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1 Introduction

The origin of the matter-antimatter asymmetry of the universe still remains a mystery
to be unraveled [1, 2]. Most current approaches are based on mechanisms that rely on
relatively high reheating temperatures 7}y,. For example, thermal leptogenesis [3, 4] requires
T = 10°-10'° GeV while electroweak baryogenesis [5] demands Ty, 2> 1 TeV.

However, supersymmetric (SUSY) extensions of the Standard Model (SM) and their
string theory embeddings typically have moduli fields that alter the standard thermal his-
tory of the universe [6]. The moduli, due to their gravitational coupling to matter, are
long-lived and tend to dominate the energy density of the universe before decaying. The
late-time decay of the moduli typically gives rise to reheating temperatures well below the
electroweak scale, particularly in models with low-energy SUSY. The moduli decay also
releases a huge amount of entropy that dilutes any pre-existing relic abundance, thereby
necessitating the production of dark matter (DM) and the generation of the baryon asym-
metry of the universe (BAU) at relatively low temperatures.



An interesting class of string compactifications is type I1IB sequestered string models
with D3-branes at singularities [7-9]. These models have been explicitly embedded in glob-
ally consistent Calabi-Yau (CY) compactifications with de Sitter (dS) closed string moduli
stabilisation [10, 11]. Moreover, they can yield low-energy SUSY without introducing any
cosmological moduli problem [12-14] or gravitino overproduction problem [15, 16], and
provide a promising framework for building inflationary models in agreement with Planck
data where the inflaton is a Ké&hler modulus [17-19].

In the context of the Large Volume Scenario (LVS) [20, 21], all sequestered models
share a universal feature: the overall volume mode is the lightest modulus y. Its mass is
suppressed with respect to the gravitino mass: m, ~ ms/ V€, where € ~ mg /2 /M, < 1.
On the other hand gaugino masses scale as M ~ mg3/; € while scalar masses can behave as
either mg ~ M or mg ~ m,, [22, 23] depending on the exact form of the Kéhler metric for
matter fields and the mechanism responsible for achieving a dS vacuum. Thus sequestered
scenarios can give rise to both MSSM-like and split SUSY-like models. TeV-scale gaugino
masses can be obtained for mg /5 ~ 101910 GeV and My ~ 105-107 GeV. The decay of x
typically gives rise to a reheating temperature of order Ty ~ mxm ~ O(10) GeV.

A promising mechanism for generating the observed value of BAU in models with re-
heating temperatures below the EW scale is Affleck-Dine (AD) baryogenesis [24]. This
scenario utilizes a SUSY D-flat direction that carries a non-zero baryon number, the so-
called AD field. If the AD field develops a sufficiently large displacement from its late-time
minimum during inflation, its post-inflationary dynamics can generate a baryon asymmetry
that can survive the entropy release during the final stage of reheating. However, a suc-
cessful embedding of AD baryogenesis in supergravity models is non-trivial as supergravity
corrections can ruin the flatness of the potential for the AD field, thereby preventing it
from acquiring a large vacuum expectation value (VEV) during inflation.

In this paper, we show that BAU can be successfully generated in sequestered models
via AD mechanism. In particular, we shall outline how to construct a model where one can
follow the whole cosmological evolution of the universe from inflation to the final stage of
reheating by decay of the lightest modulus which successfully generates the observed BAU
along with the correct DM relic abundance. The highlights of the scenario are as follows:

e Small-field inflation takes place in the closed string sector where a blow-up modulus o
drives the exponential expansion of the universe in agreement with Planck data [25].
Generating density perturbations with the correct amplitude raises all the mass scales
mentioned above by about two orders of magnitude, which results in gaugino masses
in the range M ~ 10*-10° GeV.

e If the Kéhler metric for matter fields has an appropriate dependence on o, in split
SUSY-like models squarks and sleptons can become tachyonic during inflation. The
AD field ¢ can then develop a sufficiently large non-zero VEV during inflation. More-
over also the volume mode yx is shifted from its late-time minimum during inflation.

e At the end of inflation, the inflaton becomes very heavy since m, ~ mg/, and its
decay leads to an initial stage of reheating with a relatively high temperature. When



the Hubble constant H drops to mg ~ m,, both ¢ and x start oscillating around
their late-time minima. The SUSY breaking A-terms induce a rotational motion of
the AD field and the generation of baryon asymmetry that gets transferred to quarks
when ¢ decays.

e Given that x is only gravitationally coupled, it decays after ¢ and dilutes any pre-
viously produced relic abundance. The final reheating temperature is T}y, ~ 10—
10* GeV, which is high enough to allow thermal Higgsino-like DM with a mass around
1TeV. The observed BAU can be obtained for natural initial displacements of the
AD field ¢ of order 0.1 M,

We would like to emphasize that the sequestered model in this paper represents an ex-
plicit example where one can check in detail the viability of the main assumption underlying
the AD mechanism for baryogenesis, i.e. the dynamical generation of a tachyonic mass dur-
ing inflation. In fact, this class of models show an interesting interplay between inflation,
SUSY breaking, soft terms, baryogenesis and DM within the same string compactification.

