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Shigeki Sugimotof,d

aDepartment of Physics and Astronomy, University of Kentucky,

Lexington, KY 40506, U.S.A.
bYukawa Institute for Theoretical Physics, Kyoto University,

Kyoto 606-8502, Japan
cDepartment of Physics, Fudan University,

220 Handan Road, 200433 Shanghai, China
dKavli Institute for the Physics and Mathematics of the Universe (WPI),

The University of Tokyo Institutes for Advanced Study (UTIAS),

The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583, Japan
eDepartment of Physics and Astronomy, Stony Brook University,

Stony Brook, New York 11794-3800, U.S.A.
fCenter for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,

Kyoto 606-8502, Japan

E-mail: mitsutoshi.fujita@uky.edu, charlesmelby@fudan.edu.cn,

rene.meyer@stonybrook.edu, sugimoto@yukawa.kyoto-u.ac.jp

Abstract: We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects

that shift the Chern-Simons level from a holographic point of view by embedding the

system in string theory. The model is a D3-D7 system in Type IIB string theory, whose

gravity dual is given by the AdS soliton background with probe D7 branes attaching to

the AdS boundary along the defects. We holographically renormalize the free energy of

the defect system with sources, from which we obtain the correlation functions for certain

operators naturally associated to these defects. We find interesting phase transitions when

the separation of the defects as well as the temperature are varied. We also discuss some

implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

Keywords: AdS-CFT Correspondence, Chern-Simons Theories, Holography and con-

densed matter physics (AdS/CMT)

ArXiv ePrint: 1601.00525

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2016)163

mailto:mitsutoshi.fujita@uky.edu
mailto:charlesmelby@fudan.edu.cn
mailto:rene.meyer@stonybrook.edu
mailto:sugimoto@yukawa.kyoto-u.ac.jp
http://arxiv.org/abs/1601.00525
http://dx.doi.org/10.1007/JHEP06(2016)163


J
H
E
P
0
6
(
2
0
1
6
)
1
6
3

Contents

1 Introduction 2

2 Yang-Mills-Chern-Simons theory and its level-changing defects 4

3 Brane configuration 7

4 Holographic description 9

4.1 Background geometry 9

4.2 Probe D7 brane 10

5 Operators on the defects 16

5.1 Defect mode/operator map 16

5.2 Holographic renormalization 17

5.2.1 Counterterms and the on-shell action 17

5.2.2 Boundary conditions 19

5.3 Gauge invariance and anomaly 20

5.4 Correlation functions 22

5.4.1 Condensation of Oy 22

5.4.2 Anomaly, symmetry breaking and edge modes 23

5.4.3 Correlations between the two defects 24

6 Free energy, phase transition, and confinement 25

6.1 Free energy 25

6.2 Phase transition 27

6.3 Confinement 28

6.4 Chiral condensate 31

7 Finite temperature 33

7.1 Background metric and D7-brane configuration 33

7.2 Free energy and phase transition 35

8 Summary and discussion 37

8.1 Correspondence between FQHE and 2-dimensional QCD 37

8.2 Relation to FQHE and outlook 38

A Notation 40

B Solutions of the equations of motion 40

B.1 Equations of motion 40

B.2 Solutions for T < Tc 43

B.3 Solutions for T > Tc 44

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
3

1 Introduction

Pure gauge theory in three dimensions has some distinguishing features when compared

to its more familiar 4-dimensional cousin, which arise from two important differences:

(1) the Yang-Mills (YM) coupling is a dimensionful quantity and determines the scale of

confinement; and (2) in three dimensions it is possible to include a Chern-Simons (CS)

term, inducing a gauge-invariant “topological mass” [1].

Pure Chern-Simons theory in particular has a wide range of interesting properties, and

has seen numerous applications. Witten [2] showed that the expectation values of Wilson

loop operators in SU(2) CS theory reproduce the Jones polynomial knot invariants, leading

to extensive development of its applications to knot theory. CS theory also has important

applications in condensed matter theory, the most important perhaps being its use as an

effective theory for the Fractional Quantum Hall Effect (FQHE). For example, U(1) CS-

theory at level m gives the low energy effective theory of the mth Laughlin state, which

realizes the FQHE with filling fraction ν = 1/m [3, 4] (for a review see, e.g., [5]). Another

interesting aspect of CS theory is level-rank duality, the equivalence between the U(N) CS

theory at level1 k and the U(k) CS theory at level N [6–9].2 This level-rank duality is re-

lated to Seiberg-like duality in 3-dimensional supersymmetric gauge theories [10–15]. More

recently, it has been generalized to non-supersymmetric theories with matter in the funda-

mental representation [16–22], providing rare examples of dualities in dynamical theories

that can be established explicitly by exact calculations.

In this paper, we study the properties of 2-dimensional defects (domain walls) sepa-

rating two phases at different CS levels in SU(N) YM-CS theory using string theory and

holography.3 While the CS term is not gauge-invariant in the presence of such level chang-

ing defects, the full quantum system is rendered consistent by the Callan-Harvey anomaly

inflow mechanism [23]: the tree level gauge variation of the action is canceled by the chiral

anomaly of chiral fermions that live on the defect.

There are several motivations for introducing such defects. One is to see how the

defects behave under level-rank duality. Assuming that level-rank duality works locally, it

predicts that the rank of the gauge group in the dual description jumps at the defect.4 We

will give a geometric understanding of this phenomenon in terms of the brane configuration

in the holographic model. A second motivation arises if we compactify one of the spatial

directions to a circle, and introduce a defect - anti-defect pair separated along the circle;

the system then flows to 2-dimensional QCD at low energies. Two-dimensional QCD in the

large N limit is known to be solvable [25] and has rich structures, such as confinement and

chiral symmetry breaking, similar to 4-dimensional QCD. We will discuss some interesting

1In this paper, the CS level always denotes the bare value in the YM regularization.
2More precisely, as reviewed in [22], there are several flavors of level-rank duality, the ones relevant to

the unitary group being the SU(N)k ↔ U(k)−N,−N and U(N)k,k+N ↔ U(k)−N,−k−N dualities. (Here the

first and second subscripts of U(m) denote the levels of the SU(m) and the U(1) components, respectively.
3The system we consider is not exactly YM-CS theory, but contains extra massive matter. See section 3

for details.
4The recent paper [24] studied similar defects in supersymmetric CS theory, together with their behavior

under level-rank duality, in terms of intersecting brane models and their brane moves.
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relations between 3-dimensional YM-CS theory and 2-dimensional QCD, which might shed

some new light on the QCD physics. These defects are of interest in condensed matter

physics as well, so it is of value to study them in the holographic context. As we will see,

these defects generalize edges in the FQHE, and like FQH state edges, have gapless chiral

excitations localized on them.

A string theory realization of the YM-CS system (without defects) was proposed in [26],

where YM-CS dynamics is realized as the infrared behavior of a D3/D7 system. The 3-

dimensional SU(N) gauge theory with level (−k) CS term5 is constructed by putting N D3

branes compactified on an S1 with SUSY-breaking boundary conditions and k units of RR

1-form flux. The gravity dual is obtained by taking the near horizon limit of the background

corresponding to the N D3 branes (the AdS5 soliton) in the presence of k probe D7 branes

wrapped on S5. One nice feature of this construction is that its IR behavior explains the

level-rank duality of CS theory. Furthermore, the fractionally quantized Hall conductivity

was computed in both the gauge theory side and its gravity dual, and it was shown how

the model could be used to compute the topological entanglement entropy [27–29].

Our main goal is to show how to realize defects shifting the CS level from (−k) to (−k′)
within this model, and to analyze the system in detail using holography. The defects are

naturally realized geometrically by |k − k′| D7 branes peeling off the soliton tip to attach

to the AdS boundary along the defect locus. Note that the gravity dual can be treated

within the supergravity approximation when N and the ’t Hooft coupling λ3d = g23dN are

large. Therefore, we are dealing with large N strongly coupled regime of the 3-dimensional

gauge theory.6

Although the direct relevance of the large N gauge theories to condensed matter sys-

tems is perhaps questionable, non-Abelian CS theory does have known applications to

condensed matter theory. In the FQH state with filling fraction ν = 1
2 , for example, the

effective theory of the fermionic Moore-Read Pfaffian state can be derived by flux attach-

ment from the SU(2)2 CS theory describing the bosonic Pfaffian state at ν = 1 [30].7 The

(non-abelian) edge states of the non-Abelian CS theory are also known to play an impor-

tant role in the context of FQHE, being the edge excitations which carry the topologically

protected and quantized Hall response [33–35]. In fact, the derivation of the bulk effective

SU(2)2 CS action in [30] started from the observation that the edge theory of the bosonic

Pfaffian state at ν = 1 is a SU(2)2 Kac-Moody algebra.

The contents of this paper can be summarized as follows. We begin in section 2

by introducing 3-dimensional SU(N) YM-CS field theory and its level-changing defects,

followed by its realization by probe branes in section 3. Section 4 analyses the probe

5We take this unusual sign convention for the level because it turns out to be convenient when discussing

the holographic dual. This is related to the sign change under level-rank duality of Chern-Simons theory:

the U(k)N,N theory is dual to SU(N)−k.
6In this paper, we treat k to be of O(N0). This is different from the usual large N analysis of the

CS-theory, in which k is assumed to be of O(N).
7An important step to understand these new states was the insight that electrons in a completely filled

Landau level can undergo perturbative p-wave pairing via the statistical gauge field interaction, and then

Bose-Einstein condense [31]. This state is in the same universality class as the bosonic Pfaffian state [32],

and can be connected to the ν = 1/2 state via flux attachment.
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D7(D7) branes on the gravity side and gives general solutions for the transverse scalar and

the worldvolume gauge fields. In section 5, we perform the holographic renormalization

of the on-shell D7-brane action, and use the renormalized action to compute holographic

correlation functions of defect operators. Section 6 uses these results to investigate the

low temperature phases of the theory: in section 6.1, the free energy of the D7-brane

configuration is evaluated, revealing a phase transition in the correlation functions across

defects pairs as a function of defect separation in section 6.2. Section 6.3 studies in greater

detail the question of confinement vs. topological behavior in YM-CS from the point of

view of the gravity dual by showing that the Wilson loop expectation value calculated

on the gravity side shows topological (and not area law) behavior at large separations

distances. In section 6.4, we then compute and discuss the chiral condensate that forms

between the chiral fermions living on adjacent defect - anti-defect pairs. In section 7, we

generalize our considerations to higher temperatures by replacing the AdS soliton with

the AdS black hole, and study the effects of finite temperature on the phase transitions

of the cross-defect correlators. Finally in section 8, we summarize our results and discuss

some of the implications and the outlook. In particular, we point out an interesting relation

between the FQHE and 2-dimensional QCD in section 8.1, and discuss possible applications

of our model to FQH physics in section 8.2. Our notational conventions are summarized in

appendix A, and details of the solutions of the D7-brane equations of motion can be found

in appendix B.

2 Yang-Mills-Chern-Simons theory and its level-changing defects

In this section, we consider 3-dimensional SU(N) YM-CS theory defined on a flat spacetime

parametrized by xµ (µ = 0, 1, 2). We study this theory in the presence of 2-dimensional

defects (domain walls) at which the CS level changes. To simplify things, we consider only

defects extended along the x± ≡ (x0 ± x1)/2 directions8 at fixed values of y ≡ x2 so that

the 2-dimensional Lorentz symmetry is preserved.

