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1 Introduction

QCD is a remarkable theory in many respects. It has been unchallenged in the description

of strong interactions since its original formulation of more than 40 years ago [1]. It crucially

impacts theoretical descriptions of a vast range of observations, reaching from the hadron

mass spectrum to cross sections at particle colliders. When quarks are neglected (quenched

QCD), the only fundamental parameter of QCD is the strong coupling constant αs, which

simultaneously defines a mass scale ΛQCD ∼ O(100 MeV) due to its momentum dependence

implied by quantum field theory (dimensional transmutation). Also, due to asymptotic

freedom [2, 3], QCD does not have an ultra-violet cut-off; it remains consistent up to

arbitrarily high energies.

A very successful approach for calculations based on the QCD Lagrangian is perturbation

theory. It corresponds to an expansion in the strong coupling constant αs and is applicable

for processes where the typical mass scale Q is much larger than ΛQCD. The natural

input quantity is therefore αs, whose numerical value at a reference scale Q0 � ΛQCD is

determined by comparing theoretical predictions with measurements for known processes.

Any dependence of physical observables on ΛQCD is only implicit through αs:

αs(Q) ' 1

β0 log(Q2/Λ2
QCD)

, (1.1)

where β0 is the leading order coefficient of the QCD β function and will be defined below.
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Perturbation theory is obviously inadequate for calculating observables like the hadron

mass spectrum or the pion decay constant which are strongly dependent on ΛQCD. Such

problems are accessible in lattice gauge theory, however [4]. In this approach, space-time is

discretized by a characteristic lattice spacing a which serves as a UV regulator.

Unfortunately, lattice gauge theory and perturbation theory are not only complementary

approaches to QCD, but there is practically no overlap region where both would yield

competitive results. There is a certain amount of cross-fertilization though, in particular in

the context of renormalization [5–8] or flavor physics (for a review, see ref. [9], for example).

A particularly promising theoretical quantity which is accessible both perturbatively

and on the lattice is the so-called Yang-Mills gradient flow [10–13]. For a particular gauge

invariant quantity (the so-called QCD action density, to be defined in more detail below),

it was shown by Lüscher [12] that it exhibits some welcome features on the lattice which

allows its efficient evaluation with rather high precision. He also explicitly calculated this

quantity perturbatively through next-to-leading order (NLO) and showed that the standard

QCD renormalization of the gauge coupling constant is sufficient in order to obtain a finite

result [12]. This property was later proven to all orders in perturbation theory [13]. The

perturbative and the lattice result were found to be compatible over a significant interval

of the so-called flow-time parameter t, thus opening up a wide range of possibilities for

cross-fertilization in both fields.

In lattice QCD, the benefits and the appeal of the gradient flow have already been

established, for example in its use for determining the absolute mass scale of a lattice

calculation [12, 14] (“scale setting”, see ref. [15], for example). From the perturbative point

of view, on the other hand, the concept has received almost no attention since the original

works of refs. [12, 13]. However, since one may expect rather precise results on the lattice

in this framework, this may pose a challenge for perturbative calculations as well, possibly

leading to interesting first-principle results for QCD.

With this motivation in mind, we are going to study the QCD action density in the

framework of the gradient flow up to next-to-NLO (NNLO) in a perturbative approach. The

perturbative expansion will be obtained via Wick contractions of the original field operators.

This results in three D-dimensional momentum and up to four flow-time integrations

over products of massless Feynman propagators times exponential factors involving loop

momenta and flow-time integration variables. They are solved by sector decomposition and

suitable numerical integration routines. While quark-mass effects will be neglected in the

NNLO calculation, we show that they can be included through a simple one-dimensional

integral at NLO.

The remainder of this paper is organized as follows. In the next section, after briefly

recalling the flow-field formalism, the generation of the perturbative series and the evaluation

of the resulting integrals is described. Additionally, we give a list of checks performed on

our calculation, validating the numerical as well as the conceptional steps. In section 3, we

present the numerical value for the NNLO coefficient of the action density, which is the

main result of this paper, and provide a brief analysis of the numerical effects. We conclude

and give a short outlook on possible extensions and applications of this work in section 4.

– 2 –
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2 Formalism

2.1 The flow field

The theoretical framework of our calculation is defined by the equations [12, 13]

∂tB
a
µ = Dab

ν G
b
νµ + (1− λ)Dab

µ ∂νB
b
ν , Ba

µ(t = 0, x) = g0A
a
µ(x) ,

Gaµν = ∂µB
a
ν − ∂νBa

µ + ifabcBb
µB

c
ν , Dab

µ = δab∂µ − ifabcBc
µ ,

(2.1)

where Ba
µ(t, x) is the flow field with space-time index µ and color index a, g0 is the

bare QCD coupling constant, fabc are the SU(3) structure constants, and Aaµ(x) is the

fundamental gauge field of QCD. The derivative ∂µ is understood w.r.t. the D-dimensional

Euclidean1 space-time variable x, while t denotes the so-called flow-time. It is easily

seen [12] that solutions of eq. (2.1) for different values of λ are related by a t-dependent

gauge transformation of the flow field Bµ.