Let us finally point out that the inflationary model of [25] suffers from an n-problem
due to the presence of dangerous loop corrections that can spoil the flatness of the inflaton
direction [26]. Nevertheless, we will still focus on this model (by relying on tuning) since it
serves as a proof of concept to show that AD baryogenesis could be successfully embedded
in string theory.

The paper is organised as follows. In section 2, we briefly review AD baryogenesis and
the present constraints for its embedding in a supergravity framework. In section 3, we
give an overview of all the main features of sequestered LVS models like the structure of
the 4D effective field theory, moduli stabilisation, SUSY breaking and the spectrum of soft
terms. In section 4, we describe the full cosmological evolution in our scenario including
inflation, reheating and generation of BAU via the AD mechanism. Finally, we present
and discuss our numerical results in section 5 before concluding in section 6.

2 Review of Affleck-Dine baryogenesis

2.1 Basic mechanism

The field space of SUSY extensions of the SM contains many directions along which the
D-term contributions to the scalar potential identically vanish. These D-flat directions are
parameterised by gauge invariant monomials of the chiral superfields [27, 28]. They are
lifted by SUSY breaking terms and superpotential terms of the form \,®"/nA"~3. Here
n > 3, A is the scale of new physics (typically Planck or string scale), and @ is the superfield
comprising the flat direction ¢ and its fermionic partner.

In general, both the low-energy SUSY breaking and SUSY breaking by the non-zero
energy density of the universe contribute to the lifting of flat directions. As a result, the
scalar potential along ¢ can be written as [29]:

|¢|2(TL—1)
A2(n—3)
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+ (A, +anH) +h.c.|, (2.1)



where H is the Hubble expansion rate. The three terms on the right-hand side of (2.1) repre-
sent, respectively, the sum of the low energy and Hubble induced soft mass terms, the contri-
bution of superpotential terms and the sum of the low-energy and Hubble induced A-terms.

1

The role of ¢ in the early universe' crucially depends on the size and sign of ¢y:

(1) ey 2 1. In this case, ¢ has a mass that exceeds the Hubble expansion rate during
inflation Hj,s. Then, due to fast rolling, the field settles down to the origin of its
potential during inflation, which bears no interesting consequences.

(2) 0 < cy < 1. In this case ¢ makes a quantum jump of length Hj,¢ /27 within each Hub-
ble time. These jumps superpose in random walk fashion, resulting in the following
maximum displacement for ¢ during inflation [32]:

[ 3 H2,
(bmax = 8?7’”25 . (2.2)

(3) ex < 0.2 In this case ¢ becomes tachyonic during inflation. Hence it is driven
away from the origin and quickly settles at the minimum of the potential that has a

large VEV:

Hin An—3 1/(n—-2)

Pinf = <f> . (2.3)
vn — leghy,

After inflation ¢ follows an instantaneous value that slowly varies due to the expansion of
the universe. Once H ~ mg, low energy SUSY breaking terms take over the potential,
see (2.1), and ¢ starts oscillating about the origin with an initial amplitude:

o An3 \ V2)
Bo ~ (wjfu > . (2.4)

The ¢ field also feels a torque due to the A-term in (2.1) that results in rotational mo-
tion [29]. If ¢ has a non-zero baryon number f, rotation will result in a baryon asymme-
try [24]. The asymmetry per ¢ quanta is given by [29]:

ny

Ay
— ~ f(sin(nb;) [An| , (2.5)
g Mg

where 6; is the initial angular displacement of ¢ from the minimum of the potential in the
angular direction. This displacement could be due to a mismatch between the phases of
A and a, see (2.1), or a result of initial conditions along the angular direction (if |a|] < 1).
The comoving value of the generated baryon asymmetry remains constant at H < my
since the A-term is redshifted quickly by Hubble expansion. The asymmetry is transferred
to fermions when ¢ decays and the final value of BAU ng/s (with s being the entropy
density) depends on the details of the post-inflationary thermal history of the universe.
We will give a detailed discussion on the generation of BAU in our model later on.

'SUSY flat directions and their cosmological consequences are discussed in detail in [30, 31].
A negative cy can arise at the tree-level [29], or from radiative corrections [33, 34].



2.2 Supergravity constraints

The possibility to realise AD baryogenesis in a 4D N = 1 supergravity theory has already
been analysed in [35-38]. The requirement that D-flat directions develop a tachyonic mass
during inflation but are non-tachyonic in the present vacuum sets strong constraints on
the form of the Kéahler metric. It has therefore been very difficult to build an explicit
supergravity inflationary model where the AD field acquires a large VEV during inflation
and relaxes at the origin at later times. The main assumption behind the previous anal-
yses is that the gravitino mass is never larger than the Hubble scale during inflation, i.e.
m3/o S Hing. Starting from this assumption, a no-go theorem has been worked out in [38]
stating that in the case with mg/ < Hiyy it is impossible to realise both inflation and AD
baryogenesis if the holomorphic sectional curvature at a given point of the field space is
constant for all choices of planes in the tangent space. Moreover, it has been found [35-37]
that ¢ cannot become tachyonic during inflation if the Kihler metric for matter fields K

K/3 where K is the Kahler potential for the geometric moduli.

scales exactly as K = e
In this paper we shall show how to construct an explicit model that can successfully ac-

commodate inflation and AD baryogenesis by relaxing the previous assumptions as follows:

1. The gravitino mass is larger than the Hubble scale during inflation, mg/5 > Hint,
while low-energy SUSY is obtained since the visible sector is sequestered from the
sources of SUSY breaking;

K/3

2. We consider cases where the relation K = e is satisfied only at leading order while

it is broken by subleading corrections.