As a first example, let us consider a defect placed at y = 0, as depicted in the left

panel of figure 1. The level of the CS term is set to be (−k) and (−k′) for the regions

y < 0 and y > 0, respectively. We assume that k and k′ are integers satisfying k > k′. The
Lagrangian for the SU(N) gauge field A = Aµdx

µ is

SA = − 1

4g23d

∫
d3xTr(FµνFµν)−

k

4π

∫

y<0
ω3(A)−

k′

4π

∫

y>0
ω3(A) , (2.1)

where ω3(A) is the Chern-Simons 3-form9

ω3(A) ≡ Tr

(
A ∧ dA− 2i

3
A ∧A ∧A

)
. (2.2)

Note that the CS 3-form transforms as

δαω3(A) = dTr(αdA) , (2.3)

8Our convention for the light-cone coordinates is summarized in appendix A.
9We choose the orientation of all p-form integrals so that the integral of dx0 ∧ dx1 ∧ · · · is positive.
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Figure 1. Left: a (1+1)-dimensional defect in (2+1)-dimensional SU(N) YM-CS theory. Chiral

fermions on the defect induce the jump in the CS level when crossing the defect, and give rise

to chiral U(k − k′) global currents. Right: a more complicated configuration in which a YM-CS

vacuum with nontrivial level can exist between vacua of pure YM theory if the fermions on both

defects are equal in number but opposite in chirality.

under the infinitesimal gauge transformation δαA = dα − i[A,α], and the action (2.1)

transforms as

δαSA =
k′ − k

4π

∫

y=0
Tr(αdA) . (2.4)

Here, we have assumed that the gauge field is continuous at y = 0, and dropped boundary

terms at infinity not relevant for our discussion. In order to have a gauge invariant action,

we put (k− k′) negative chirality Weyl fermions ψi
− (i = 1, 2, · · · , k− k′), which transform

as the fundamental representation of the gauge group SU(N), on the 2-dimensional defect

at y = 0. The subscript “−” of ψi
− indicates the chirality of the fermion. The action for

the chiral fermions is

Sψ =

∫

y=0
d2xψ†

−i(i∂+ +A+)ψ
i
− , (2.5)

where ∂± ≡ ∂0 ± ∂1 and A± ≡ A0 ±A1. The gauge anomaly induced by the chiral fermion

precisely cancels the anomalous gauge transformation due to the CS term (2.4), and the

whole system is gauge invariant.10

In the following sections, we consider operators inserted on the defects. An important

example for the defect operators is the current operator associated to the U(k− k′) global
symmetry, which acts on the chiral fermions on the defect, defined as

Ja+ ≡ ψ†
−j(T

a)jiψ
i
− , (2.6)

10Depending on the regularization, local counterterms may also be needed.
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where T a are the generators of the U(k−k′) symmetry. When the external gauge field A+

associated to the U(k−k′) symmetry is introduced in the action (2.5), it naturally couples

with the current operator as
∫

y=0
d2xAa

+J
a+ . (2.7)

As with any gauge field, coupling an external gauge field to 2-dimensional chiral fermions

gives rise to a chiral anomaly. From the point of view of the external U(k − k′) symmetry

there are N chiral fermions, and as a result the gauge variation δAa
+ = D+Λ

a of the

effective action S(A) takes the form

δΛS(A) =
N

4π

∫
d2xΛa∂−Aa

+ . (2.8)

From δW [A] =
∫
d2xJaµ(x)δAa

µ(x) and the relation J− = −2J+ we obtain the anomalous

current conservation equation11

〈D+J−〉 =
N

2π
∂−A+ . (2.9)

Another example is the operator associated with the displacement of the defect. If

we put the defect at y = ǫ with |ǫ| ≪ 1, the chiral fermions couple with the gauge field

evaluated at y = ǫ and hence the action (2.5) is modified as

Sψ ≃
∫

y=0
d2x

(
ψ†
−i(i∂+ +A+)ψ

i
− + ǫOy

)
, (2.10)

where

Oy ≡ ψ†
−iFy+ψ

i
− , (2.11)

and Fy+ = ∂yA+ − ∂+Ay − i[Ay, A+].
12 We will also consider a third operator that does

not have such a straightforward geometric interpretation from the point of view of the field

theory, the dimension 5 operator

O+ ≡ ψ†
−iF+yF+yψ

i
− . (2.12)

When k < k′ then, as the coefficient of (2.4) has the opposite sign, we should introduce

(k′−k) chiral fermions with positive chirality ψi
+ (i = 1, 2, · · · , k′−k) on the defect. Then,

the action for the fermions with the source terms is

Sψ =

∫

y=0
d2x

(
ψ†
+i(i∂− +A−)ψ

i
+ +Aa

−J
a− + ǫO′

y

)
, (2.13)

where

Ja− ≡ ψ†
+j(T

a)jiψ
i
+ (2.14)

11See the footnote in p.422 of [58] for a comment on this form of the anomaly equation.
12The easiest way to see this is to work in the Ay = 0 gauge and insert the expansion A+|y=ǫ ≃

A+|y=0 + ǫ ∂yA+|y=0 +O(ǫ2) into (2.5).
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is the current operator associated with the U(k′ − k) symmetry and O′
y is defined as

O′
y ≡ ψ†

+iFy−ψ
i
+ . (2.15)

The generalization to more complicated configurations is straightforward. In sec-

tions 4–7, we will mainly consider the case with two defects at y = −L and y = L,

which change the level of the CS term from 0 to −1 at y = −L and −1 to 0 at y = L along

the y axis. Such a configuration is depicted in the right panel of figure 1. The action for

the gauge field is

SA = − 1

4g23d

∫
d3xTr(FµνFµν)−

1

4π

∫

−L<y<L
ω3(A) . (2.16)

In this case, we put positive and negative chirality fermions at y = −L and y = L,

respectively. In the region with |y| > L, the theory is pure YM theory without CS term.

YM theory in 3-dimensions is known to have a mass gap due to confinement and the

Wilson loop exhibits area law behavior. Pure CS theory on the other hand is a topological

theory, so that the expectation value of Wilson lines depends only on topology and is

independent of separation. It is a non-trivial question which behavior arises in the region

between the two defects: the system should be gapped, as the CS term gives the gauge

field a mass at tree level, but if the gap is sufficiently smaller than the confinement scale,

the confining behavior may take over. (See, e.g., [36, 37] for a discussion of related issues.)

We address the question of confinement in our system in section 6.3.

3 Brane configuration

We now turn to the realization of 3-dimensional YM-CS theory with level-changing defects

by the infrared behavior of a brane configuration in string theory.

Consider Type IIB string theory compactified on an S1 of radius M−1
KK and N D3

branes wrapped on it. The D3 brane is extended along x0, x1, x2 ≡ y and x3 ≡ τ directions,

where τ parametrizes the S1 direction. Following [38], we impose an anti-periodic boundary

condition on all the fermions along the S1. This SUSY-breaking boundary condition gives

all fermion modes a tree level mass of order MKK. Quantum corrections then induce masses

in the scalar fields, lifting them from the infrared spectrum. The resulting theory is thus

expected to flow to 3-dimensional pure SU(N) YM theory at low energies.13 The gauge

coupling g3d for the 3-dimensional YM theory is identified with

g23d = gsMKK , (3.1)

where gs is the string coupling.

Note that we can safely take the limit ls → 0, where ls is the string length, so that all

the stringy excited states become infinitely heavy and the couplings to closed strings van-

ish. To be precise, the resulting theory is not exactly pure 3-dimensional YM theory, but

13Since we do not take into account the singleton degrees of freedom in our consideration in section 4,

the U(1) part of the U(N) gauge group is dropped. (See, e.g., [40, 41] and appendix B of [42].) In any case,

the difference between U(N) and SU(N) is not important in the large N limit.
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N = 4 supersymmetric YM theory compactified on the S1 with SUSY-breaking boundary

conditions. The 3-dimensional pure YM theory is realized as the massless sector of this

configuration, but there are infinitely many massive Kaluza-Klein (KK) modes associated

to the S1. In principle, in order to make the KK modes infinitely heavy, we should take the

limit MKK → ∞ with λ3d ≡ g23dN kept finite14 by tuning gs → 0. However, in the follow-

ing sections, we study the holographic description within the supergravity approximation,

which can be trusted only when N ≫ 1 and λ3d ≫ MKK. Therefore, it is not possible to

decouple the Kaluza-Klein modes in the parameter region we are going to consider. For

this reason, we will keep MKK finite, and mainly consider the low energy behavior of the

theory. We hope that the KK modes will not alter the qualitative behavior at low energies.

The CS term is obtained by introducing non-zero RR flux dC0, where C0 is the RR

0-from field, along the S1. [26]. Recall that the CS term of the D3-brane action has the

following term when dC0 is non-trivial:

SD3
CS = − 1

8π2

∫

R3×S1

dC0 ∧ ω3(A) . (3.2)

Therefore, when we have
∫

S1

dC0 = 2πk , (3.3)

(3.2) gives the CS term at level (−k) and hence we obtain the brane configuration corre-

sponding to the 3-dimensional SU(N) YM-CS theory at low energies.

In order to introduce 2-dimensional defects with chiral fermions on them, we put

D7 branes extended along x0, x1, x4, · · · , x9 directions, as considered in [44–46] for the

supersymmetric case. When n D7 branes are placed at y = τ = 0, the 3-7 strings (open

strings stretched between D3 branes and D7 branes) give n flavors of chiral fermions as

the massless modes. In addition, since the D7 branes are magnetically charged under RR

0-form field C0, we have the relation
∫

S1
−

dC0 −
∫

S1
+

dC0 = 2πn , (3.4)

where S1
+ and S1

− are the S1 in the τ direction with y > 0 and y < 0, respectively. Choosing

C0 to satisfy
∫

S1
+

dC0 = 2πk′ ,
∫

S1
−

dC0 = 2πk , (3.5)

with n = k − k′, the CS term (3.2) becomes

SD3
CS = − k

4π

∫

y<0
ω3(A)−

k′

4π

∫

y>0
ω3(A) , (3.6)

which agrees with the CS term in (2.1). In this way, the first example in section 2 is

obtained by putting (k − k′) D7 branes at y = τ = 0.

14The typical energy scale in 3-dimensional YM theory is given by λ3d. See [43] for a lattice study of

3-dimensional large N gauge theories.
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Similarly, the brane configuration that realizes the theory in (2.16) is given by placing a

D7 brane and a D7 brane at y = L and y = −L, respectively. It is known that the chirality

of the massless fermion in the spectrum of the 3-7 strings is opposite to that of the 3-7

strings, as required by the anomaly cancellation discussed in section 2. This configuration

is a close analogue to the D4-D8-D8 system used in [47] to obtain a holographic description

of QCD. In fact, if we place Nf D7 branes at (y, τ) = (0, 0) and Nf D7 branes at (y, τ) =

(0, πM−1
KK), and T-dualize along the y direction, we obtain the D2-D8-D8 system considered

in [48, 49], which is the 2-dimensional version of the holographic QCD.

One may question the stability of this brane configuration. At the least we must make

sure that the separation between the D7 brane and the D7 brane is larger than the string

length scale ls so that there is no tachyonic mode in the spectrum of the open strings

connecting the D7 brane and the D7 brane. In addition, because the D7 brane and the D7

brane are attracted to each other by closed string exchange, the asymptotic behavior of

the branes may need to be modified to pull the D7 brane and D7 branes apart at infinity

so as to balance the force. We will not try to investigate this issue in this paper. In the

following sections, we will only consider the near horizon limit of the D3-brane background

and assume that we can work in the probe approximation [50], in which the backreaction

due to the D7 branes is neglected, with N being much larger than the number of D7

branes. At least in this limit, it is possible to show that there are no tachyonic modes in

the fluctuations of the D7 brane in the holographic description.

4 Holographic description

4.1 Background geometry

As mentioned in the previous section, we treat D7 branes as probe branes embedded in

the near horizon geometry corresponding to the D3-brane background. The background

corresponding to the D3 brane considered in section 3 is called the AdS soliton background.

The metric as well as the configuration of the other fields for this background is explicitly

known [38].15 The metric is given by

ds2 =
u2

R2

(
ηµνdx

µdxν + f(u)dτ2
)
+

R2

u2
du2

f(u)
+R2dΩ2

5 , (4.1)

where ηµν = diag(−1, 1, 1) (µ, ν = 0, 1, 2) is the 3-dimensional Minkowski metric, dΩ2
5 is

the line element of the unit S5, and

f(u) ≡ 1− u40
u4

. (4.2)

We also use the coordinates x± ≡ 1
2(x

0 ± x1) and y ≡ x2 as we did in the previous section.

