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1 Introduction

In this paper we continue the study of instanton corrections to correlation functions in

maximally supersymmetric N = 4 Yang-Mills theory. Although these corrections are

exponentially small in the planar limit, they are expected to play an important role in

restoring the S−duality of the theory. At weak coupling, the leading instanton contribution

can be found in the semiclassical approximation by neglecting quantum fluctuation of fields.

In this approximation, the calculation amounts to evaluating the product of operators in

the background of instantons and integrating the resulting expression over the collective

coordinates. For a review see [1–3].

Previous studies revealed [4] that the leading instanton contribution to four-point corre-

lation function of half-BPS operators inN = 4 SYM scales at weak coupling as e−8π2/g2 . An

OPE analysis showed, however, that this correction does not affect twist-two operators [5]

and, therefore, does not modify the leading asymptotic behaviour of correlation functions in

the light-cone limit. This led to the conclusion [6, 7] that the leading instanton contribution

to the conformal data of twist-two operators (scaling dimensions ∆S and OPE coefficients

CS) should be suppressed by a power of the coupling constant and scale as g2n e−8π2/g2

– 1 –



J
H
E
P
0
6
(
2
0
1
7
)
0
0
8

with some n ≥ 1. The calculation of such corrections within the conventional approach is

way more complicated as it requires going beyond the semiclassical approximation.

In [8] we argued that, by virtue of N = 4 superconformal symmetry, the above men-

tioned instanton effects can be determined from the semiclassical computation of two- and

three-point correlation functions for another operator in the same supermultiplet. Follow-

ing this approach, we computed the leading non-vanishing correction to the scaling dimen-

sion of the Konishi operator, ∆
(inst)
K = O(g4 e−8π2/g2) and to its structure constant in the

OPE of two half-BPS operators, C
(inst)
K = O(g2 e−8π2/g2) (see [8] for explicit expressions).

In this paper we extend the analysis to twist-two operators OS with arbitrary even

Lorentz spin S. For spin zero, the operator OS=0 coincides with the half-BPS operator and

is protected from quantum corrections. For spin-two, the operator OS=2 belongs to the

same supermultiplet as the Konishi operator and, therefore, has the same conformal data.

For S ≥ 4, quite surprisingly, our calculation yields a vanishing result for the instanton

contribution. This implies that the leading instanton corrections to the conformal data of

twist-two operators OS with S ≥ 4 are suppressed at least by a power of g2 as compared

with those for the Konishi operator

∆
(inst)
S = δS,2 ∆

(inst)
K +O(g6 e−8π2/g2) ,

C
(inst)
S = δS,2C

(inst)
K +O(g4 e−8π2/g2) . (1.1)

Notice that these two expressions differ by a power of the coupling constant,

∆
(inst)
S /C

(inst)
S = O(g2), whereas the leading perturbative corrections to both quantities

have the same scaling in g2 at weak coupling.

The paper is organized as follows. In section 2 we define operators of twist two and

discuss their relation to light-ray operators. In section 3 we construct the one-instanton

solution to the equations of motion in N = 4 SYM for the SU(2) gauge group. In sec-

tion 4 we present the calculation of correlation functions involving half-BPS and twist-two

operators in the semiclassical approximation and discuss its generalization to the SU(N)

gauge group. Section 5 contains concluding remarks. Some details of the calculation are

summarized in four appendices.

2 Twist-two operators

All twist-two operators in N = 4 SYM belong to the same supermultiplet and share the

same conformal data. This allows us to restrict our consideration to the simplest twist-two

operator, of the form

OS(x) = tr
[
Z DS

+ Z(x)
]

+ . . . , (2.1)

where Z(x) is a complex scalar field and D+ = nµDµ (with n2 = 0) is a light-cone com-

ponent of the covariant derivative Dµ = ∂µ + i[Aµ, ]. All fields take values in the SU(N)

algebra, e.g. Z(x) = Za(x)T a with the generators normalized as tr(T aT b) = δab/2. The

dots on the right-hand side of (2.1) denote a linear combination of operators with total

derivatives of the form ∂`+ tr
[
ZDS−`

+ Z(x)
]

with 0 ≤ ` ≤ S. The corresponding expansion
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coefficients are fixed by the condition for OS(x) to be a conformal primary operator and

depend, in general, on the coupling constant. To lowest order in the coupling, they are

related to those of the Gegenbauer polynomials (see eq. (2.9) below).

In this paper, we compute the leading instanton corrections to correlation functions of

twist-two operators (2.1) and half-BPS scalar operators of the form

O20′(x) = YABYCD tr[φABφCD(x)] , (2.2)

where the complex scalar fields φAB = −φBA(with A,B = 1, . . . , 4) satisfy reality condition

φ̄AB = 1
2εABCDφ

CD. The auxiliary antisymmetric tensor YAB is introduced to project the

product of two scalar fields onto the representation 20′ of the SU(4) R−symmetry group.

It satisfies εABCDYABYCD = 0 and plays the role of the coordinate of the operator in the

isotopic SU(4) space. The scalar field Z entering (2.1) is a special component of φAB

Z = φ14 = (YZ)ABφ
AB , (2.3)

where (YZ)AB has the same properties as the Y−tensor in (2.2) and has the only nonvan-

ishing components (YZ)14 = −(YZ)41 = 1/2.

Conformal symmetry fixes the form of two- and three-point correlation functions of

the operators (2.1) and (2.2)

〈OS(x)ŌS′(0)〉 = δSS′NS
[2(xn)]2S

(x2)∆S+S
,

〈O20′(x1)O20′(x2)OS(0)〉 =
CS

(x2
12)2

[
2(nx1)

x2
1

− 2(nx2)

x2
2

]S ( x2
12

x2
1x

2
2

)(∆S−S)/2

. (2.4)

Here the scaling dimension of twist-two operator ∆S , the normalization factor NS and

three-point coefficient function CS depend on the coupling constant whereas the scaling

dimension of the half-BPS operator is protected from quantum corrections.

2.1 Light-ray operators

To compute the correlation functions (2.4), it is convenient to introduce a generating

function for the twist-two operators (2.1), the so-called light-ray operator,

O(z1, z2) = tr
[
Z(nz1)E(z1, z2)Z(nz2)E(z2, z1)

]
. (2.5)

In distinction with (2.1), it is a nonlocal operator — the two scalar fields are separated

along the light-ray direction nµ and two light-like Wilson lines are inserted to restore gauge

invariance,

E(z1, z2) = P exp

(
i

∫ z2

z1

dt nµAµ(nt)

)
, (2.6)

with E(z1, z2)E(z2, z1) = 1. The scalar variables z1 and z2 define the position of the fields

along the null ray.
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Making use of gauge invariance of (2.5), we can fix the gauge nµAµ(x) = 0 in which

Wilson lines (2.6) reduce to 1. Then, the expansion of (2.5) in powers of z1 and z2 takes

the form

O(z1, z2) =
∑
k,n≥0

zk1
k!

zn2
n!

tr [∂k+Z(0)∂n+Z(0)] , (2.7)

where ∂+ = (n∂). To restore gauge invariance, it suffices to replace ∂+ → D+ in this

relation. The local operators on the right-hand side of (2.7) are not conformal primaries

but, for given S = k + n, they can be expanded over the conformal primary operators

OS(0) and their descendants ∂`+OS−`(0).

As mentioned at the beginning of this section, the conformal operators have the fol-

lowing general form

OS(0) =
∑

k+n=S

ckn tr [Dk
+Z(0)Dn

+Z(0)] , (2.8)

with the expansion coefficients ckn depending on the coupling constant. To lowest order in

the coupling, these coefficients coincide (up to an overall normalization) with those of (x1 +

x2)SC
1/2
S ((x1 − x2)/(x1 + x2)) =

∑
cknx

k
1x

n
2 involving the Gegenbauer polynomial [9, 10]

ckn = (−1)n
S!

(k!n! )2
+O(g2) . (2.9)

Note that the sum in (2.8) vanishes for odd S and the conformal operators are defined for

even nonnegative S.

Inverting (2.8) we can expand the light-ray operator (2.7) over the conformal twist-two

operators and their descendants. In this way, we find that the operators OS(0) appear as the

coefficients in the expansion of the light-ray operator (2.5) in powers of z12 ≡ z1 − z2 [11]1

O(z1, z2) =
∑
S≥0

zS12

S!
[OS(0) + . . . ] . (2.10)

Here the dots denote the contribution from descendant operators of the form ∂`+OS(0).

This contribution is fixed by conformal symmetry, see [12].

We would like to finish this subsection with the following important remark. The

light-ray operators (2.5) depend on the light-like vector nµ and are naturally defined in

Minkowski signature. At the same time, in order to compute instanton corrections to their

correlation functions, we have to define the operators (2.5) in Euclidean signature. This

can be done by allowing the null vector nµ to have complex components in Euclidean

space. According to (2.7), the light-ray operators are given by the sum over local twist-

two operators that are polynomial in ∂+ = nµ∂µ and, therefore, they should admit an

analytical continuation to complex n. We shall verify that the correlation functions of the

operators (2.5) have this property indeed in the semiclassical approximation.

1The relation (2.10) has the following interpretation [11]. The light-ray operator (2.5) transforms covari-

antly under the action of the collinear SL(2;R) subgroup of the conformal group. Then, the relation (2.10)

defines the decomposition of the tensor product of two SL(2;R) representations over the irreducible com-

ponents. The coefficient functions zS12 are the lowest weights of these components.
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2.2 From light-ray to twist-two operators

The rationale for introducing (2.5) is that finding instanton corrections to light-ray op-

erators proves to be simpler as compared to that for twist-two operators. Then, having

computed the correlation function2

G(x1, x2, nz1, nz2) = 〈O20′(x1)O20′(x2)O(z1, z2)〉 , (2.11)

we can then apply (2.10) to obtain the three-point correlation function

〈O20′(x1)O20′(x2)OS(0)〉.
To lowest order in the coupling, we can simplify the calculation by making use of the

following relation between the operators OS(0) and O(z1, z2)

OS(0) =

‹
dz1dz2

(2πi)2

(z1 − z2)S

(z1z2)S+1
O(z1, z2) , (2.12)

where the integration contour in both integrals encircles the origin. Indeed, replacing

O(z1, z2) on the right-hand side with (2.7) and computing the residue at z1 = 0 and

z2 = 0 we obtain (2.8) with ckn given by (2.9). Using the operator identity (2.12) inside

corrrelation functions we arrive at

〈OS(0)O20′(x1)O20′(x2)〉 =

‹
dz1dz2

(2πi)2

(z1 − z2)S

(z1z2)S+1
〈O(z1, z2)O20′(x1)O20′(x2)〉 . (2.13)

We would like to emphasize that relations (2.12) and (2.13) hold to the lowest order in

the coupling constant. Beyond this order, we have to take into account O(g2) corrections

to (2.9).