It was shown in ref. [13] that the flow equation (2.1) can be written as the following

integral equation in momentum space:

B̃a
µ(t, p) ≡

∫
dDxe−ipxBa

µ(t, x) = g0 K̃µν(t, p)Ãaν(p) +

∫ t

0
dsK̃µν(t− s, p)R̃aν(s, p) , (2.2)

where

K̃µν(t, z) = e−tp
2
δµν −

pµpν
p2

e−tp
2(

1− eλtp2
)
, (2.3)

and

R̃aµ(t, p) =

3∑
n=2

1

n!

∫
q1

· · ·
∫
qn

(2π)Dδ(p+ q1 + · · ·+ qn)

×X(n,0)(q1, . . . , qn)ab1···bnµν1···νnB̃
b1
ν1(t,−q1) · · · B̃bn

νn(t,−qn) , (2.4)

with
∫
p ≡

∫ dDp
(2π)D

. The vertices X(n,0) read

X(2,0)(q, r)abcµνρ = ifabc
{

(r − q)µδνρ + 2qρδµν − 2rνδµρ − λ(qνδµρ − rρδµν)
}
,

X(3,0)(q, r, s)abcdµνρσ = fabef cde(δµσδνρ − δµρδσν)

+ fadef bce(δµρδνσ − δµνδρσ) + facefdbe(δµνδρσ − δµσδνρ) .

(2.5)

The fact that the first term in eq. (2.2) is proportional to g0 allows an iterative solution of

that equation, which leads to an asymptotic series for Ba
µ,

Ba
µ =

∑
n≥1

gn0B
a
n,µ . (2.6)

With each power of g0, the number of fundamental gauge fields Aaµ increases by one.

Furthermore, Ba
n,µ involves terms with dn/2e, dn/2e+ 1, . . . , n− 1 flow-time integrations,

where dn/2e denotes the greatest integer less than or equal to n/2.

Note that eqs. (2.3) and (2.5) become particularly simple for λ = 0; for example, the

lowest-order solution of the flow-field equation is simply B̃a
µ(t, p) = e−tp

2
Ãaµ(p) in this case.

1We work in Euclidean space in this paper, unless indicated otherwise.
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2.2 Calculation of the action density

The quantity to be computed in this paper is the vacuum expectation value of the action

density,

E(t, x) ≡ 1

4
GaµνG

a
µν . (2.7)

Since E(t, x) is gauge invariant, we are allowed to set λ = 0 in our calculation, which

minimizes the number of integrals to be evaluated. The case λ 6= 0 will be considered as an

important check of our calculation in section 2.4.

The perturbative expansion of the vacuum expectation value

〈E〉 =
1

2
〈∂µBa

ν∂µB
a
ν − ∂νBa

µ∂νB
a
µ〉+ fabc〈(∂µBa

ν )Bb
µB

c
ν〉+

1

4
fabcf cde〈Ba

µB
b
νB

c
µB

d
ν〉 (2.8)

is obtained by inserting the asymptotic expansion of the flow field Ba
µ as obtained in the

previous section, and including higher orders of the fundamental perturbative vacuum, i.e.

〈O〉 =
〈0|O exp

(
− SQCD(g0)

)
|0〉

〈0| exp
(
− SQCD(g0)

)
|0〉

, (2.9)

where SQCD is the interaction part of the fundamental QCD action which depends on the

fundamental gauge fields Aaµ.

From eqs. (2.8) and (2.2) it follows that 〈E〉 = O(g20); only the first term on the r.h.s.

of eq. (2.8) contributes at lowest order, while the second and the third term are of order g40
(odd powers in g0 vanish due to an odd number of fields in the matrix elements). However,

all three terms on the r.h.s. of eq. (2.8) contribute to higher orders as well, either through

higher orders in the expansion of the B-fields, see eq. (2.2), or through the perturbative

expansion of the exponential in eq. (2.9). The former case generally leads to an increase

in the number of flow-time integrations, while the latter corresponds to corrections due to

fundamental QCD. The general form of a matrix element to be evaluated at order gn0 can

therefore be symbolized by

Mn(k,m) ≡ 〈0|(Bm1 · · ·Bmk
)× (SQCD)n−m|0〉 , m =

k∑
i=1

mi , (2.10)

where Bmi is the mth
i coefficient of the asymptotic series in eq. (2.6). This classification

turns out useful with respect to the way we subsequently simplify the matrix elements in

the sense that individual terms cannot be combined among different classes. Note that

0 ≤ m− k is the maximum number of flow-time integrations in Mn(k,m), and since m ≤ n,

the maximum number of flow-time integrations at order gn0 is2 n− 2.

One particularly simple class when calculating 〈E〉 is Mn(2, 2), which is fully determined

by the (n− 2)-loop self-energy of the fundamental gluon field; this will serve as a welcome

check of our calculation, see section 2.4. At LO, M2(2, 2) is in fact the only class that

contributes. At order gn0 for n ≥ 4, one needs to evaluate 3(n− 2) classes, namely Mn(k,m)

with k ∈ {2, 3, 4} and k ≤ m ≤ n. Thus, at NNLO, there are twelve classes that contribute

to 〈E〉, and the maximum number of flow-time integrations is four. For comparison, at

NLO there are six classes and at most two flow-time integrations.