Since f(u) should be positive, the radial coordinate u is restricted as u ≥ u0. The τ

direction is compactified to a circle of radius M−1
KK by the identification

τ ∼ τ + 2πM−1
KK . (4.3)

15See [51] for a review.
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To avoid a conical singularity at u = u0, MKK must be related to u0 and R by

MKK =
2u0
R2

. (4.4)

The dilaton field φ is constant and it is related to the string coupling gs as gs = eφ. The

parameter R in the metric (4.1) is related to the string length ls =
√
α′ and the number of

D3 branes N as

R4 = 4πgsNl4s . (4.5)

In addition, the RR 5-form field strength F5 satisfies16

∫

S5

F5 = 2πN . (4.6)

4.2 Probe D7 brane

The D7 branes (or D7 branes) corresponding to the defects considered in the previous

section are extended along xM = (x0, x1, u) directions and wrapped on the S5. However,

since the AdS soliton background spacetime (4.1) smoothly ends at u = u0, and since D7

branes ending somewhere in spacetime violates charge conservation, the D7 brane has to

bend in one of the directions in the (y, τ) space. In the following, we will mostly focus on

a single defect-antidefect pair, which corresponds to the configuration with a D7-D7 pair

considered in the previous section. As we will soon show, when the D3 branes are replaced

with the AdS soliton background, the D7 brane and D7 brane are connected with each

other and become a single D7 brane embedded in the bulk of the AdS soliton, as depicted

in figure 2. The D7-brane configuration corresponding to a single defect can be obtained as

a limit when the D7 brane is infinitely far away from the D7 brane. More general situations

can be obtained by putting multiple probe D7-branes.

Let us start with a single D7 brane embedded in the background. In order to find a

consistent D7-brane configuration, we have to solve the equations of motion for the fields

on the D7-brane world-volume. We parametrize the D7-brane world-volume using xM and

the coordinates of the S5. For simplicity, we only turn on 3-dimensional components aM
(M = 0, 1, u) of the U(1) gauge field on the D7 brane and consider the configurations that

are uniform along the S5 directions. The position of the D7 brane in the (y, τ) space is

given by the functions y = y(xM ) and τ = τ(xM ), which are treated as scalar fields on the

D7 brane. The effective action is

SD7 = SD7
DBI + SD7

CS (4.7)

with

SD7
DBI = − 1

(2π)7l8sgs

∫
dx0dx1du vol(S5)R5

√
− det (gMN + (2πα′)fMN ) , (4.8)

SD7
CS =

1

8π2

∫
F5 ∧ a ∧ da , (4.9)

16Different conventions for the normalization of the five-form flux exist in the literature. Here we follow

appendix A of [47]. In another normalization convention the dimension of
∫

S5

F5 is [mass]−4, and the flux

integral is quantized in units of (2πℓs)
4gs.
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where vol(S5) is the volume form of the unit S5, gMN is the induced metric, a = aMdxM

is the gauge field on the D7 brane and fMN ≡ ∂MaN − ∂NaM is its field strength. The

induced metric can be written explicitly as

gMN = GMN +Gij∂Myi∂Nyj , (4.10)

where yi = (y, τ) are the embedding functions and (GMN , Gij) are part of the background

metric read from (4.1), whose non-zero components are given as

Gµν =
u2

R2
ηµν , Guu =

R2

u2
1

f(u)
, Gyy =

u2

R2
, Gττ =

u2

R2
f(u) . (4.11)

Integrating over the S5, the action is reduced to the 3-dimensional DBI-CS action:

SD7
DBI = −T3d

∫
dx0dx1du

√
−G , (4.12)

SD7
CS =

N

4π

∫
a ∧ da =

N

8π

∫
dx0dx1du (a−f+u − a+f−u − auf+−) , (4.13)

where the effective 3d tension is given by

T3d =
RN

8π(2πα′)2
, (4.14)

and G is defined as

G = det(GMN ) , (4.15)

where

GMN = gMN + (2πα′)fMN . (4.16)

Here we have used (4.5) and (4.6). Note that the level of the CS term (4.13) is N , which

we take to be positive.

The equations of motion for the transverse embedding coordinates yi = (y, τ) and the

gauge field aM take the form

∂M

(√
−GGijGMN

S ∂Nyj
)
= 0 , (4.17)

(2πα′)T3d∂M

(√
−GGMN

A

)
=

N

4π
ǫNPQfPQ . (4.18)

Here GMN
S and GMN

A are defined as

GMN
S =

1

2
(GMN + GNM ) , (4.19)

GMN
A =

1

2
(GMN − GNM ) , (4.20)

which are respectively the symmetric and antisymmetric parts of the inverse matrix GMN

of GMN , i.e. GMNGNP = δMP . (See appendix B.1 for more details.) In appendix B.2,
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we summarize the solutions of these equations in the case that yi and fMN depend only

on u. If we further assume that the gauge field aM depends only on u, the most general

solution is17

y(u) = y0 + cy

∫ u

umin

du′
R5

F (u′)
, (4.21)

τ(u) = τ0 + cτ

∫ u

umin

du′
R5

f(u′)F (u′)
, (4.22)

a±(u) = a
(0)
± ± c±

8πα′ exp

(
∓4

∫ u

umin

du′
u′4

F (u′)

)
, (4.23)

where y0, cy, τ0, cτ , a
(0)
± , c± and umin are constants, and

F (u) ≡
√
u4f(u)

(
u6 + u4c+c− −R6c2y −

R6c2τ
f(u)

)
. (4.24)

To see what the solution looks like, consider the case with τ0 = cτ = a
(0)
± = c± = 0

and cy > 0. Then, (4.21) becomes

y(u) = y0 +R2u3∗

∫ u

umin

du′√
(u′4 − u40)(u

′6 − u6∗)
, (4.25)

where u∗ ≡ Rc
1/3
y .

Näıvely, for a given choice of asymptotic boundary conditions on y(u) as u → ∞ there

are two distinct branches of solutions, one with u∗ ≥ u0 and the other with u∗ < u0.

However, the second branch corresponds to a D7 brane whose two ends asymptotically ap-

proach opposite sides of the τ circle. To better understand this solution, define coordinates

(ρ, θ) on the (u, τ) plane by the identifications

ρ2 =
R2u2

4u20
f(u) , θ =

2u0
R2

τ . (4.26)

Note that θ has periodicity 2π. The 5-dimensional metric takes on the form

ds25 =
u2(ρ)

R2
ηµνdx

µdxν +
4u20/u

2(ρ)
(
1 + u40/u

4(ρ)
)2 dρ

2 + ρ2 dθ2 . (4.27)

We further introduce coordinates (v, w) by

v = ρ cos θ , w = ρ sin θ , (4.28)

in which the asymptotic region corresponds to ρ2 = v2 + w2 → ∞. The solutions we

consider have τ = 0, which in the new coordinates is w = 0. We thus wish to solve for y

as a function of v. The differential relation now becomes

dy

dv
=

2Ru3∗u0
u2(v)(1 + u40/u

4(v))
√

u6(v)− u6∗
. (4.29)

17With this assumption, au does not appear in the equations of motion and can be an arbitrary function

of u.
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Figure 2. A plot of the solution (4.30) with u0 = R = 1 and u∗ = 1.1.

In the case u∗ < u0, the resulting brane profile v(y) does not have a turning point. Instead,

the solutions behave as v(y) → ±∞ as y → ±∞. Referring to our original coordinate

system, we see that w = 0, v < 0 corresponds to the angular position θ = π. Thus the

branch u∗ < u0 corresponds to a defect with θ → 0 as v → ∞, and θ → π as v → −∞.

We will therefore focus on the case u∗ ≥ u0. It is convenient to choose umin = u∗ and

y0 = 0. This solution makes sense for u ≥ u∗ and terminates at u = u∗. Actually, u = u∗ is

a turning point and the solution is smoothly connected to the solution obtained by flipping

the sign of cy as

y(u) = ±R2u3∗

∫ u

u∗

du′√
(u′4 − u40)(u

′6 − u6∗)
. (4.30)

The solution is U-shaped as depicted in figure 2. The asymptotic value of y is given by

y(u = ∞) = ±L with

L ≡ lim
u→∞

|y(u)| = R2u3∗

∫ ∞

u∗

du√
(u4 − u40)(u

6 − u6∗)
. (4.31)

It is often convenient to use a coordinate that can smoothly parametrize the D7-brane

world-volume around u = u∗. One way to do this is to introduce a coordinate z related to

u by

u2 = u2∗(1 + z2) . (4.32)

Then, (4.30) can be written as

y(z) = R2u∗

∫ z

0

dz√
(u4∗(1 + z2)2 − u40)(1 + z2)(3 + 3z2 + z4)

, (4.33)

which is valid for −∞ < z < ∞.

The configuration given by the solution (4.30) corresponds to the case with a D7

brane and D7 brane placed at y = L and y = −L, respectively, considered in section 3.

As explained around (3.2), the CS level for the SU(N) YM-CS theory is given by the

integration of the RR 1-form field strength dC0 along the S1 parametrized by τ . In the

holographic description, it corresponds to minus the number of D7 branes penetrating the
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(u, τ) plane. Therefore, the configuration given by (4.30) (or (4.33)) corresponds to the

SU(N) YM-CS theory with the level (−1) CS term in the region −L < y < L considered

around (2.16).

The L defined in (4.31) is a monotonically decreasing function of u∗ and it diverges in

the limit u∗ → u0. In this limit, the two defects are pushed to infinity and the D7 brane is

placed at u = u0. This is the configuration corresponding to SU(N) YM-CS theory without

a defect considered in [26]. When k D7 branes are placed at u = u0, it corresponds to the

SU(N) YM-CS theory at level (−k). Interestingly, as pointed out in [26], the world-volume

theory realized on the D7 branes is a U(k) DBI-CS theory at level N , which implies the

level-rank duality of CS theory at low energy. Our construction should therefore give us

insight into how level-rank duality acts on level-changing defects.

A configuration with a single defect is obtained by pushing one of the two defects in

the U-shaped solution (4.30) to infinity. It can be achieved by taking a limit u∗ → u0,

while keeping one defect at a finite position by adjusting y0 appropriately. For example, a

solution corresponding to a defect placed at y = 0 is given by

y(u) = −R2u30

∫ ∞

u

du′√
(u′4 − u40)(u

′6 − u60)
. (4.34)

If there are (k−k′) D7 branes satisfying this equation and, in addition, k′ D7 branes placed

at u = u0, we have k and k′ D7 branes in y < 0 and y > 0, respectively, as depicted in

figure 3. (Here we have assumed 0 < k′ < k.)18 This configuration corresponds to the setup

described around (2.1). Note that the gauge group on the D7-brane world-volume is U(k)

at y → −∞, where k D7 branes are placed at the tip of the AdS soliton (u = u0). This

gauge group is Higgsed to U(k′)×U(k− k′) by peeling (k− k′) D7 branes off from the tip

in −∞ < y < 0. The U(k−k′) factor becomes the global symmetry on the defect at y = 0,

where the (k − k′) D7 branes reach the boundary u → ∞. The U(k′) factor, on the other

hand, remain intact and continues to be the gauge group on the D7 brane world-volume

in y > 0. In this way, the level-changing defect at y = 0 is mapped to the rank-changing

defect on the D7-brane world-volume, as suggested by the level-rank duality.