Relation (2.13) offers an efficient way of computing the correlation functions of twist-

two operators. As an example, we show in appendix C how to use (2.13) to obtain the

correlation functions (2.4) in the Born approximation (see eqs. (C.4) and (C.6)).

3 Instantons in N = 4 SYM

The general one-instanton solution to the equations of motion in N = 4 SYM with the

SU(N) gauge group depends on 8N fermion collective coordinates, see [1–3]. Among them

16 modes are related to N = 4 superconformal symmetry. The remaining 8(N−2) fermion

modes are not related to symmetries in an obvious way and are usually called ‘nonexact

modes’. This makes the construction of the instanton solution more involved.

For the SU(2) gauge group the general one-instanton solution to the equations of

motion of N = 4 SYM can be obtained by applying superconformal transformations to the

special solution corresponding to vanishing scalar and gaugino fields and gauge field given

by the celebrated BPST instanton [14]

φ(0),AB = λ(0),A
α = λ̄

(0)
α̇,A = 0 ,

A(0)
µ (x− x0) = 2

ηaµν(x− x0)νT a

(x− x0)2 + ρ2
, (3.1)

2Such correlation functions appeared in the study of the asymptotic behaviour of four-point correlation

functions 〈O20′(x1)O20′(x2)O20′(x3)O20′(x4)〉 in the light-cone limit x234 → 0, see [13].
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where ηaµν are the ’t Hooft symbols and the SU(2) generators are related to Pauli matrices

T a = σa/2. It depends on the collective coordinates ρ and x0 defining the size and the

position of the instanton, respectively.

In this section, we present explicit expressions for the one-instanton solution in N = 4

SYM for the SU(2) gauge group. Then, in the next section, we explain how to generalize

the expressions for the correlation functions (2.4) to the case of the SU(N) gauge group.

The field configuration (3.1) is annihilated by (the antichiral) half of the N = 4

superconformal generators. Applying to (3.1) the remaining (chiral) N = 4 superconformal

transformations (see (A.11) in appendix A), we obtain a solution to the N = 4 equations

of motion that depends on 16 fermionic collective coordinates, ζAα and η̄α̇A. The resulting

expressions for gauge and scalar fields can be expanded in powers of fermion modes

Aµ = A(0)
µ +A(4)

µ + · · ·+A(16)
µ ,

φAB = φAB,(2) + φAB,(6) + · · ·+ φAB,(14) , (3.2)

where A
(n)
µ denotes the component of the gauge field that is homogenous in ζAα and η̄α̇A

of degree n and similar for scalars. Gaugino fields admit similar expansions (see (B.4) in

appendix B) but we will not need them for our purposes. Explicit expressions for various

components of (3.2) are given below.

By virtue of superconformal invariance, the action of N = 4 SYM evaluated on the

instanton configuration (3.2) does not depend on the fermionic modes and coincides with

the one for pure Yang-Mills theory3

Sinst =

∫
d4xL(x) = −2πiτ , (3.3)

where τ is the complex coupling constant

τ =
θ

2π
+

4πi

g2
. (3.4)

Notice that, due to our definition of the Lagrangian (see (A.9) in appendix A), the instanton

solution (3.1) and (3.2) does not depend on the coupling constant.

It is straightforward to work out the leading term of the expansion (3.2) by sub-

sequently applying N = 4 superconformal transformations to (3.1), see [1]. The direct

calculation of the subleading terms becomes very involved due to the complicated form of

these transformations (see (A.11) in appendix A). There is, however, a more efficient ap-

proach to computing higher components in (3.2) which is presented in appendix B. It makes

use of the known properties of fields with respect to conformal symmetry, R−symmetry

and gauge transformations and allows us to work out the expansion (3.2) recursively with

little efforts.

To present the resulting expressions for the instanton configuration (3.2) for the SU(2)

gauge group it is convenient to switch to spinor notation and use a matrix representation

3For the SU(N) gauge group the instanton action (3.3) also depends on 8(N − 2) nonexact fermion

modes, see [1–3].
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for (3.1) (see appendix A for our conventions)

(Aαα̇)i
j = iAaµ(x)(T a)i

j(σµ)αα̇ , (3.5)

where the four-dimensional vector of 2× 2 matrices σµ = (1, iσ) and the SU(2) generators

T a = σa/2 are built from Pauli matrices. This field carries two pairs of indices, Lorentz

indices (α, α̇ = 1, 2) and SU(2) indices (i, j = 1, 2). Here we distinguish lower and upper

SU(2) indices and define the product of two matrices by

(Aαα̇)i
j(Aββ̇)j

k ≡ (Aαα̇Aββ̇)i
k . (3.6)

All indices are raised and lowered with the help of the antisymmetric tensor, e.g.

(Aαα̇)i
k = (Aαα̇)ijε

jk , (A
(0)
αα̇)ij =

εiαxjα̇ + εjαxiα̇
x2 + ρ2

, (3.7)

where the second relation follows from (3.1) and (3.5). The advantage of (Aαα̇)ij as com-

pared to (3.5) is that it is symmetric with respect to the SU(2) indices.

The instanton (3.1) and (3.7) is a self-dual solution to the equations of motion in pure

Yang-Mills theory, F
(0)

α̇β̇
= 0. The corresponding (chiral) strength tensor is given by

(F
(0)
αβ )ij = εβ̇γ̇

[
∂(αβ̇A

(0)
β)γ̇ +A

(0)

(αβ̇
A

(0)
β)γ̇

]
ij

= −1

2
f(x)(εiαεjβ + εiβεjα) , (3.8)

where ∂αβ̇ = (σµ)αβ̇∂µ and angular brackets denote symmetrization with respect to in-

dices, A(αβ) = Aαβ + Aβα. Here a shorthand notation was introduced for the instanton

profile function

f(x) =
16ρ2

(x2 + ρ2)2
. (3.9)

It is easy to verify that (Fαβ)ij is symmetric with respect to both pair of indices and satisfies

the equations of motion Dα̇αFαβ = [∂α̇α + Aα̇α, Fαβ ] = 0. Notice that (3.7) and (3.8) do

not depend on the position of the instanton x0. To restore this dependence it suffices to

apply the shift x→ x− x0.

We can further simplify (3.7) and (3.8) by contracting all Lorentz indices with auxiliary

(commuting) spinors |n〉 ≡ λα and |n] ≡ λ̄α̇ depending on their chirality, e.g.

〈n|Aij |n] ≡ λαλ̄α̇(Aαα̇)ij , 〈n|Fij |n〉 ≡ λαλβ(Fαβ)ij .

The resulting expressions only have SU(2) indices and are homogenous polynomials in λ

and λ̄. In particular,

〈n|A(0)
ij |n] = −λixjα̇ + λjxiα̇

x2 + ρ2
λ̄α̇ ,

〈n|F (0)
ij |n〉 = −f(x)λiλj , (3.10)

where the superscript ‘(0)’ indicates that these expressions correspond to the lowest term in

the expansion (3.2). An unusual feature of the expressions on the right-hand side of (3.10)

is that the chiral Lorentz indices are identified with the SU(2) indices.
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To obtain the subleading corrections in the instanton solution (3.2), depending on

fermion modes, we apply the method described in appendix B. Namely, we make use

of (B.9) and replace the gauge field by its expression (3.10). Going through the calculation

we get

〈n|A(4)
ij |n] =

8ρ2

(ρ2 + x2)3
εABCD〈nζA〉

(
ρ2[η̄Bn]− 〈ξB|x|n]

)
ζCi ζ

D
j ,

〈n|F (4)
ij |n〉 =

1

4
f2(x)εABCD〈nζA〉〈nζB〉ζCi ζDj , (3.11)

where ζ stands for a linear x−dependent combination of fermion modes

ζAα (x) = ξAα + xαα̇η̄
α̇A , (3.12)

and a shorthand notation is used for various contractions of Lorentz indices

〈nζA〉 = λαζAα , [η̄Bn] = η̄Bα̇ λ̄
α̇ , 〈ξB|x|n] = ξαBxαα̇λ̄

α̇ . (3.13)

Note that the dependence on the fermion modes enters into 〈n|F (4)
ij |n〉 through the linear

combination (3.12). As explained in appendix B, this property can be understood using

conformal symmetry.

We recall that, to leading order, the instanton solution (3.10) satisfies the self-duality

condition F
(0)

α̇β̇
= 0. Using the obtained expression for A

(4)
αα̇, we find that the anti-self-dual

component of the gauge field strength tensor [n|F̄ij |n] ≡ λ̄αλβFα̇β̇,ij receives a nonvanish-

ing correction

[n|F̄ (4)
ij |n] =

f2(x)

2ρ2
εABCD

(
ρ2[η̄An]− 〈ξA|x|n]

) (
ρ2[η̄Bn]− 〈ξB|x|n]

)
ζCi ζ

D
j , (3.14)

which contains four fermion modes. This relation illustrates that higher components of

fields depend on fermion modes in a nontrivial manner.

Repeating the same analysis we can evaluate subleading corrections to all fields in (3.2).

In particular, using the relations (B.7) and (B.9) we get the following expressions for the

scalar field on the instanton background

φ
AB,(2)
ij = −f(x)

2
√

2
ζ

[A
i ζ

B]
j ,

φ
AB,(6)
ij = −f

2(x)

20
√

2
εCDEF (ζ2)AC(ζ2)BDζEi ζ

F
j , (3.15)

where brackets in the first relation denote antisymmetrization with respect to the SU(4)

indices, the variable ζ is defined in (3.12) and (ζ2)AB = (ζ2)BA = ζβAεβγζ
γB.

The expressions (3.11) and (3.15) depend on the size of the instanton, ρ, as well as on

16 fermion modes, ξAα and η̄α̇A. To restore the dependence on the position of the instanton,

we apply the shift x→ x− x0.

– 8 –
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4 Correlation functions in the semiclassical approximation

In the semiclassical approximation, the calculation of correlation functions reduces to aver-

aging the classical profile of the operators over the collective coordinates of instantons [1–3]

〈O1 . . . On〉inst =

∫
dµphys e−Sinst O1 . . . On , (4.1)

where the gauge invariant operators Oi on the right-hand side are evaluated on the in-

stanton background (3.2). For the SU(2) gauge group, the collective coordinates of the

one-instanton solution are the size of the instanton ρ, its localtion xµ0 and 16 fermion

modes, ξAα and η̄Aα̇ . The corresponding integration measure is [15]∫
dµphys e−Sinst =

g8

234π10
e2πiτ

∫
d4x0

∫
dρ

ρ5

∫
d8ξ

∫
d8η̄ , (4.2)

where the complex coupling constant τ is defined in (3.4).