2For a k-point function, the maximum number of flow-time integrations is n− k.
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2.3 Evaluation of the perturbative series

Except for the final numerical integration, all stages of the calculation were performed with

the help of Mathematica [16]. Rather than following the diagrammatic method developed in

ref. [13], we directly implemented the Wick contractions of the gauge and quark fields after

the iterative expansion of the flow fields according to eqs. (2.2) and (2.4), the perturbative

expansion of exp(−SQCD) in eq. (2.9), and the insertion of QCD-Feynman rules. The

Dirac algebra is performed with the functionalities of FeynCalc [17] and color factors

are calculated using ColorMath [18]; vacuum diagrams are discarded as required by the

normalization factor in eq. (2.9).

After these algebraic and symbolic manipulations, one ends up with integrals of the

general form (at O(g60))

I(t,n,a, D) =

( N∏
f=1

∫ tupf

0
dtf

)∫
p1,p2,p3

exp
[∑

k,i,j akijtkpipj
]

p2n1
1 p2n2

2 p2n3
3 p2n4

4 p2n5
5 p2n6

6

, (2.11)

where D = 4− 2ε is the space-time dimension,

n = {n1, n2, n3, n4, n5, n6} ,
a = {akij : k = 0, . . . , N ; i = 1, 2, 3 ; j = 1, 2, 3}

(2.12)

are sets of integers, N ≤ 4, t0 ≡ t, and the upper limits for the flow-time integrations are

linear combinations of the other flow-time variables, tupf = tupf (t0, . . . tf−1). The momenta

p4, p5, p6 are linear combinations of the integration momenta p1, p2, p3. Quark-mass effects

have been neglected in eq. (2.11); at NLO, we will take them into account in section 2.5.

Needless to say that in order to minimize computer time, it is important to identify

integrals which differ by linear transformations of the loop momenta and flow-time integration

variables at this stage, to cancel numerators with denominators in the integrals as far as

possible, and to discard scale-less integrals which vanish in dimensional regularization. After

these simplifications, the number of integrals of the form given in eq. (2.11) is listed in

table 1, both split according to the classification defined in eq. (2.10), and according to the

number of flow-time integrations. For comparison, we also give the corresponding numbers

for the NLO case in table 2.

When quark masses are neglected, the only mass scale in the problem is the flow time

t, and therefore

I(t,n,a, D) = t−d/2 c(n,a, D) , d = 3D − 2N − 2
6∑
i=1

ni , (2.13)

where c(n,a, D) is dimensionless.

Introducing Schwinger parameters as

1

p2n
=

1

(n− 1)!

∫ ∞
0

ds sn−1 e−sp
2
, p2n =

dn

dsn
esp

2

∣∣∣∣
s=1

, (2.14)

where n ∈ N, the momentum integration reduces to a Gaussian integral:∫
p1,p2,p3

exp
[
− pTA(s, t)p

]
=
(

detA(s, t)
)−D/2

(4π)−3D/2, (2.15)

– 5 –
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k 2 3 4
Σ

m 2 3 4 5 6 3 4 5 6 4 5 6

# 24 45 219 683 2244 13 43 110 244 5 7 14 3651

(a)

f 0 1 2 3 4 Σ

# 42 117 412 1229 1851 3651

(b)

Table 1. Number of integrals at NNLO (a) in class M6(k,m), and (b) involving f flow-time

integrations. The numbers may not strictly be minimal; they are to be understood as a reference, in

particular in comparison to the NLO numbers given in table 2.

k 2 3 4
Σ

m 2 3 4 3 4 4

# 1 4 11 1 2 1 20

(a)

f 0 1 2 Σ

# 3 7 10 20

(b)

Table 2. Number of integrals at NLO (a) in class M4(k,m), and (b) involving f flow-time

integrations. The numbers may not strictly be minimal; they are to be understood as a reference, in

particular in comparison to the NNLO numbers given in table 1.

where p = (p1, p2, p3), and A(s, t) is a coefficient matrix which is linear in the Schwinger

parameters s = {s1, . . . , s6} and the flow-time variables t = {t0, . . . , tN}.
Through simple rescaling of the flow-time variables and the Schwinger parameters,

tn →
tn
tupn

, sn →
sn

sn − 1
, (2.16)

one ends up with integrals of the form

J(D) =

∫ 1

0
dx1 · · ·

∫ 1

0
dxM

∏
i

P aii (x1, . . . , xM ) , (2.17)

where M > 0, the Pi are polynomials in x1, . . . , xM , and the exponents ai can be D-

dependent. In the limit 4 −D = 2ε→ 0, the integrals develop divergences. The integration

over the xn can be carried out analytically only for a few simple cases, which is why one needs

to resort to numerical integration.3 This requires the isolation of the terms that become

singular as ε→ 0, which can be achieved algorithmically through sector decomposition [20].

