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1 Introduction

In this paper we continue the study of instanton corrections to correlation functions in
maximally supersymmetric A/ = 4 Yang-Mills theory. Although these corrections are
exponentially small in the planar limit, they are expected to play an important role in
restoring the S—duality of the theory. At weak coupling, the leading instanton contribution
can be found in the semiclassical approximation by neglecting quantum fluctuation of fields.
In this approximation, the calculation amounts to evaluating the product of operators in
the background of instantons and integrating the resulting expression over the collective
coordinates. For a review see [1-3].

Previous studies revealed [4] that the leading instanton contribution to four-point corre-
lation function of half-BPS operators in N' = 4 SYM scales at weak coupling as e=87%/9° An
OPE analysis showed, however, that this correction does not affect twist-two operators [5]
and, therefore, does not modify the leading asymptotic behaviour of correlation functions in
the light-cone limit. This led to the conclusion [6, 7] that the leading instanton contribution
to the conformal data of twist-two operators (scaling dimensions Ag and OPE coefficients

Cs) should be suppressed by a power of the coupling constant and scale as g2" e=87/9



with some n > 1. The calculation of such corrections within the conventional approach is
way more complicated as it requires going beyond the semiclassical approximation.

In [8] we argued that, by virtue of N' = 4 superconformal symmetry, the above men-
tioned instanton effects can be determined from the semiclassical computation of two- and
three-point correlation functions for another operator in the same supermultiplet. Follow-
ing this approach, we computed the leading non-vanishing correction to the scaling dimen-
sion of the Konishi operator, A?{mt) = O(g* e=87%/ 92) and to its structure constant in the
OPE of two half-BPS operators, C’gi(nSt) = O(g2 e 87°/9%) (see [8] for explicit expressions).

In this paper we extend the analysis to twist-two operators Og with arbitrary even
Lorentz spin S. For spin zero, the operator Og—q coincides with the half-BPS operator and
is protected from quantum corrections. For spin-two, the operator Og—o belongs to the
same supermultiplet as the Konishi operator and, therefore, has the same conformal data.
For S > 4, quite surprisingly, our calculation yields a vanishing result for the instanton
contribution. This implies that the leading instanton corrections to the conformal data of
twist-two operators Og with S > 4 are suppressed at least by a power of g% as compared
with those for the Konishi operator

Agnst) . Agi(nst) + 0(96 e—87r2/g2) ’

anSt) _ 55’2 Cﬁnst) + O(g4 e—87r2/92) . (11)

Notice that these two expressions differ by a power of the coupling constant,
Agmt) / anSt) = 0(g?), whereas the leading perturbative corrections to both quantities
have the same scaling in ¢g® at weak coupling.

The paper is organized as follows. In section 2 we define operators of twist two and
discuss their relation to light-ray operators. In section 3 we construct the one-instanton
solution to the equations of motion in A/ = 4 SYM for the SU(2) gauge group. In sec-
tion 4 we present the calculation of correlation functions involving half-BPS and twist-two
operators in the semiclassical approximation and discuss its generalization to the SU(N)
gauge group. Section 5 contains concluding remarks. Some details of the calculation are
summarized in four appendices.

2 Twist-two operators

All twist-two operators in N’ = 4 SYM belong to the same supermultiplet and share the
same conformal data. This allows us to restrict our consideration to the simplest twist-two
operator, of the form

Os(z) =tr [Z DS Z(2)] + ..., (2.1)

where Z(z) is a complex scalar field and Dy = n#D,, (with n? = 0) is a light-cone com-
ponent of the covariant derivative D, = 0, +i[A,, ]. All fields take values in the SU(V)
algebra, e.g. Z(x) = Z%x)T® with the generators normalized as tr(7%T%) = §*°/2. The
dots on the right-hand side of (2.1) denote a linear combination of operators with total
derivatives of the form 9% tr [Z D?;*ZZ (:E)} with 0 < ¢ < S. The corresponding expansion



coefficients are fixed by the condition for Og(x) to be a conformal primary operator and
depend, in general, on the coupling constant. To lowest order in the coupling, they are
related to those of the Gegenbauer polynomials (see eq. (2.9) below).

In this paper, we compute the leading instanton corrections to correlation functions of
twist-two operators (2.1) and half-BPS scalar operators of the form

O20/(z) = YapYep tr[p? P P (2)], (2.2)

where the complex scalar fields ¢4 = —¢B4(with A, B = 1,...,4) satisfy reality condition
qg AB = %e A BCquCD . The auxiliary antisymmetric tensor Y4p is introduced to project the
product of two scalar fields onto the representation 20’ of the SU(4) R—symmetry group.
It satisfies eABCPY, 5Yep = 0 and plays the role of the coordinate of the operator in the

isotopic SU(4) space. The scalar field Z entering (2.1) is a special component of ¢p45

Z = ¢" = (Yz)apd™?, (2.3)

where (Yz)ap has the same properties as the Y —tensor in (2.2) and has the only nonvan-
ishing components (Yz)14 = —(Yz)u1 = 1/2.

Conformal symmetry fixes the form of two- and three-point correlation functions of
the operators (2.1) and (2.2)

P
(O5(2)0g:(0)) = 5SS/NS([§C(2>A)S]+S ,
nx nas) 1% [ a2, \ (A5
(O20/ (1) O20/ (22)O5(0)) = (;S)Q 2(I21) - 2(9522)} <x21;2> : (2.4)
12 1 2 12

Here the scaling dimension of twist-two operator Ag, the normalization factor Mg and
three-point coefficient function C's depend on the coupling constant whereas the scaling
dimension of the half-BPS operator is protected from quantum corrections.

2.1 Light-ray operators
To compute the correlation functions (2.4), it is convenient to introduce a generating
function for the twist-two operators (2.1), the so-called light-ray operator,

O(z1,22) = tr Z(nzl)E(zl,zg)Z(an)E(z’g,zl)] . (2.5)

In distinction with (2.1), it is a nonlocal operator — the two scalar fields are separated
along the light-ray direction n* and two light-like Wilson lines are inserted to restore gauge
invariance,

22

E(21, %) = Pexp <z / | dtn“A“(nt)> , (2.6)

with F(z1, 22)E(22,21) = 1. The scalar variables z; and 2y define the position of the fields
along the null ray.



Making use of gauge invariance of (2.5), we can fix the gauge n*A,(x) = 0 in which
Wilson lines (2.6) reduce to 1. Then, the expansion of (2.5) in powers of z; and 2o takes
the form

k
O(21, 22) = **t (0% 2(0)9; Z(0)], (2.7)

kl'n
k,n>0

where 0y = (nd). To restore gauge invariance, it suffices to replace 94 — Dy in this
relation. The local operators on the right-hand side of (2.7) are not conformal primaries
but, for given S = k + n, they can be expanded over the conformal primary operators
Os(0) and their descendants 94 Og_(0).

As mentioned at the beginning of this section, the conformal operators have the fol-
lowing general form

05(0) = > cntr[DhZ(0)D7Z(0)], (2.8)

k4+n=S
with the expansion coefficients ¢, depending on the coupling constant. To lowest order in
the coupling, these coefficients coincide (up to an overall normalization) with those of (1 +
acg)SC;/Q((xl — 29) /(71 + 22)) = Y cpnaFal involving the Gegenbauer polynomial [9, 10]

6 = (1) G5z + O6°)- (2.9

Note that the sum in (2.8) vanishes for odd S and the conformal operators are defined for
even nonnegative S.

Inverting (2.8) we can expand the light-ray operator (2.7) over the conformal twist-two
operators and their descendants. In this way, we find that the operators Og(0) appear as the
coefficients in the expansion of the light-ray operator (2.5) in powers of 212 = 21 — 29 [11]!

O(z1,22) = Y "’5'2 [05(0) +...]. (2.10)
S>>0

Here the dots denote the contribution from descendant operators of the form 9¢Og(0).
This contribution is fixed by conformal symmetry, see [12].

We would like to finish this subsection with the following important remark. The
light-ray operators (2.5) depend on the light-like vector n* and are naturally defined in
Minkowski signature. At the same time, in order to compute instanton corrections to their
correlation functions, we have to define the operators (2.5) in Euclidean signature. This
can be done by allowing the null vector n* to have complex components in Euclidean
space. According to (2.7), the light-ray operators are given by the sum over local twist-
two operators that are polynomial in J; = n#d, and, therefore, they should admit an
analytical continuation to complex n. We shall verify that the correlation functions of the
operators (2.5) have this property indeed in the semiclassical approximation.

!The relation (2.10) has the following interpretation [11]. The light-ray operator (2.5) transforms covari-
antly under the action of the collinear SL(2;R) subgroup of the conformal group. Then, the relation (2.10)
defines the decomposition of the tensor product of two SL(2;R) representations over the irreducible com-
ponents. The coefficient functions 27, are the lowest weights of these components.



2.2 From light-ray to twist-two operators

The rationale for introducing (2.5) is that finding instanton corrections to light-ray op-
erators proves to be simpler as compared to that for twist-two operators. Then, having
computed the correlation function?

G(z1,x2,n21,n22) = (Og¢/ (21)O20 (x2) (21, 22)) , (2.11)

we can then apply (2.10) to obtain the three-point correlation function
(O20/(21)O20/ (72)O05(0)).