3 Sequestered Large Volume Scenario

3.1 Setup of the compactification

String compactifications always come with a number of energy scales which are dynamically
determined by the theory in terms of a the single fundamental scale: the string length
ls = M7 where M is the string scale. We denote the volume of the compact space
X by V (measured in string units in 4D Einstein frame). The low-energy supergravity
approximation holds when V > 1, producing the following hierarchy of scales:

M, gi/* M,
o~ 2P M, =
VarV2/3 ATV

where My is the Kaluza-Klein scale, while M, is the reduced Planck mass and g, is the

M

< M,, (3.1)

string coupling constant. We are interested in the type IIB low-energy theory below My
which is characterised by the presence of many moduli:

e The axio-dilaton S whose real part s determines the string coupling gs = (s) '

e h'? complex structure moduli U, which parameterise the shape of the internal space.



e hl! Kihler moduli 7; whose real parts 7; = Re(T;) = Vol(D;) give the size of the
divisors D; of the compact space. The imaginary parts are instead axion-like fields
¢, =Im(T;) = |, D, Cy4 where Cj is the Ramond-Ramond 4-form.

We work in the framework of LVS models where the CY volume takes a typical Swiss-
cheese form:

n

v=n?-5N"72 (3.2)
i=1

The overall volume V is controlled by the size 1, of a ‘big’ divisor Dp. The internal space

X contains also n ‘holes’, the ‘small’ divisors D;, whose size is much smaller than that of

Dy: 7; < 1. String compactifications that we are going to discuss include O3/0O7-planes

and the following small cycles [10, 11, 39]:

e n divisors D;, 1 = 1,...,n, supporting non-perturbative effects and allowing moduli
stabilisation a la LVS. As we shall explain in section 4.1, the modulus governing the
size of the n-th divisor, 7, = Vol(D,,), will play the réle of the inflaton.

e A couple of shrinkable divisors D, and D, which are exchanged by the orientifold
involution. This results in a linear combination D, = D,+ D}, which is even under the
orientifold involution and a combination D_ = D, — Dy which is instead odd. D is
the cycle which hosts the visible sector and its size is denoted by 75y = Vol(D ), while
D_ gives rise to an additional Kédhler modulus G = f p Bati f D Cy, where By and
Cs are respectively the Kalb-Ramond and the Ramond-Ramond 2-forms belonging
to the massless spectrum of type IIB string theory. Both D} and D_ shrink to zero
size due to D-terms stabilisation, namely 75y, Re(G) — 0, while the corresponding
axions are eaten up by anomalous U(1)s [10, 11].

The low-energy effective field theory is an N = 1 supergravity which is completely
specified in terms of the real Kéhler potential K, the holomorphic superpotential W and
the gauge kinetic functions f, (a refers to different gauge groups). The Kéahler potential
reads (including the leading o’ correction proportional to the constant ¢ [40]):

F 2 2
K=-2In (V + g) - 111(8 +§) + TSvM + l; + Kcs(U) + Kmattera (33)

where we defined b = Re(@) and € = €532, K (U) is the tree-level Kihler potential for
the U-moduli and Kaiter 18 the Kédhler matter metric which includes the visible fields C®.
It takes the generic form [22, 23]:

Kmatter = Ka(Uy Sa T)Caéa + Z(Ua Sa T) (HUHd + hC) : (34)

As we shall explain in section 3.2.2, most of the results of the present paper depend on the
exact form of K, in particular on the corrections beyond its leading order contribution.
Due to the difficulty to perform exact worldsheet computations for an arbitrary Calabi-
Yau, the expression for K, is known only for simple toroidal cases [41-43]. However, its



leading order V-scaling can be easily inferred by a locality argument: since visible sector
fields are localised at a singularity, the physical Yukawa couplings 57&/37 should not depend
(at least at leading order) on the overall volume V [44]. They are related to the holomorphic
Yukawas Yy (U, S) as:

Yagy = e/ Yaqu]’ S~) :

\/ Ko Kg K,

Notice that at perturbative level Y,3,(U,S) do not depend on the T-moduli due to the
holomorphicity of W and the perturbative shift-symmetry of the axions ;. Requiring that

(3.5)

Y., do not depend on V implies that:
Ko = fo(U,8) 573 (3.6)

where f, (U, S) is a generic flux-dependent function. The relation (3.6), if it holds beyond
leading order, allows us to infer the form of subleading corrections to K, from known
perturbative corrections to K. Therefore, we distinguish between two limits, along the
lines of [23]:

1. Ultra-local limit: (3.6) holds at all orders in the V-expansion.
2. Local limit: (3.6) holds only at leading order in the V-expansion.

Given that the factor /3 in (3.6) can be expanded as (for vanishing VEVs of 74y, b and
matter fields):3

Kes/3 1 Kes/3 1 ) 2/2 F
K/3 _ © _ ¢ ( i iJr : (3.7)

EENCHEE (v ) TR 3V 8
2
where V = Tg) /2 Z;l;ll 7';)’ / 2, the Kihler matter metric K, can be parameterised as:
- _ JalU.S) €
The ultra-local limit defined above would then correspond to the case ¢ = —¢, = 1/3.