In our calculation, we apply this method through the Mathematica package FIESTA [21],

which provides us with the result in the form

J(D) =
1

ε2
J2 +

1

ε
J1 + J0 + . . . , (2.18)

where the ellipsis denotes higher order terms in ε = (4−D)/2, and the Jn are convergent

integrals over rational functions times logarithms of the parameters x1, . . . , xM . They can

3For attempts of analytically evaluating the three-loop integrals, see ref. [19].
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thus be evaluated numerically. We prevented FIESTA from performing this integration, and

rather used a fully symmetric integration rule of order 13 [22]. All parts of the integration

are performed with high precision arithmetics using the MPFR library.4 We checked that

this algorithm provides us with a reliable estimate of the numerical accuracy.

Let us give the explicit result for one particular non-trivial integral of the type in

eq. (2.11) which occurs in the calculation of t2〈E(t)〉. It has four flow-time integrations and

thus belongs to the class M6(2, 6). Furthermore, from the flow-time integration limits, we

see that it originates from the iterated insertion of four 3-point flow-time vertices X(2,0):∫
k,q,r

∫ t

0
ds0

∫ s0

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3

(k + q)2(k + r)2

(k − q)2(q − r)2

× exp
[
2r(r − q)(s0 + s3) + 2kr(s0 − s1) + 2kq(s1 − s2 − 2t) + 2k2t+ 2q2(s2 + t)

]
=

t−2+3ε

(4π)3D/2

(
− 0.858906438(2) +

0.0078125

ε2
− 0.0037791975(3)

ε

)
. (2.19)

The numerical result in the last line is obtained by following the evaluation procedure

described above. The numbers in brackets indicate the integration error; for the 1/ε2-terms

we were able to derive an analytical result, for which we simply quote the first few digits of

its numerical value. The precision of order 10−9 as quoted in eq. (2.19) for the 1/ε0-term

corresponds to about 250 CPU minutes on an 3 GHz AMD A8 processor; a precision of 10−6

(10−4) could be achieved within about ten (two) minutes. The CPU time for the 1/ε-term

is typically several orders of magnitude smaller.

2.4 Validation of the calculation

Since this is the first three-loop calculation in the gradient-flow formalism, we considered it

of utmost importance to validate our setup. We successfully completed the following checks.

Lower order results. It is important to note that our calculation does not rely on any

of the results of refs. [12, 13]. The fact that we reproduced the NLO results evaluated in

these papers is therefore an important check of the setup in general. Since the NLO result is

known analytically, we can use it also to cross check the numerical accuracy claimed by our

integration routine, and we find rather conservative estimates. Specifically, our numerical

result agrees with the analytical expression through 10−15.

UV-poles at NNLO. The terms of order 1/ε2 and 1/ε obtained in our three-loop

calculation need to be cancelled by the corresponding terms due to the renormalization

of the strong coupling constant at lower orders. We verify this cancellation by analytical

integration for the 1/ε2 terms, and numerically through one part in 1010 for the 1/ε terms.

Note that the number and complexity of the integrals is typically smaller for higher order

poles. However, even though this means that we cannot expect the same numerical accuracy

for the finite terms, it should still be sufficient for any foreseeable practical application.

4http://www.holoborodko.com/pavel/mpfr/, http://www.mpfr.org/.
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We note in passing that, in the case of the quantity under consideration, the cancellation

of the poles is equivalent to the renormalization group (RG) invariance of the final result:

µ2
d

dµ2
〈E(t)〉 = 0 , (2.20)

where µ is the renormalization scale. The quantity 〈E〉 depends on µ implicitly through

αs(µ), and explicitly through terms of the form lnµ2 t. Knowing the logarithmic dependence

in t is thus equivalent to knowing the one in µ. The former is directly obtained from

expanding eq. (2.13) for ε → 0, while the latter follows from RG-invariance and can be

derived from lower order terms through the perturbative solution of the QCD renormalization

group equation:

µ2
d

dµ2
αs(µ) = αs(µ)β(αs) , β(αs) = −

∑
n≥0

βn

(
αs
π

)n+1

, (2.21)

⇒ αs(q) = αs(µ)

[
1 +

αs(µ)

π
β0 ln

µ2

q2
+

(
αs(µ)

π

)2[
β1 ln

µ2

q2
+ β20 ln2 µ

2

q2

]
+ . . .

]
,

(2.22)

with the first two coefficients of the β function given by5

β0 =
11

4
− 1

6
nf , β1 =

51

8
− 19

24
nf , (2.23)

where nf is the number of active quark flavors.

Two-loop gluon propagator. As already pointed out above (see the discussion after

eq. (2.10)), the class Mn(2, 2), where in the first term on the r.h.s. of eq. (2.8) the flow

fields Ba
µ in eq. (2.8) are replaced by their lowest-order terms Ba

1,µ, is fully determined by

the fundamental gluon self-energy. In fact, using Feynman gauge and adopting the notation

of ref. [12], we may write

E0 ≡
g20
2
〈∂µBa

1,ν∂µB
a
1,ν − ∂νBa

1,µ∂νB
a
1,µ〉 = 4g20(D − 1)

∫
p

e−2tp
2

1− ω(p)
, (2.24)

with the gluon self-energy

ω(p) =

∞∑
k=1

g2k0 (p2)−kε
ω̃k e

−kεγE

(4π)kD/2
. (2.25)

Using ∫
p
e−2tp

2
(p2)−kε =

(2t)kε

(8πt)D/2
Γ(D/2− kε)

Γ(D/2)
, (2.26)

5We quote only the QCD β function here. The coefficients for a general Lie group can be found in

ref. [23, 24], for example.