To lowest order in the coupling, we can simplify the calculation by making use of the
following relation between the operators Og(0) and O(z1, 2z2)

YA Y4 21 — & S
05(0) = # ?2;‘;)22 ((21122) 2 021, 2). (2.12)

where the integration contour in both integrals encircles the origin. Indeed, replacing

O(z1,22) on the right-hand side with (2.7) and computing the residue at z; = 0 and
zo = 0 we obtain (2.8) with ¢k, given by (2.9). Using the operator identity (2.12) inside
corrrelation functions we arrive at

dzleQ (Zl — ZQ)S
05(0)O2¢r Osg = (0) Osgr Osor . 2.13
(O5(0)O (1)020(22)) = fp T2 I (O(a1.20) O (1) O (a2) - (213)
We would like to emphasize that relations (2.12) and (2.13) hold to the lowest order in
the coupling constant. Beyond this order, we have to take into account O(g?) corrections
to (2.9).
Relation (2.13) offers an efficient way of computing the correlation functions of twist-

two operators. As an example, we show in appendix C how to use (2.13) to obtain the
correlation functions (2.4) in the Born approximation (see egs. (C.4) and (C.6)).

3 Instantons in N =4 SYM

The general one-instanton solution to the equations of motion in N' = 4 SYM with the
SU(N) gauge group depends on 8N fermion collective coordinates, see [1-3]. Among them
16 modes are related to AN/ = 4 superconformal symmetry. The remaining 8( N — 2) fermion
modes are not related to symmetries in an obvious way and are usually called ‘nonexact
modes’. This makes the construction of the instanton solution more involved.

For the SU(2) gauge group the general one-instanton solution to the equations of
motion of N' =4 SYM can be obtained by applying superconformal transformations to the
special solution corresponding to vanishing scalar and gaugino fields and gauge field given
by the celebrated BPST instanton [14]

¢(0),AB — )\&0),14 — 5\ 0?4 — 07

@ = 20) 1"
EEFDEET

Az — z0) =2 (3.1)

2Such correlation functions appeared in the study of the asymptotic behaviour of four-point correlation
functions (Ozq/ (21)Oz0s (22)O20/ (23)O20/ (x4)) in the light-cone limit 234 — 0, see [13].



where 7, are the 't Hooft symbols and the SU(2) generators are related to Pauli matrices
T = 0%/2. It depends on the collective coordinates p and zy defining the size and the
position of the instanton, respectively.

In this section, we present explicit expressions for the one-instanton solution in N' = 4
SYM for the SU(2) gauge group. Then, in the next section, we explain how to generalize
the expressions for the correlation functions (2.4) to the case of the SU(NN) gauge group.

The field configuration (3.1) is annihilated by (the antichiral) half of the N' = 4
superconformal generators. Applying to (3.1) the remaining (chiral) AV = 4 superconformal
transformations (see (A.11) in appendix A), we obtain a solution to the N' = 4 equations
of motion that depends on 16 fermionic collective coordinates, (2 and 7%4. The resulting
expressions for gauge and scalar fields can be expanded in powers of fermion modes

Ay =AY + AD + .- 4+ A0
¢AB — ¢AB7(2) + (Z)AB,((S) 4t ¢AB’(14)7 (32)

where A,(Ln) denotes the component of the gauge field that is homogenous in Cf and 7%4
of degree n and similar for scalars. Gaugino fields admit similar expansions (see (B.4) in
appendix B) but we will not need them for our purposes. Explicit expressions for various
components of (3.2) are given below.

By virtue of superconformal invariance, the action of A/ = 4 SYM evaluated on the
instanton configuration (3.2) does not depend on the fermionic modes and coincides with
the one for pure Yang-Mills theory®

Sinst = /d4x L(x) = —2miT, (3.3)
where 7 is the complex coupling constant
T=—+—F. (3.4)

Notice that, due to our definition of the Lagrangian (see (A.9) in appendix A), the instanton
solution (3.1) and (3.2) does not depend on the coupling constant.

It is straightforward to work out the leading term of the expansion (3.2) by sub-
sequently applying A/ = 4 superconformal transformations to (3.1), see [1]. The direct
calculation of the subleading terms becomes very involved due to the complicated form of
these transformations (see (A.11) in appendix A). There is, however, a more efficient ap-
proach to computing higher components in (3.2) which is presented in appendix B. It makes
use of the known properties of fields with respect to conformal symmetry, R—symmetry
and gauge transformations and allows us to work out the expansion (3.2) recursively with
little efforts.

To present the resulting expressions for the instanton configuration (3.2) for the SU(2)
gauge group it is convenient to switch to spinor notation and use a matrix representation

3For the SU(N) gauge group the instanton action (3.3) also depends on 8(N — 2) nonexact fermion
modes, see [1-3].



for (3.1) (see appendix A for our conventions)
(Ana)i? = iAZ(m)(T“)ﬂ(a“)ad, (3.5)

where the four-dimensional vector of 2 x 2 matrices o* = (1,i0) and the SU(2) generators
T = ¢%/2 are built from Pauli matrices. This field carries two pairs of indices, Lorentz
indices (o, & = 1,2) and SU(2) indices (¢,7 = 1,2). Here we distinguish lower and upper
SU(2) indices and define the product of two matrices by

(Aad)ij (ABB)]]C = (AadAﬁﬂ')ik . (36)
All indices are raised and lowered with the help of the antisymmetric tensor, e.g.

€iaTje + €jaTic
z? + p?

(Aoa)i* = (Aaa)ise*. (Aad)is = , (37)
where the second relation follows from (3.1) and (3.5). The advantage of (Anq)ij as com-
pared to (3.5) is that it is symmetric with respect to the SU(2) indices.

The instanton (3.1) and (3.7) is a self-dual solution to the equations of motion in pure
Yang-Mills theory, FO,E%) = 0. The corresponding (chiral) strength tensor is given by

0 34 0
(Fo(éﬁ))ij = P [8(065/1( )

0) (0 1
o, + A( ) A( ) - 75'}0@)(@&6]‘6 + elﬂeja), (3.8)

(B B)Y ij

where 8a5 = (o#) a,Bau and angular brackets denote symmetrization with respect to in-
dices, A(aﬁ) = Anp + Apgo. Here a shorthand notation was introduced for the instanton
profile function

16p?

fz) = @t (3.9)

It is easy to verify that (Fog)i; is symmetric with respect to both pair of indices and satisfies
the equations of motion DY F,5 = [99® + A% F,5] = 0. Notice that (3.7) and (3.8) do
not depend on the position of the instanton xy. To restore this dependence it suffices to
apply the shift © — = — xg.

We can further simplify (3.7) and (3.8) by contracting all Lorentz indices with auxiliary
(commuting) spinors |n) = A, and |n] = \s depending on their chirality, e.g.

<n\Aw\n] = /\aj\d(Aad)ij s <TL’F1]’TL> = )\a)\ﬂ(Faﬁ>ij .

The resulting expressions only have SU(2) indices and are homogenous polynomials in A
and . In particular,

O 1_  Aija + AjTia 4
<n|Aij In] = —WA )
(| F ) = — f(@)hidj | (3.10)

where the superscript ‘(0)’ indicates that these expressions correspond to the lowest term in
the expansion (3.2). An unusual feature of the expressions on the right-hand side of (3.10)
is that the chiral Lorentz indices are identified with the SU(2) indices.



To obtain the subleading corrections in the instanton solution (3.2), depending on
fermion modes, we apply the method described in appendix B. Namely, we make use
of (B.9) and replace the gauge field by its expression (3.10). Going through the calculation

we get
2
(A ] = L sseanco(nc?) (o2 n] - (€2 Jain]) P
| Fn) = 1 P2(@)eancn(ng) nc)e0 P, (3.11)

where ( stands for a linear x—dependent combination of fermion modes
Gl(@) = & + waa™, (3.12)
and a shorthand notation is used for various contractions of Lorentz indices
(n¢) = X*¢ [77n] = g A (€7 |zln] = €PxasA®. (3.13)

Note that the dependence on the fermion modes enters into <n|Fi(f)|n) through the linear
combination (3.12). As explained in appendix B, this property can be understood using
conformal symmetry.

We recall that, to leading order, the instanton solution (3.10) satisfies the self-duality
0 we find that the anti-self-dual

condition Fa = 0. Using the obtained expression for AW

ad’
component of the gauge field strength tensor [n|Fj;|n] = /\a)\ﬂFd j4; receives a nonvanish-
ing correction

2 X
l#51) = £ eancn (2] = (€elal) (A0~ (lelnl) CP, (314)

which contains four fermion modes. This relation illustrates that higher components of
fields depend on fermion modes in a nontrivial manner.

Repeating the same analysis we can evaluate subleading corrections to all fields in (3.2).
In particular, using the relations (B.7) and (B.9) we get the following expressions for the
scalar field on the instanton background

A _ _[f(x) ) 148l
b f2
oy = —20(¢%ecpEF<42>AC<<2>BD<f<f, (3.15)

where brackets in the first relation denote antisymmetrization with respect to the SU(4)
indices, the variable ( is defined in (3.12) and (¢?)48 = (¢?)B4 = (Fles, (7B,

The expressions (3.11) and (3.15) depend on the size of the instanton, p, as well as on
16 fermion modes, fg? and 7%4. To restore the dependence on the position of the instanton,
we apply the shift © — = — xg.