The holomorphic superpotential is instead given by:

W = WO(Ua S) + Z AZ(Ua S) eiaiTi + st + Wmatter ) (39)
i=1

where Wy(U, S) is the flux-dependent tree-level superpotential [45]:

W()(U,S):/XGQ,/\Q, (3.10)

3In this expansion, we are neglecting 7,,-dependent string loop corrections to K since, if present, they
would spoil inflation [26]. This can be justified by tuning the dilaton and complex structure dependent
coefficients of the loop corrections by appropriate flux choices in the landscape.



where €2 is the holomorphic 3-form of X while G3 = F3 — SHs, with F3 = dC5 and
Hs = dBy. A;(U,S), i = 1,...,n, are O(1) coefficients which depend on the S and
U-moduli.* For the coefficients a; we shall take a; = 27 /N; with N; € N. Finally Wy
contains information about the dS sector, while Wi atter depends on the matter fields C¢
and looks like:

Wmatter - /'L(U7 S7 T)Hqu + Ya,@’y(U7 Sa T)COéCﬁC"/ + ... 9 (311)

where the dots indicate higher order terms in the expansion around the VEV of visible
fields (C*) = 0. p is the p-term while Y, are the holomorphic Yukawa couplings.

The gauge kinetic function for the visible sector localised at the singularity 75 — 0
depends uniquely on the dilaton:

fa = kaS + XaTsm = KaS, (3.12)
where k, is a singularity-dependent coefficient.

3.1.1 Moduli stabilisation

Due to the no-scale structure of theories defined by a Kéhler potential as in (3.3), at tree
level the supergravity F-term scalar potential is positive definite and depends only on S
and U®. The global supersymmetric minimum of such a scalar potential is located at:

DsWy =0,  DyaWp=0. (3.13)

In LVS corrections due to o effects in (3.3) and non-perturbative effects in (3.9) are
subleading with respect to (3.13) in the large volume limit V > 1. Thus one can consistently
first stabilise S and U® in a supersymmetric manner at order O (V*Q), and then fix the T-
moduli by perturbing this solution with corrections at order O (V*?’). This perturbation
generates also a small shift in the minimum [23]: DgW ~ DyaW ~ O (V') which
is of fundamental importance to generate non-vanishing gaugino masses, as explained in
section 3.2. The low-energy F-term scalar potential of the LVS model described above
takes the form:

gs |~ (8 e~ 20T e\ 3E|Wol?
Vi = o [Z <3(az‘Ai)2\/?i v 4a; AiWor,; ) + +Vas,  (3.14)

— V2 43

where Vs is a term which depends on the details of the dS sector. Notice that the first
two terms descend from the non-perturbative effects in (3.9). The axions ¢;, i = 1,...,n,
are stabilised in such a way that the second term is negative. The last term in square
brackets is due to o corrections in (3.3). Vgg is essential to achieve a Minkowski/dS
vacuum Vp = (V') ~ 0. Two dS sectors consistent with sequestered compactifications were
considered in [23]:

4From now on we will omit the U and S dependence in both Wy and A;.



1. dS; case: de Sitter from hidden charged fields.
LVS string compactifications generically feature hidden sector D-brane stacks on
the ‘big’ divisor Dj which support matter fields ¢4s that are charged under a U(1)
symmetry [10, 11]. D-term stabilisation induces non-zero F-terms for these hidden
sector fields which give rise to a positive definite contribution to the scalar potential,
Vis ~ W2 /V¥3 that can lead to Minkowski/dS vacua. From a higher-dimensional
point of view, this corresponds to having a T-brane background [46].

2. dSq case: de Sitter from non-perturbative effects.
It is possible to have an additional shrinkable divisor Dg4s on top of the O7-plane
and supporting non-perturbative effects [47]. D-term stabilisation fixes the size of
this divisor to 745 = 0,> while a new term in the superpotential of the form W,s =
Ays e~ %as(StrasTas) gives rise to a positive definite contribution to the F-term scalar
potential with scaling e~2®asRe(S) /) which can lead to a Minkowski/dS vacuum.

The position of the minimum for the scalar potential in (3.14) does not depend on the
dS sector at leading order. It is given by the following relations:

—agr  SWo/Ti 32 € 1
(& >~ m and (CLiTi) =~ 5 W Vi = 1, , (315)

These relations clearly imply that at the minimum a;7; ~ O (In V).

3.1.2 F-terms

SUSY-breaking is governed by F- and D-terms. However, in the setup of section 3.1 D-terms
are subdominant with respect to F-terms [23] whose general expression in supergravity is:

F'=5PKIDW . (3.16)

Once supersymmetry is broken, the gravitino acquires a mass given by:

2
gs WOM
ez = AW = 5 =

The major source of SUSY-breaking is the presence of background fluxes which generate a

(3.17)

non-vanishing F-term for the field 7, through a non-zero Wy. At leading order it does not
depend on the dS sector and it is given by three terms which come from tree-level, o/ and
non-perturbative effects:

Flo = Fl

tree

T T
+ F 4 FTy, (3.18)

where (the axions have already been fixed at their minimum):

Ltree =27, == —— e T, (3.19)
ms/2 ms;o 2V m3/2 i=1 \/> WO

FTb F(z:b 3Tb g FTb Z 4A; i QTG

5Since Tqs — 0 the expression for the volume in (3.2) is not affected by the new divisor Dags.



