[Tr 6] = 8 iπ α̂(1)
g

s

t
. (C.10)

At two loops the NLL term reads

H(2,1),[Tr 1] =
{
− 4Nc

[
α̂(2)
g + α̂(1)

g

(
D

(1)
i +D

(1)
i

)]
+ 2iπ

[
− 2f (2,1)

a + (N2
c − 4)

(
α̂(1)
g

)2]}s
t
,

H(2,1),[Tr 2] = 8iπ
[
f (2,1)
a + 2

(
α̂(1)
g

)2]s
t
,

H(2,1),[Tr 3] =
{

4Nc

[
α̂(2)
g + α̂(1)

g

(
D

(1)
i +D

(1)
j

)]
+ 2iπ

[
− 2f (2,1)

a + (N2
c − 4)

(
α̂(1)
g

)2]}s
t

H(2,1),[Tr 4] = 4Nciπ
[
f (2,1)
a + 4

(
α̂(1)
g

)2]s
t
,

H(2,1),[Tr 5] = −8Nciπ
[
f (2,1)
a +

(
α̂(1)
g

)2]s
t
,

H(2,1),[Tr 6] = 4Nciπ
[
f (2,1)
a + 4

(
α̂(1)
g

)2]s
t
, (C.11)

where the function f
(2,1)
a has been defined in eq. (B.18). At NNLL the real component of

the amplitude reads

Re[H(2,0),[Tr 1]] = −1

3

[
12
(
D

(1)
i D

(1)
j +D

(2)
i +D

(2)
j

)
+ π2

(
3(N2

c + 12)R̂(2) −N2
cR

(2)
)]s
t
,

Re[H(2,0),[Tr 2]] = 0 ,

Re[H(2,0),[Tr 3]] =
1

3

[
12
(
D

(1)
i D

(1)
j +D

(2)
i +D

(2)
j

)
+ π2

(
3(N2

c + 12)R̂(2) −N2
cR

(2)
)]s
t
,

Re[H(2,0),[Tr 4]] = 12π2Nc R̂
(2) s

t
,

Re[H(2,0),[Tr 5]] = 0 ,

Re[H(2,0),[Tr 6]] = −12π2Nc R̂
(2) s

t
. (C.12)
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At three loops, the NLL component reads

H(3,2),[Tr 1] =

{
− iπNc

[
2f (3,2)
a + 2f

(3,2)
b − (N2

c − 12)
(
α̂(1)
g

)3]
− 4N2

c α̂
(1)
g

[
α̂(2)
g +

1

2
α̂(1)
g

(
D

(1)
i +D

(1)
j

)]}s
t
,

H(3,2),[Tr 2] = 2 iπ Nc

(
4f (3,2)
a + 16

(
α̂(1)
g

)3
+ 3f

(3,2)
b

)s
t
,

H(3,2),[Tr 3] =

{
− iπNc

[
2f (3,2)
a + 2f

(3,2)
b − (N2

c − 12)
(
α̂(1)
g

)3]
+ 4N2

c α̂
(1)
g

[
α̂(2)
g +

1

2
α̂(1)
g

(
D

(1)
i +D

(1)
j

)]}s
t
,

H(3,2),[Tr 4] = 2 iπ
[
(N2

c + 4)f (3,2)
a + (N2

c + 2)f
(3,2)
b + 8(N2

c + 1)
(
α̂(1)
g

)3]s
t
,

H(3,2),[Tr 5] = 4 iπ
[
(N2

c + 2)f (3,2)
a + f

(3,2)
b − (N2

c − 4)
(
α̂(1)
g

)3]s
t
,

H(3,2),[Tr 6] = 2 iπ
[
(N2

c + 4)f (3,2)
a + (N2

c + 2)f
(3,2)
b + 8(N2

c + 1)
(
α̂(1)
g

)3]s
t
, (C.13)

where the functions f
(3,2)
a , f

(3,2)
b and f

(3,2)
c have been defined in eq. (B.22). The real part

of the NNLL term reads

Re[H(3,1),[Tr 1]] = −4Nc

[
α̂(3)
g + α̂(2)

g

(
D

(1)
i +D

(1)
j

)
+ α̂(1)

g

(
D

(2)
i +D

(2)
j

)
+ α̂(1)