4 Correlation functions in the semiclassical approximation

In the semiclassical approximation, the calculation of correlation functions reduces to aver-
aging the classical profile of the operators over the collective coordinates of instantons [1-3]

<01 cee On)inst = /dﬂphys e~ Sinst 0O1...0,, (41)

where the gauge invariant operators O; on the right-hand side are evaluated on the in-
stanton background (3.2). For the SU(2) gauge group, the collective coordinates of the
one-instanton solution are the size of the instanton p, its localtion zff and 16 fermion
modes, {&4 and 772. The corresponding integration measure is [15]

—Sinst gS 2miT 4 dp 8 8 —

where the complex coupling constant 7 is defined in (3.4).

We recall that, due to our normalization of the Lagrangian (A.9), the instanton back-
ground (3.2) does not depend on the coupling constant. The same is true for the op-
erators (2.2), (2.5) and (2.8) built from scalar and gauge fields. As a consequence, the
instanton correction to the correlation function of these operators scales in the semiclassi-
cal approximation as O(g® €*™7) independently on the number of operators n. At the same
time, the same correlation functions in the Born approximation scale as O(g*") with one
power of g coming from each scalar field (see egs. (C.4) and (C.6)).* Thus, the ratio of the

8=2n 2T with n being the number of operators. As we

two contributions scales as O(g
show in a moment, the instanton correction vanishes in the semiclassical approximation for
n > 5. Later in the paper we shall compute this correction explicitly for n = 2 and n = 3.

For the correlation function (4.1) to be different from zero upon integration of fermion
modes, the product of operators O ... O,, should soak up the product of all fermion modes
©3M)® =114 §f‘§§4ﬁfﬁ‘;. Let us denote by k; the minimal number of fermion modes in
O;. Then, by virtue of the SU(4) invariance, the total number of modes in the product
O1...0, is given by kmnin + 4p with kypimn = k1 + -+ kp and p =0,1,.... For kny > 16
the product O;...0O,, is necessarily proportional to the square of a fermion mode and,
therefore, the correlation function (4.1) vanishes. To obtain a nontrivial result for the
correlation function, we have to go beyond the semiclassical approximation and take into
account quantum fluctuations of fields. For kot < 16 and kp;, multiple of 4, the integral
over fermion modes in (4.1) does not vanish a priori. This case corresponds to the so-
called minimal correlation functions [3, 16]. Another interesting feature of these correlation
functions is that the results obtained in the semiclassical approximation for the SU(2) gauge
group can be extended to the general case of SU(N) gauge group for the one-instanton
solution [2, 17] and for multi-instanton solutions at large N [18].

Since the operators (2.2), (2.5) and (2.8) involve two scalar fields, we deduce from (3.2)
that each of them has at least four fermion modes, k& = 4. Then, for the product of these

4In the previous paper [8], we used different normalization of operators, Oshere = Ohere/ 92, for which
the correlation functions in the Born approximation do not depend on the coupling constant.



operators Oq...0, we have kni, = 4n and, as a consequence, the correlation function
(O1 ...0Op)inst is minimal for n < 4.

Applying the relations (4.1) and (4.2) one tacitly assumes that the integral over the
collective coordinates of instantons is well-defined and does not require a regularization.
As we show below, this assumption is not justified for two-point correlation functions
of operators whose scaling dimensions are modified by instanton effects. The instanton
corrections to such correlation functions develop logarithmic ultraviolet divergences and
take the following form

Vinst (92) 2 2
(O(@)0(0))inst = _W In(z"p7), (4.3)
where p? is an ultraviolet cut-off and 7inst(g?) is the anomalous dimension. In order to
compute (O(x)O(0))inst in the semiclassical approximation, the integral over the collective
coordinates of instantons (4.1) has to be regularized. Introducing a supersymmetry pre-
serving regularization of (4.1) proves to be a nontrivial issue. Fortunately, we can avoid
this problem by applying the dilatation operator D = (20,) + 2A to the both sides of (4.3)

Yinst (92 )

D(O(x)O(0))inst = —2 (22)A

(4.4)
This relation suggests that, in distinction from (4.3), the correlation function on the left-
hand side of (4.4) is well-defined in the semiclassical approximation and, therefore, it can
be computed using (4.1) and (4.2).

4.1 Instanton profile of twist-two operators

To compute the correlation functions (2.4) in the semiclassical approximation, we have
to evaluate the operators Oz¢r and Og on the instanton background by replacing all
fields by their explicit expressions (3.2) and, then, expand their product in powers of
16 fermion modes.

For the half-BPS operators (2.2) we find [§]

Ol (@) = & P@YanYen () (4.5)

where f(x) is the instanton profile function (3.9) and the superscript on the left-hand side
indicates the number of fermion modes. Since Ogq/(z) is annihilated by half of the N' = 4
supercharges, its expansion involves only four fermion modes.

As argued above, in order to study correlators involving twist-two operators it is con-
venient to introduce light-ray operators (2.5). In order to evaluate those in the instanton
background we replace scalar and gauge fields by their expressions Z = 2 + z©6)
and A= A© 4+ A® 4 which leads to

O(z1, 22) = 0@ + 0® 4 012 4 O(16) (4.6)

where the leading term contains four fermion modes and each subsequent term has four
modes more. The last term is proportional to the product of all 16 modes (£)%(7)®. The

~10 -



first two terms on the right-hand side of (4.6) are given by
oW (z1,22) = tr [Z(Z) (n21)E(0)(21,22)Z(2) (TLZQ)E(O)(ZQ,Zl)} ,
o® (21,22) = tr [2(6) (nzl)E(O)(zl,zg)Z(z) (nZQ)E(O)(ZQ,Zl)}

+tr [20(02) O (21, 2) 20 (n22) EO (29, 21) | + (21 06 22), (47)

where E(™ denote specific terms in the expansion of the light-like Wilson line (2.6) on the
instanton background

E(z1,2) =E9 + EW 4 . (4.8)

Explicit expressions for E©) and E® can be found in appendix D.
The remaining terms Q12 and ©(16) are given by a priori lengthy expressions but their
evaluation leads to a surprisingly simple result

0 (21, 20) = 019 (21, 29) = 0. (4.9)

As we show in appendix D, these terms are necessarily proportional to the square of a
fermion mode and, therefore, have to vanish.

Let us consider the correlation function (2.11). As was explained at the begin-
ning of the section, this correlation function is minimal and scales as O(g®e* ") in the
semiclassical approximation. Applying (4.1), we have to find the instanton profile of
O(z1, 22)O20/ (1) O2¢/ (z2) and identify the contribution containing 16 fermion modes. Mak-
ing use of (4.5) and (4.6) we find

(O(21, 22)Oa0/ (1) 020/ (22) imst = / ptphys €5 O (21, 29) 080 (21) 0% (22) . (4.10)

Later we shall use this relation to find the instanton correction to the three-point correlation
function (Og(0)O2¢/(21)O20/(22))inst-

In a similar manner, in order to find (Og(0)Og (z))inst We have to consider the corre-
lation function of two light-ray operators separated by a distance x and conjugated to each
other. For this purpose, we have to generalize the definition (2.5) by allowing the light-ray
to pass through an arbitrary point x

O(z1, 22|z) = P2 Q (21, 29) 707 (4.11)

where P, is the operator of total momentum. The operator (4.11) is given by the same
expression (2.5) with scalar and gauge fields shifted by z. Obviously, for = 0 we have
O(z1, 22|0) = O(z1, 22). Substituting (4.6) into (4.11), we find that OQ(z1, z2|z) has a similar
expansion in powers of fermion modes. Then, we take into account (4.9) to get

(021, 22]0)0 (23, 24]2) Yinst = / Apiphys €55t O®) (21, 29]0)0®) (23, z4|2) (4.12)

where Q(z3, z4|2) is a conjugated operator. Notice that the lowest OY) term of the expan-
sion (4.6) does not contribute to (4.10) and (4.12).
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We are now ready to compute the correlation functions (4.10) and (4.12). Using
the expression for the integration measure (4.2), we first perform the integration over
fermion modes. Replacing Ogg/ and O®) by their explicit expressions, eqs. (4.5) and (4.7),

respectively, and going through a lengthy calculation we find (see appendix D for details)

/ dBEd¥ 0@ (21, 29) 08 (1) 05 (12) = =22 x 3% x (V1 ¥2)(V1Yz)(VaY7)

(21 — 22)% [(n@9)2? — (nay)ad)*p™
[(p2 + (n21 — 20)2)(p% + (nza — 20)2)P[(p2 + 23) (P2 + 23y)]4
(4.13)

X

where (Y;Y;) = eABCDYi,ABYi,CD and the antisymmetric tensors Y; 4p carry the SU(4)
charges of the operators. The tensors Y; 4p (with ¢ = 1,2) enter into the definition (2.2)
of the operators Ogp (z;) and Yz 4p defines the complex scalar field Z = p = Y7 A goAB.
In a similar manner, we find from (4.12) (see appendix D for details)

/ dBed®70®) (21, 22)0)0®) (23, 24|w)

230 x 32 x (21 — 22)2(23 — 24)%(xn)*p!?
[(p?+ (n21—=20)%) (P> + (n22 = 20)?) (p° + (z+n23 = 20)%) (P> + (w+nza—20)*) >
(4.14)

We verify that expressions on the right-hand side of (4.13) and (4.14) are rational functions
of z;, well-defined for a complex null vector n.