The minimisation condition (3.15) implies that at the minimum:

Toy T Tbém3/2
<an>_ <Fa’>+0< Viny ) (320)

Thus at the minimum F7 scales as:

<FTb> = —QTbm3/2

£
e oo

Similarly to F7b, the F-terms associated to the ‘small’ divisors D; receive also three con-

tributions:
PR ) T,
F Ftree + F + Fr’ﬂ) ’ (322)
where:
T; T; T;
Ftree _ _2Ti ’ Fa/ _ 37—2 g an _ SAzaZﬁ L e—aiﬂ' . (323)
m3/2 m3/2 2 V m3/2 3 W()
Using (3.15) it turns out that at the minimum:
. T3 /2
<FI?;> = < tree> + 0 ( an ) . (324)

Hence at the minimum F7¢ is determined by the first correction to Fg;; in the In V-

expansion:
: 3mg s
Fliy o 12 3.25
(FT = =32 (3.29)
Moreover the scalar potential (3.14) can be rewritten as:
S K FF - 3m,. (3.26)
I1,J€{b,i}
Due to the no-scale structure:
Z KO th;eeitree 3m§/2 =0, (3'27)
I,Je{bi}

where K?j is the tree-leve Kéhler metric, the scalar potential (3.14) is generated by non-
perturbative and o/ corrections to the effective action. In detail, for each i = 1,...,n, the
three terms in square brackets in (3.14) are given by:

gs(azAz)Qﬁ e—2aiT; o 0 T, 17
1. 3 v = K F an ,

+K0

2 _gs(aiAi)Wo’Ti e T (KO

_ T _
27 V2 tree tree) F + KO trgeF + h.c.

327V tree tree® tree

3. 39, & 3/2—<K0 FTbF,+hc>—|—KO‘ T Fle

where K ;;Tb is the leading order o correction to the T, T element of the Kéhler metric.

,10,



Let us finally point out that the F-terms of the dilaton and the complex structure mod-
uli are subleading relative to the others given that they are generated by the shift of their
minimum induced by non-perturbative and o’ corrections. This shift can be parameterised
as in [23]:°

3/2
FS = sw(U, S) L Tz
Vv
where w(U, S) and (U, S) are O(1) flux-dependent coefficients which can be tuned to
produce interesting phenomenological results. As we will see in section 3.2.1, even if F¥ is

and  FY" =p%U,S)F?, (3.28)

V-suppressed, it plays a key role in the phenomenology of sequestered models.

3.2 Soft-terms

In sequestered string compactifications the visible sector lives on D3-branes at singular-
ities [7—11]. Due to this particular D-brane configuration, in sequestered models gauge
degrees of freedom living on D3-branes decouple from bulk fields. Furthermore, since
SUSY is broken in the bulk, this decoupling results in a suppression of soft-terms with
respect to the gravitino mass mg/,. As we shall explain in section 4, due to this separation
of scales, sequestering can help to get low-energy SUSY without any cosmological problem
associated to light moduli [12-14] or gravitino overproduction [15, 16]. The aim of this
section is to summarise the pattern that the soft terms acquire in sequestered models,
depending on the form of the Kihler matter metric K, in (3.4).

3.2.1 (Gaugino masses

Given that the gauge kinetic function for D3-branes at singularities depends on the dilaton
S, gaugino masses are controlled by F*¥ and look like:
S 3 ms /o
M=—>\U,S)——, 3.29
S = AU 8)> (3:29)

where A(U, S) is a flux-dependent function whose explicit expression depends on the dS
sector and is given in [23].
3.2.2 Scalar masses

The situation is much more involved for scalar masses whose general expression, assuming
a diagonal Kéhler metric K oB = K6 B> 1s given by:

m2 =m3,+ Vo — FIF 010 m Ko + K'Y g2DuB0dsDa (3.30)
a

Non-zero D-term contributions can arise from hidden scalar fields ¢ living on D7-branes
wrapped around the large 4-cycle 7, which supports an anomalous U(1) with gg =T L

These D-term contributions look like:

0K
Dy, = ; Qk,bdm% + EI: qrpor K, (3.31)

SWe report here only the leading order term in the In V-expansion. Subleading corrections are neverthe-
less important for phenomenological applications, as explained in section 3.2.1.

— 11 —



where Qpp and qrp are, respectively, the U(1) charge of the k-th hidden scalar and the
I-th Kéhler modulus under the U(1) on Dj,.

In order to compute scalar masses, it is crucial to know the exact moduli dependence
of K,. The leading order results are (see [23] for the details of the computation):

1. Ultra-local limit.
Due to the form of K, in (3.6), the O (V_3) F-term contributions to scalar masses
cancel off and the final result depends on the dS sector:

a) dS; case: mnon-zero scalar masses are generated by D-term contributions at
O (V3 [23]:

gfmg/z

64 VIny’

while the leading F-term contribution to m2 is at O (V_4). In this case scalar

mé ~ (3.32)
masses are universal.

b) dSs case: D-term contributions are subleading with respect to O (V_4) contri-
butions from F-terms of S and U-moduli which give:

m2 ~ Qu(U,S) M?, (3.33)

where Q,(U,S) is a flux-dependent function involving derivatives of f, (U, S).
In this specific case scalar masses might not be universal.