Let us next examine solutions with non-trivial gauge fields on the D7 brane. Here, we

consider the U-shaped solution with c± 6= 0 and cτ = 0. In this case, the turning point u∗
is related to cy by

c2y =
u6∗
R6

(
1 +

c+c−
u2∗

)
. (4.35)

If we use the coordinate z introduced in (4.32), the solution (4.21)–(4.23) becomes

y(z) =
R2

u∗

√
1 +

c+c−
u2∗

∫ z

0

dz′

F̃ (z′)
, (4.36)

a±(z) = a
(0)
± ± c±

8πα′ f
(∓)(z) , (4.37)

18In our conventions, a single D7 brane at the tip of the AdS soliton induces a CS level (−1). Hence

positive CS levels require negative numbers of D7 branes, i.e. D7 branes.
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✛ (k − k′) D7 branes

k D7 branes k′ D7 branes

Figure 3. A D7-brane configuration with a single defect (u0 = R = 1).

where we have set y0 = 0, and defined

F̃ (z) ≡
√

(1 + z2)

(
(1 + z2)2 − u40

u4∗

)(
3 + 3z2 + z4 + (2 + z2)

c+c−
u2∗

)
, (4.38)

and

f (±)(z) ≡ exp

(
±4

∫ z

0
dz′

(1 + z′2)2

F̃ (z′)

)
. (4.39)

This function (4.39) satisfies

f (±)(z) = f (∓)(−z) =
1

f (∓)(z)
, (4.40)

and the asymptotic behavior is

f (+)(z) ≃ eξ

u4∗

(
u4 + c+c−u

2 +
c2+c

2
−

8
− u40

2

)
+O(u−2) , (4.41)

f (−)(z) ≃ e−ξ u
4
∗

u4
+O(u−6) , (4.42)

for z =
√
u2/u2∗ − 1 → +∞, where we have defined

ξ ≡ 4

∫ ∞

u∗

du

(
u4

F (u)
− 1

u

)
= 4

∫ ∞

0
dz

(
(1 + z2)2

F̃ (z)
− z

1 + z2

)
. (4.43)

The solution (4.36)–(4.37) behaves as

y(u) ≃ L− R2

4

√
1 +

c+c−
u2∗

u3∗
u4

+O(u−6) , (4.44)

a+(u) ≃ a
(0)
+ +

c+e
−ξ

8πα′
u4∗
u4

+O(u−6) , (4.45)

a−(u) ≃ c−eξ

8πα′u4∗

(
u4 + c+c−u

2 +
c2+c

2
−

8
− u40

2

)
+ a

(0)
− +O(u−2) , (4.46)
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operator ∆ source vev

Oy 3 y y

J− 1 a+ a−
O+ 5 a− a+

Table 1. Defect mode/operator map.

for z → +∞, and

y(u) ≃ −L+
R2

4

√
1 +

c+c−
u2∗

u3∗
u4

+O(u−6) , (4.47)

a+(u) ≃ c+e
ξ

8πα′u4∗

(
u4 + c+c−u

2 +
c2+c

2
−

8
− u40

2

)
+ a

(0)
+ +O(u−2) , (4.48)

a−(u) ≃ a
(0)
− +

c−e−ξ

8πα′
u4∗
u4

+O(u−6) , (4.49)

for z → −∞, where

L =
R2

u∗

√
1 +

c+c−
u2∗

∫ ∞

0

dz

F̃ (z)
. (4.50)

5 Operators on the defects

5.1 Defect mode/operator map

The map between operators on the defect and fields on the D7 brane when supersymmetry

is unbroken was analyzed in [46]. Since the asymptotic behavior of the background met-

ric (4.1) and the D7-brane configuration is the same as that used in [46], the results can

be applied to our system.

Note that the brane configuration considered in section 3 is invariant under the SO(6)

symmetry that rotates the S5. Since the 3-dimensional gauge field and the fermions on the

defects are all singlets of SO(6), we are interested in the operators that are invariant under

the SO(6) symmetry. There are four SO(6) invariant defect operators, denoted here as J−,
Oy, Oτ and O+,

19 corresponding to SO(6) invariant modes on the D7 brane at y → +L in

the brane configuration in section 4.2. As the notation suggests, J− is (the U(1) part of)

the current operator considered in (2.6). Keeping only the gauge field Aµ (µ = 0, 1, 2) and

the defect fermion ψ− in the analysis of [46], it can be shown that Oy corresponds to the

operator defined in (2.11), and O+ corresponds to the dimension 5 operator (2.12). Since

Oτ involves Aτ (the τ component of the gauge field on the D3 brane) or the derivative with

respect to τ , we will not consider it in the following. The conformal dimension of these

operators and the corresponding fields on the D7 brane are listed in table 1.

As suggested in this table, the sources of the operators Oy, J− and O+ correspond to

the leading components of the asymptotic expansion of the fields y, a+ and a−, respectively.

19They correspond to O(0), QiQjO
(1), Q†iQ†jO(1), and QiQjQ

†kQ†lO(2) in table 4 of [46]. Note that

our conventions for the light-cone coordinates are the reversed relative to this reference, x±
here = x∓

there.
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∆ in the table is the conformal dimension of these operators. Note that the leading terms

for y, a+ and a− in (4.44)–(4.46) are O(u0), O(u0) and O(u4), respectively. Because the

dimensions of the bulk objects u, y and a± under rescalings of the boundary are +1,

−1 and +1, respectively, these asymptotic behaviors are consistent with the conformal

dimensions of the sources for Oy, J− and O+, which are −1, 1 and −3, respectively. The

correlation functions of these operators can be computed by the variation of the on-shell

action with respective to the sources. The vacuum expectation values 〈Oy〉, 〈J−〉 and 〈O+〉
are contained in the O(u−4), O(u0) and O(u−4) terms in the asymptotic expansions of y,

a−, and a+, respectively. We will examine them in the following subsections.

The argument above can also be applied to the other defect at y → −L, and the table

corresponding to table 1 is obtained by the replacement: Oy → O′
y, J− → J+, O+ → O−

and a± → a∓.

5.2 Holographic renormalization

Following the general prescription of AdS/CFT correspondence [40, 52], the correlation

functions are obtained by varying the on-shell action. We are mostly interested in the

correlation functions of the defect operators. For this purpose, one should evaluate the on-

shell DBI-CS action including the counterterms that cancel the divergences in the on-shell

action to make it well-defined.20 The general procedure of the holographic renormalization

for our system turns out to be very complicated [54]. In order to avoid such complications,

we restrict our consideration to the x± independent configurations, which still contain

interesting information as we will soon show.

5.2.1 Counterterms and the on-shell action

First, let us find the counterterms needed to cancel the divergences. Here, we consider the

solution (4.36)–(4.37). In this section, we allow the gauge field to depend on x±, while
assuming that its field strength is x± independent. Then, the constant part a

(0)
± in (4.37)

and a
(0)
u ≡ au can be promoted to a flat connection satisfying

∂Ma
(0)
N − ∂Na

(0)
M = 0 . (5.1)

As we will see in section 5.2.2, a
(0)
± should not diverge at z → ±∞ so that the boundary

condition is consistent with the variational principle.

Inserting the solution (4.36)–(4.37) into the DBI-CS action (4.12)–(4.13), and us-

ing (B.27), the on-shell action is evaluated as

So.s.
DBI = −T3d

∫
d2x

∫ z+

z−

dz
u2∗(1 + z2)3

RF̃ (z)
, (5.2)

So.s.
CS =

N

8π

∫
d2x

∫ z+

z−

dz
(1 + z2)2

F̃ (z)

(
a
(0)
− c+

2πα′ f
(−)(z)− a

(0)
+ c−
2πα′ f

(+)(z)− c+c−
2(2πα′)2

)
, (5.3)

20See, e.g. [53] for a review of the holographic renormalization.
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where z± is the UV cut-off introduced to regularize the divergence at z → ±∞. It can be

easily seen that both (5.2) and (5.3) are divergent both in the limit z+ → ∞ and z− → −∞.

The divergent terms at z+ → ∞ are

So.s.
DBI|z+→∞ ≃ −T3d

∫
d2x

1

2R

(
u2max − c+c− log umax

)
+ finite , (5.4)

So.s.
CS |z+→∞ ≃ N

8π

∫
d2x

(
−a

(0)
+

c−eξ

8πα′u4∗

(
u4max + c+c−u

2
max

)
− c+c−

2(2πα′)2
log umax

)
+ finite ,

(5.5)

where umax ≡ u∗
√
1 + z2+. Similarly, the divergent terms at z− → −∞ are

So.s.
DBI|z−→−∞ ≃ −T3d

∫
d2x

1

2R

(
u2max − c+c− log umax

)
+ finite , (5.6)

So.s.
CS |z−→−∞ ≃ N

8π

∫
d2x

(
−a

(0)
−

c+e
ξ

8πα′u4∗

(
u4max+c+c−u

2
max

)
− c+c−
2(2πα′)2

log umax

)
+finite ,

(5.7)

with umax ≡ u∗
√
1 + z2−.

The relation (4.14) implies that the log divergent terms in SDBI and SCS cancel each

other. In order to cancel the O(u2max) term in the DBI action, we add a counterterm of

the form

Sγ± ≡ T3dR

2

∫

z=z±

d2x
√−γ , (5.8)

where γ = det(γab) (a, b = 0, 1) is the determinant of the induced metric on the 2-

dimensional boundary defined at z = z±. In fact, the induced metric is given as

γab = gab|z=z± =
u2max

R2
ηab , (5.9)

and the counterterm (5.8) precisely cancel the O(u2max) terms in (5.4) and (5.6). The

O(u4max) and O(u2max) terms in the CS term are canceled by a counterterm of the

form [49, 55–57]

Sa± ≡ N

8π

∫

z=z±

d2x
√−γ γabaaab = −N

8π

∫

z=z±

d2x a+a− . (5.10)

The on-shell value of this counterterm is

So.s.
a±

≃ −N

8π

∫

z=z±

d2x

(
∓a

(0)
±

c∓
8πα′ f

±(umax) + a
(0)
+ a

(0)
− − c+c−

(8πα′)2R2

)
(5.11)

≃ N

8π

∫

z=z±

d2x

(
a
(0)
±

c∓
8πα′

eξ

u4∗

(
u4max + c+c−u

2
max +

c2+c
2
−

8
− u40

2

)
− a

(0)
+ a

(0)
− +

c+c−
(8πα′)2

)
.

(5.12)
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Here, we omitted the terms that vanish at z± → ±∞ (umax → ∞). This counterterm

cancels the divergent terms in (5.5) and (5.7). Therefore, the total action we consider is21

Stotal ≡ SDBI + SCS + Sγ+ + Sγ− + Sa+ + Sa− . (5.13)

Collecting the expressions (5.2), (5.3), (5.8) and (5.11), the on-shell action is evaluated as

So.s.
total = − Nu2∗

8π(2πα′)2

∫
d2x

∫ +∞

−∞
dz

(
(1 + z2)2

F̃ (z)

(
1 + z2 +

c+c−
2u2∗

)
− |z|

)

− N

8π

∫
d2x

(
(a

(0)
+ a

(0)
− )

∣∣
z→+∞ + (a

(0)
+ a

(0)
− )

∣∣
z→−∞ − 2c+c−

(8πα′)2
− u2∗

(2πα′)2

)
. (5.14)

Here, we have used the relations

∂zf
(±)(z) = ±4

(1 + z2)2

F̃ (z)
f (±)(z) , (5.15)

u2max = u2∗

(∫ z+

z−

dz |z|+ 1

)
, (5.16)

for z+ = −z− =
√
u2max/u

2∗ − 1, and dropped the terms proportional to

∫
d2x

∫ z+

z−

dz ∂za
(0)
± c∓f

(±)(z) , (5.17)

because these terms are total derivative in the x± direction, using the flatness condi-

tion (5.1).