Notice that (4.13) and (4.14) vanish quadratically for z; — 29 (as well as for z5 — z4).
This property can be understood as follows. For zo — z; we can use the definition of the
light-ray operator (2.5) to show that

O(z1, 22) = tr[Z*(nz1)] + %(22 — 21)04 tr[Z%(nz)] + O ((z2 — 21)?%) . (4.15)

The first two terms of the expansion involve the half-BPS operator tr Z2, it can be obtained
from the general expression (2.2) for Y = Y. According to (4.5), the half-BPS operators
have exactly four fermion modes and, therefore, the first two terms on the right-hand side
of (4.15) do not contribute to O®) (21, 29) leading to O®) (21, 22) = O((22 — 21)?).

To obtain the correlation functions, we have to integrate (4.13) and (4.14) over the
bosonic coordinates p and zy with the measure (4.2). The resulting integrals can be
expressed in terms of the so-called D—functions

DA ...An(xla ey T ) - /d4$0 / = ( ) (416)
1 n p5 Z];[1 p2 + 33@20

where z;0 = x; — x9. Multiplying (4.13) and (4.14) by the additional factors coming
from the integration measure (4.2), we finally find the leading instanton correction to the
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correlation functions

27 ;
(O(21, 22)O20 (1) O20/(2)))inst = — 123,10 g° T (V1Y2)(Y1Y7)(Y2Y7)
2(nx 2(nzs)]?
X (21 — 22)? (2223)? ( 21) _A 22> D3gaa(nz1,nze, 21, 72),
7 )
(4.17)

0 9 ‘
<®(Zl, 22|0)©(23, Z4|x)>inst — mg8 e2miT
X (Zl - 22)2(23 - 24)2(5[37’1)4D3333(n21, nzo, T + nz3, x + TLZ4) )
(4.18)

The same correlation functions in the Born approximation are given by (C.2) and (C.5),
respectively, evaluated for N = 2. Dividing (4.17) and (4.18) by the Born level expressions,
we find that the instanton corrections to the two correlation functions scale as O(g? ™)

and O(g* e?™7), respectively, in agreement with the analysis at the beginning of this section.

4.2 Instanton corrections to correlation functions

Let us apply (4.17) and (4.18) to derive the correlation functions of twist-two operators.
We recall that to the lowest order in the coupling constant, the correlation functions involv-
ing light-ray and twist-two operators are related to each other through the relations (2.12)
and (2.13). It is not obvious however whether the same relations should work for the
instanton corrections in the semiclassical approximation. To show that this is the case,
we apply below (2.12) and (2.13) to relations (4.17) and (4.18) and verify that the ob-
tained expressions for the correlation functions (Og(0)O2¢/(1)O2¢/(2)) and (Og(0)Og/(z))
are indeed consistent with conformal symmetry and have the expected form (2.4).
Applying (2.13) to (4.17), we get

27 -
(05(0)020/(1)O20/(2))inst = — 1287r1098 T (V1Y2)(Y1Yz)(YaYz)
2(nx 2(nxy)]?
< (a323)? | & 21) _X 22) Is(z1,12), (4.19)
xy x5
where Ig(x1,x2) denotes the following integral

ledZQ (21 - Z2)S 2

Is(@1,22) = # (27mi)2 (2129)5H1 (21 — 22)"D3san(nz1, nzg, 21, x2) (4.20)

with A = 4. In what follows we relax this condition and treat A as an arbitrary parameter.
The reason for this is that the same integral with A = 3 enters the calculation of (4.18).
Replacing the D—function in (4.20) by its integral representation (4.16) and exchanging
the order of integration, we find that the integrand has triple poles at z1,20 = (p? +
z2)/(2(zon)). Blowing up the integration contour in (4.20) and picking up the residues at
these poles, we find that the integral over z; and z5 vanishes for all nonnegative integer S
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except for S = 2, leading to

Is(x1,22) = 6652D6AA(0, 21, 22)
d*xqdp p°

= 655,2/ . (4.21)
(p? +a3)5(p* + 23p) 2 (p? + 23y)%
For A = 4 the calculation of this integral yields
w2 1
Dgg4(0 = —— 5575 4.22
644( axla'IZ) 90 .'E%z(fﬂ%fl?%)g ( )
Substituting (4.21) and (4.22) into (4.19) we finally obtain
9 ‘
(05(0)O20/(1)O20/(2))inst = — 65,2 6105 g™ (V1Y2)(Y1Y2)(Y2Y7)
1 2(nz1)  2(nas)]?
55 T — 5 . (4.23)
TrpXiZa [ X x3

Surprisingly enough, this expression vanishes for all spins except S = 2. For S = 0 the
corresponding twist-two operator Og—g = tr Z?2 is half-BPS. In this case, the three-point
correlation function is protected from quantum corrections and, therefore, the instanton
correction (4.23) should vanish for S = 0.

To obtain the two-point correlation function (Og(0)Og/(z)) from (4.18) we apply (2.12)
to both operators to get

9 T
(Os(0)Os/())inst = mgs ™ (an) Igsi (), (4.24)

where Igg/(z) is given by a folded contour integral over four z—variables. Using (4.20) this
integral can be rewritten as

dzsdzy (z3 — 24)Sl+2
Iss/(z) = # @r)? (25 Is(x +nzs,x + nzy), (4.25)
where Ig is evaluated for A = 3. Replacing Is with its integral representation (4.21), we
evaluate the integral by picking up the residue at the poles 23, z4 = (p?+ (20 —)?)/(2(z0 —
x)n) in the same manner as (4.21). In this way, we arrive at

(05(0)0s ()it = D525, 51 oy 0 €7 () Do 0, ) (4.26)
where the D—function is defined in (4.16). Similar to (4.23), this expression vanishes for all
spins except S = S’ = 2. For § = S’ = 0 this property is in agreement with protectiveness
of two-point correlation functions of half-BPS operators.

A close examination of (4.16) shows that Dgg(0, ) develops a logarithmic divergence.
It comes from integration over small size instantons, p — 0, located close to one of the
operators, x% — 0 and (2 —x0)? — 0. This divergence produces a logarithmically enhanced
contribution ~ Inz? which modifies the scaling dimensions of twist-two operators.
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We can regularize Dgg(0, 2) by modifying the integration measure over zg,”

12
D66(0,x) —)/d4_26x0/dp p

PP (p? + 23)8(p* + (v — 20)?)"

S (R R (4.27)
= 2002 ; Tt +. ), i

where dots denote terms independent of x and/or vanishing for ¢ — 0. In the stan-
dard manner, the pole 1/e can be removed from the correlation function (Og(0)Og(x))
by multiplying the twist-two operators, Og(z) — Z(1/€)Og(z) by appropriately chosen
renormalization Z—factor. Retaining only this term we get from (4.26)

(05(0)0 (@)t = 0558551 g¥ €2 T 002 4 congey (4.28)
80w (22)6

Relations (4.23) and (4.28) define one-instanton corrections to the correlation functions.

Anti-instanton corrections are given by the complex conjugated expressions.

One may wonder whether the expression on the right-hand side of (4.28) depends on
the choice of regularization. To answer this question, we can use the relation (4.4). Namely,
applying the dilatation operator D = (xd) + 8 to the both sides of (4.26) and (4.28) we find
that the coefficient in front of In 22 on the right-hand side of (4.28) is given by the integral

7.[.2

[((20) 4+ 12] Dgs(0, x) = 30(22)5

1
3 (4.29)
which takes a finite value, independent on the regularization. Notice that this argument
does not apply to a constant term inside parenthesis on the right-hand side of (4.28), this
term depends on the regularization.

Finally, we combine (4.23) and (4.28) with analogous expressions in the Born approx-
imation (given by (C.4) and (C.6) for N = 2) and add the anti-instanton contribution to
get the following expressions for the correlation functions in N' =4 SYM for the SU(2)

gauge group

(05(0)020(1)O20/(2)) =

35 (MY2)(1Y7)(Y2Yz) [Q(nxl) z(mg)r

(472)3 atyaivs x? 3
392 27T —2miT
X |1= Bgar iy (@ 42 (4.30)
. 3g'cs [2(na)]*®
(05(0)0g/ (7)) = 555'2(47@)2 (w2)2+25
9 92 2 . )
X 1 + 55125 <47r2> (GQTMT + e_ZWZT) ln J’)Z 5 (431)

where the normalization factor cg is defined in (C.6). We recall that these relations were
derived in the one (anti)instanton sector in the semiclassical approximation and are valid
up to corrections suppressed by powers of g°.