2. Local limit.
In the local limit the effect of D-terms is negligible. We report the results for two
limiting cases:

(a) ¢p =—1/3: A
15 1\ £m3),
20 22— = 34
my =~ (c 3) Y (3.34)
(b) Ce = 0:
E o2
my 6 g (n—1) v (3.35)

which implies that in the local limit scalar masses have to be universal. This result
has been derived assuming, without loss of generality, a;, = a Vi = 1,...,n, so that

2= ¢/(2n).

Vanishing leading order results for the scalar masses in the ultra-local limit can be
recovered by setting c¢ = 1/3 in case (a) and ¢, = (n — 1)/3 in case (b). We stress that
in case (b), given that c¢¢ = 0, an effective ultra-local limit can be obtained only at the
minimum using the minimisation condition (3.15). Notice that in all cases, except for
the ultra-local dS; case, scalars can be either tachyonic or non-tachyonic, depending on
Qa(U, S), ¢, and c¢. Non-tachyonic scalars require Qq (U, S) > 0 in the ultra-local dS; case
and c¢ > 1/3 for case (a) and ¢, > (n —1)/3 for case (b) of the local limit.
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3.2.3 A-terms

The scalar potential (3.14) contains cubic terms in the canonically normalised scalar fields
C* of the form:”

V D YusyAas, COCPCT (3.36)

where A,g, are functions of the moduli of the compactification. It turns out that D-term
contributions to A,p, are subleading [23], while the general F-term expression for the

K+1n <Yf‘”87~(U’~S)>

A-terms is:

Aupy = F'0; . (3.37)

Ko KsK,

Writing the Kéhler matter metric as Ko = foJ, the general expression in (3.37) can be
rewritten as:

| . Yoy (U, S
Ausy = F'0; [K — 3K +1n (%ﬂ : (3.38)

We study separately the different limits of the Kéhler matter metric:

1. Ultra-local limit.
From (3.38) it is straightforward to see that there is a cancellation between the first
two terms in square brackets. As a consequence the A-terms are determined by the
F-terms of the dilaton and the complex structure moduli:

= i Yasy (U, 5))] _I(U, S)
Aogy = 2 B0\ = ey )] = : 3.39
S I folofy 2 (3.39)

where II(U, S) is an O(1) flux-dependent function.

2. Local limat.

In this case the A-terms receive contributions also from the F-term of Tj:

(a) ¢, = —1/3:

9 1 £m3/2 (v, s)
AO&,B’y = 5 <C£ — 3) V —|— V2 5 (340)

where both terms have the same volume scaling.
(b) ce =0:

A

9 [ 1 } Emsyo L) (3.41)

afy — 5 |&n — 5 —1 >
=5 |3 V2

where again both terms have the same volume scaling.

"Higher-order superpotential terms that lift ¢ result in A-terms that are higher than cubic, corresponding
ton > 3 in (2.1). Here we perform an explicit computation of the cubic A-terms. Calculations are more
involved for higher order A-terms but the results are qualitatively similar.
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Summary of soft terms. Here we summarise the results of the last sections, noting
that they can be divided in two classes depending on the form of the Kéhler matter metric:

1. MSSM-like spectrum: in the ultra-local dSs case all soft terms have the same volume
scaling;:
M
M ~mgy ~ Anpy ~ 175 : (3.42)
This is a typical MSSM-like spectrum with (possibly non-universal) scalars and gaug-
inos at the same energy scale.

2. Split SUSY spectrum: in the local and ultra-local dS; cases the volume scaling of
gauginos and scalars is different:

M,

M,
M ~ Apgy ~ V—p while mo ~ VT;;' (3.43)

2
Thus gauginos are lighter than scalars, featuring a splitting of the soft scales.

Notice that in order to have TeV gaugino masses, the volume V should be in the range
10%-108. In turn, in order for (3.15) to be satisfied without the necessity to fine-tune the
coeflicients A;, the following relation should be satisfied:

1%
a;7; =~ In (VV0> Vi=1,...,n, (3.44)
where 7; is given in terms of g5 as in (3.15). For typical values of Wp in the range 1—
100 (3.44) implies that the ratio a;/gs has to lie in the range 60-120.%

4 Inflation, reheating and Affleck-Dine baryogenesis

As mentioned in section 2, in order to examine the viability of AD baryogenesis, one needs
to have an explicit model for SUSY breaking and inflation. Here we use the model proposed
in [25] to realise inflation since in this inflationary scenario the range of V required to get
the observed amplitude of density perturbations leads also to low-energy gauginos.