5.2.2 Boundary conditions

Motivated by the asymptotic behavior of the solutions (4.44)–(4.49) and the consideration

in section 5.1, we impose the boundary condition for the gauge field as

a±(x
a, z) → A±(x

a) , a∓(x
a, z)

R8

u4
→ C∓(xa) , (z → ±∞) , (5.18)

where a = 0, 1, and A± and C∓ are fixed values. These A± and C∓ are interpreted as the

sources that couple to the operators J∓ and O± on the defects placed at y = y(z)|z→±∞,

respectively. Similarly, the boundary condition for the scalar field y is

y(xa, z) → Y(±)(xa) , (z → ±∞) . (5.19)

Y(±)(xa) is the source of Oy and O′
y.

Let us check that our solution (4.36)–(4.37) and the boundary conditions (5.18)

and (5.19) are consistent with the variational principle including the contributions from

21There are more counterterms needed to cancel the divergence for the general solution that has non-

trivial x± dependence [54].
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the boundaries. The variation of the action gives surface terms as

δSDBI = (EOM)− T3d

∫
d2x

[√
−G

(
u2

R2
GuN
S ∂Ny δy − (2πα′)GuN

A δaN

)]z=+∞

z=−∞
, (5.20)

δSCS = (EOM) +
N

8π

∫
d2x [a+δa− − a−δa+]

z=+∞
z=−∞ , (5.21)

δSa± = −N

8π

∫

z→±∞
d2x (a+δa− + a−δa+) , (5.22)

where (EOM) denotes the bulk terms that give the equations of motion (4.17) and (4.18),

while G, GMN
S and GMN

A are defined as in equations (4.15), (4.19) and (4.20).

In appendix B.1, it is shown that the gauge field aM satisfying the equations of motion

can always be decomposed as

aM = a
(0)
M + bM , (5.23)

where a
(0)
M is a flat connection satisfying (5.1), and bM is defined by

b± ≡ ∓4π

N
(2πα′)T3d

√
−G Gu∓

A , (5.24)

bu ≡ 4π

N
(2πα′)T3d

√
−G G+−

A . (5.25)

Therefore, for the on-shell configurations, the variation becomes

δStotal = −T3d

∫
d2x

[√
−G u2

R2
GuN
S ∂Ny δy

]z=+∞

z=−∞

− N

4π

∫

z→+∞
d2x (a

(0)
− δa+ + b+δa−)−

N

4π

∫

z→−∞
d2x (a

(0)
+ δa− + b−δa+) . (5.26)

For our solution (4.44)–(4.49), we have

√
−G u2

R2
GuN
S ∂Ny = cy , (5.27)

b±(z) =
c±
8πα′ f

(∓)(z) ∼ O(u−4) , (z → ±∞) . (5.28)

Then, the boundary conditions (5.18) and (5.19) imply that the surface terms in (5.26)

with δy and b±δa∓ vanish, because O(u0) terms in δy, and O(u4) terms in δa∓ (z → ±∞)

are zero when the sources are fixed. In order to make sure that the surface terms in (5.26)

with a
(0)
∓ δa± vanish, we impose a boundary condition as a

(0)
∓ ∼ O(u0) at z → ±∞.

5.3 Gauge invariance and anomaly

One may wonder the consistency of the counterterm (5.10), because it is not gauge invari-

ant. In fact the counterterm (5.10) is needed to ensure the gauge invariance. Let us clarify

this point. Under the gauge transformation

a → a+ dλ , (5.29)
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SCS and Sa± transform as

δλSCS = −N

8π

(∫

z→+∞
d2xλf+− −

∫

z→−∞
d2xλf+−

)
, (5.30)

δλSa± =
N

8π

∫

z→±∞
d2x (λ∂+a− + λ∂−a+) . (5.31)

Here, we have dropped the surface terms at |x±| → ∞. Then, assuming that all the other

counterterms are gauge invariant, the total action transforms as

δλStotal =
N

4π

(∫

z→+∞
d2xλ∂−a+ +

∫

z→−∞
d2xλ∂+a−

)
. (5.32)

Because of the boundary condition (5.18), a± do not diverge at z → ±∞, and the total

action is invariant under the gauge transformation with λ vanishing at z → ±∞. Note that

for general field configuration with the boundary condition (5.18), (5.30) is non-vanishing.

The gauge invariance is guaranteed only after the counterterms Sa± are added.

When the U(1) symmetry associated to the current J− is gauged, the gauge transfor-

mation of this U(1) symmetry

A+ → A+ + ∂+Λ , (5.33)

is realized by imposing a boundary condition for λ as

λ(xa, z) → Λ(xa) , (z → +∞) . (5.34)

As we have seen in (5.32), the D7-brane action is not invariant under this gauge transfor-

mation and transforms as

δλStotal =
N

4π

∫

z→+∞
d2xΛ∂−A+ . (5.35)

This expression precisely agrees with the anomalous transformation of the generating func-

tion for correlation functions in the dual field theory induced by one loop diagrams of the

chiral fermion on the defect. In fact, omitting the supergravity action, the on-shell value

of the action Stotal is identified as

eiS
o.s.
total(A) ∝

∫
DψDAeiS3d(ψ,A,A) , (5.36)

where S3d(ψ,A,A) is the action of the 3-dimensional SU(N) YM-CS theory with defect

given by the sum of (2.1) (with k = 1, k′ = 0), (2.5) and (2.7). Then, the gauge transfor-

mation (5.33) of this equation and (5.35) imply the anomaly equation22

∂+ 〈J−〉 = −2∂+
〈
J+

〉
=

N

2π
∂−A+ , (5.37)

reproducing equation (2.9) for the case k − k′ = 1.

22See [49, 57] and section 5.4.2 for closely related derivations.
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Figure 4. 〈Oy〉 |C±=0 as a function of L, normalized by its absolute value at L → ∞.

5.4 Correlation functions

Comparing the asymptotic behavior (4.44)–(4.49) of the solution to the boundary condi-

tions (5.18)–(5.19), the sources in our configuration are identified as

A± = a
(0)
± |z→±∞ , C∓ =

c∓
8πα′

R8

u4∗
eξ , Y(±) = ±L . (5.38)

The correlation functions can be computed by differentiating the on-shell action (5.14) with

respect to these sources. Using the expressions (5.26)–(5.28), the one point functions for

the operators at y = +L (z → +∞) are obtained as

〈Oy〉 =
δSo.s.

total

δY(+)
= −T3dcy = − N

8π(2πα′)2
u3∗
R2

√
1 +

c+c−
u2∗

, (5.39)

〈
J+

〉
=

δSo.s.
total

δA+
= −N

4π
a
(0)
− |z→+∞ , (5.40)

〈O+〉 =
δSo.s.

total

δC−
= −N

4π

c+
8πα′

u4∗
R8

e−ξ . (5.41)

The two (or higher) point functions can be obtained by differentiating these expressions

with respect to the sources.

5.4.1 Condensation of Oy

In particular, (5.39) implies that 〈Oy〉 is non-zero even when the external sources A± and

C± are turned off. When C± = 0, as depicted in figure 4, the absolute value | 〈Oy〉 | is a

monotonically decreasing function of L and the asymptotic value is

〈Oy〉 |C±=0,L→∞ = − N

8π(2πα′)2
u30
R2

= −Nλ3dM
2
KK

64π2
, (5.42)

where λ3d ≡ g23dN = gsMKKN is the ’t Hooft coupling.

For small L (u∗ ≫ u0), the equation (4.31) is approximated as

L ≃ 2f0
R2

u∗
, (5.43)
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where

f0 =

√
πΓ(2/3)

2Γ(1/6)
≃ 0.216 . (5.44)

Then, we obtain

〈Oy〉 |C±=0 ≃ −Nf3
0

π2

λ3d

MKK

1

L3
(5.45)

for small L. The L dependence is consistent with the conformal symmetry at UV.

5.4.2 Anomaly, symmetry breaking and edge modes

The one point function for the current (5.40) was obtained and analyzed in closely related

systems in [49, 57]. Let us comment on some of the interesting consequences obtained by

following the arguments given in these papers.

Recall that a(0) is a flat connection and it can be written as

a(0) = dϕ , (5.46)

with a real scalar field ϕ. Then, (5.40) and the analogous equation for J− on the other

defect placed at y = −L (z → −∞) can be written as

〈
J±〉 = −N

4π
∂∓ϕ

(±) , (5.47)

where we have defined

ϕ(±) ≡ lim
z→±∞

ϕ . (5.48)

As we have argued in section 5.3, the gauge transformation (5.29) acts trivially at z → ±∞,

and therefore these ϕ(±) cannot be gauged away. Because a
(0)
± |z→±∞ = A±, they are related

to the external fields A± as

A± = ∂±ϕ
(±) . (5.49)

Then, it is easy to see that (5.47) reproduces the anomaly equation (5.37).

When A± = 0, (5.49) implies that ϕ(+) and ϕ(−) are chiral and anti-chiral boson which

depend only on x− and x+, respectively. These modes correspond to the gapless edge modes

that exist at the boundary of FQH states, which are described by the CS theory. As the

relation (5.47) suggests, they are related to the chiral (anti-chiral) fermions on the defects

by bosonization. The equation (5.47) also suggests that ϕ(±) are the Nambu-Goldstone

modes associated with the spontaneous breaking of the U(1) × U(1) symmetry generated

by the currents J±. Actually, the vacuum expectation value of ϕ(+) + ϕ(−) is unphysical,

since it can be shifted by a constant shift ϕ → ϕ+ (constant), which is the redundancy of

the definition of ϕ in (5.46). Therefore, the diagonal subgroup U(1)diag of the U(1)×U(1)

is unbroken. On the other hand, the other combination

ϕ(+) − ϕ(−) =

∫ ∞

−∞
dz (az − bz) , (5.50)
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Figure 5. 〈O−O+〉 as a function of L.

is unambiguously defined and it corresponds to the Nambu-Goldstone (NG) mode associ-

ated with the symmetry breaking U(1)×U(1) → U(1)diag. This is analogous to the chiral

symmetry breaking in holographic QCD as discussed in [47] and more directly related to

the 2-dimensional version studied in [49]. Note that this NG mode lives in 2-dimension,

which is justified only in the large N limit. When N is finite, the quantum corrections

for the holographic description should be taken into account and the symmetry will be

restored as shown in [59, 60].23

5.4.3 Correlations between the two defects

Let us consider the two point function 〈O−O+〉 at vanishing source C± = 0, where O− and

O+ are dimension 5 operators placed on the defect at y = −L and y = +L, respectively.

Differentiating (5.41) with respect to the constant source C+, we obtain

〈O−O+〉 ≡
∫

d2x′
〈
O−(x)O+(x

′)
〉
|C±=0 = −N

4π

u8∗
R16

e−2ξ
∣∣∣
C±=0

. (5.51)

The behavior of this two point function as a function of L is depicted in figure 5.

For large L (u∗ → u0), we can show

ξ |C±=0 = 4

∫ ∞

u∗

du

(√
u4 − u40
u6 − u6∗

− 1

u

)
+

4u40
R2u3∗

L

≃ −c0 + 2LMKK , (5.52)

where

c0 ≡ −4

∫ ∞

1
dt

(√
t4 − 1

t6 − 1
− 1

t

)
≃ 0.260 . (5.53)

and hence the two point function behaves as

〈O−O+〉 ≃ −N

4π

u80 e
2c0

R16
e−(2MKK)2L = − N

1024π
M8

KKe
2c0e−(2MKK)2L (5.54)

23For a holographic version of this statement, see [61].
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for large L. This behavior suggests that the lightest particle that couples to O+ and O−
has mass 2MKK.

For small L (u∗ ≫ u0), using (5.43), we get

ξ |C±=0 ≃
4

3
log 2 +

M4
KK

32f3
0

L4 , (5.55)

and

〈O−O+〉 ≃ −N210/3f8
0

π

1

L8
. (5.56)

This falloff is consistent with conformal scaling for a position-space two-point function of

the dimension five operators O± due to the additional integral in the definition (5.51).

Note that the nontrivial correlations (5.51) only appear if the D7-brane and D7-brane

are connecting in the bulk, and will be used as an order parameter for phase transitions in

which the D7-branes and D7-branes reconnect in section 6.2.