We recall that, due to our normalization of the Lagrangian (A.9), the instanton back-

ground (3.2) does not depend on the coupling constant. The same is true for the op-

erators (2.2), (2.5) and (2.8) built from scalar and gauge fields. As a consequence, the

instanton correction to the correlation function of these operators scales in the semiclassi-

cal approximation as O(g8 e2πiτ ) independently on the number of operators n. At the same

time, the same correlation functions in the Born approximation scale as O(g2n) with one

power of g coming from each scalar field (see eqs. (C.4) and (C.6)).4 Thus, the ratio of the

two contributions scales as O(g8−2n e2πiτ ) with n being the number of operators. As we

show in a moment, the instanton correction vanishes in the semiclassical approximation for

n > 5. Later in the paper we shall compute this correction explicitly for n = 2 and n = 3.

For the correlation function (4.1) to be different from zero upon integration of fermion

modes, the product of operators O1 . . . On should soak up the product of all fermion modes

(ξ)8(η̄)8 ≡
∏
A ξ

A
1 ξ

A
2 η̄

A
1̇
η̄A

2̇
. Let us denote by ki the minimal number of fermion modes in

Oi. Then, by virtue of the SU(4) invariance, the total number of modes in the product

O1 . . . On is given by kmin + 4p with kmin = k1 + · · · + kn and p = 0, 1, . . . . For kmin > 16

the product O1 . . . On is necessarily proportional to the square of a fermion mode and,

therefore, the correlation function (4.1) vanishes. To obtain a nontrivial result for the

correlation function, we have to go beyond the semiclassical approximation and take into

account quantum fluctuations of fields. For ktot ≤ 16 and kmin multiple of 4, the integral

over fermion modes in (4.1) does not vanish a priori. This case corresponds to the so-

called minimal correlation functions [3, 16]. Another interesting feature of these correlation

functions is that the results obtained in the semiclassical approximation for the SU(2) gauge

group can be extended to the general case of SU(N) gauge group for the one-instanton

solution [2, 17] and for multi-instanton solutions at large N [18].

Since the operators (2.2), (2.5) and (2.8) involve two scalar fields, we deduce from (3.2)

that each of them has at least four fermion modes, k = 4. Then, for the product of these

4In the previous paper [8], we used different normalization of operators, Othere = Ohere/g
2, for which

the correlation functions in the Born approximation do not depend on the coupling constant.
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operators O1 . . . On we have kmin = 4n and, as a consequence, the correlation function

〈O1 . . . On〉inst is minimal for n ≤ 4.

Applying the relations (4.1) and (4.2) one tacitly assumes that the integral over the

collective coordinates of instantons is well-defined and does not require a regularization.

As we show below, this assumption is not justified for two-point correlation functions

of operators whose scaling dimensions are modified by instanton effects. The instanton

corrections to such correlation functions develop logarithmic ultraviolet divergences and

take the following form

〈O(x)O(0)〉inst = −γinst(g
2)

(x2)∆
ln(x2µ2) , (4.3)

where µ2 is an ultraviolet cut-off and γinst(g
2) is the anomalous dimension. In order to

compute 〈O(x)O(0)〉inst in the semiclassical approximation, the integral over the collective

coordinates of instantons (4.1) has to be regularized. Introducing a supersymmetry pre-

serving regularization of (4.1) proves to be a nontrivial issue. Fortunately, we can avoid

this problem by applying the dilatation operator D = (x∂x) + 2∆ to the both sides of (4.3)

D 〈O(x)O(0)〉inst = −2
γinst(g

2)

(x2)∆
. (4.4)

This relation suggests that, in distinction from (4.3), the correlation function on the left-

hand side of (4.4) is well-defined in the semiclassical approximation and, therefore, it can

be computed using (4.1) and (4.2).

4.1 Instanton profile of twist-two operators

To compute the correlation functions (2.4) in the semiclassical approximation, we have

to evaluate the operators O20′ and OS on the instanton background by replacing all

fields by their explicit expressions (3.2) and, then, expand their product in powers of

16 fermion modes.

For the half-BPS operators (2.2) we find [8]

O
(4)
20′(x) =

1

2
f2(x)YABYCD(ζ2)AC(ζ2)BD , (4.5)

where f(x) is the instanton profile function (3.9) and the superscript on the left-hand side

indicates the number of fermion modes. Since O20′(x) is annihilated by half of the N = 4

supercharges, its expansion involves only four fermion modes.

As argued above, in order to study correlators involving twist-two operators it is con-

venient to introduce light-ray operators (2.5). In order to evaluate those in the instanton

background we replace scalar and gauge fields by their expressions Z = Z(2) + Z(6) + . . .

and A = A(0) +A(4) + . . . , which leads to

O(z1, z2) = O(4) + O(8) + O(12) + O(16) , (4.6)

where the leading term contains four fermion modes and each subsequent term has four

modes more. The last term is proportional to the product of all 16 modes (ξ)8(η̄)8. The
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first two terms on the right-hand side of (4.6) are given by

O(4)(z1, z2) = tr
[
Z(2)(nz1)E(0)(z1, z2)Z(2)(nz2)E(0)(z2, z1)

]
,

O(8)(z1, z2) = tr
[
Z(6)(nz1)E(0)(z1, z2)Z(2)(nz2)E(0)(z2, z1)

]
+ tr

[
Z(2)(nz1)E(4)(z1, z2)Z(2)(nz2)E(0)(z2, z1)

]
+ (z1 ↔ z2) , (4.7)

where E(n) denote specific terms in the expansion of the light-like Wilson line (2.6) on the

instanton background

E(z1, z2) = E(0) + E(4) + . . . . (4.8)

Explicit expressions for E(0) and E(4) can be found in appendix D.

The remaining terms O(12) and O(16) are given by a priori lengthy expressions but their

evaluation leads to a surprisingly simple result

O(12)(z1, z2) = O(16)(z1, z2) = 0 . (4.9)

As we show in appendix D, these terms are necessarily proportional to the square of a

fermion mode and, therefore, have to vanish.

Let us consider the correlation function (2.11). As was explained at the begin-

ning of the section, this correlation function is minimal and scales as O(g8 e2πiτ ) in the

semiclassical approximation. Applying (4.1), we have to find the instanton profile of

O(z1, z2)O20′(x1)O20′(x2) and identify the contribution containing 16 fermion modes. Mak-

ing use of (4.5) and (4.6) we find

〈O(z1, z2)O20′(x1)O20′(x2)〉inst =

∫
dµphys e−Sinst O(8)(z1, z2)O

(4)
20′(x1)O

(4)
20′(x2) . (4.10)

Later we shall use this relation to find the instanton correction to the three-point correlation

function 〈OS(0)O20′(x1)O20′(x2)〉inst.

In a similar manner, in order to find 〈OS(0)ŌS′(x)〉inst we have to consider the corre-

lation function of two light-ray operators separated by a distance x and conjugated to each

other. For this purpose, we have to generalize the definition (2.5) by allowing the light-ray

to pass through an arbitrary point x

O(z1, z2|x) = eiP ·xO(z1, z2) e−iP ·x , (4.11)

where Pµ is the operator of total momentum. The operator (4.11) is given by the same

expression (2.5) with scalar and gauge fields shifted by x. Obviously, for x = 0 we have

O(z1, z2|0) = O(z1, z2). Substituting (4.6) into (4.11), we find that O(z1, z2|x) has a similar

expansion in powers of fermion modes. Then, we take into account (4.9) to get

〈O(z1, z2|0)Ō(z3, z4|x)〉inst =

∫
dµphys e−Sinst O(8)(z1, z2|0)Ō(8)(z3, z4|x) , (4.12)

where Ō(z3, z4|x) is a conjugated operator. Notice that the lowest O(4) term of the expan-

sion (4.6) does not contribute to (4.10) and (4.12).
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We are now ready to compute the correlation functions (4.10) and (4.12). Using

the expression for the integration measure (4.2), we first perform the integration over

fermion modes. Replacing O
(4)
20′ and O(8) by their explicit expressions, eqs. (4.5) and (4.7),

respectively, and going through a lengthy calculation we find (see appendix D for details)∫
d8ξd8η̄O(8)(z1, z2)O

(4)
20′(x1)O

(4)
20′(x2) = −229 × 33 × (Y1Y2)(Y1YZ)(Y2YZ)

× (z1 − z2)2 [(nx2)x2
1 − (nx1)x2

2]2ρ14

[(ρ2 + (nz1 − x0)2)(ρ2 + (nz2 − x0)2)]3[(ρ2 + x2
10)(ρ2 + x2

20)]4
,

(4.13)

where (YiYj) = εABCDYi,ABYi,CD and the antisymmetric tensors Yi,AB carry the SU(4)

charges of the operators. The tensors Yi,AB (with i = 1, 2) enter into the definition (2.2)

of the operators O20′(xi) and YZ,AB defines the complex scalar field Z = φ14 = YZ,ABφ
AB.

In a similar manner, we find from (4.12) (see appendix D for details)∫
d8ξd8η̄O(8)(z1, z2|0)Ō(8)(z3, z4|x)

=
230 × 32 × (z1 − z2)2(z3 − z4)2(xn)4ρ12

[(ρ2+(nz1−x0)2)(ρ2+(nz2−x0)2)(ρ2+(x+nz3−x0)2)(ρ2+(x+nz4−x0)2)]3
.

(4.14)

We verify that expressions on the right-hand side of (4.13) and (4.14) are rational functions

of zi, well-defined for a complex null vector n.

Notice that (4.13) and (4.14) vanish quadratically for z1 → z2 (as well as for z3 → z4).

This property can be understood as follows. For z2 → z1 we can use the definition of the

light-ray operator (2.5) to show that

O(z1, z2) = tr [Z2(nz1)] +
1

2
(z2 − z1)∂+ tr [Z2(nz1)] +O

(
(z2 − z1)2

)
. (4.15)

The first two terms of the expansion involve the half-BPS operator trZ2, it can be obtained

from the general expression (2.2) for Y = YZ . According to (4.5), the half-BPS operators

have exactly four fermion modes and, therefore, the first two terms on the right-hand side

of (4.15) do not contribute to O(8)(z1, z2) leading to O(8)(z1, z2) = O((z2 − z1)2).