5Note that this regularization is different from the conventional dimensional regularization.
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Comparing (4.31) with the general expression for a two-point correlation function (2.4),
we obtain the leading instanton correction to the scaling dimension of twist-two operators
Ag=24+854+~g

ins 9 2 ? T —2miT
7 t)_—‘55725(49%2) (577 4 e75mT). (4.32)

In a similar manner, matching (4.30) and (2.4) we obtain the following result for the

properly normalized OPE coefficient C's = Cg /C‘éBOrn)

~ 392 27T —27iT
Cs=1-10g2 1072 (e™ +e ). (4.33)

As follows from (4.31), the instanton correction to the normalization factor Ng entering

the first relation in (2.4) has the same dependence on the coupling constant as (4.32)
and does not affect the leading correction to the structure constants in the OPE of two
half-BPS operators.

As was already mentioned, for S = 0 the correlation functions (4.30) and (4.31) are
protected from quantum corrections and, therefore, yg—g = 0 and 6320 = 1 for arbitrary
coupling constant. For S > 2, there are no reasons for the same relations to hold beyond
the semiclassical approximation. For S = 2, the corresponding conformal operator Og—s ~
tr(ZD%Z)—2tr(D+Z D+ Z) belongs to the same N’ = 4 supermultiplet as Konishi operator
K = tr(¢*Bpap). As a consequence, the two operators should have the same anomalous
dimension, vg—s = Vg, as well as OPE coefficients, CS 9 = C’K As a nontrivial check of
our calculation we use the results of [8] to verify that both relations are indeed satisfied in
the semiclassical approximation.

As was already mentioned in section 4, the correlation functions (4.30) and (4.31)
belong to the class of minimal correlation functions. Following [2, 17, 18], we can then
generalize the relations (4.30) and (4.31) to the SU(N) gauge group and, in addition, include
the contribution of an arbitrary number of (anti)instantons at large N. As before, for S # 2
the resulting expressions for g and 6’3 do not receive corrections in the semiclassical
approximation, whereas for S = 2 they coincide with those for the Konishi operator and
can be found in [8].

5 Conclusions

In this work we have presented the explicit calculation of the instanton contribution to
two- and three-point correlation functions involving half-BPS and twist-two operators. A
somewhat surprising outcome of our analysis is the vanishing of the leading instanton
corrections to the scaling dimensions and the OPE coefficients of twist-two operators with
spin S > 2. This result comes from a rather involved calculation and requires a better
understanding. Note that the situation here is very different from that for twist-four
operators. As it was shown in [8], crossing symmetry implies that twist-four operators
with arbitrarily high spin acquire instanton corrections already at order O(g? e =87/ 92).
According to (1.1), the instanton corrections to twist-two operators with S > 2 are
pushed to higher order in ¢g?. Their calculation remains a challenge as it requires going
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beyond the semiclassical approximation. There is however an interesting high spin limit,
S > 1, in which we can get additional insight on the instanton effects. In this limit, the
scaling dimensions of twist-two operators scale logarithmically with the spin [19, 20]

Ag =5+ 2lcusp(9?) In S + O(57), (5.1)

where Fcusp(gQ) is the cusp anomalous dimension. The instanton contribution to Ag should
have the same asymptotic behavior and produce a correction to Fcusp(gz). According to
the first relation in (1.1), it should scale at least as O(g®e~87°/9"). We can find however
the same correction using the fact that the cusp anomalous dimension governs the leading
UV divergences of light-like polygon Wilson loops.

The light-like polygon Wilson loop W7, is given by the product of gauge links (2.6)
defined for L different light-like vectors m;. In the semiclassical approximation, the in-
stanton contribution to Wy, can be found using (4.1).° Since W, does not depend on the
coupling constant on the instanton background, the dependence on ¢ only comes from
the integration measure (4.2) leading to (Wr)inst = O(g® e 87/9%). At the same time, in
the Born approximation, we have (W )pom = 1. As a consequence, the leading instanton
correction to the cusp anomalous dimension scales at least as

Il (9°) = Olg* ™/, (5.2)

cusp

Combining the last two relations we conclude that AgnSt) =0(g® e=87°/9° In § ) at large S.
Thus, if the leading O(g®e=87°/9") correction to Agmt) in (1.1) is different from zero, it
should approach a finite value for S — 0o0.” It would be interesting to compute explicitly

the instanton correction (5.2).
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A N =4 SYM in spinor notations

Performing the calculation of instanton corrections in N' = 4 SYM it is convenient to
employ spinor notations. We use Pauli matrices o# = (1,i07) to map an arbitrary four-
dimensional Euclidean vector z, into a 2 x 2 matrix

Top = xu(a“)aﬁ, (A1)

SHere we tacitly assume that the light-like Wilson loop is defined in Euclidean space for complex null
vectors n; and, then, (W )ins is analytically continued to Minkowski signature.

"Similar considerations should apply to the structure constants C’gnSt) in the large spin limit. Indeed,
from the analysis of [21] it follows that the structure constants for S >> 1 are given in terms of the cusp
anomalous dimension.
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and use the completely antisymmetric tensor to raise and lower its indices

:rg = eaﬁmﬁg, a:g = xadedg , % = eﬁaxagegd, (A.2)
with €,3€%7 = 5%, edﬂ'e‘j‘& = (52 and €19 = €2 = 1. Then,
a:i = %xga;g = —%xadwdo‘ = %madajﬁgeaﬁew. (A.3)
For derivatives we have similarly
Do = Oul0") g5 OaaTgy = 2€ap€sp s Onat® = 220 - (A.4)

Throughout the paper we use the following conventions for contracting Lorentz indices in
the product of 2 x 2 matrices

(@Y)ap = Tacl§ , (@Y) 45 = T2 » (@Y2) g = Taay’™ 255 - (A5)

Using these definitions we obtain for the gauge field A, and the stress tensor
Fu = _i[D/MDV]

Ana = 14,(0")aa Fop = —iF(0"0")as, F. 5= —iF,,(c"c")

«,

&f (A.6)
where the additional factor of ¢ is introduced for convenience. The symmetric matrices Fy3
and F, ;5 describe (anti)self-dual parts of the strength tensor

<A _ 2
Fop = ¢’ (DaaDﬁg + DﬂaDag) = —Diap)

— 2
Fdﬁ' = 60‘6 (DadD/BB + DﬁdDaB> = _D(dB (A?)

) 9y
where angular brackets denote symmetrization with respect to indices and the covariant
derivative Doy = Dy (0" )aq is defined as

«

DX =10, + A5 X]. (A.8)

The Lorentz indices are raised and lowered according to (A.2).
The Lagrangian of N’ = 4 super Yang-Mills theory takes the following form in spinor
notations

1 1 1 1 ._ - _
L= p tr{ - Tﬁpjﬂ ~ TGFzB - ZDggbABDg‘gbAB — 2iAaaD*PNG + V2024 ap, AT

~VBRaald"® 3]+ 1677, 6P Bas, m]} + zg% tr {fﬁFéﬁ - 116F§g} , (A9)
where gaugino fields A4 and 5\%, and scalar fields, $48 and ¢ ap, carry the SU(4) indices
(A,B =1,...,4) and satisfy the reality condition ¢psp = %GABCD¢CD. All fields are in the
adjoint representation of the SU(V) gauge group, e.g. Ansy = A%, T, with the generators
satisfying [T, T®] = i f°T° and normalized as tr(T%T") = %5‘11’. In the special case of the
SU(2) gauge group the generators are expressed in terms of Pauli matrices T* = 0%/2.
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As follows from (A.9), gauge fields, gaugino and scalars satisfy equations of motion
DN —iv2[¢E Nap] = 0
Do\ +iV2[pap, A5 =0
D& Fop + 4i{\5, Aaa} + [9aB, Dpad™P] =
D*¢pap + V2{haa, A5} — \26,43013{)\0‘0 D+ [¢CD [$aB, dcp]] =0 (A.10)

where D? = Di = 1D%D¢. The advantage of the normalization of the Lagrangian (A.9) is
that the equations of motion and their solutions do not depend on the coupling constant.

The relations (A.10) are invariant under (on-shell) N' = 4 superconformal transfor-
mations. In particular, the transformations generated by chiral Poincare supercharges Q%
and corresponding special superconformal generators S’j look as

s
6A; = —2 N0,

68 = —iv/ac AT,
Spcp = —iV2eapepC® INE

) . -
5A£ - 5 aﬂgﬁA _Z[¢AB7¢BC]C57

5AG = —V2(DY ¢ ap)CE +2V20 4577 (A.11)
where brackets in the second relation denote antisymmetrization of the SU(4) in-
dices. These relations describe transformations of fields under combined (— and
S—transformations with the corresponding parameters being 5&4 and ﬁdA, respectively.