4.1 Inflationary dynamics

The idea behind the model proposed in [25] is very simple: the ‘small’ modulus 7,, plays
the role of the inflaton which experiences an exponentially flat direction when moved away
from its minimum. The CY volume V is instead kept almost fixed during inflation by the
additional ‘small’ moduli 7, j = 1,...,n —1 which sit at their minima. Therefore the total
scalar potential (3.14) during inflation takes the simplified form:

—2a,T; —a;Tj 3 2
8 A2y c ]]>+3§‘W0’ + Vas + 0V (1),

— 4ajAjW07'j V2 4V3

(4.1)

8We will fix £ = 1 and n = 10 to perform numerical calculations.
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where:

SV (1) = — 25 a0 Ay Wy e (4.2)
= —— .
Tn o dnin 0Tn V2
Ifall 75, j =1,...,n —1 and V are fixed at their minima during inflation, the potential
in (4.1) can be written as the sum of a constant Vj and 6V (7,):
9s o
Vint = Vo — % an AnWoTn v2 (43)
where a careful computation gives:
£ o2
3 My
Vo=— . 4.4
0=y (4.4)

We stress that the minima of 7;, j = 1,...,n —1 and V during inflation are slightly shifted

O (1 + 3) . (4.5)

inf n>1 7 n

from their values after the end of inflation:

2
InV| = InVy <1 + n) and 32

inf n J

Given that the canonically normalised inflaton o is given by:

_ |4 3
o= \gy ™ (4.6)

the scalar potential for o takes the form:

‘ s An 2/3
Vipg = Vo — claA‘/B‘e*CQ"M3 with ¢ = 29? VZVO co and 9 = a, (?) .4

It is much easier to express the slow-roll parameters in terms of the non-canonically nor-
malised fields as:

2 3 5/2
o 512n anj4n7'n V3 e—2ann 7 (4.8)
2T ewg
64n ad A,
yo A o (49)
9 EWo

In order for inflation to take place, both e and n have to be much smaller than 1. Just
looking at the volume scaling, and since in the late-time minimum a,,7, ~ InV, it is easy
to infer that inflation can take place in the region:

anTy 2 2InV, (4.10)

and it ends at 7"

compute the position of the inflaton 77 corresponding to horizon exit:

when € becomes of order 1. Moreover we have been able to numerically

9 AW TN anTn
Wo 5 dr =~ 60, (4.11)

Ne(1)) ~
B(T ) 64n G%AHVQ T’rCLnd 7—3/
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Wo  logig (Vleops)  An
4) 1 5.14 1.94
(B) 10 6.15 1.91
(C) 100 7.15 1.87

Table 1. Values of the volume V| which match the observed amplitude of density perturbations
for different values of Wy and a,, = 27, g5 = 0.06 and n = 10.

where IV, denotes the number of e-foldings. Once 7;;; is known, both the tensor-to-scalar
ratio r and the spectral index ng can be evaluated as:

r = 16¢e(7,) and  ng=1—6e(r,)+2n(r;). (4.12)

Typical values are n, ~ 0.967 and r < 10719 reflecting the small-field nature of this
inflationary model. Finally, it is necessary to numerically evaluate the amplitude of density
perturbations Az as a function of 7, and to impose that it matches the measured value

at 7. This requirement translates into:

s 3483wé1 e2anT; e
A% (1) ~ = ~27x1077. 4.13
®(7n) 87 4613 ai A2(7*)5/2 V6 (4.13)
The numerical analysis proceeds as follows: we set aj = a, and A; = A4, Vj=1,...,n—1

and choose the values of a,, and g5 as explained around (3.44) in order to avoid a severe
fine-tuning of A,, due to the relation (3.15). Then for different values of Wy in the natural
range 1-100 we compute the value of the volume V|, ., which reproduces the measured
amplitude of density perturbations using (4.13). In table 1 we report the results for a,, = 2,
gs = 0.06 and n = 10.

4.2 Dynamics of the Affleck-Dine field

The dynamics of the AD field ¢ is governed by the scalar potential (2.1). In order to
determine whether ¢ can acquire a large VEV during inflation, we need to compute its soft
mass and the corresponding A-term. Since ¢ is made of MSSM scalars, we can readily use
the expressions derived in section 3.2.2 and section 3.2.3. In what follows, we shall analyse
separately the MSSM-like and the split SUSY case. Below, we denote with Z the value of
any quantity x during inflation.

4.2.1 MSSM-like case

As explained in section 3.2.2, an MSSM-like spectrum arises in the ultra-local dSs case
where D-terms are negligible. Using (3.30) and Vy = |F|* — 3m3 /o» due to the ultra-local
condition (3.6), the soft mass of ¢ becomes:

1 =7 =7 2
g = mi s + Vo — ngjF’FJ — F'F 9,051 fa (U, S) = 3 Vot Qa(U,8) M?. - (414)
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Given that Vj ~ O (V_3) while M? ~ O (V_4), the leading order contribution to the soft
mass of ¢ during inflation comes from the vacuum energy Vj:
2 1 fmg /2

~ 2 2
~ —Vh=— ~ 2H; 4.1

This implies that in this case the AD field cannot acquire a tachyonic mass during inflation.
Thus ¢ settles at the origin during inflation and remains there throughout the entire post-
inflationary history. As a result, it cannot give rise to a successful AD baryogenesis. This

is in agreement with similar results found in [35-37].