To obtain the correlation functions, we have to integrate (4.13) and (4.14) over the

bosonic coordinates ρ and x0 with the measure (4.2). The resulting integrals can be

expressed in terms of the so-called D−functions

D∆1...∆n(x1, . . . , xn) =

∫
d4x0

∫
dρ

ρ5

n∏
i=1

(
ρ

ρ2 + x2
i0

)∆i

, (4.16)

where xi0 = xi − x0. Multiplying (4.13) and (4.14) by the additional factors coming

from the integration measure (4.2), we finally find the leading instanton correction to the
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correlation functions

〈O(z1, z2)O20′(1)O20′(2)〉inst = − 27

128π10
g8 e2πiτ (Y1Y2)(Y1YZ)(Y2YZ)

× (z1 − z2)2(x2
1x

2
2)2

[
2(nx1)

x2
1

− 2(nx2)

x2
2

]2

D3344(nz1, nz2, x1, x2) ,

(4.17)

〈O(z1, z2|0)Ō(z3, z4|x)〉inst =
9

16π10
g8 e2πiτ

× (z1 − z2)2(z3 − z4)2(xn)4D3333(nz1, nz2, x+ nz3, x+ nz4) .

(4.18)

The same correlation functions in the Born approximation are given by (C.2) and (C.5),

respectively, evaluated for N = 2. Dividing (4.17) and (4.18) by the Born level expressions,

we find that the instanton corrections to the two correlation functions scale as O(g2 e2πiτ )

and O(g4 e2πiτ ), respectively, in agreement with the analysis at the beginning of this section.

4.2 Instanton corrections to correlation functions

Let us apply (4.17) and (4.18) to derive the correlation functions of twist-two operators.

We recall that to the lowest order in the coupling constant, the correlation functions involv-

ing light-ray and twist-two operators are related to each other through the relations (2.12)

and (2.13). It is not obvious however whether the same relations should work for the

instanton corrections in the semiclassical approximation. To show that this is the case,

we apply below (2.12) and (2.13) to relations (4.17) and (4.18) and verify that the ob-

tained expressions for the correlation functions 〈OS(0)O20′(1)O20′(2)〉 and 〈OS(0)OS′(x)〉
are indeed consistent with conformal symmetry and have the expected form (2.4).

Applying (2.13) to (4.17), we get

〈OS(0)O20′(1)O20′(2)〉inst = − 27

128π10
g8 e2πiτ (Y1Y2)(Y1YZ)(Y2YZ)

× (x2
1x

2
2)2

[
2(nx1)

x2
1

− 2(nx2)

x2
2

]2

IS(x1, x2) , (4.19)

where IS(x1, x2) denotes the following integral

IS(x1, x2) =

‹
dz1dz2

(2πi)2

(z1 − z2)S

(z1z2)S+1
(z1 − z2)2D33∆∆(nz1, nz2, x1, x2) , (4.20)

with ∆ = 4. In what follows we relax this condition and treat ∆ as an arbitrary parameter.

The reason for this is that the same integral with ∆ = 3 enters the calculation of (4.18).

Replacing the D−function in (4.20) by its integral representation (4.16) and exchanging

the order of integration, we find that the integrand has triple poles at z1, z2 = (ρ2 +

x2
0)/(2(x0n)). Blowing up the integration contour in (4.20) and picking up the residues at

these poles, we find that the integral over z1 and z2 vanishes for all nonnegative integer S
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except for S = 2, leading to

IS(x1, x2) = 6 δS,2D6∆∆(0, x1, x2)

= 6 δS,2

∫
d4x0 dρ ρ

9

(ρ2 + x2
0)6(ρ2 + x2

10)∆(ρ2 + x2
20)∆

. (4.21)

For ∆ = 4 the calculation of this integral yields

D644(0, x1, x2) =
π2

90

1

x2
12(x2

1x
2
2)3

. (4.22)

Substituting (4.21) and (4.22) into (4.19) we finally obtain

〈OS(0)O20′(1)O20′(2)〉inst = − δS,2
9

640π8
g8 e2πiτ (Y1Y2)(Y1YZ)(Y2YZ)

× 1

x2
12x

2
1x

2
2

[
2(nx1)

x2
1

− 2(nx2)

x2
2

]2

. (4.23)

Surprisingly enough, this expression vanishes for all spins except S = 2. For S = 0 the

corresponding twist-two operator OS=0 = trZ2 is half-BPS. In this case, the three-point

correlation function is protected from quantum corrections and, therefore, the instanton

correction (4.23) should vanish for S = 0.

To obtain the two-point correlation function 〈OS(0)OS′(x)〉 from (4.18) we apply (2.12)

to both operators to get

〈OS(0)OS′(x)〉inst =
9

16π10
g8 e2πiτ (xn)4ISS′(x) , (4.24)

where ISS′(x) is given by a folded contour integral over four z−variables. Using (4.20) this

integral can be rewritten as

ISS′(x) =

‹
dz3dz4

(2πi)2

(z3 − z4)S
′+2

(z3z4)S′+1
IS(x+ nz3, x+ nz4) , (4.25)

where IS is evaluated for ∆ = 3. Replacing IS with its integral representation (4.21), we

evaluate the integral by picking up the residue at the poles z3, z4 = (ρ2 +(x0−x)2)/(2(x0−
x)n) in the same manner as (4.21). In this way, we arrive at

〈OS(0)ŌS′(x)〉inst = δS,2δS,S′
81

4π10
g8 e2πiτ (xn)4D66(0, x) , (4.26)

where the D−function is defined in (4.16). Similar to (4.23), this expression vanishes for all

spins except S = S′ = 2. For S = S′ = 0 this property is in agreement with protectiveness

of two-point correlation functions of half-BPS operators.

A close examination of (4.16) shows that D66(0, x) develops a logarithmic divergence.

It comes from integration over small size instantons, ρ → 0, located close to one of the

operators, x2
0 → 0 and (x−x0)2 → 0. This divergence produces a logarithmically enhanced

contribution ∼ lnx2 which modifies the scaling dimensions of twist-two operators.
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We can regularize D66(0, x) by modifying the integration measure over x0,5

D66(0, x)→
∫
d4−2εx0

∫
dρ

ρ5

ρ12

(ρ2 + x2
0)6(ρ2 + (x− x0)2)6

=
π2

20(x2)6

(
−1

ε
+ lnx2 + . . .

)
, (4.27)

where dots denote terms independent of x and/or vanishing for ε → 0. In the stan-

dard manner, the pole 1/ε can be removed from the correlation function 〈OS(0)OS′(x)〉
by multiplying the twist-two operators, OS(x) → Z(1/ε)OS(x) by appropriately chosen

renormalization Z−factor. Retaining only this term we get from (4.26)

〈OS(0)ŌS′(x)〉inst = δS,2δS,S′
81

80π8
g8 e2πiτ (xn)4

(x2)6

(
lnx2 + const

)
. (4.28)

Relations (4.23) and (4.28) define one-instanton corrections to the correlation functions.

Anti-instanton corrections are given by the complex conjugated expressions.

One may wonder whether the expression on the right-hand side of (4.28) depends on

the choice of regularization. To answer this question, we can use the relation (4.4). Namely,

applying the dilatation operator D = (x∂)+8 to the both sides of (4.26) and (4.28) we find

that the coefficient in front of ln x2 on the right-hand side of (4.28) is given by the integral

1

2
[(x∂) + 12]D66(0, x) =

π2

20(x2)6
, (4.29)

which takes a finite value, independent on the regularization. Notice that this argument

does not apply to a constant term inside parenthesis on the right-hand side of (4.28), this

term depends on the regularization.

Finally, we combine (4.23) and (4.28) with analogous expressions in the Born approx-

imation (given by (C.4) and (C.6) for N = 2) and add the anti-instanton contribution to

get the following expressions for the correlation functions in N = 4 SYM for the SU(2)

gauge group

〈OS(0)O20′(1)O20′(2)〉 =
3g6

(4π2)3

(Y1Y2)(Y1YZ)(Y2YZ)

x2
12x

2
1x

2
2

[
2(nx1)

x2
1

− 2(nx2)

x2
2

]S
×
[
1− δS,2

3g2

10π2
(e2πiτ + e−2πiτ )

]
, (4.30)

〈OS(0)ŌS′(x)〉 = δSS′
3g4cS

2(4π2)2

[2(nx)]2S

(x2)2+2S

×

[
1 + δS,2

9

5

(
g2

4π2

)2

(e2πiτ + e−2πiτ ) lnx2

]
, (4.31)

where the normalization factor cS is defined in (C.6). We recall that these relations were

derived in the one (anti)instanton sector in the semiclassical approximation and are valid

up to corrections suppressed by powers of g2.

5Note that this regularization is different from the conventional dimensional regularization.
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Comparing (4.31) with the general expression for a two-point correlation function (2.4),

we obtain the leading instanton correction to the scaling dimension of twist-two operators

∆S = 2 + S + γS

γ
(inst)
S = −δS,2

9

5

(
g2

4π2

)2

(e2πiτ + e−2πiτ ) . (4.32)

In a similar manner, matching (4.30) and (2.4) we obtain the following result for the

properly normalized OPE coefficient ĈS = CS/C
(Born)
S

ĈS = 1− δS,2
3g2

10π2
(e2πiτ + e−2πiτ ) . (4.33)

As follows from (4.31), the instanton correction to the normalization factor NS entering

the first relation in (2.4) has the same dependence on the coupling constant as (4.32)

and does not affect the leading correction to the structure constants in the OPE of two

half-BPS operators.

As was already mentioned, for S = 0 the correlation functions (4.30) and (4.31) are

protected from quantum corrections and, therefore, γS=0 = 0 and ĈS=0 = 1 for arbitrary

coupling constant. For S > 2, there are no reasons for the same relations to hold beyond

the semiclassical approximation. For S = 2, the corresponding conformal operator OS=2 ∼
tr(ZD2

+Z)−2 tr(D+ZD+Z) belongs to the same N = 4 supermultiplet as Konishi operator

K = tr(φABφ̄AB). As a consequence, the two operators should have the same anomalous

dimension, γS=2 = γK , as well as OPE coefficients, ĈS=2 = ĈK . As a nontrivial check of

our calculation we use the results of [8] to verify that both relations are indeed satisfied in

the semiclassical approximation.

As was already mentioned in section 4, the correlation functions (4.30) and (4.31)

belong to the class of minimal correlation functions. Following [2, 17, 18], we can then

generalize the relations (4.30) and (4.31) to the SU(N) gauge group and, in addition, include

the contribution of an arbitrary number of (anti)instantons at large N . As before, for S 6= 2

the resulting expressions for γS and ĈS do not receive corrections in the semiclassical

approximation, whereas for S = 2 they coincide with those for the Konishi operator and

can be found in [8].

5 Conclusions

In this work we have presented the explicit calculation of the instanton contribution to

two- and three-point correlation functions involving half-BPS and twist-two operators. A

somewhat surprising outcome of our analysis is the vanishing of the leading instanton

corrections to the scaling dimensions and the OPE coefficients of twist-two operators with

spin S > 2. This result comes from a rather involved calculation and requires a better

understanding. Note that the situation here is very different from that for twist-four

operators. As it was shown in [8], crossing symmetry implies that twist-four operators

with arbitrarily high spin acquire instanton corrections already at order O(g2 e−8π2/g2).