All relations in (A.11) except the last one depend on the linear (z—dependent)
combination

Cc’?(x) = fa + xaoff]aA (A.12)

This property plays an important role in our analysis and it can be understood as follows.
We recall that S—transformations can be realized as composition of the inversion and
(Q—transformations

(78)=1-(€Q) I, I(&) =74 I(74) = & (A.13)
where (7.9) = 7454 and (£ Q) = £4%Qaa. Let us consider the last relation in (A.11). We

first apply inversions and take into account that I changes the chirality of Lorentz indices
X — - 5 A
I(r,5) =5, I(X) = Ag2™a? 1P) = 22648 . (A14)

Then, we obtain from (A.11) and (A.13)

(EQXS = —V2(D¥dap)Ef |

BN = 1-(€Q) T =17 1-Qua-10%) =V} (o 1DP6am). (A15)
where I(D#¢4p) = 252 DV (123 ap) = 22250 DV Gap — 209G ap).
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Combining the relations (A.15) together, we find that 6A% = (€ - Q + 77 - S)AS agrees
with the last relation in (A.11). The additional correction to §A proportional to 7% comes
from the inhomogenous term in (DBB bap). In other words, the appearance of O(7) term
in the expression for d\ in (A.11) is ultimately related to the fact that D% ¢,p does not
transform covariantly under the inversion, or equivalently, that é\ involves the operator
D% $AB which is not conformal primary.

The question arises whether the relations (A.11) are consistent with conformal sym-
metry. Supplementing (A.11) with the relation

I(¢2h) = M) pas (A.16)

that follows from (A.13) and (A.14), we verify that @ + S variations of all fields, §F,g,
5Faﬁ'7 5¢AB, 5/\£ and (55&, transform under the conformal transformations in the same
manner as the fields themselves. The same property should hold for higher order variation
of fields, e.g. for 6"¢AP withn =2,3,....

The explicit calculation of 6"¢4? from (A.11) is very cumbersome and is not efficient
for higher n due to proliferation of terms. Instead, we can use conformal symmetry to
simply the task. Namely, conformal symmetry restricts the possible form of §"¢*? and
allows us to write its general expression in terms of a few arbitrary coefficients. The latter
can be fixed by requiring the fields to satisfy the N’ =4 SYM equations of motion (A.10).

B Iterative solution to the equations of motion

The equations of motion (A.10) are invariant under N' = 4 superconformal transforma-
tions (A.11). Following [1], we can exploit this property to construct solutions to (A.10)
starting from the special solution

FO Z gAB0) Z \A(0)

¥ =250 =9, (B.1)

describing self-dual gauge field in pure Yang-Mills theory with Fé%) # 0. Since (B.1)
verifies (A.10), we can obtain another solution to (A.10) by applying N/ = 4 superconformal
transformations (A.11) to the fields (B.1).

The field configuration (B.1) is invariant under the antichiral Q + S transformations.
Then, we use the remaining chiral Q + S generators to get

O(z;¢,7) = e EQFMS5) §0) () ¢~i(6Q)-i(15)

=00 4 oM 4 6@ 4 (B.2)

where ® stands for one of the fields (scalar, gaugino and gauge field). Here ®© is given
by (B.1) and the notation was introduced for

oM = i[(£Q) + (75), 2] = 50|

Lyre©) (B.3)
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where the variation of fields 6® is given by (A.11). It is important to emphasise that
applying (B.3) we first perform superconformal transformations (A.11) and, then, replace
@ by their explicit expressions (B.1).

By construction, the field ®(x;&,7) depends on 16 fermion modes ¢ and 744 (with
a,& = 1,2 and A = 1,...,4). The second relation in (B.2) defines the expansion of
®(x;€,7) in powers of fermion modes, so that () is a homogenous polynomial in 5&4 and
7% of degree m. Its maximal degree cannot exceed the total number of fermion modes
leading to ® = 0 for n > 16. An additional condition comes from the requirement for

(") to have the same R—charge. This leads to the following relations for different fields

Aps = A( ) +A( ) +A(16)

ao

M = AQA,( )4 Ag( ) gAY
¢AB _ ¢AB,(2) ¢AB,(6) 4t ¢AB,(14)7

Maa =2 4230+ 20D, (B.4)

where ¢pap = %6 AcpdCP and each subsequent term of the expansion has four fermion
modes more.

Substituting (B.4) into (A.10) and matching the number of fermion modes on both
sides of the relations, we obtain the system of coupled equations for various components of
fields. To the leading order, we have from (A.10)

1
—=eapep{ANC NPy =0,

NG
DIANDA = Do AP +iv2(])

o’ o

DeFY) = p2g3) -

Ozaﬂ

ADBl =0, (B.5)

B o

where the covariant derivative D, is given by (A.8) with the gauge field replaced by Aéog.
To the next-to-leading order we find in a similar manner

DEFSY + (AP EO) + 4i A4 NG} + (6259, Daadin] =0,

a” Ba

Ddﬁ)\(;)’A + (AW )\(Bl)vA] — iV/2[¢pPAB j\g’)’d] =0,

1 1 . 3 514
,DaDoz(z)(G) [A((;Cl) Da ¢(2) ] - §[¢E42)B’ DgA((j)u] + \/i{/\((jiz" )\(BE%), }
1 _ _
+ §[¢(2)’CD7 [dﬁéy d’(cQ)D]] —V2e4ep{AW2C ACMPY =0, (B.6)

Leading order solutions. Applying relations (B.3) together with (A.11) and (B.1) we
obtain the leading order corrections to scalar and gaugino fields

ADA_ Lp s
@ 2
(2),AB aA a 8B _— F
¢ \/54 4 \ﬂc AP
o) = %GABCDCBB(CDMFC) Dy eapepif (CFOP, (B.7)
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where Fop = F(i%) is nonvanishing self-dual part of the gauge strength tensor and
z—dependent variable ¢4 is defined in (A.12).
It is straightforward to check that (B.7) satisfy the equations of motion (B.5). We
verify that, in agreement with (B.3), the fields (B.7) are related to each other as
2¢(2),AB — 5¢(1),AB Z\/>Ca A)\((xl ’
3XS3)70'¢ — 55\(AQ)754 — _\/i(DOé,B¢ 2)B)Cﬁ + 2\/>¢AB —&B ’ (BS)

where expressions on the right-hand side follow from (A.11). As was mentioned above,
the form of (B.7) is restricted by conformal symmetry. For instance, the expression for
XS)X involves ((DgsF'¢ )P = OCDMFW;C‘;D which is not a conformal primary operator.
As was explained in section A, this leads to the appearance of the second term in 5‘33,21
proportional to ﬁg which is needed to restore correct conformal properties of the gaugino
field. The relative coefficient between the two terms in the expression for 5\&321 is uniquely
fixed by the conformal symmetry whereas the overall normalization coefficient is fixed by
the equations of motion (B.5).

Next-to-leading order solutions. Direct calculation of subleading corrections to
fields (B.4) based on (B.3) and (A.11) is very cumbersome. We describe here another,
more efficient approach.

We start with next-to-leading correction to the gauge field and try to construct the

(4 )

which has correct properties with respect to conformal and R

)

modes 5&4 and 7%, To begin Wlth, we look for an expression that depends on their linear

general expression for A
symmetries. By constructlon A( is a homogenous polynomial of degree 4 in fermion
combination ¢2 defined in (A.12) and has quantum numbers of the gauge field. Since
¢2 has scaling dimension (—1/2), the product of four ¢’s should be accompanied by an
operator carrying the scaling dimension 3. It can only be built from the self-dual part
of the strength tensor F,z and covariant derivatives Dyq. In virtue of the equations of
motion, €*? D, F, 3y = 0, such operator takes the form D(,sFp), . Contracting its Lorentz
indices with those of the product of four (’s we obtain Aglo.)l ~ eapcopCiCPB(CDsa FC)CP.
Since this operator is not conformal primary, it should receive correction proportional to
eapcpCAnB(CFC)CP, the relative coefficient is fixed by the conformal symmetry. The
overall normalization coefficient can be determined by requiring A( ) to satisfy the first
relation in (B.6). As we will show in a moment, there is much sunpler way to fix this
coefficient using the second relation in (B.3).
Repeating the same analysis for scalar and gaugino fields we get

AY =~ eapenCi PP (DI O  LeanonCial(CFOCP
)\(5),04,4 %ECDEFCQC(C2)AD (CF2C)EF ,
¢(6)7AB - _ 20ﬂGCDEF(CZ)AC(€2)BE(CFQC)FD ’ (Bg)
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where the notation was introduced for

(CQ)AB — (CQ)BA _ CBA CwB
(CF2Q)P = — (¢F2Q)"F = ¢PFFROF,

Fj, = F25 = Fpae® Fy, . (B.10)

It is straightforward to verify that the fields (B.9) satisfy the system of coupled equa-
tions (B.6). Notice that the last two relations in (B.9) involve a conformal primary op-
erator Fgﬁ of dimension 4 and, as a consequence, the dependence on fermion modes only
enters through the linear combination (4.8

We recall that the subleading corrections to fields have to satisfy (B.3). In application
o (B.9) these relations read

4 3
44 = 548) — —QCA)\QA ,

5)\(5),14 — 6)\(4),14 _ CBA [¢(2),AB (z)(Q) ]g
(0% (6% 2 a Y o )
6¢(6),AB — 5¢(5),AB — _i\/iga[AA((f),B} ’ (Bll)

where F(S;) = D(MA%M) defines the correction to self-dual part of the gauge strength
tensor. Replacing the fields with their explicit expressions (B.7) and (B.9), we verify that
the relations (B.11) are indeed satisfied.