6 Free energy, phase transition, and confinement

In this section, we consider the free energy of our system at zero temperature24 using

the holographic description. We are mainly interested in the L dependence of the free

energy and study the phase structure by varying the positions of the defects. Here, we set

A± = C∓ = 0.

6.1 Free energy

Following the standard dictionary of holography, the free energy for our configuration,

neglecting the L-independent part, is proportional to the on-shell action (5.14). We define

a function F(L) proportional to the free energy by

So.s.
total|A±=C∓=0 ≡ −2T3d

∫
d2xF(L) . (6.1)

Setting a
(0)
± = c± = 0 in (5.14), we obtain

F(L) =
u2∗
2R

(∫ +∞

−∞
dz

(
(1 + z2)3

F̃ (z)
− |z|

)
− 1

)∣∣∣∣∣
c±=0

=

∫ ∞

u∗

du
u

R

(
u5√

(u4 − u40)(u
6 − u6∗)

− 1

)
− u2∗

2R
, (6.2)

where u∗ is related to L by (4.31). A plot of F(L) is depicted in figure 6.

For u∗ ≫ u0 (small L), F and L behave as

F ≃ −f0
u2∗
R

, L ≃ 2f0
R2

u∗
, (6.3)

24The results in this section are valid for T < Tc, where Tc is the critical temperature given in (7.2). See

section 7 for a discussion of the case T > Tc.
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Figure 6. Free energy as a function of L.

where f0 is defined in (5.44), and hence we obtain

F(L) ≃ −4f3
0

R3

L2
(6.4)

for small L.

For u∗ → u0 (large L), we have

F(L) ≃ u20
R

( u0
R2

L− a0

)
(6.5)

with

a0 =
1

2
−
∫ ∞

1
dt

(√
t6 − 1

t4 − 1
− t

)
≃ 0.333 . (6.6)

To get this, note that (6.2) can be written as

F =
1

R

∫ ∞

u∗

du

(
u6 − u6∗√

(u4 − u40)(u
6 − u6∗)

− u+
u6∗√

(u4 − u40)(u
6 − u6∗)

)
− u2∗

2R

=
1

R

∫ ∞

u∗

du

(√
u6 − u6∗
u4 − u40

− u

)
+

u3∗
R3

L− u2∗
2R

. (6.7)

Then, (6.5) can be easily obtained by taking u∗ → u0.

The linear behavior of the leading term in (6.5) is analogous to the linear potential

for a quark - anti-quark pair in confining gauge theories. Instead of inserting a quark -

anti-quark pair, we have considered a defect - anti-defect pair and observed similar linear

behavior. In fact, they have the same geometric origin in the holographic description. In

the case of the quark - anti-quark potential, the linear behavior is due to the fact that the
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string tension is non-zero at the minimum value of the radial coordinate u [38]. In our

case, the string is replaced with the probe D7 brane and the linear behavior in (6.5) is

understood from the fact that the D7-brane tension evaluated at u = u0 is non-zero, which

is evident from the geometry. In fact, the D7-brane tension at u = u0 is given by

T3d

√
−g00g11gyy

∣∣∣
u=u∗

= T3d
u30
R3

, (6.8)

and the factor u30/R
3 agrees with the coefficient of L in the leading term of (6.5) for large L.

Note that the problem of finding D7-brane configurations and the on-shell values of the

D7-brane action (for aM = 0) is mathematically equivalent to the holographic computation

of entanglement entropy when τ is interpreted as time after double Wick rotation. This

is because the dilaton field is constant in our background and the D7-brane configurations

are given by minimal surfaces with given boundary conditions. Since the D7-brane action

is proportional to the area of the D7-brane world-volume, the on-shell value of the action

gives the area of the minimal surface, which is proportional to the entanglement entropy as

proposed in [62, 63]. Therefore, the free energy F(L) is proportional to the entanglement

entropy between the regions |y| < L and |y| > L up to a divergent L independent con-

stant. In fact, the entanglement entropy for the AdS soliton background has been studied

in [64–66] and many of the formulas and figures shown below (section 7) agree with those

appearing in these papers.

6.2 Phase transition

If there are more than one components of U-shaped D7 branes, phase transitions occur by

changing the parameters of the system. As a simple example, consider placing four defects

(1)∼(4) at (1) y = −L, (2) y = −l, (3) y = +l, (4) y = +L with 0 < l < L such that the

CS level (−k) for the SU(N) YM-CS theory is k = 1 for l < |y| < L, and k = 0 for |y| < l

and L < |y|. The holographic dual of this system contains two U-shaped D7 branes as in

figure 7. There are two solutions with the same boundary conditions. We call the left and

right sides of figure 7 the UU -phase and the Ŭ -phase, respectively. When the parameter

l is smaller (larger) than a critical value lc, the Ŭ -phase (UU -phase) is favored. The free

energy of these configurations is depicted in figure 8. In terms of the two point function

〈O+O−〉 discussed in section 5.4.3, there are correlations between defects (1) and (2), and

also between (3) and (4) for l > lc:

〈
O(1)

− O(2)
+

〉
6= 0 ,

〈
O(3)

− O(4)
+

〉
6= 0 . (l > lc) (6.9)

As l decreases and the defect (2) and (3) approach, there is a phase transition at critical

value of l = lc and the Ŭ -phase is favored for l < lc. Then, in this phase, the correlated

pairs are changed to
〈
O(2)

+ O(3)
−

〉
6= 0 ,

〈
O(1)

− O(4)
+

〉
6= 0 . (l < lc) (6.10)

It is interesting that the correlation between the farthest pair (1) and (4) appears when l

is small.
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Figure 8. Free energy of Ŭ -phase and UU -phase.

6.3 Confinement

Pure YM in 3-dimensions is known to be confining at a scale of order ΛYM ∼ g23d, giving

rise to a mass gap mgap ∼ ΛYM. Pure CS theory, on the other hand, does not con-

fine: it is a topological field theory, whose expectation values compute topological invari-

ants of the spacetime manifold [2]. In YM-CS theory, the CS term induces a tree-level

mass for gluons, mCS =
|kCS |g23d

2π , and the topological gap competes with the confining

behavior of the YM action. It is a non-trivial question which behavior will dominate in

the infrared.

To determine which is realized in our system we should compute the expectation value

of a Wilson loop along a contour C in some representation R,
〈
TrR P exp

(
i
∮
C A

)〉
. The

contour most often used consists of a rectangle with length T in the temporal direction

and width W in a spatial direction, with T ≫ W . If large loops have an expectation value

eiWC with WC proportional to minus the area WT , then the theory is confining. This is

the famous area law. On the other hand, if the behavior is topological then for large loops,

the expectation value will be finite and independent of the loop’s size and shape (up to

local counterterms).
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In the holographic context it is practical to make the computation instead in Euclidean

time, with metric

ds2E =
u2

R2
(dt2E + dx2 + dy2 + f(u)dτ2) +

R2

u2
du2

f(u)
+R2dΩ2

5 . (6.11)

As usual we have identified tE ∼ tE + β, with β the inverse temperature. It is important

here that we take the temperature to be much smaller than the compactification scaleMKK.

Having compactified the time direction, we will consider a pair of Wilson lines wrapping

the Euclidean time direction, with opposite orientation and at fixed separation W . Our

discussion here will be restricted to the case where the level (−k) is the same everywhere,

and there are no defects, corresponding to k D7 branes located at the tip (u = u0) of the

AdS soliton.

We start by reviewing the case k = 0, with no D7 branes at the soliton tip [38, 39].

Wilson lines are computed in the semi-classical limit by the holographically renormalized

Euclidean worldsheet action of a string which attaches to the Wilson line at the asymp-

totic‘boundary,

Seuc.
string =

1

2πα′

∫

Σ
d2σ

√
det(gab) + (counterterms) (6.12)

where gab is the pullback to the worldsheet of the spacetime metric (6.11). The loop we

are interested in is invariant under time translations, so the shape of the worldsheet is

determined by the profile in the y-u plane, y(u). With this ansatz the Nambu-Goto action

takes the form

Seuc.
NG =

1

2πα′

∫

Σ
dtE du

√
∆(u) ∆(u) =

1

f(u)
+

u4

R4

(
dy

du

)2

, (6.13)

resulting in the equation of motion

u4

R4

y′(u)√
∆

= c (6.14)

with c a constant. The solution is

y(u) = y0 +

∫ u

u∗

cR4 dû√
(û4 − u40)(û

4 − u4∗)
(6.15)

where c = ±u2∗/R
2, from which we find the distance between the endpoints

W = 2

∫ ∞

u∗

u2∗R
2 du√

(u4 − u40)(u
4 − u4∗)

. (6.16)

As with the D7-brane configuration, the Wilson line at constant τ corresponds to u∗ ≥ u0.

As usual, the on-shell action is divergent, but can be regularized by cutting off the

ambient spacetime along the cutoff surface u = uΛ. Using the relation
√
∆ = u4

cR4
dy
du , the

NG action takes the form

SNG =
2β

2πα′

∫ uΛ

u∗

u4 du√
(u4 − u40)(u

4 − u4∗)
≃ 2uΛβ

2πα′ . (6.17)
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Figure 9. Free energy F of the Wilson line anti-line pair as a function of separation W .

To renormalize the action we must include the counterterm

Sct = − R

2πα′

∫

∂Σ
dt
√
γ = − 1

2πα′

(∫

left
+

∫

right

)
uΛ dt (6.18)

with γ the pullback of the Euclidean AdS soliton metric to the intersection of the worldsheet

with the cutoff surface u = uΛ.

The renormalized action is Sren = limuΛ→∞(SNG + Sct). It is convenient to introduce

the free energy F associated with the Wilson line, Sren = βF . The free energy then takes

the form

F =
1

πα′

[∫ ∞

u∗

du

(
u4√

(u4 − u40)(u
4 − u4∗)

− 1

)
− u∗

]
. (6.19)

The behavior of F for W ≫ M−1
KK can be obtained using the same method as (6.7), giving

the asymptotic W -dependence

F ≃ u20
2πα′R2

W − u0
πα′ +O(e−MKKW ) . (6.20)

Thus for sufficiently large W we find the area law expected in a confining theory.

The computation changes qualitatively when the CS level (−k) of the boundary is

non-zero, because in this case there are k D7 branes located at the soliton tip on which

the worldsheet can end. Now there is a competing configuration in which two disconnected

worldsheets stretch between the loops on the boundary and the branes at the soliton tip.

In the semi-classical limit, we can ignore backreaction from both the gravitational sector

and the gauge fields on the brane, in which case the preferred configuration is y = constant.

The renormalized worldsheet action then takes the form

Sren =
2β

2πα′

[∫ ∞

u0

du

(
1√
f(u)

− 1

)
− u0

]
. (6.21)
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Figure 10. Open string configuration dual to the open Wilson line ending on two parallel level-

changing defects.

The resulting free energy is a constant F = 2F0, with

F0 = − u0
2πα′

√
πΓ(3/4)

Γ(1/4)
= − Γ(3/4)

2 Γ(1/4)

√
λ3dMKK ≃ −0.1690×

√
λ3dMKK . (6.22)

(Recall that λ3d = NgsMKK.)

The comparison of the free energy in the two phases is shown in figure 9. We see that,

for W > Wcrit ≃ R2

u0
× 1.063, the phase with the worldsheet ending on the D7 branes has

lower free energy, indicating a first order transition from the connected phase (which would

show an area law at large separation) to the disconnected phase that shows a perimeter law.

Note that if we interpret the Wilson line as the insertion of a heavy quark, the free

energy F0 corresponds to a self-energy. When computing Wilson line expectation values

it is natural to choose a renormalization scheme in which the perimeter law contributions

vanish precisely, which can be accomplished by adding the finite local counterterm S
(2)
ct =

−
∫
∂ΣF0.