According to (1.1), the instanton corrections to twist-two operators with S > 2 are

pushed to higher order in g2. Their calculation remains a challenge as it requires going
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beyond the semiclassical approximation. There is however an interesting high spin limit,

S � 1, in which we can get additional insight on the instanton effects. In this limit, the

scaling dimensions of twist-two operators scale logarithmically with the spin [19, 20]

∆S = S + 2Γcusp(g2) lnS +O(S0) , (5.1)

where Γcusp(g2) is the cusp anomalous dimension. The instanton contribution to ∆S should

have the same asymptotic behavior and produce a correction to Γcusp(g2). According to

the first relation in (1.1), it should scale at least as O(g6 e−8π2/g2). We can find however

the same correction using the fact that the cusp anomalous dimension governs the leading

UV divergences of light-like polygon Wilson loops.

The light-like polygon Wilson loop WL is given by the product of gauge links (2.6)

defined for L different light-like vectors ni. In the semiclassical approximation, the in-

stanton contribution to WL can be found using (4.1).6 Since WL does not depend on the

coupling constant on the instanton background, the dependence on g2 only comes from

the integration measure (4.2) leading to 〈WL〉inst = O(g8 e−8π2/g2). At the same time, in

the Born approximation, we have 〈WL〉Born = 1. As a consequence, the leading instanton

correction to the cusp anomalous dimension scales at least as

Γ(inst)
cusp (g2) = O(g8 e−8π2/g2) . (5.2)

Combining the last two relations we conclude that ∆
(inst)
S = O(g8 e−8π2/g2 lnS) at large S.

Thus, if the leading O(g6 e−8π2/g2) correction to ∆
(inst)
S in (1.1) is different from zero, it

should approach a finite value for S → ∞.7 It would be interesting to compute explicitly

the instanton correction (5.2).
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A N = 4 SYM in spinor notations

Performing the calculation of instanton corrections in N = 4 SYM it is convenient to

employ spinor notations. We use Pauli matrices σµ = (1, iσ) to map an arbitrary four-

dimensional Euclidean vector xµ into a 2× 2 matrix

xαβ̇ = xµ(σµ)αβ̇ , (A.1)

6Here we tacitly assume that the light-like Wilson loop is defined in Euclidean space for complex null

vectors ni and, then, 〈WL〉inst is analytically continued to Minkowski signature.
7Similar considerations should apply to the structure constants C

(inst)
S in the large spin limit. Indeed,

from the analysis of [21] it follows that the structure constants for S � 1 are given in terms of the cusp

anomalous dimension.
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and use the completely antisymmetric tensor to raise and lower its indices

xα
β̇

= εαβxββ̇ , xβ̇α = xαα̇ε
α̇β̇ , xα̇β = εβαxαβ̇ε

β̇α̇ , (A.2)

with εαβε
αγ = δγβ , εα̇β̇ε

α̇γ̇ = δγ̇
β̇

and ε12 = ε12 = 1. Then,

x2
µ =

1

2
xαα̇x

α̇
α = −1

2
xαα̇x

α̇α =
1

2
xαα̇xββ̇ε

αβεα̇β̇ . (A.3)

For derivatives we have similarly

∂αβ̇ = ∂µ(σµ)αβ̇ , ∂αα̇xββ̇ = 2εαβεα̇β̇ , ∂αα̇x
2 = 2xαα̇ . (A.4)

Throughout the paper we use the following conventions for contracting Lorentz indices in

the product of 2× 2 matrices

(xy)αβ = xαα̇y
α̇
β , (xy)α̇β̇ = xαα̇yαβ̇ , (xyz)αβ̇ = xαα̇y

α̇βzββ̇ . (A.5)

Using these definitions we obtain for the gauge field Aµ and the stress tensor

Fµν = −i[Dµ, Dν ]

Aαα̇ = iAµ(σµ)αα̇ , Fαβ = −iFµν(σµσν)αβ , Fα̇β̇ = −iFµν(σµσν)α̇β̇ , (A.6)

where the additional factor of i is introduced for convenience. The symmetric matrices Fαβ
and Fα̇β̇ describe (anti)self-dual parts of the strength tensor

Fαβ = εα̇β̇
(
Dαα̇Dββ̇ +Dβα̇Dαβ̇

)
≡ −D2

(αβ) ,

Fα̇β̇ = εαβ
(
Dαα̇Dββ̇ +Dβα̇Dαβ̇

)
≡ −D2

(α̇β̇)
, (A.7)

where angular brackets denote symmetrization with respect to indices and the covariant

derivative Dαα̇ = Dµ(σµ)αα̇ is defined as

Dαβ̇X = [∂αβ̇ +Aαβ̇ , X] . (A.8)

The Lorentz indices are raised and lowered according to (A.2).

The Lagrangian of N = 4 super Yang-Mills theory takes the following form in spinor

notations

L =
1

g2
tr

{
− 1

16
F 2
αβ −

1

16
F 2
α̇β̇
− 1

4
Dα
α̇φ

ABDα̇
αφ̄AB − 2iλ̄α̇AD

α̇βλAβ +
√

2λαA[φ̄AB, λ
B
α ]

−
√

2λ̄α̇A[φAB, λ̄α̇B] +
1

8
[φAB, φCD][φ̄AB, φ̄CD]

}
+ i

θ

8π2
tr

{
1

16
F 2
αβ −

1

16
F 2
α̇β̇

}
, (A.9)

where gaugino fields λAα and λ̄α̇A, and scalar fields, φAB and φ̄AB, carry the SU(4) indices

(A,B = 1, . . . , 4) and satisfy the reality condition φ̄AB = 1
2εABCDφ

CD. All fields are in the

adjoint representation of the SU(N) gauge group, e.g. Aαα̇ = Aaαα̇ T
a, with the generators

satisfying [T a, T b] = ifabcT c and normalized as tr(T aT b) = 1
2δ
ab. In the special case of the

SU(2) gauge group the generators are expressed in terms of Pauli matrices T a = σa/2.
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As follows from (A.9), gauge fields, gaugino and scalars satisfy equations of motion

Dα
α̇λ

A
α − i

√
2[φAB, λ̄α̇B] = 0

Dαα̇λ̄
α̇
A + i

√
2[φ̄AB, λ

B
α ] = 0

Dα
α̇Fαβ + 4i{λAβ , λ̄α̇A}+ [φ̄AB, Dβα̇φ

AB] = 0

D2φ̄AB +
√

2{λ̄α̇A, λ̄α̇B} −
1√
2
εABCD{λαC , λDα }+

1

2
[φCD, [φ̄AB, φ̄CD]] = 0 (A.10)

where D2 ≡ D2
µ = 1

2D
α
α̇D

α̇
α. The advantage of the normalization of the Lagrangian (A.9) is

that the equations of motion and their solutions do not depend on the coupling constant.

The relations (A.10) are invariant under (on-shell) N = 4 superconformal transfor-

mations. In particular, the transformations generated by chiral Poincare supercharges QαA
and corresponding special superconformal generators S̄α̇A look as

δAαβ̇ = −2ζAα λ̄β̇A ,

δφAB = −i
√

2ζα[AλB]
α ,

δφ̄CD = −i
√

2εABCDζ
α AλBα ,

δλAα =
i

2
Fαβζ

βA − i[φAB, φ̄BC ]ζCα ,

δλ̄α̇A = −
√

2(Dα̇βφ̄AB)ζBβ + 2
√

2φ̄AB η̄
α̇B , (A.11)

where brackets in the second relation denote antisymmetrization of the SU(4) in-

dices. These relations describe transformations of fields under combined Q− and

S̄−transformations with the corresponding parameters being ξAα and η̄Aα̇ , respectively.

All relations in (A.11) except the last one depend on the linear (x−dependent)

combination

ζAα (x) = ξAα + xαα̇η̄
α̇A . (A.12)

This property plays an important role in our analysis and it can be understood as follows.

We recall that S̄−transformations can be realized as composition of the inversion and

Q−transformations

(η̄ S̄) = I · (ξ Q) · I , I(ξAα ) = η̄Aα̇ , I(η̄Aα̇ ) = ξAα , (A.13)

where (η̄ S̄) = η̄Aα̇ S̄
α̇
A and (ξ Q) = ξAαQαA. Let us consider the last relation in (A.11). We

first apply inversions and take into account that I changes the chirality of Lorentz indices

I(xαβ̇) =
xβα̇
x2

, I(λ̄α̇A) = λ̄β̇Ax
β̇αx2 , I(φ̄AB) = x2φ̄AB . (A.14)

Then, we obtain from (A.11) and (A.13)

(ξ Q)λ̄α̇A = −
√

2(Dα̇βφ̄AB)ξBβ ,

(η̄ S̄)λ̄α̇A = I · (ξ Q) · I = η̄β̇B I ·QβA · I(λ̄α̇A) =
√

2 η̄B
β̇

xα̇β
(x2)2

I(Dβ̇βφ̄AB) , (A.15)

where I(Dβ̇βφ̄AB) = xβ̇γx
β
γ̇D

γ̇γ (x2φ̄AB) = x2(xβ̇γx
β
γ̇D

γ̇γ φ̄AB − 2xβ̇βφ̄AB).
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Combining the relations (A.15) together, we find that δλ̄α̇A = (ξ · Q + η̄ · S̄)λ̄α̇A agrees

with the last relation in (A.11). The additional correction to δλ̄ proportional to η̄α̇B comes

from the inhomogenous term in I(Dβ̇βφ̄AB). In other words, the appearance of O(η̄) term

in the expression for δλ̄ in (A.11) is ultimately related to the fact that Dα̇βφ̄AB does not

transform covariantly under the inversion, or equivalently, that δλ̄ involves the operator

Dα̇βφ̄AB which is not conformal primary.

The question arises whether the relations (A.11) are consistent with conformal sym-

metry. Supplementing (A.11) with the relation

I(ζAα ) = ζβA(x−1)βα̇ , (A.16)

that follows from (A.13) and (A.14), we verify that Q + S̄ variations of all fields, δFαβ ,

δFα̇β̇ , δφAB, δλAα and δλ̄α̇A, transform under the conformal transformations in the same

manner as the fields themselves. The same property should hold for higher order variation

of fields, e.g. for δnφAB with n = 2, 3, . . . .

The explicit calculation of δnφAB from (A.11) is very cumbersome and is not efficient

for higher n due to proliferation of terms. Instead, we can use conformal symmetry to

simply the task. Namely, conformal symmetry restricts the possible form of δnφAB and

allows us to write its general expression in terms of a few arbitrary coefficients. The latter

can be fixed by requiring the fields to satisfy the N = 4 SYM equations of motion (A.10).