g D
(1)
i D

(1)
j

+ π2
(
N2
c

(
4f

(3,1)
d − f (3,1)

a

)
− 4
(
4f

(3,1)
b + f (3,1)

c

))]s
t
,

Re[H(3,1),[Tr 2]] = 0 ,

Re[H(3,1),[Tr 3]] = 4Nc

[
α̂(3)
g + α̂(2)

g

(
D

(1)
i +D

(1)
j

)
+ α̂(1)

g

(
D

(2)
i +D

(2)
j

)
+ α̂(1)

g D
(1)
i D

(1)
j

+ π2
(
N2
c

(
4f

(3,1)
d − f (3,1)

a

)
− 4
(
4f

(3,1)
b + f (3,1)

c

))]s
t
,

Re[H(3,1),[Tr 4]] = −4π2N2
c

[
6f (3,1)
a − 2f

(3,1)
b + f (3,1)

c

]s
t
,

Re[H(3,1),[Tr 5]] = 0 ,

Re[H(3,1),[Tr 6]] = 4π2N2
c

[
6f (3,1)
a − 2f

(3,1)
b + f (3,1)

c

]s
t
, (C.14)

and the functions f
(3,1)
a , f

(3,1)
b , f

(3,1)
c and f

(3,1)
d have been defined in eq. (B.24).

D Gluon Regge trajectory and impact factor in N = 4 SYM

In section 4 we have shown how to extract the impact factors and Regge trajectory from a

given amplitude. These ingredients are necessary to obtain a complete description of the

1→ 1 transition up to NNLL in the high-energy logarithm. As discussed in section 4, the

recent calculation of the gluon-gluon amplitude up to three loops in N = 4 SYM [41] allows

us to obtain the Gluon Regge trajectory at NNLO in this theory, which was previously

unknown. According to eqs. (4.29) and (4.35), we are able to extract also the gluon impact

factor in this theory. This information represents the last ingredient which is necessary
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in order to obtain a complete description of the 1 → 1 transition up to NNLL in the

high-energy logarithm, and we collect it in this appendix. We express the gluon Regge

trajectory in terms of the coefficients α̂
(i)
g , which enters directly the fixed-order amplitude

coefficients provided in appendix B and C.

At one loop the gluon Regge trajectory in N = 4 SYM is of course identical to the

QCD case, i.e.

α̂(1)
g |N=4 SYM =

1

2ε
(rΓ − 1) = −1

4
ζ2 ε−

7

6
ζ3 ε

2 +O(ε3) . (D.1)

The gluon impact factor at one loop reads

D(1)
g |N=4 SYM = Nc

[
ζ2 + ε

17

12
ζ3 + ε2

41

32
ζ4 + ε3

(
− 59

24
ζ2ζ3 +

67

20
ζ5

)
+ ε4

(
− 35

18
ζ2

3 −
7

6
ζ6

)
+O(ε5)

]
. (D.2)

It is easy to check that the impact factor in N = 4 SYM correspond to the highest

trascendental weight of the Nc term of the correponsing QCD impact factor, see eq. (4.30a).

At two loops the Regge trajectory reads

α̂(2)
g |N=4 SYM = Nc

[
− ζ3

8
− ε 3

16
ζ4 + ε2

(
71

24
ζ2ζ3 +

41

8
ζ5

)
+O(ε3)

]
, (D.3)

which corresponds to the O(αs/π)2 coefficient of −H1→1/CA in eq. (4.51). Once again,

it corresponds to the term with highest trascendental weight of the Nc term of the QCD

result, see eq. (4.24). The impact factor at two loops reads

D(2)
g = N2

c

[
− ζ2

32ε2
− ζ4

64
+ ε

(
17

24
ζ2ζ3−

39

16
ζ5

)
+ ε2

(
− 659

288
ζ2

3 −
5531

512
ζ6

)
+O(ε3)

]
. (D.4)

Last, the Regge trajectory at three loops (with meaning explained below eq. (4.51)) reads

α̂(3)
g |N=4 SYM = N2

c

[
− ζ2

144

1

ε3
+

5ζ4

192

1

ε
+

107

144
ζ2ζ3 +

ζ5

4
+O(ε)

]
. (D.5)

Notice that this expression for α̂g is equivalent, upon using eq. (4.22), to the Regge trajec-

tory recorded in eq. (4.51) of the main text.
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