With this modification, the computation of large Wilson lines in the k 6= 0 phase

reduces to the computation of correlators the Wilson lines in CS theory on the D7 brane,

in agreement with the claim of [26] that this system provides an explicit realization of

level-rank duality. We conclude that in the semi-classical regime, and with |k| ≪ N , the

theory is in a topological phase and does not confine.

6.4 Chiral condensate

In the presence of a defect - anti-defect pair, we expect a chiral condensate to form between

the chiral fermions living on the two defects at zero temperature. The chiral condensate

in question takes the form 〈ψ†
LPei

∫ L

R
AψR〉, where gauge invariance forces us to include

an open Wilson line stretching between the fermion insertions on the two defects. The

holographic dual of this object is the open string worldsheet that attaches on the AdS

soliton boundary to the Wilson line [67, 68]. The dual configuration is shown in figure 10.

In the semi-classical limit, the expectation value takes the form 〈ψ†
LPei

∫ L

R
AψR〉 =

e−Sren , with Sren the renormalized Euclidean worldsheet action as derived in the previous
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section. For the present configuration, it takes the form

Sren =
1

πα′

[∫ ∞

u∗

du

(
y(u)√
f(u)

− L

)
− Lu∗

]
, (6.23)

where y(u) is as in (4.25) (here we set y0 = 0 and umin = u∗).
For large L, it is convenient to introduce the object

d(u) = y(u)− L = −R2u3∗

∫ ∞

u

dû√
(û4 − u40)(û

6 − u6∗)
, (6.24)

in which case we may write

Sren =
1

πα′

∫ ∞

u∗

du
d(u)√
f(u)

+
(2L)

2πα′

[∫ ∞

u∗

du

(
1√
f(u)

− 1

)
− u∗

]
. (6.25)

When L ≫ M−1
KK, u∗ approaches u0 and the second term of (6.25) depends linearly on L,

taking the form 2LF0 (with F0 the free energy (6.22) of an isolated Wilson line). It is

instructive to consider the dependence of the first term on L, which in the limit of large L

contributes a constant to the free energy:

lim
L→∞

(Sren − 2LF0) =
1

πα′

∫ ∞

u0

du
d(u)|u∗=u0√

f(u)
=

R2

πα′J0 (6.26)

with

J0 = −
∫ ∞

1
dx

x2√
x4 − 1

∫ ∞

x

dv√
(v4 − 1)(v6 − 1)

≃ −0.299 . (6.27)

This should be understood as (twice) the contribution due to an isolated endpoint of an

infinitely extended open Wilson line. Therefore we may write

Sren = (2L)F0 +
R2

πα′J0 + I(L) (6.28)

where the remainder I(L) = O(e−
√
6MKKL) decays exponentially to zero as L → ∞.

For L ≪ M−1
KK, d(u) can be approximated by a hypergeometric function

d(u) ≃ − R2

4u∗

(u∗
u

)4

2F1

(1
2
,
2

3
;
5

3
;
u6∗
u6

)
. (6.29)

Using with the asymptotic behavior (5.43) of L, we find that for L ≪ M−1
KK,

Sren ≃ S0 =
1

πα′

[∫ ∞

u∗

du d(u)− u∗L

]

u0=0

= − R2

πα′ ·
π

6
= −

√
4πgsN

6
. (6.30)

The action Sren for general values of L is shown in figure 11.

Note that for large separations, the chiral condensate in the semiclassical limit is

e−Sren ∼ e2L·|F0|. The exponential growth with length of the correlation function is sur-

prising, as one might expect it rather to decay exponentially at a rate determined by the
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Figure 11. Plot of the open Wilson line action Sren (in units of R2/πα′) as a function of length.

scale MKK. In our case, we can see that the exponential dependence on L arises because of

the self energy of the Wilson line derived in section 6.3. These results are analogous to the

behavior of the chiral condensate for D8-D8 defects in the D4 brane worldvolume theory

discussed in [67], which also found a similar exponential dependence on separation as the

endpoints of the chiral condensate operator were given a large separation parallel to the

defects. In particular, they find that at strong coupling, the dominant contribution to the

chiral condensate operator comes from the Wilson line, rather than the fermion bilinear.

When defining the renormalized Wilson line operator, we have the option of including

a finite counterterm of the form Sct = a
∫
ds, which is sufficient to eliminate the linear

behavior at large L of eq. (6.28). Similarly, we may insert a constant counterterm at

the string endpoints, allowing us to eliminate the J0 contribution. This suggests that the

quantity that is physically relevant to the computation of the expectation value of the

chiral condensate itself is the function I(L) of (6.28).25

7 Finite temperature

7.1 Background metric and D7-brane configuration

In order to introduce finite temperature T , we compactify the Wick rotated time tE ≡ ix0 as

tE ∼ tE + β (7.1)

with inverse temperature β = 1/T . It is known that there is a phase transition at the

critical temperature

Tc ≡
MKK

2π
=

u0
R2π

, (7.2)

corresponding to the confinement/deconfinement transition. [38, 70] The background metric

for the low temperature phase T < Tc is the same as (4.1). For the high temperature phase

25See [69] for related discussion in holographic QCD.
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T > Tc, it is changed to

ds2 =
u2

R2

(
fT (u)dt

2
E + dx2 + dy2 + dτ2

)
+

R2

u2
du2

fT (u)
+R2dΩ2

5 , (7.3)

where x = x1, y = x2, τ = x3 and

fT (u) = 1− u4T
u4

(7.4)

with

uT = πR2T . (7.5)

Note that T > Tc implies uT > u0.

The U-shaped D7-brane configuration for T > Tc with fMN = 0 and τ = 0 is given by

y(u) = R2

∫ u

u∗

du′√
(u′4 − u4T )

(
u′2(u′4−u4

T
)

u2
∗(u

4
∗−u4

T
)
− 1

) . (7.6)

(See appendix B.3 for details.) A plot of L ≡ limu→∞ |y(u)| as a function of u∗ is shown

in figure 12. As one can see from figure 12, there is a maximum value of L around

Lmax ≃ 0.346× R2

uT
, (7.7)

for the U-shaped solution to exist. For L < Lmax, there are two solutions with the same L.

There is another type of solution given by y = constant. In this case, the D7 brane

and D7 brane are disconnected and placed at y = L and y = −L, respectively. They cover

the entire (tE , x, u) directions without any singularities. Unlike the U-shaped solution

considered above, the disconnected solutions exist for all L. These solutions are shown in

figure 13.

– 34 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
3

-0.4 -0.2 0.2 0.4

1.2

1.4

1.6

1.8

2.0

uT

R2 y

u/uT

-0.4 -0.2 0.2 0.4

1.2

1.4

1.6

1.8

2.0

uT

R2 y

u/uT

Figure 13. U-shaped solutions (left) and a disconnected solution (right). There are two U-shaped

solutions with the same L as shown in the left figure.

7.2 Free energy and phase transition

For the U-shaped solution (7.6), the function F defined in (6.1) is given by

F =

∫ ∞

u∗

du
u

R




1√
1− u2

∗(u
4
∗−u4

T
)

u2(u4−u4
T
)

− 1


− u2∗

2R
. (7.8)

For the disconnected solution y = constant, we get

F = −u2T
2R

, (7.9)

which is independent of u∗.

For u∗ ≫ uT (small L), we have

L ≃ 2f0
R2

u∗
, F ≃ −f0

u2∗
R

, (7.10)

and

F ≃ −4f3
0

R3

L2
, (7.11)

which are the same as (6.3) and (6.4). This is expected because the asymptotic behavior

in the region u ≫ uT is not affected by the temperature.

Another configuration with small L is obtained when u∗ approaches uT . In the limit

u∗ → uT , we have

L ≃ − R2

4uT

√
ǫ∗ log ǫ∗ , (7.12)

F ≃ −u2T
2R

(
1 +

ǫ∗
4
log ǫ∗

)
, (7.13)

where ǫ∗ ≡ (u∗/uT )4 − 1. The behavior of F as a function of u∗ and L are shown in

figure 14 and figure 15, respectively.
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Figure 15. F as a function of L.

Figure 12 and figure 14 suggest that both L and F take maximum values at u∗/uT ∼
1.13. In fact, one can show a relation

∂F(u∗)
∂u∗

=
u3∗
R3

√

1− u4T
u4∗

∂L(u∗)
∂u∗

, (7.14)

which implies that L and F take maximum at the same point.

Therefore, there is a critical value of L around

Lc ≃
R2

uT
× 0.308 , (7.15)

at which the brane configuration jumps:

L < Lc ⇒ U-shaped solution ,

L > Lc ⇒ disconnected solution .
(7.16)

A plot of the minimum values of F is shown in figure 16.
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Figure 16. Free energy as a function of L.

This phenomenon is similar to the behavior of the probe D8 brane discussed in [71]

in the context of the holographic QCD based on D4/D8-brane system [47]. In the phase

described by the disconnected solution, the U(1) × U(1) symmetry, which is broken to

U(1)diag at T = 0 as discussed in section 5.4.2, is restored. This is because the two

boundaries are disconnected and ϕ(+) and ϕ(−) can be shifted independently, unlike the

case for the U-shaped configuration discussed in section 5.4.2.

8 Summary and discussion

This work dealt with level-changing defects in YM-CS field theory, as realized holographi-

cally within the construction of [26]. We found explicit solutions for the probe brane profiles

dual to these defects, providing a clear geometric understanding of their behavior under

level-rank duality. After holographic renormalization, we computed the zero-momentum

correlation functions for operators transforming trivially under the (ultraviolet) SO(6) R-

symmetry. Our analysis shows that the system exhibits several interesting phenomena

including anomalies and (in the limit of infinite N) the spontaneous breaking of global

symmetries localized on the defects. Systems with multiple defects furthermore exhibit in-

teresting phase transitions in which operators localized on defect pairs become correlated or

uncorrelated, depending on the relative separations of the defects. In the finite temperature

case, we find that this phase transition has an interesting structure as the temperature rises

above the critical temperature for the (k = 0) confinement-deconfinement phase transition.

8.1 Correspondence between FQHE and 2-dimensional QCD

As we argued in section 5.4.2, the gapless edge mode found in the 3-dimensional U(1) DBI-

CS theory on the probe D7 brane with two boundaries corresponds to the Nambu-Goldstone

mode associated with the chiral symmetry breaking (an analog of the pion) in large N 2-

dimensional QCD with one massless flavor. Furthermore, as pointed out in section 3, the
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D7-D7 configurations considered in this work is closely related to 2-dimensional holographic

QCD [48, 49]: if we place Nf D7 branes at (y, τ) = (0, 0) and Nf D7 branes at (y, τ) =

(0, πM−1
KK) and T-dualize along the y direction, we obtain the D2-D8-D8 system considered

in [48, 49], which is the 2-dimensional version of the holographic QCD.

These observations suggests interesting relations between the physics of the FQHE and

2-dimensional QCD. In fact, there is a direct correspondence between these two seemingly

unrelated theories, because both of them are governed by U(1) CS theory at low energies:

the effective theory of mesons in 2-dimensional QCD is given by 3-dimensional DBI-CS

theory on a D7 brane [49], while the U(1) CS theory (for the statistical gauge field) is

an effective theory of the Laughlin states of the FQHE. The particle that couples to the

statistical U(1) gauge field with the unit charge is the quasiparticle (or quasihole) of the

FQH state, and should correspond to the end point of a fundamental string attached to

the D7 brane; in 2-dimensional QCD, this is interpreted as an external quark. Since the

CS level is N , the quasiparticle carries an electric charge 1/N , corresponding to the baryon

number charge of the quark. Therefore, the electron (an object with unit electric charge)

in FQH state corresponds to the baryon in 2-dimensional QCD. It would be interesting to

investigate this correspondence in more detail.