B Iterative solution to the equations of motion

The equations of motion (A.10) are invariant under N = 4 superconformal transforma-

tions (A.11). Following [1], we can exploit this property to construct solutions to (A.10)

starting from the special solution

F
(0)

α̇β̇
= φAB,(0) = λA,(0)

α = λ̄
α̇,(0)
A = 0 , (B.1)

describing self-dual gauge field in pure Yang-Mills theory with F
(0)
αβ 6= 0. Since (B.1)

verifies (A.10), we can obtain another solution to (A.10) by applyingN = 4 superconformal

transformations (A.11) to the fields (B.1).

The field configuration (B.1) is invariant under the antichiral Q̄ + S transformations.

Then, we use the remaining chiral Q+ S̄ generators to get

Φ(x; ξ, η̄) = ei(ξQ)+i(η̄S̄) Φ(0)(x) e−i(ξQ)−i(η̄S̄)

= Φ(0) + Φ(1) + Φ(2) + . . . , (B.2)

where Φ stands for one of the fields (scalar, gaugino and gauge field). Here Φ(0) is given

by (B.1) and the notation was introduced for

Φ(1) = i[(ξQ) + (η̄S̄),Φ(0)] ≡ δΦ(0) ,

Φ(n) =
1

n
δΦ(n−1) =

1

n!
δnΦ(0) , (B.3)
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where the variation of fields δΦ is given by (A.11). It is important to emphasise that

applying (B.3) we first perform superconformal transformations (A.11) and, then, replace

Φ(0) by their explicit expressions (B.1).

By construction, the field Φ(x; ξ, η̄) depends on 16 fermion modes ξAα and η̄α̇A (with

α, α̇ = 1, 2 and A = 1, . . . , 4). The second relation in (B.2) defines the expansion of

Φ(x; ξ, η̄) in powers of fermion modes, so that Φ(n) is a homogenous polynomial in ξAα and

η̄α̇A of degree n. Its maximal degree cannot exceed the total number of fermion modes

leading to Φ(n) = 0 for n > 16. An additional condition comes from the requirement for

Φ(n) to have the same R−charge. This leads to the following relations for different fields

Aαα̇ = A
(0)
αα̇ +A

(4)
αα̇ + · · ·+A

(16)
αα̇ ,

λAα = λA,(1)
α + λA,(5)

α + · · ·+ λA,(13)
α ,

φAB = φAB,(2) + φAB,(6) + · · ·+ φAB,(14) ,

λ̄α̇A = λ̄
(3)
α̇A + λ̄

(7)
α̇A + · · ·+ λ̄

(15)
α̇A , (B.4)

where φ̄AB = 1
2εABCDφ

CD and each subsequent term of the expansion has four fermion

modes more.

Substituting (B.4) into (A.10) and matching the number of fermion modes on both

sides of the relations, we obtain the system of coupled equations for various components of

fields. To the leading order, we have from (A.10)

Dα
α̇F

(0)
αβ = D2φ̄

(2)
AB −

1√
2
εABCD{λ(1),αC , λ(1),D

α } = 0 ,

Dα
α̇λ

(1),A
α = Dαα̇λ̄

(3),α̇
A + i

√
2[φ̄

(2)
AB, λ

(1),B
α ] = 0 , (B.5)

where the covariant derivative Dαα̇ is given by (A.8) with the gauge field replaced by A
(0)
αα̇.

To the next-to-leading order we find in a similar manner

Dβ
α̇F

(4)
βα + [A

(4),β
α̇ , F

(0)
βα ] + 4i{λ(1),A

α , λ̄
(3)
α̇A}+ [φ(2),BC , Dαα̇φ̄

(2)
BC ] = 0 ,

Dα̇βλ
(5),A
β + [A(4),α̇β , λ

(1),A
β ]− i

√
2[φ(2),AB, λ̄

(3),α̇
B ] = 0 ,

1

2
Dα
α̇D

α̇
αφ̄

(6)
AB + [A

(4),α
α̇ , Dα̇

α φ̄
(2)
AB]− 1

2
[φ̄

(2)
AB, D

α
α̇A

(4),α̇
α ] +

√
2{λ̄(3)

α̇A, λ̄
(3),α̇
B }

+
1

2
[φ(2),CD, [φ̄

(2)
AB, φ̄

(2)
CD]]−

√
2εABCD{λ(1),αC , λ(5),D

α } = 0 . (B.6)

Leading order solutions. Applying relations (B.3) together with (A.11) and (B.1) we

obtain the leading order corrections to scalar and gaugino fields

λ(1),A
α =

i

2
Fαβζ

βA ,

φ(2),AB =
1√
2
ζαAFαβζ

βB ≡ 1√
2

(ζFζ)AB ,

λ̄
(3)
α̇A =

1

6
εABCDζ

βB(ζDβα̇Fζ)CD + εABCDη̄
B
α̇ (ζFζ)CD , (B.7)

– 21 –



J
H
E
P
0
6
(
2
0
1
7
)
0
0
8

where Fαβ = F
(0)
αβ is nonvanishing self-dual part of the gauge strength tensor and

x−dependent variable ζAα is defined in (A.12).

It is straightforward to check that (B.7) satisfy the equations of motion (B.5). We

verify that, in agreement with (B.3), the fields (B.7) are related to each other as

2φ(2),AB = δφ(1),AB = −i
√

2ζα[Aλ(1),B]
α ,

3λ̄
(3),α̇
A = δλ̄

(2),α̇
A = −

√
2(Dα̇βφ̄

(2)
AB)ζBβ + 2

√
2φ̄

(2)
AB η̄

α̇B , (B.8)

where expressions on the right-hand side follow from (A.11). As was mentioned above,

the form of (B.7) is restricted by conformal symmetry. For instance, the expression for

λ̄
(3)
α̇A involves (ζDβα̇Fζ)CD = ζγCDβα̇Fγδζ

δD which is not a conformal primary operator.

As was explained in section A, this leads to the appearance of the second term in λ̄
(3)
α̇A

proportional to η̄Bα̇ which is needed to restore correct conformal properties of the gaugino

field. The relative coefficient between the two terms in the expression for λ̄
(3)
α̇A is uniquely

fixed by the conformal symmetry whereas the overall normalization coefficient is fixed by

the equations of motion (B.5).

Next-to-leading order solutions. Direct calculation of subleading corrections to

fields (B.4) based on (B.3) and (A.11) is very cumbersome. We describe here another,

more efficient approach.

We start with next-to-leading correction to the gauge field and try to construct the

general expression for A
(4)
αα̇ which has correct properties with respect to conformal and R

symmetries. By construction, A
(4)
αα̇ is a homogenous polynomial of degree 4 in fermion

modes ξAα and η̄α̇A. To begin with, we look for an expression that depends on their linear

combination ζAα defined in (A.12) and has quantum numbers of the gauge field. Since

ζAα has scaling dimension (−1/2), the product of four ζ’s should be accompanied by an

operator carrying the scaling dimension 3. It can only be built from the self-dual part

of the strength tensor Fαβ and covariant derivatives Dαα̇. In virtue of the equations of

motion, εαβDαα̇Fβγ = 0, such operator takes the form D(αα̇Fβ)γ . Contracting its Lorentz

indices with those of the product of four ζ’s we obtain A
(4)
αα̇ ∼ εABCDζ

A
α ζ

βB(ζDβα̇Fζ)CD.

Since this operator is not conformal primary, it should receive correction proportional to

εABCDζ
A
α η̄

B
α̇ (ζFζ)CD, the relative coefficient is fixed by the conformal symmetry. The

overall normalization coefficient can be determined by requiring A
(4)
αα̇ to satisfy the first

relation in (B.6). As we will show in a moment, there is much simpler way to fix this

coefficient using the second relation in (B.3).

Repeating the same analysis for scalar and gaugino fields we get

A
(4)
αα̇ = − 1

12
εABCDζ

A
α ζ

βB(ζDβα̇Fζ)CD − 1

2
εABCDζ

A
α η̄

B
α̇ (ζFζ)CD ,

λ(5),αA =
3i

40
εCDEF ζ

αC(ζ2)AD(ζF 2ζ)EF ,

φ(6),AB = − 1

20
√

2
εCDEF (ζ2)AC(ζ2)BE(ζF 2ζ)FD , (B.9)

– 22 –



J
H
E
P
0
6
(
2
0
1
7
)
0
0
8

where the notation was introduced for

(ζ2)AB = (ζ2)BA = ζβAεβγζ
γB ,

(ζF 2ζ)EF = − (ζF 2ζ)FE = ζβFF 2
βγζ

γE ,

F 2
βγ = F 2

γβ = Fβαε
αδFδγ . (B.10)

It is straightforward to verify that the fields (B.9) satisfy the system of coupled equa-

tions (B.6). Notice that the last two relations in (B.9) involve a conformal primary op-

erator F 2
αβ of dimension 4 and, as a consequence, the dependence on fermion modes only

enters through the linear combination ζAα .8

We recall that the subleading corrections to fields have to satisfy (B.3). In application

to (B.9) these relations read

4A
(4)
αα̇ = δA

(3)
αα̇ = −2ζAα λ̄

(3)
α̇A ,

5λ(5),A
α = δλ(4),A

α =
i

2
F

(4)
αβ ζ

βA − i[φ(2),AB, φ̄
(2)
BC ]ζCα ,

6φ(6),AB = δφ(5),AB = −i
√

2ζα[Aλ(5),B]
α , (B.11)

where F
(4)
αβ = D(αα̇A

α̇,(4)
β) defines the correction to self-dual part of the gauge strength

tensor. Replacing the fields with their explicit expressions (B.7) and (B.9), we verify that

the relations (B.11) are indeed satisfied.

We can now turn the logic around and apply the relations (B.8) and (B.11) to compute

subleading corrections to the fields. Indeed, we start with the expression for λ
(1),A
α in (B.7)

and use (B.8) and (B.11) recursively to reproduce (B.9). Continuing this procedure we

can determine all remaining terms of the expansion (B.4) with little efforts, e.g.

7λ̄
(7),α̇
A = δλ̄

(6),α̇
A = −

√
2
(
Dα̇βφ̄

(6)
AB + [Aα̇β,(4)φ̄

(2)
AB]
)
ζBβ + 2

√
2φ̄

(6)
AB η̄

α̇B ,

8A
(8)
αα̇ = δA

(7)
αα̇ = −2ζAα λ̄

(7)
α̇A . (B.12)

Going through calculation of higher components of fields we find that they are proportional

to the square of a fermion mode and, therefore, vanish

λ(9),A
α = φ(10),AB = λ̄

(11)
α̇A = A

(12)
αα̇ = λ(13),A

α = φ(14),AB = λ̄
(15)
α̇A = A

(16)
αα̇ = 0 . (B.13)

This relation implies that the expansion of fields on the instanton background (B.4) is

shorter than one might expect. The same result was independently obtained in [22].