– 8 –
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the perturbative expansion of eq. (2.24) can be calculated analytically. The coefficients ω̃i
can be taken from the literature.6 In Feynman gauge, they read

ω̃1 = CA

(
5

3ε
+

31

9

)
− nfTR

(
4

3ε
+

20

9

)
+O(ε) ,

ω̃2 = −C2
A

(
25

12ε2
+

583

72ε
+

14311

432
− ζ(3)− 25

12
ζ(2)

)
+ 2nfCFTR

(
1

ε
+

55

6
− 8ζ(3)

)
+ 2nfCATR

(
5

6ε2
+

101

36ε
+

1961

216
+ 4ζ(3)− 5

6
ζ(2)

)
+O(ε) ,

(2.27)

where CA and CF are the Casimir operators of the adjoint and the fundamental repre-

sentation of the underlying gauge group, TR is the corresponding trace normalization (in

QCD, CA = 3, CF = 4/3, and TR = 1/2), and ζ(z) is Riemann’s zeta function with the

values ζ(2) = π2/6 = 1.64493 . . . and ζ(3) = 1.20206 . . .. Inserting them via eq. (2.25)

into eq. (2.24), we can compare the result for E0 obtained in this way with our completely

independent evaluation which follows the procedure described in section 2.2. We find

agreement at the level of one part in 108.

Derivatives in the flow time. Given an integral of the form I(t,a,n, D) in eq. (2.11),

we can compute the derivative w.r.t. t in two ways: either by applying it to the integrand

on the l.h.s. of eq. (2.11) and then calculating the resulting integrals with our setup, or by

using eq. (2.13), which implies

t
d

dt
I(t,a,n, D) = −d

2
I(t,a,n, D) , (2.28)

with d given in eq. (2.13). We have confirmed the equivalence of both approaches in our

setup for some of the most complicated integrals at the level of one part in 1010.

Gauge parameter independence. Our setup allows us in principle to perform the

calculation for arbitrary gauge parameter λ 6= 0, see eq. (2.1). We have confirmed general

λ-independence at NLO, where the number of terms to be evaluated increases by about a

factor of ten compared to the case λ = 0. At NNLO, however, the sheer volume of integrals

when allowing for general λ makes it impossible to evaluate all of them with meaningful

precision in reasonable time. A much more practical though still powerful way is to perform

an expansion around λ = 0 and consider only the terms linear in λ. The most significant

simplification following from this is that instead of eq. (2.3), we obtain

K̃µν(t, z) ≈ e−tp2(δµν + tλpµpν) . (2.29)

In this way, the number of integrals increases again only by a factor of O(10) relative to

the case λ = 0. We find gauge parameter independence of the NNLO result for 〈E〉 at O(λ)

through 10−3 for the finite term, and 10−10 for the 1/ε pole terms.

6Two-loop calculations of the gluon propagator for were first reported in refs. [25–28]; we use the result

quoted in ref. [29] here.
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Figure 1. Quark mass effects Ω1q(mq/q8) as in eq. (2.33).

2.5 NLO quark-mass effects

Quark loops occur first through the one-loop gluon self-energy, eq. (2.25). Quark-mass

effects can therefore be taken into account along the lines of eqs. (2.24)–(2.27) by replacing

ω̃1 → ω̃1 +
∑
q

∆ω̃1q , (2.30)

where the sum runs over all active quark flavors q, and the quark-mass (mq) terms are given

by [30]

∆ω̃1q =
4

3
ln
µ2

m2
q

− 4

3zq
+

8(1 + zq)(1− 2zq)

3zq

uq lnuq
u2q − 1

,

zq =
p2

4m2
q

, uq =

√
1 + 1/zq − 1√
1 + 1/zq + 1

.

(2.31)

We thus find

t2〈E(t)〉 = t2〈E(t)〉
∣∣∣∣
mq=0

− α2
s

8π2

∑
q

Ω1q , (2.32)

where

Ω1q = 1− γE − ln 2tm2
q − 8m2

qt+ 32t2m2
q

∫ ∞
0

dp2 e−2tp
2
(1 + zq)(1− 2zq)

uq lnuq
u2q − 1

. (2.33)

The function Ω1q depends only on 8m2
qt ≡ m2

q/q
2
8 ; its numerical size is displayed in figure 1.

In the limits of small and large quark mass, one finds

Ωq1 →

{
−12m2

qt+O
(
(m2

qt)
2
)
,

− ln 2m2
qt− γE − 2

3 +O
(
(m2

qt)
−1) . (2.34)

– 10 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
1

3 Results

3.1 Action density at three-loop level

We write the result for the vacuum expectation value of the action density as

〈E(t)〉 =
3αs
4πt2

NA

8
KE(αs) , (3.1)

with the NNLO correction factor

KE(αs) = 1 + αs k1 + α2
s k2 , (3.2)

where αs ≡ α
(nf )
s (µ) is the strong coupling renormalized at the scale µ with nf active

quark flavors (assumed massless), and NA is the dimension of the adjoint representation

of the underlying gauge group (NA = 8 in QCD). Setting µ = 1/
√

8t, the perturbative

coefficients read

k1 = 8 · (0.045741114CA + 0.001888798TRnf )− TR
∑
q

Ω1q

3π
QCD
≈ 1.098 + 0.008nf +O(m2

qt) ,

k2 = 8 ·
(
− 0.0136423(7)C2

A

+ TRnf
(
0.006440134(5)CF − 0.0086884(2)CA

)
+ T 2

Rn
2
f 0.000936117

)
QCD
≈ −0.982− 0.070nf + 0.002n2f .