We can now turn the logic around and apply the relations (B.8) and (B.11) to compute
subleading corrections to the fields. Indeed, we start with the expression for )\((Xl)’A n (B.7)
and use (B.8) and (B.11) recursively to reproduce (B.9). Continuing this procedure we
can determine all remaining terms of the expansion (B.4) with little efforts, e.g.

VL 5%6“" = —\/E(Dd%ﬁf + (A9 DGRT)CE + 2v26 "
8A®) — 547 — —ocAX0). (B.12)

Going through calculation of higher components of fields we find that they are proportional
to the square of a fermion mode and, therefore, vanish

A _ 510,48 _ 5\&1‘) _ 202 _ )\&13),,4 — p(10,AB ;\( 5) _ AU6) _ (B.13)

ax ax

This relation implies that the expansion of fields on the instanton background (B.4) is
shorter than one might expect. The same result was independently obtained in [22].

C Projection onto twist-two operators

In this appendix we explain how to use the light-ray operators (2.5) to compute the corre-
lation functions involving twist-two operators in the Born approximation.

8There is another operator with the same quantum numbers, D?F, 3, but it reduces to —F§5/2 on shell
of the equations of motion.
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To begin with, we consider the correlation function (2.11) of the light-ray operator and
two half-BPS operators in N/ =4 SYM with the SU(NV) gauge group. In the Born approx-
imation, we can neglect gauge links in the definition (2.5) of O(z1, 22) and express (2.11)
in terms of free propagators of scalar fields ¢p42(z) = @48 (2)T*

(6948 (21)65CD (25)) = g20PABCD D (21 — 20) (C.1)

where D(x) = 1/(47%2?) and the additional factor of g? appears due to our normalization
of the Lagrangian (A.9).

The generators of the SU(N) gauge group are normalized as tr(T°T%) = §%/2, so
that Ogo/(z;) = iyABYi’Cqu"’ABgZ)“’CD. We recall that the light-ray operators (2.5) are
built out of the complex scalar field Z = ¢'. It is convenient to represent this field as
Z =Yz quAB, with Y7 having the only nonvanishing components Yz 14 = =Yz 41 = 1/2.
Then, we find

(021, 22)020 (21)020 (32, = 58" (V? ~ DV (Vi¥2)(%217)

x D(z12)[D(z1 — nz1)D(x2 — nza) + D(x1 — nze)D(z2 — nz1)], (C.2)

where 12 = 21 — 22 and the notation was introduced for (Y;Y;) = eABCDY;.ABYLCD.
Taking into account that (z; — nz;)? = 22 — 2z;(nx;), we can rewrite this expression as

L g

59 (N? = 1)(V1Y2)(1Y2)(Y2Y7) D(@12) D(@) D(z2)

(1 — 6121)(1 — 6222)

+ (Z1 &~ 22) , (C3)

with ¢; = 2(na;)/z3.

To obtain the three-point correlation function of local twist-two operator, we substi-
tute (C.3) into (2.13). Blowing up the integration contour in (2.13) and picking up the
residue at z; = 1/¢;, we arrive at’

(05(0)020/ (1)020(2)) .., = 39°(N” — D(Vi¥2) (11Y7) (¥Y7)

S
X D($12)D(1‘1)D(1‘2) 2(n$1) — 2(71:62) + (acl — xg) .

.’112 2
(C.4)

1 )

This relation coincides with the general expression for the correlation function of twist-two
operators (2.4). Notice that (C.4) vanishes for odd S, in agreement with the fact that the
twist-two operators carry nonnegative even spin S.

The same technique can be used to compute two-point correlation function of twist-two
operators (Og(0)Og (z)). We start with the correlation function of two light-ray operators

9The powers of the coupling constant in (C.4) and (C.6) appear due to our definition of the La-
grangian (A.9). They can be removed by changing the normalization of operators 4 - d)AB/g,
020/ — 020//g2 and OS — OS/QZ.
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separated by distance x. In the Born approximation we have

(tr[Z(nz1)Z(nze)] tr [Z(x 4+ nz3) Z(x + nzy)))

'S

= gZ(N2 —1)D(x — nz13)D(x — nzaq) + (21 <> 22)
gt (N?-1)D%(x)
T o) ez T (C5)

with € = 2(nx)/x?. Substituting this relation into (2.13) and performing integration over z;
and zo9, we can project the light-ray operator tr [Z(nz1)Z(nz2)] onto the twist-two operator
Os5(0). Repeating the same procedure with respect to z3 and z4, we obtain the expression
for (Og(0)Og/(z)) that is different from zero only for even positive S = S’ and is given by

25
(O5(0)0s (0., = ates(V? - )0%) [220] s ()

with cg = (25)! /(S!)? and D(z) defined in (C.1).

D Instanton profile of operators

Light-like Wilson line. The calculation of the leading term E(%) (21, z5) of the expansion
of the light-like Wilson line (2.6) relies on the following identity

Z/dtn . Agj)(nt) = §n [eia(-TO)ja + Gja(l‘[))id] / (nt — 330)2 >

e dt (nxo)
_x, / : (D.1)

nt —x0)? + p?’

where we replaced the instanton field with its explicit expression (3.7) for x = nt — xy and
took into account that n? = 0. Here in the second relation we introduced the following
2 x 2 matrix X;;

ron

nxo .
2(nxg)’ X = 2(nxg)’ (D-2)

S=¥,-%_, S, =

with ¥4 being projectors, ¥3 = X4, ¥, ¥ = 0 and ¥, + X_ = 1. Notice that X n =
nX_=nandnX; =%_n=0.

Since the Y¥—matrix in (D.1) does not depend on the integration variable, the path-
ordered exponential reduces to the conventional exponential leading to

EO (21, 29) = exp (B (21, 22)) = e!G122) 5 4o I(e122) 3y (D.3)

where the 2 x 2 matrices X1 are independent on z; and I(z1,22) = —1I(22, 21) is given by
2 dt 1 — )% + p?

(21, 29) = / (”x;) s——-In (n2g x0)2 e (D.4)
. (nt—x0)2+p 2 (nz;—x0)2+p

We recall that the matrix indices of ¥4 are identified with the SU(2) indices of E(©)(z, z9).
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The first subleading correction to the Wilson line, F(®) (21, 22), comes from the AW
term in the expansion of the gauge field. It is given by

z2
EW (21, 2) = % / dt EQ) (z1,t) (n|A® (nt) |n] EO/(t, 25) . (D.5)

21

Replacing (n|A®|n] with its explicit expression (3.11) (evaluated for z = nt — z() and
taking into account (D.3), we obtain

ED (2, 29) = / = o 4p
’ o PP+ (nt —x0)?]

2

seasep (p°[1"n] = (€%xoln]) (n¢f)
y (e](zl’t) 5, +e 110 2_)|<tc><d)|<el(t,m) 5, +el(t) 2_)7 (D.6)

where (4 = ((tn — xg) = £+ (tn — x0)7 depends on the integration variable. Here we used
shorthand notations for contraction of the indices, e.g. (34[¢4)); = (34);/ CJA.

Light-ray operators. The expansion of the light-ray operator on the instanton back-
ground in powers of fermion modes takes the form (4.6). We show below that the last two
terms of the expansion vanish, eq. (4.9). The underlying reason for this is that, by virtue
of N' = 4 superconformal symmetry, the light-ray operator OQ(z1, 22) only depends on 12
fermion modes, £2 and [nf4].

According to its definition (2.5), the operator O(z1, z2) depends on scalar and gauge
fields, Z(z) and (nA(zx)), evaluated on the light-ray z# = n*z. Examining the explicit
expressions for the lowest components of these fields, egs. (3.11) and (3.15), we observe
that the dependence on fermion modes enters either through [nﬁA] or through the linear
combination ¢A(z) defined in (A.12). For z = nz the latter simplifies as (2 = ¢4 +
2In)o[n7?], so that the above mentioned components of fields depend on the light-ray on
¢4 and [nf] only. Then, we can use the recurrence relations (B.3), (B.11) and (B.12) to
show that the same is true for all components of fields.

Thus, the light-ray operator O(z1,22) depends on 12 fermionic modes £ and [n7"]
that we shall denote as @f‘ (with ¢ = 1,2,3). Then, the top component ((])(16)(21,22) is
necessarily proportional to the square of a fermion mode and, therefore, vanishes. The next-
to-top component O1?)(z1, ) contains the product of all 12 fermion modes. R—symmetry
fixes its form to be

0'0'0'0% 4, ,0,0,0" 0”100 € 4, ,¢,0,01207202 02, (D.7)

where the first four ©’s carry the SU(4)—charge of two scalar fields Z = ¢'* and the
remaining factors are the SU(4) singlets. Here we did not display the lower index of @;4.
Counting the total number of Grassmann variables in (D.7), we find that it is proportional

to G)Z-l1 @}2@}36%4. Since the lower index can take only three values this product vanishes
leading to (4.9).
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Derivation of (4.13). We start by examining the instanton profile of the product of two
half-BPS operators. Using (4.5) we find
1
0;4)' (951)0%)/ ($2) = ZfQ(xl)fQ(532)}/1714131Y1701D1Y2,A232Y2,C2D2
X ()M () PG R ()PP (D.8)

where (; = ((z; — x0) = & + (x; — 2o)n and the instanton profile function f(x) is given
by (3.9) with x — = — xo.