C Projection onto twist-two operators

In this appendix we explain how to use the light-ray operators (2.5) to compute the corre-

lation functions involving twist-two operators in the Born approximation.

8There is another operator with the same quantum numbers, D2Fαβ , but it reduces to −F 2
αβ/2 on shell

of the equations of motion.
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To begin with, we consider the correlation function (2.11) of the light-ray operator and

two half-BPS operators in N = 4 SYM with the SU(N) gauge group. In the Born approx-

imation, we can neglect gauge links in the definition (2.5) of O(z1, z2) and express (2.11)

in terms of free propagators of scalar fields φAB(x) = φa,AB(x)T a

〈φa,AB(x1)φb,CD(x2)〉 = g2δabεABCDD(x1 − x2) , (C.1)

where D(x) = 1/(4π2x2) and the additional factor of g2 appears due to our normalization

of the Lagrangian (A.9).

The generators of the SU(N) gauge group are normalized as tr(T aT b) = δab/2, so

that O20′(xi) = Yi,ABYi,CDφ
a,ABφa,CD. We recall that the light-ray operators (2.5) are

built out of the complex scalar field Z = φ14. It is convenient to represent this field as

Z = YZ,ABφ
AB, with YZ having the only nonvanishing components YZ,14 = −YZ,41 = 1/2.

Then, we find

〈O(z1, z2)O20′(x1)O20′(x2)〉Born =
1

2
g6(N2 − 1)(Y1Y2)(Y1YZ)(Y2YZ)

×D(x12)[D(x1 − nz1)D(x2 − nz2) +D(x1 − nz2)D(x2 − nz1)] , (C.2)

where x12 = x1 − x2 and the notation was introduced for (YiYj) = εABCDYi.ABYj,CD.

Taking into account that (xi − nzi)2 = x2
i − 2zi(nxi), we can rewrite this expression as

1

2
g6(N2 − 1)(Y1Y2)(Y1YZ)(Y2YZ)

D(x12)D(x1)D(x2)

(1− ε1z1)(1− ε2z2)
+ (z1 ↔ z2) , (C.3)

with εi = 2(nxi)/x
2
i .

To obtain the three-point correlation function of local twist-two operator, we substi-

tute (C.3) into (2.13). Blowing up the integration contour in (2.13) and picking up the

residue at zi = 1/εi, we arrive at9

〈OS(0)O20′(1)O20′(2)〉Born =
1

2
g6(N2 − 1)(Y1Y2)(Y1YZ)(Y2YZ)

×D(x12)D(x1)D(x2)

[
2(nx1)

x2
1

− 2(nx2)

x2
2

]S
+ (x1 ↔ x2) .

(C.4)

This relation coincides with the general expression for the correlation function of twist-two

operators (2.4). Notice that (C.4) vanishes for odd S, in agreement with the fact that the

twist-two operators carry nonnegative even spin S.

The same technique can be used to compute two-point correlation function of twist-two

operators 〈OS(0)ŌS′(x)〉. We start with the correlation function of two light-ray operators

9The powers of the coupling constant in (C.4) and (C.6) appear due to our definition of the La-

grangian (A.9). They can be removed by changing the normalization of operators φAB → φAB/g,

O20′ → O20′/g2 and OS → OS/g
2.
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separated by distance x. In the Born approximation we have

〈tr [Z(nz1)Z(nz2)] tr [Z̄(x+ nz3)Z̄(x+ nz4)]〉

=
g4

4
(N2 − 1)D(x− nz13)D(x− nz24) + (z1 ↔ z2)

=
g4

4

(N2 − 1)D2(x)

(1− εz13)(1− εz24)
+ (z1 ↔ z2) , (C.5)

with ε = 2(nx)/x2. Substituting this relation into (2.13) and performing integration over z1

and z2, we can project the light-ray operator tr [Z(nz1)Z(nz2)] onto the twist-two operator

OS(0). Repeating the same procedure with respect to z3 and z4, we obtain the expression

for 〈OS(0)ŌS′(x)〉 that is different from zero only for even positive S = S′ and is given by

〈OS(0)ŌS′(x)〉Born =
1

2
g4cS(N2 − 1)D2(x)

[
2(nx)

x2

]2S

δSS′ , (C.6)

with cS = (2S)! /(S! )2 and D(x) defined in (C.1).

D Instanton profile of operators

Light-like Wilson line. The calculation of the leading term E(0)(z1, z2) of the expansion

of the light-like Wilson line (2.6) relies on the following identity

i

∫
dt n ·A(0)

ij (nt) =
1

2
nα̇α [εiα(x0)jα̇ + εjα(x0)iα̇]

∫
dt

(nt− x0)2 + ρ2

= Σij

∫
dt (nx0)

(nt− x0)2 + ρ2
, (D.1)

where we replaced the instanton field with its explicit expression (3.7) for x = nt− x0 and

took into account that n2 = 0. Here in the second relation we introduced the following

2× 2 matrix Σij

Σ = Σ+ − Σ− , Σ+ =
nx0

2(nx0)
, Σ− =

x0n

2(nx0)
, (D.2)

with Σ± being projectors, Σ2
± = Σ±, Σ+Σ− = 0 and Σ+ + Σ− = 1. Notice that Σ+n =

nΣ− = n and nΣ+ = Σ−n = 0.

Since the Σ−matrix in (D.1) does not depend on the integration variable, the path-

ordered exponential reduces to the conventional exponential leading to

E(0)(z1, z2) = exp (ΣI(z1, z2)) = eI(z1,z2) Σ+ + e−I(z1,z2) Σ− , (D.3)

where the 2× 2 matrices Σ± are independent on zi and I(z1, z2) = −I(z2, z1) is given by

I(z1, z2) =

∫ z2

z1

dt (nx0)

(nt− x0)2 + ρ2
= −1

2
ln

(nz2 − x0)2 + ρ2

(nz1 − x0)2 + ρ2
. (D.4)

We recall that the matrix indices of Σ± are identified with the SU(2) indices of E(0)(z1, z2).
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The first subleading correction to the Wilson line, E(4)(z1, z2), comes from the A(4)

term in the expansion of the gauge field. It is given by

E(4)(z1, z2) =
1

2

∫ z2

z1

dtE(0)(z1, t) 〈n|A(4)(nt)|n]E(0)(t, z2) . (D.5)

Replacing 〈n|A(4)|n] with its explicit expression (3.11) (evaluated for x = nt − x0) and

taking into account (D.3), we obtain

E(4)(z1, z2) =

∫ z2

z1

dt
4ρ2

[ρ2 + (nt− x0)2]3
εABCD

(
ρ2[η̄An]− 〈ξA|x0|n]

)
〈nζBt 〉

×
(

eI(z1,t) Σ+ + e−I(z1,t) Σ−

)
|ζCt 〉〈ζDt |

(
eI(t,z2) Σ+ + e−I(t,z2) Σ−

)
, (D.6)

where ζt ≡ ζ(tn− x0) = ξ + (tn− x0)η̄ depends on the integration variable. Here we used

shorthand notations for contraction of the indices, e.g. (Σ±|ζA〉)i = (Σ±)i
jζAj .

Light-ray operators. The expansion of the light-ray operator on the instanton back-

ground in powers of fermion modes takes the form (4.6). We show below that the last two

terms of the expansion vanish, eq. (4.9). The underlying reason for this is that, by virtue

of N = 4 superconformal symmetry, the light-ray operator O(z1, z2) only depends on 12

fermion modes, ξAα and [nη̄A].

According to its definition (2.5), the operator O(z1, z2) depends on scalar and gauge

fields, Z(x) and (nA(x)), evaluated on the light-ray xµ = nµz. Examining the explicit

expressions for the lowest components of these fields, eqs. (3.11) and (3.15), we observe

that the dependence on fermion modes enters either through [nη̄A] or through the linear

combination ζAα (x) defined in (A.12). For x = nz the latter simplifies as ζAα = ξAα +

z|n〉α[nη̄A], so that the above mentioned components of fields depend on the light-ray on

ξAα and [nη̄A] only. Then, we can use the recurrence relations (B.3), (B.11) and (B.12) to

show that the same is true for all components of fields.

Thus, the light-ray operator O(z1, z2) depends on 12 fermionic modes ξAα and [nη̄A]

that we shall denote as ΘA
i (with i = 1, 2, 3). Then, the top component O(16)(z1, z2) is

necessarily proportional to the square of a fermion mode and, therefore, vanishes. The next-

to-top component O(12)(z1, z2) contains the product of all 12 fermion modes. R−symmetry

fixes its form to be

Θ1Θ4Θ1Θ4εA1B1C1D1ΘA1ΘB1ΘC1ΘD1εA2B2C2D2ΘA2ΘB2ΘC2ΘD2 , (D.7)

where the first four Θ’s carry the SU(4)−charge of two scalar fields Z = φ14 and the

remaining factors are the SU(4) singlets. Here we did not display the lower index of ΘA
i .

Counting the total number of Grassmann variables in (D.7), we find that it is proportional

to Θ1
i1

Θ1
i2

Θ1
i3

Θ1
i4

. Since the lower index can take only three values this product vanishes

leading to (4.9).
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Derivation of (4.13). We start by examining the instanton profile of the product of two

half-BPS operators. Using (4.5) we find

O
(4)
20′(x1)O

(4)
20′(x2) =

1

4
f2(x1)f2(x2)Y1,A1B1Y1,C1D1Y2,A2B2Y2,C2D2

× (ζ2
1 )A1C1(ζ2

1 )B1D1(ζ2
2 )A2C2(ζ2

2 )B2D2 , (D.8)

where ζi ≡ ζ(xi − x0) = ξ + (xi − x0)η̄ and the instanton profile function f(x) is given

by (3.9) with x→ x− x0.

It is convenient to rewrite the light-ray operator O(8)(z1, z2) defined in (4.7) as O(8) =

O(8)
A + O(8)

B + (z1 ↔ z2). For the first term on the right-hand side we get

O(8)
A (z1, z2) = tr

[
Z(2)(nz1)E(0)(z1, z2)Z(6)(nz2)E(0)(z2, z1)

]
=

1

40
f(nz1)f2(nz2)I

(8)
A , (D.9)

where we substituted Z(n) = (YZ)ABφ
(n),AB, replaced φ(n),AB by the explicit expres-

sions (3.15) and introduced

I
(8)
A =(YZ)A1B1(YZ)A2B2εCDEF (ζ2

z2)A2C(ζ2
z2)B2E〈ζB1

z1 |E
(0)(z1, z2)|ζFz2〉〈ζ

D
z2 |E

(0)(z2, z1)|ζA1
z1 〉

(D.10)

with ζzi = ξ + (zin− x0)η̄. By construction, this expression contains 8 fermion modes.