(3.3)

The NLO coefficient k1 has been obtained analytically for mq = 0 in ref. [12]; we add mass

effects Ω1q obtained in eq. (2.33). However, for most of our analysis, we find that these

terms are numerically irrelevant, and we will neglect them unless stated otherwise. The

NNLO coefficient k2 is the main result of our paper. Similar to eq. (2.19), the numbers in

brackets denote the numerical uncertainty. The n2f -term in k2 is completely determined by

the two-loop gluon propagator, given analytically in eq. (2.25). Similar to k1, we simply

quote the first few digits of its numerical value. Although our main focus is on QCD,

we expressed the result of eqs. (3.2), (3.3) in terms of “color” factors of a general simple

Lie group (see above). For illustration, we also inserted their QCD values and find very

well-behaved perturbative coefficients for any realistic value of nf .

The expression of t2〈E(t)〉 for general values of the renormalization scale µ is easily

reconstructed using eq. (2.22). Figure 4 shows the variation with this unphysical scale for

various values of

q8 ≡ 1/
√

8t . (3.4)

From the input value α
(5)
s (mZ) = 0.118, we proceed as described in figure 2 in order to derive

α
(nf )
s (q8). Here, l-loop running of αs means that we numerically solve eq. (2.22) including

the coefficients β0, . . . , βl−1. The decoupling of heavy quarks is consistently performed

at (l − 1)-loop order at the matching scales µb = mb = 4.78 GeV for α
(5)
s → α

(4)
s , and
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α
(5)
s (mZ) = 0.1180

α
(5)
s (100 GeV) = 0.1164

α
(5)
s (5 GeV) = 0.2131

α
(5)
s (mb) = 0.2159

α
(4)
s (mb) = 0.2153 α

(4)
s (4 GeV) = 0.2284

α
(4)
s (2mc) = 0.2436

α
(3)
s (2mc) = 0.2360 α

(3)
s ( 1

1.6 GeV) = 1.415α
(3)
s (1 GeV) = 0.4866

α
(3)
s ( 1

1.3 GeV) = 0.6886 α
(3)
s ( 1

1.5 GeV) = 0.9848

α
(3)
s (10 GeV) = 0.1662

α
(3)
s (100 GeV) = 0.1043

Figure 2. Evolution of αs from the input value α
(5)
s (mZ). Solid arrows denote four-loop RG

evolution, dashed arrows three-loop decoupling of heavy quarks.

µb = 2mc = 2 · 1.67 GeV for α
(4)
s → α

(3)
s (see refs. [31, 32] for more details, for example).

These start values are then further evolved for fixed nf at the corresponding loop order in

order to produce the plots: for the LO/NLO/NNLO result, we apply one/two/three-loop

running of αs.

Figure 3 shows the dependence of t2〈E(t)〉 as a function of µ/q8 for q8 = 100 GeV and

q8 = 2 GeV. In both cases, one observes a sound perturbative behavior in the interval

µ ∈ [q8, 3q8]. In addition, the µ-dependence decreases significantly with increasing loop

order. These features quickly fade away when going to lower values of µ. Our conclusion is

that the best prediction for t2〈E(t)〉 is obtained within the µ-interval [q8, 3q8]; its variation

within this interval will be used as an estimate of the theoretical uncertainty. Values of µ

outside this interval will be disregarded in what follows.

Figure 4 shows t2〈E(t)〉 within this interval for a few values of q8 ≤ 1 GeV. It is

interesting to note that for q8 = 1/1.5 GeV, corresponding to
√
t ≈ 0.1 fm, we may still

make quantitative predictions when focussing on the µ-interval identified above. For lower

energies, the uncertainty at NNLO becomes of the order of 100%, and the NLO and NNLO

correction are of the same order of magnitude.

A common feature of all the plots in figures 3 and 4 (except the one at q8 = 1/1.6 GeV,

a value which we will not consider any further in this paper) is that, within µ ∈ [q8, 3q8],

the maximum is quite precisely at µ = 1.15 q8, while the minimum is at µ = 3q8. Therefore,
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Figure 3. t2〈E(t)〉 for nf = 3 as a function of µ/q8 for q8 = 100 GeV and q8 = 2 GeV at LO (black

dotted), NLO (orange dashed), and NNLO (red solid). All curves are normalized to the NNLO-result

at µ = 3q8. Note the different scales in the two plots.
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Figure 4. Same as figure 3, but for lower values of q8, and restricted to the interval µ ∈ [q8, 3q8].
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Figure 5. t2〈E(t)〉 for nf = 3 as a function of
√

8t (in GeV−1) for µ = 3/
√

8t (lower) and

µ = 1.15/
√

8t (upper) at LO (gray), NLO (orange), and NNLO (red).

the error interval of t2〈E(t)〉 as defined above is given to a very good approximation by its

values at µ = µ− ≡ 3q8 and µ = µ+ ≡ 1.15q8.