8.2 Relation to FQHE and outlook

We offered further evidence that in the IR limit the model becomes non-abelian CS theory

with level-changing defects, and thus resembles (the non-Abelian generalization of) the

FQHE in the presence of defects (or edges). Not only does the IR theory exhibit a gap in

the bulk between the defects, the Wilson loop evaluated in the bulk between the defects

exhibits the topological (perimeter law) behavior expected of a CS theory when the CS

level is non-vanishing, and confining (area law) behavior expected of pure YM theory when

the CS level vanishes. This suggests a number of interesting further questions. The first

regards the Hall response. This was computed in [26] in the absence of defects, both in

field theory and its holographic dual. However, the physical Hall current should actually

be carried by the edge modes, being localized on the defects. It would be interesting

to verify that this edge current is correctly reproduced by our system in the presence of

a background electric field. Another is how flux attachment, recently discussed in two

different holographic setups in [72–74], is realized in the setup considered here.

Condensed matter physicists have discussed a variety of experimental setups that can

probe the charge and statistics of the gapless quasiparticle excitations at the edge of FQH

samples. In the simplest setup, an electric voltage applied between the two edges of a

FQH sample leads, at zero temperature, to tunneling of quasiparticle excitations between

the edges. Assuming that the edges are described by 1-dimensional Luttinger liquids with

Luttinger exponent g, the tunneling current responds non-linearly to the applied voltage as

It ∼ V 2g−1
t for non-resonant, and It ∼ V g−1

t for resonant, tunneling [75–77]. The tempera-

ture dependence of the tunneling conductivity is determined by the same exponents [77].26

26The tunneling effect arises only when there is an assistance of the impurities or other interactions to

absorb the other momentum along the edge direction because electrons on two different edges have different

momentum in general.
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It would be interesting to calculate the tunneling current and conductivities directly in our

holographic setup. This could either be done directly by applying an electric field between

our defects, or via the retarded correlator of the relevant quasiparticles on the edge [77].27

There is also a third way, employing the retarded correlator of the tunneling operator be-

tween the edges [78]. Of course, in order to be consistent all these three approaches should

yield the same result. We hope to return to the calculation of the tunneling response in

the near future [54].

The non-trivial correlations for the dimension five operator between distinct edges of

the D7 branes found in (6.9) exhibit a behavior that differs between the cases of defects

separated by the YM vacuum (k = 0) and by a QH state (k 6= 0): correlations between

insertions of the dimension 5 operator at different edges are non-trivial (to leading order

in N and λ) if and only if the two edges are connected by a D7 brane in the holographic

dual. But the edges being connected by a D7 brane means that there is a nontrivial

YM-CS vacuum between them, while edges not connected by any D7 brane are separated

by the confining YM vacuum. It will be interesting to analyze the implications of this

observation for other observables (such as e.g. the chiral condensate) associated to defect

pairs in our model.

Tunneling experiments can also distinguish, in the AC response, between different

non-Abelian statistics at the same filling fraction (which in most cases determines the

Luttinger exponent g) [77]. Another very elegant experimental setup, the two point-contact

interferometer, was proposed in [30]. In this setup, quasi-holes can interfere along two

interfering paths of a quantum interferometer, with quasi-holes tunneling from one path

to the other at two point contacts (similar to Josephson junctions). The setup is then

equivalent to an Aharonov-Bohm type experiment, except that the quasiholes can not

only feel the quanta of magnetic flux inside the closed loop their path is tracing, but also

the non-trivial self-statistics they have with quasiholes inserted in the loop. By dialing

the flux quanta and the number of quasiholes in the interferometer, one can access both

the effective charge and statistics of the quasiholes. In this way, using the two point-

contact interferometer, one can measure the VEV of closed Wilson lines with non-Abelian

statistics [30], and ultimately the Jones polynomial. In the holographic setup, the VEV

of Wilson loops is derived from the minimal surface of the string worldsheet ending at a

prescribed closed curve on the boundary [79, 80].28 It would be interesting to carry out

such a calculation in our model. We hope to return to this and other interesting aspects

of the model considered here in the near future [54].
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A Notation

Our convention for light-cone coordinates, the Minkowski metric, the epsilon tensor, etc.,

are summarized as follows.

x± =
1

2
(x0 ± x1) , ∂± = ∂0 ± ∂1 . (A.1)

η+− = −2 , η+− = −1

2
,

ǫ01u = −ǫ01u = +1 , ǫ+−u = −1

2
, ǫ+−u = +2 , (A.2)

f+− = −2f01 , f±u = f0u ± f1u , (A.3)

dx0 ∧ dx1 = 2dx− ∧ dx+ . (A.4)

We define conjugation on the product of Grassmann fields to act as (ξη)† = η†ξ†,
so that, for example, the Hermitian action for a (complex) 2d Weyl spinor ψ− is S =∫
d2xψ†

− i∂+ψ−.
Gauge field conventions: we take the gauge field A and infinitesimal gauge parameters

both to be Hermitian matrices. The covariant derivative and field strength are given by

Dµ = ∂µ − iAµ , F = dA− iA ∧A , (A.5)

and gauge transformations act as δψ = iαψ, δA = dα − i[A,α]. When we expand in a

basis for the Lie algebra, we choose an orthonormal basis Tr(T aT b) = δab (we also take our

generators to be Hermitian), with the trace taken in the fundamental representation.

B Solutions of the equations of motion

B.1 Equations of motion

Here we consider a single D7 brane extended along xM (M = 0, 1, u) directions, and the

values of yi (i = y, τ) are functions of xM . We are interested in the case with back-

ground metric

ds2 = GMNdxMdxN +Gijdy
idyj , (B.1)
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where GMN and Gij are assumed to be independent of yi. Then, the induced metric on

the D7 brane is

gMN = GMN +Gij∂Myi∂Nyj . (B.2)

The variation of the DBI action (4.12) under the variations of scalar fields yi and the

gauge field aM is

δSDBI = T3d

∫
d3x δyi∂M

(√
−GGijGMN

S ∂Nyj
)

− (2πα′)T3d

∫
d3x δaN∂M

(√
−G GMN

A

)

− T3d

∫
d2x

[√
−G

(
GijGuN

S ∂Nyj δyi − (2πα′)GuN
A δaN

)]z=+∞

z=−∞
, (B.3)

where G, GMN
S and GMN

A are as defined in (4.15), (4.19) and (4.20). The third line is the

surface term for the case that there are two boundaries at z → ±∞, where z is defied

in (4.32). The variation of the CS action (4.13) is

δSCS =
N

4π

∫
d3x ǫMPNfMP δaN +

N

8π

∫
d2x

[
a+δa− − a−δa+

]z=+∞
z=−∞ . (B.4)

The equations of motion for yi and aN are

∂M

(√
−GGijGMN

S ∂Nyj
)
= 0 , (B.5)

and

−(2πα′)T3d∂M

(√
−G GMN

A

)
+

N

4π
ǫMPNfMP = 0 . (B.6)

The latter equation can be written as

fMN = ∂MbN − ∂NbM , (B.7)

with

bP ≡ π

N
(2πα′)T3d

√
−G ǫMNPGMN

A . (B.8)

This is equivalent to the statement that

a
(0)
M ≡ aM − bM (B.9)

is a flat connection.

If we assume that yi, fMN and all the components of the metric only depend on u, the

equations of motion (B.5) and (B.6) imply

√
−GGijGuu

S ∂uy
j = constant , (B.10)
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and

f01 = 0 , (B.11)

−(2πα′)T3d∂u

(√
−G Gu0

A

)
+

N

2π
f1u = 0 , (B.12)

−(2πα′)T3d∂u

(√
−G Gu1

A

)
− N

2π
f0u = 0 . (B.13)

When the metricGMN is diagonal and the non-zero components of the field strength are

ê ≡ (2πα′)f0u , b̂ ≡ (2πα′)f1u , (B.14)

we have

(GMN ) =




G00 0 ê

0 G11 b̂

−ê −b̂ guu


 , (B.15)

G = G00G11guu + b̂2G00 + ê2G11 , (B.16)

(
GMN
S

)
=

1

G




b̂2 +G11guu −b̂ê 0

−b̂ê ê2 +G00guu 0

0 0 G00G11


 , (B.17)

(
GMN
A

)
=

1

G




0 0 −êG11

0 0 −b̂G00

êG11 b̂G00 0


 , (B.18)

where

guu = Guu +Gij∂uy
i∂uy

j . (B.19)

In this case, the equations of motion (B.10), (B.12) and (B.13) are

ci ≡
−G00G11Gij∂uy

j

√
−G = constant , (B.20)

∂u

(
êG11√
−G

)
= − 4

R
b̂ , (B.21)

∂u

(
b̂G00√
−G

)
= +

4

R
ê , (B.22)

where we have used the relation (4.14). Using (B.19) and (B.20) to write guu in terms of

G, G and ci, we can use (B.16) to conclude that

G =
G00G11Guu +G00b̂

2 +G11ê
2

1 +
Gijcicj
G00G11

, (B.23)

and

∂uy
i = Gijcj

√
Guu + b̂2

G11
+ ê2

G00

−G00G11 −Gklckcl
. (B.24)
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B.2 Solutions for T < Tc

For the background (4.1), we have

−G00 = G11 =
u2

R2
, Guu =

R2

u2
1

f(u)
, Gyy =

u2

R2
, Gττ =

u2

R2
f(u) . (B.25)

In this case, (B.21)×ê + (B.22)×b̂ implies

ζ ≡ (ê2 − b̂2)

−G
u4

R4
= constant . (B.26)

Then, (B.23) and (B.24) become

−G =
u12

R2F (u)2
, (B.27)

and

∂uy =
R5cy
F (u)

, ∂uτ =
R5cτ

f(u)F (u)
, (B.28)

where

F (u) ≡
√

u4f(u)

(
u6 +R2ζu4 −R6c2y −

R6c2τ
f(u)

)
. (B.29)

This function F (u) agrees with (4.24), when

ζ =
c+c−
R2

(B.30)

is satisfied. We will soon show that this is indeed the case.

Then, (B.22) and (B.21) become

∂u

(
F (u)

u4
(ê± b̂)

)
= ∓4(ê± b̂) . (B.31)

(B.28) and (B.31) can be easily integrated and we obtain

y(u) = y0 + cy

∫ u

umin

du′
R5

F (u′)
, τ(u) = τ0 + cτ

∫ u

umin

du′
R5

f(u′)F (u′)
, (B.32)

and

f±u(u) =
ê± b̂

2πα′ =
c±
2πα′

u4

F (u)
exp

(
∓4

∫ u

umin

du′
u′4

F (u′)

)
, (B.33)

where y0, cy, τ0, cτ , c± and umin are constants. With this parametrization, it is easy to

check that (B.30) is satisfied. When ∂±au = 0, (B.33) can be integrated as

a±(u) = a
(0)
± ± c±

8πα′ exp

(
∓4

∫ u

umin

du′
u′4

F (u′)

)
, (B.34)

with constant a
(0)
± .
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B.3 Solutions for T > Tc

Here, we consider the cases with fMN = 0 and τ = 0. Inserting the components

G00 = − u2

R2
fT (u) , G11 =

u2

R2
, Guu =

R2

u2
1

fT (u)
, Gyy =

u2

R2
(B.35)

of the metric (7.3) into (B.23) and (B.24), we obtain

−G =
u2

R2

1

1− R6c2y
u2(u4−u4

T
)

(B.36)

and

∂uy =
R2

u2
cy

√√√√
R2

u2
1

fT (u)

u4

R4 fT (u)− R2

u2 c2y
. (B.37)

Assuming ∂uy = ∞ at u = u∗ > uT , cy can be written as

c2y =
u2∗(u

4
∗ − u4T )

R6
, (B.38)

and (B.37) becomes

∂uy =
R2

√
(u4 − u4T )

(
u2(u4−u4

T
)

u2
∗(u

4
∗−u4

T
)
− 1

) . (B.39)

Integrating this, we obtain a U-shaped solution

y(u) = R2

∫ u

u∗

du′√
(u′4 − u4T )

(
u′2(u′4−u4

T
)

u2
∗(u

4
∗−u4

T
)
− 1

) . (B.40)
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