Following (4.13), we multiply expressions on the right-hand side of (D.8) and (D.9)

and integrate out 16 fermion modes. In this way, we obtain

1

160
f2(x1)f2(x2)f(nz1)f2(nz2)E(0)

αγ (z1, z2)E
(0)
δβ (z2, z1)Iαβγδ(Y, x) , (D.11)

where the integral over fermion modes Iαβγδ is given by the following expression

Iαβγδ(Y, x) = (YZ)E1F1(YZ)E2F2Y1,A1B1Y1,C1D1Y2,A2B2Y2,C2D2εB3C3D3E3

×
∫
d8ξd8η̄ (ζ2

1 )A1C1(ζ2
1 )B1D1(ζ2

2 )A2C2(ζ2
2 )B2D2ζα,E1

z1 ζβ,F1
z1

× (ζ2
z2)E2B3(ζ2

z2)F2C3ζγ,D3
z2 ζδ,E3

z2 . (D.12)

Taking into account that the Y -variables satisfy the relation εABCDYABYCD = 0, we find

that the Y -dependence of the integral is uniquely fixed by the SU(4) symmetry

Iαβγδ(Y, x) = (Y1Y2)(Y1YZ)(Y2YZ)Pαβγδ(x) , (D.13)

where (YiYj) = εABCDYi,ABYj,CD and chiral Lorentz tensor Pαβγδ(x) depends on four

points, x10, x20, nz1 − x0 and nz2 − x0. The calculation of this tensor can be significantly

simplified with a help of conformal symmetry. Namely, denoting the above mentioned four

points as yi (with i = 1, . . . , 4) and making use of (A.16), we find from (D.12) and (D.13)

that Pαβγδ transforms under inversions I(yα̇βi ) = yβ̇αi /y2
i as

I
[
Pαβγδ

]
=
yα̇α

′
3 yβ̇β

′

3 yγ̇γ
′

4 yδ̇δ
′

4

(y2
1y

2
2y

2
3)2(y2

4)4
Pα′β′γ′δ′ . (D.14)
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This relation, combined with the condition for fαβγδ to be a homogenous polynomial in

yij of degree 8, allows us to determine fαβγδ up to an overall normalization factor. Going

through calculation we find

Pαβγδ = −24 × 32 × 5× (y34y41y12y24)(αγ(y34y41y12y24)β)δ

= −24 × 32 × 5× z2
12(nx1x12(x2 − nz2))(αγ(nx1x12(x2 − nz2))β)δ , (D.15)

where in the second relation we replaced yij by their expressions and took into account

that n2 = 0. Here angular brackets (αβ) denote symmetrization of Lorentz indices.

Finally, we substitute (D.13) and (D.15) into (D.11) and replace Fαβ and E(0) with

their expressions, eqs. (3.8) and (D.3), respectively. In this way, we arrive after some

algebra at the expression that differs by the factor of 6 from the one on the right-hand side

of (4.13). ∫
d8ξd8η̄O(8)

A (z1, z2)O
(4)
20′(x1)O

(4)
20′(x2) =

1

6
× Eq.(4.13) . (D.16)

For the second term on the right-hand side of (4.7) we have

O(8)
B (z1, z2) = tr

[
Z(2)(nz1)E(4)(z1, z2)Z(2)(nz2)E(0)(z2, z1)

]
= −1

2
f(nz1)f(nz2)I

(8)
B . (D.17)

Here we replaced Z(2) = (YZ)ABφ
(2),AB using (3.15) and introduced notation for

I
(8)
B = (YZ)A1B1(YZ)A2B2〈ζB1

z1 |E
(4)(z1, z2)|ζA2

z2 〉〈ζ
B2
z2 |E

(0)(z2, z1)|ζA1
z1 〉 , (D.18)

where ζzi = ξ + (zin − x0)η̄. Replacing E(0) and E(4) with their explicit expressions,

eqs. (D.3) and (D.6), respectively, we get for I
(8)
B

(YZ)A1B1(YZ)A2B2εABCD
(
ρ2[η̄An]− 〈ξA|x0|n]

)
〈nζB0 〉〈ζB2

z2 |e
I(z1,z2) Σ+ + e−I(z1,z2) Σ−|ζA1

z1 〉

×
∫ z2

z1

4ρ2dt

[ρ2+(nt−x0)2]3
〈ζB1
z1 |e

I(z1,t) Σ++e−I(z1,t) Σ−|ζCt 〉〈ζDt |eI(t,z2) Σ++e−I(t,z2) Σ−|ζA2
z2 〉,

(D.19)

with ζt = ξ + (nt − x0)η̄ and ζ0 = ξ − x0η̄. This relation can be simplified with a help of

identifies

Σ−|ζAt 〉 = Σ−|ζA0 〉 , Σ+|ζAt 〉 = Σ+|ζA0 〉+ t|η̄A] , (D.20)

that follow from (D.2). Going through lengthy calculation we arrive at remarkably simple

expression

I
(8)
B =

8ρ2(z1 − z2)2

5(ρ2 + (nz1 − x0)2)(ρ2 + (nz2 − x0)2)

× (YZ)A1B1(YZ)A2B2εABCD〈nζA0 〉〈nζB0 〉(ζ2
z1)A1C(ζ2

z1)B1D[η̄A2n][η̄B2n] . (D.21)
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Then, we substitute this relation into (D.17), multiply it by (D.8) and integrate over 16

fermion modes to get∫
d8ξd8η̄O(8)

B (z1, z2)O
(4)
20′(x1)O

(4)
20′(x2) =

1

3
× Eq.(4.13) . (D.22)

Finally, we take the sum of (D.16) and (D.22), multiply it by the factor of 2 in order to

take into account the contribution of (z1 ↔ z2) terms and arrive at (4.13).

Derivation of (4.14). According to (4.11), the instanton profile of O(z1, z2|x) can be

obtained from that of O(z1, z2) by shifting the coordinates of all fields by x. As follows

from (3.1), this transformation is equivalent to shifting the position of the instanton, x0 →
x0 − x. As before we decompose the light-ray operator as O(8) = O(8)

A + O(8)
B + (z1 ↔ z2).

Then, for the product of two operators in (4.14) we have

O(8)(z1, z2|0)Ō(8)(z3, z4|x) = O(8)
A Ō(8)

A + O(8)
B Ō(8)

B + O(8)
A Ō(8)

B + O(8)
B Ō(8)

A

+ (z1 ↔ z2) + (z3 ↔ z4) + (z1 ↔ z2, z3 ↔ z4) , (D.23)

where O(8)
A = O(8)

A (z1, z2) and Ō(8)
A = Ō(8)

A (z3, z4)|x0→x0−x.

Let us consider separately four terms in the first line of (D.23). The instanton profile

of O(8)
A is given by (D.9). To get an analogous expression for Ō(8)

A , we apply the shift

x0 → x0 − x to (D.9), change the coordinates, z1 → z3 and z2 → z4, and replace YZ
with conjugated YZ̄−variables defined as Z̄ = φ̄14 = φ23 = (YZ̄)ABφ

AB and satisfying

(YZYZ̄) = 1. In this way we get

O(8)
A Ō(8)

A =
1

1600
f(nz1)f2(nz2)f(x+ nz3)f2(x+ nz4)× I(8)

A Ī
(8)
A , (D.24)

where Ī
(8)
A is obtained from (D.10) through transformations described above. Integrating

out fermion modes we find∫
d8ξd8η̄ I

(8)
A Ī

(8)
A = 1600 (z1 − z2)2(z3 − z4)2〈n|E(0)(z1, z2)x|n]2

×
(
〈n|E(0)(z3, z4)x|n]

∣∣∣
x0→x0−x

)2
. (D.25)

The matrix elements in this relation can be easily computed with a help of (D.3)

〈n|E(0)(z1, z2)x|n] = 〈n|
(

eI(z1,z2) Σ+ + e−I(z1,z2) Σ−

)
x|n] = 2(xn) e−I(z1,z2) , (D.26)

where in the second relation we used the properties of matrices (D.2) and I(z1, z2) is given

by (D.4). In this way, we obtain from (D.24)∫
d8ξd8η̄O(8)

A Ō(8)
A =

1

36
× Eq.(4.14) . (D.27)

For the second term on the right-hand side of (D.23) we have from (D.17)

O(8)
B Ō(8)

B =
1

4
f(nz1)f(nz2)f(x+ nz3)f(x+ nz4)× I(8)

B Ī
(8)
B , (D.28)
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where I
(8)
B is given by (D.21) and Ī

(8)
B is obtained from I

(8)
B through the same transformation

as before. Integration over fermion modes yields∫
d8ξd8η̄ I

(8)
B Ī

(8)
B = 4096

[2(nx)]4ρ2(z1 − z2)2

(ρ2 + (nz1 − x0)2)(ρ2 + (nz2 − x0)2)

× ρ2(z3 − z4)2

(ρ2 + (x+ nz3 − x0)2)(ρ2 + (x+ nz4 − x0)2)
, (D.29)

leading to the following relation∫
d8ξd8η̄O(8)

B Ō(8)
B =

1

9
× Eq.(4.14) . (D.30)

For the last two terms on the right-hand side of (D.23) we have from (D.9) and (D.17)

O(8)
A Ō(8)

B = − 1

80
f(nz1)f2(nz2)f(x+ nz3)f(x+ nz4)× I(8)

A Ī
(8)
B ,

O(8)
B Ō(8)

A = − 1

80
f(nz1)f(nz2)f(x+ nz3)f2(x+ nz4)× I(8)

B Ī
(8)
A . (D.31)

Then, we integrate over fermion modes to get∫
d8ξd8η̄ I

(8)
A Ī

(8)
B = −2560

[2(xn)]2〈n|E(0)(z1, z2)x|n]2ρ2(z3 − z4)2

(ρ2 + (nz3 − x0)2)(ρ2 + (nz4 − x0)2)
, (D.32)

The integral of I
(8)
B Ī

(8)
A is given by the same expression with variables exchanged, z1 ↔ z3

and z2 ↔ z4. Using (D.26) we find∫
d8ξd8η̄O(8)

A Ō(8)
B =

∫
d8ξd8η̄O(8)

B Ō(8)
A =

1

18
× Eq.(4.14) . (D.33)

Combining together (D.27), (D.30) and (D.33), we find that the sum of four terms in the

first line of (D.23) is 1/4 × Eq.(4.14). Since it is invariant under the exchange of points,

z1 ↔ z2 and z3 ↔ z4, the contribution of terms in the second line of (D.23) is three times

larger. As a result, the total contribution of (D.23) is given by (4.14).
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