Figure 5 shows the dependence of t2〈E(t)〉 on
√

8t = 1/q8 for nf = 3 active flavors at

LO, NLO, and NNLO, with error bands evaluated as indicated above. For each value of q8,

the strong coupling αs is evolved at four-loop level from α
(5)
s (mZ) to α

(3)
s (q8) (including

three-loop matching at the quark thresholds), and subsequently at the pertinent order

from α
(3)
s (q8) to α

(3)
s (µ), with µ = 1.15q8 and µ = 3q8 for the upper and lower edge of the

uncertainty band, respectively. One observes that the resulting NLO and the NNLO bands

nicely overlap, which gives confidence in using these bands as measures of the theoretical

uncertainty. There is hardly any overlap of these curves with the LO band though.

3.2 Extracting αs(mZ)

One of the most interesting applications of our results would be the derivation of a numerical

value of αs(mZ) ≡ α
(5)
s (mZ) using lattice data as input. This will be most promising, of
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t2〈E(t)〉 · 104

q8 2 GeV 10 GeV mZ

αs(mZ) nf = 3 nf = 4 nf = 3 nf = 4 nf = 5 nf = 3 nf = 4 nf = 5

0.113 744 755 424 446 456 267 285 299

0.1135 753 764 426 449 459 268 286 301

0.114 762 773 429 452 462 269 287 302

0.1145 771 782 432 455 466 270 289 303

0.115 780 792 435 458 469 272 290 305

0.1155 789 802 438 461 472 273 291 306

0.116 798 811 440 465 476 274 292 308

0.1165 808 821 443 468 479 275 294 309

0.117 818 832 446 471 483 276 295 311

0.1175 827 842 449 474 486 277 296 312

0.118 837 852 452 478 490 278 298 314

0.1185 847 863 455 481 493 279 299 315

0.119 858 874 457 484 497 280 300 316

0.1195 868 885 460 488 500 281 301 318

0.12 879 896 463 491 504 282 303 319

Table 3. Numerical values for 104 · t2〈E(t)〉 corresponding to various αs(mZ) ≡ α(5)
s (mZ). Given

a numerical result for t2〈E(t)〉 (e.g., from a lattice calculation), this table lets one deduce the

corresponding value of αs(mZ). The associated perturbative uncertainty for nf = 5 and nf = 3 can

be read off from figure 6.

course, if the lattice calculation for t2〈E(t)〉 could be extended to the perturbative regime,

which seems to have become a realistic perspective [33].

Assume that a lattice value e(t) for t2〈E(t)〉 is known, evaluated at t = 1/(8q28) and

for nf active quark flavors. Using the perturbative result of eqs. (3.1) and (3.2) through

order l (including its µ-dependence), one can derive an l-loop value for α
(nf )
s (µ), which can

then be converted into a value for α
(5)
s (mZ) through four-loop RG evolution and three-loop

matching to the nf = 5 theory. Table 3 shows this relation at NNLO (i.e. for l = 3) for

a number of values of q8 and nf . The values of t2〈E(t)〉 given in that table correspond

to the center of the error band, i.e., they are the arithmetic means of t2〈E(t)〉 evaluated

at µ = 1.15 q8 and µ = 3 q8. These numbers take into account the NLO quark effects

given in eq. (2.33), whereupon the lightest three quark flavors are taken massless, while

mc = 1.67 GeV and mb = 4.78 GeV. The mass effects therefore only affect the columns

with nf ≥ 4. At q8 = 2 GeV, their effect on t2〈E(t)〉 is about 0.8%, at q8 = 10 GeV it is

less than 0.3% both for nf = 4 and nf = 5, while at q8 = mZ , they have no effect on the

digits given in the table.

In accordance with our previous considerations, we estimate the theoretical accuracy

of this extraction by considering t2〈E(t)〉 at µ = 1.15 q8 and 3 q8 when deriving α
(nf )
s (µ)

from e(t). The result for nf = 3 is shown in figure 6. In lack of a precise value of e(t) at

sufficiently large q8, we substitute it by the perturbative NNLO expression for t2〈E(t)〉 at
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Figure 6. Upper plot: numerical value for α
(5)
s (mZ) derived at LO (gray), NLO (orange), and

NNLO (red) from a hypothetical exact value of t2〈E(t)〉|nf=3 (see main text for details). Lower plot:

corresponding theoretical uncertainty (see eq. (3.5)). The red dotted line in the lower plot shows

the uncertainty when the analysis is based on t2〈E(t)〉|nf=5.

µ = q8, where the numerical value for α
(3)
s (q8) is derived by three-loop running and two-loop

matching (µb = mb and µc = 2mc) from the input value αs(mZ) = 0.118. Therefore, the

NNLO band for αs(mZ) in the upper part of figure 6 always includes the value 0.118 by

construction. Similar to figure 5, the width of the bands decreases remarkably towards

higher orders of perturbation theory. The NNLO band lies completely within the NLO

band, while LO has no overlap with NLO.