It is convenient to rewrite the light-ray operator O®)(zy, z5) defined in (4.7) as O®) =
@f) + @g) + (21 > 22). For the first term on the right-hand side we get

@f)(zl, z9) = tr [2(2) (nz1)E(0) (21, ZQ)Z(ﬁ) (nZQ)E(O)(ZQ, zl)]
1
= /2D P )1 (D.9)
where we substituted Z(" = (Yz)apd™AE, replaced ¢4 by the explicit expres-
sions (3.15) and introduced

I,(qs):(YZ)AlBl(YZ)AQBQECDEF(CEQ)AQC( 2YBE(CBEO) (21, 2) IOV (CR I EO (29, 21) ¢4
(D.10)

with (,, = & + (z;n — z9)7. By construction, this expression contains 8 fermion modes.
Following (4.13), we multiply expressions on the right-hand side of (D.8) and (D.9)
and integrate out 16 fermion modes. In this way, we obtain

s ) @) f(n21) P (122) B (o1, 22) B (o2, ) 127 (Y, ) (D-11)

where the integral over fermion modes 1% is given by the following expression

1°P0(Y,2) = (Yz2) B 7y (Y2) 2o V1,408, V1,00 D1 Y2, 408, Y2,05 D2 €850 D3 s

x / 4867 (21101 (¢2) PP (¢2)A2C2 (¢2) PP (2B (B

X ()PP PO (D12)

22

Taking into account that the Y-variables satisfy the relation eABCDY  pYeop = 0, we find
that the Y-dependence of the integral is uniquely fixed by the SU(4) symmetry

1Y, 2) = (1Y2)(V1Y7) (YaYz) P49 () (D.13)

where (Y;Y;) = ¢ABCD Yi aBYjcp and chiral Lorentz tensor P87 () depends on four
points, x1g, T20, nz1 — g and nze — xg. The calculation of this tensor can be significantly
simplified with a help of conformal symmetry. Namely, denoting the above mentioned four
points as y; (with i =1,...,4) and making use of (A.16), we find from (D.12) and (D.13)

that P*#79 transforms under inversions I (yf‘ g ) = ylﬁ “/y? as

r[pe] - v syl 3"

P 18I~ S
(2y2y2)2(y2)t "

(D.14)
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This relation, combined with the condition for f*?¥ to be a homogenous polynomial in
y;; of degree 8, allows us to determine 7% up to an overall normalization factor. Going
through calculation we find

PP — 9% 5 3% % 5 X (yzaymryi2y24) Y (y3ayary12y24)>°
= 2% % 32 x 5 x 2% (na1z12(22 — 122)) Y (nz1212 (22 — N22))P? (D.15)

where in the second relation we replaced y;; by their expressions and took into account
that n? = 0. Here angular brackets (af3) denote symmetrization of Lorentz indices.

Finally, we substitute (D.13) and (D.15) into (D.11) and replace F,3 and E©) with
their expressions, egs. (3.8) and (D.3), respectively. In this way, we arrive after some
algebra at the expression that differs by the factor of 6 from the one on the right-hand side
of (4.13).

/ B 0P (21, 208 (21)0%) (22) = é « Bq.(4.13) . (D.16)
For the second term on the right-hand side of (4.7) we have
@g)(zl, Z9) = tr [Z@) (nzl)E(4) (21, ZQ)Z(Q) (nZQ)E(O)(ZQ, zl)]
_ _% Fnz) fnz) 1. (D.17)
Here we replaced Z?) = (V) 4p¢?8 using (3.15) and introduced notation for

15 = (Y2) 415, (Y2) 4z (G B (21, 20) |21 B (2, 20) |G (D.18)

where (., = &€ + (zin — 20)7. Replacing E©®) and E® with their explicit expressions,

egs. (D.3) and (D.6), respectively, we get for I](BS)

(Y2) 418, (Y2) asBaeane (p2[7*n] — (€2zo|n]) (n¢E) (B2 ! 122) £, 4 e T122) 3|

& 4p*dt Bu1 (i) , )
z1t) 7 (z1.8) 51 1OV (Pl tz2) v I(te) yy |pA2
X /Z1 [p2+(nt—wo)2]3<czl |e +te |Ct ><Ct \e ++e ‘CzQ >’

(D.19)

with § = &€+ (nt — x0)7 and {p = £ — zo7. This relation can be simplified with a help of
identifies

S_|¢ = 2|, SIGh = a1+t (D.20)

that follow from (D.2). Going through lengthy calculation we arrive at remarkably simple

expression
1 _ 8p%(z1 — 22)*
B — 5(/)2 + (nzl — xo)Q)(pQ + (nZQ — 1,‘())2)
x (Yz) 4,8, (Yz) a4z By€anop (0 ) (nGF) () M) PP 2] n] . (D.21)
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Then, we substitute this relation into (D.17), multiply it by (D.8) and integrate over 16
fermion modes to get

1
/ Bed* O (21, 20) 08 (1) 088 (25) = 5 x Eq.(1.13). (D.22)

Finally, we take the sum of (D.16) and (D.22), multiply it by the factor of 2 in order to
take into account the contribution of (z; <+ z2) terms and arrive at (4.13).

Derivation of (4.14). According to (4.11), the instanton profile of O(z1, 22|z) can be
obtained from that of O(z1,22) by shifting the coordinates of all fields by x. As follows
from (3.1), this transformation is equivalent to shifting the position of the instanton, oy —
zo — x. As before we decompose the light-ray operator as Q®) = @f) + @g) + (21 & 22).

Then, for the product of two operators in (4.14) we have
O®) (21, 22]0)0®) (23, z4|2) = @548)@5?) + @g)@g) + @f)@g) + @g)@f)

+ (214 22) + (234> 24) + (21 < 22,23 <> 24), (D.23)

where @f) = @548)(21, z9) and @548) = @548)(23, Z0)| o s z0—

Let us consider separately four terms in the first line of (D.23). The instanton profile
of @f) is given by (D.9). To get an analogous expression for @f), we apply the shift
xog — w9 — x to (D.9), change the coordinates, z; — 23 and 2z — z4, and replace Yy
with conjugated Yz—variables defined as Z = ¢4 = ¢** = (Y3)apd?P and satisfying
(YzY7) = 1. In this way we get

1

@f)@f) = mf(nzl)fz(nzg)f(x + n23) f2(z + nzy) ¥ Iﬁls)f_f) , (D.24)

where fgS) is obtained from (D.10) through transformations described above. Integrating

out fermion modes we find
/dgfdgn Igs)jés) = 1600 (21 — 22)%(23 — 24)2(n| E©) (21, 20)2|n)?

x ((nlBO (5, 24)aln)

(D.25)

)2
To—T0—

The matrix elements in this relation can be easily computed with a help of (D.3)
(n|EO) (21, 20)z|n] = (n] <el(zl’z2) ¥, +ell2) E_)x|n] =2(zn) e 112)  (D.26)

where in the second relation we used the properties of matrices (D.2) and I(z1, z2) is given
by (D.4). In this way, we obtain from (D.24)

- 1
/ BeatnoPo® = og * Ea.(4.14). (D.27)
For the second term on the right-hand side of (D.23) we have from (D.17)

_ 1 -
@g)@)g) = if(nzl)f(nzg)f(a: + nzsg) f(z + nzyq) X Ig)lg) , (D.28)
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where 11(38) is given by (D.21) and f](gg) is obtained from T g) through the same transformation
as before. Integration over fermion modes yields

_8) 7 2(nz)]*p?(z1 — 22)?
dBedsi IV TS = 4096 [
/ Sy Iy (p* + (nz1 — 20)?)(p? + (n22 — 20)?)
2 2
p(z3 — 24)
x , D.29
7+ (o + s — 20)) (7 + (@ + nz1 — 20)) (0-29)
leading to the following relation
_ 1
/ BeatnoP ol = 5 % Ea.(4.14). (D.30)

For the last two terms on the right-hand side of (D.23) we have from (D.9) and (D.17)

_ 1 _
(O)(AS)(O)SBB) = ——f(nz1) fA(nze) f(x + nz3) f(z 4+ nzy) x Ij(f)lg) )

80
_ 1 _
o®o® = —gg/ (2)f(nz2) (@ 4 nz5) (@ + nz) X &1 (D.31)

Then, we integrate over fermion modes to get

2(zn)]* (n| B (21, 2)|n]*p* (23 — 24)°
(p* + (n23 — 20)?)(p* + (nza — w0)*)

/ Bedn IPTE = _2560! (D.32)

The integral of IJ(BS) .71(48) is given by the same expression with variables exchanged, z; <> 23
and 2y <> z4. Using (D.26) we find

/ BeanoP ol = / BeadnoP o) = % x Eq.(4.14). (D.33)

Combining together (D.27), (D.30) and (D.33), we find that the sum of four terms in the
first line of (D.23) is 1/4 x Eq.(4.14). Since it is invariant under the exchange of points,
21 <> zo and z3 <> 24, the contribution of terms in the second line of (D.23) is three times
larger. As a result, the total contribution of (D.23) is given by (4.14).
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