The lower part of the figure shows the theoretical accuracy that could be achieved by

such an analysis, derived by taking the relative width of the bands of the upper part of

the plot,

∆αs
αs

=
αmax
s (mZ)− αmin

s (mZ)

αmax
s (mZ) + αmin

s (mZ)
. (3.5)

For example, if e(t) is given only at t = 1/(8GeV2), the NNLO uncertainty on αs(mZ)

would be around 2.5%. On the other hand, knowning e(t) at t = 1/(8m2
Z) would allow one
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to derive αs(mZ) to 0.5% accuracy which is at the same level as the current world average

on this quantity [34]. Also shown in the lower plot is the uncertainty which results from

knowing e(t) for nf = 5 active flavors (lower dotted red line). In this case, the numbers

above decrease to ∼ 1.1% and ∼ 0.3%, respectively, because of the lower value of the QCD

β function.

3.3 Derivative of the action density

In ref. [14] it was argued that the quantity

W (t) ≡ t d

dt
t2〈E(t)〉 (3.6)

is more suitable for scale setting on the lattice. Neglecting again quark mass effects, t

and µ are the only dimensional scales of the dimensionless quantity t2〈E(t)〉, so that the

dependence on them can only be in terms of ltµ ≡ ln tµ2. Using eq. (2.20), we can thus

write

W (t) =
∂

∂ltµ
t2〈E(t)〉 = −αsβ(αs)

∂

∂αs
t2〈E(t)〉 , (3.7)

with the β function defined in eq. (2.21). The result is therefore

W (t) =
3

4

(
αs
π

)2
β0
[
1 + αs(b1 + 2k1) + α2

s(b2 + 2 b1k1 + 3k2)
]
, (3.8)

with k1, k2 given in eq. (3.2), bn ≡ βn/(π
nβ0), where β0 and β1 have been given in

eq. (2.23), and7

β2 =
2857

128
− 5033

1152
nf +

325

3456
n2f . (3.9)

Numerically, this gives, for QCD and setting µ = 1/
√

8t,

W (t) = α2
s (0.208975− 0.0126651nf )

+ α3
s (0.613022− 0.0437989nf − 0.000191375n2f )

+ α4
s

(
− 0.10538(3)− 0.0798618(4)nf + 0.00426484(9)n2f − 0.0000711364n3f

)
.

(3.10)

Again, the µ-dependent terms can be easily reconstructed using renormalization group

invariance.

Performing a similar analysis for W (t) as done in the preceeding sections for t2〈E(t)〉,
we see no improvement concerning the precision for the extraction of αs relative to the one

based on t2〈E(t)〉.

4 Conclusions and outlook

The action density for QCD gradient flow fields has been evaluated at three-loop level.

The perturbative expansion has been derived by standard Wick contractions, and the

7Again, we give only the QCD expression here. For the coefficient in a general Lie group, see ref. [23, 24].
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resulting integrals have been solved by sector decomposition supplied by a suitable numerical

integration algorithm. A number of strong checks on the result has been performed. In

addition, quark-mass effects have been included at NLO.

Our NNLO coefficient indicates a very well-behaved perturbative series for the action

density down to energy scales of about q8 ∼ 0.65 GeV, corresponding to
√
t ∼ 0.11 fm. This

seems well within reach of a direct comparison to a lattice evaluation of t2〈E(t)〉. Given

that t2〈E(t)〉 can be evaluated independently (e.g. by a lattice calculation) at sufficiently

large values of the flow time with high precision, one may derive a numerical value for

αs(mZ) by comparison to the perturbative result. We provide an estimate of the resulting

uncertainty and find that it could be competitive with the current world average.

On the perturbative side, further steps could be the development of more efficient tools

for the evaluation of the integrals, the consideration of other observables, or the application

of the flow-field formalism to quark fields as introduced in ref. [35].

Finally, it should be noted that there is no conceptual limitation of the calculational

method described in this paper which would restrict it to the three-loop level. In the current

implementation, however, an extension to four loops would require a significant increase in

the computing resources.
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Hölbling, and Rainer Sommer for helpful communication, and to Marisa Sandhoff and

Torsten Harenberg for administration of the DFG FUGG cluster at Bergische Universität

Wuppertal, where most of the calculations for this paper were performed.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the color octet gluon picture,

Phys. Lett. B 47 (1973) 365 [INSPIRE].

[2] H.D. Politzer, Reliable perturbative results for strong interactions?,

Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

[3] D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories,

Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

[4] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

[5] G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for

nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81

[hep-lat/9411010] [INSPIRE].

– 18 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0370-2693(73)90625-4
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B47,365%22
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,30,1346%22
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,30,1343%22
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D10,2445%22
http://dx.doi.org/10.1016/0550-3213(95)00126-D
http://arxiv.org/abs/hep-lat/9411010
http://inspirehep.net/search?p=find+EPRINT+hep-lat/9411010


J
H
E
P
0
6
(
2
0
1
6
)
1
6
1
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[13] M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-Abelian gauge

theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].
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