4.2.2 Split SUSY case

During inflation the inflaton 7, is displaced from its late-time minimum. Therefore the
inflaton-dependent contribution to FITI;’ in (3.19) and to FIF;FI;‘ in (3.23) can be neglected
during inflation, leading to:

El Yy
Z ke b KR R (4.16)
mg /2 < VT Wo
and:
Flr 8Ayanym V
- e 50, 4.17
ms3 /o 3 Wo ‘ (4.17)

Thus the relations (3.20) and (3.24) for ¢ = n, which were true at the minimum, do not
hold anymore during inflation when the F-terms of T} and 7,, become:

- 3 ¢
FTh — 9 14+ 2> 4.1
Tbm3/2< +4nV> (4.18)
and:
FTn = Fln, = —21,my) . (4.19)

Given that both FT» and F7» have a different form during inflation compared with the
one at the minimum (see (3.21) and (3.25) for i = n respectively), in the local case, which
leads to split SUSY, the AD field can possibly develop a tachyonic mass during inflation.
In order to investigate this possibility, we consider the two limiting cases studied before:

(a) ¢, =—1/3
The scalar masses are determined by the following contributions:

Ty T M3 3/2 _ 15Emi 11
L. FvF2 20, 0F, ana—m3/2—l—2 ™ — Py (ce—%—1),
~ ~ ~ - o ~ 2
2. FTe 1007, 0 In Ko + FTET 0507 Ko = 3752 )%,

3. FTFTny, 0p InKy = L7302 137
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4.3

Using the general expression for scalar masses (3.30), we find that the contributions

3/2

proportional to 7,/ cancel off giving a soft mass of ¢ during inflation of the form:

15 Em? 1 2
Ml = — 2 <c§ Ty > . (4.20)

Notice that this expression correctly reproduces the soft scalar mass at the mini-
mum (3.34) in the limit n — oo, and the result (4.15) in the ultra-local limit c¢ = 1/3.
Moreover (4.20) becomes negative if:

<o ——— . (4.21)

Given that this condition is in clear contrast with the requirement of non-tachyonic
scalar masses after the end of inflation, i.e. ¢g > %, we conclude that in this case it is
not possible to obtain a tachyonic mass for the AD field during inflation.’

ce =0
The scalar masses are determined by the following contributions:

2 Eoo2
ST, BT 9 15 . M32 3/2 | 5&M3) 1
1. Fiv |7 baTbaTbKa = m3/2 — 7671 ), ™'~ + 17y (]. + ﬁ) s

- o ) :
2. FTFTo0r, 07, Ko+ FT FT 05,05 Ko = 9052 707,

ST, T > M3 3/2
3. FTnFTndy, 0 Ko = —3¢, 272

3/2

Again the contributions proportional to 7,,"~ cancel off in the general expression for

scalar masses (3.30), leading to a soft mass of ¢ during inflation of the form:

5 émg/Q 2
~ 92 Y .
o= T4y <1 5n> ’ (422)

which is always negative for n > 1. Therefore the case with c¢ = 0 guarantees that
the mass of the AD field becomes tachyonic during inflation for every value of ¢,,. On
the other hand, as we have seen in section 3.2.2, if ¢, > (n —1)/3, mfb > 0 after the
end of inflation. Thus this case represents a good example where AD baryogenesis
can be explicitly realised. We finally mention that also the A-terms get modified
during inflation since they look like:

3 Emg /2

A=—5257 (4.23)

Reheating from lightest modulus decay

In order to understand how reheating takes place we need first to look at the moduli mass

spectrum. The canonically normalised inflaton ¢ is exponentially light during inflation but

after inflation, when it oscillates around its minimum, it becomes very heavy:

WoM,

Mme

IDV ~ m3/2 an . (424)

9The A-terms take the same form both during and after inflation.
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Due to the local nature of this blow-up mode, ¢ is coupled to the field theory living on this
4-cycle as 1/Mg ~ /V /M, as opposed to a standard Planckian-strength coupling. It there-
fore decays relatively quickly leading to an initial reheating temperature of order [48, 49]:

Mgy M.
Trh,in ~ FaMp ~ ﬁ \/ mchp ~ ?p . (425)
s

If 7,, supports a hidden sector, when o decays, the inflaton will dump most of its energy
to hidden sector degrees of freedom. This is not necessarily a problem since these hidden
degrees of freedom get diluted by the decay of the lightest modulus. On the other hand,
one has to check that the reheating temperature due to the decay of the inflaton does
not give rise to thermal effects which destabilise the zero-temperature minimum. In LVS

models this requires [50]:
M,

Trh,in < Tmax ~ V?/Z ’ (426)

which is safely satisfied for V > 1 by the reheating temperature given in (4.25).

As shown in (4.5), during inflation all the blow-up modes 7;, j = 1,...,n — 1 get
shifted from their late-time minimum. However they have a mass of order (4.24) which
makes them heavier than the inflationary Hubble scale given in (4.4) since:

2
Mo, v
~ >1. 4.27
(Hinf) vV Iny ( )

Therefore, after the end of inflation, these fields quickly relax to their late-time minimum

and do not play any relevant role for the post-inflationary evolution.

The situation is completely different for 7;, which is the lightest modulus. In fact, the
canonically normalised ‘big’ modulus x acquires a mass whose exact form depends on the
way to achieve a dS vacuum [23]:

9 g7”:%,/2
16a,m, V

27 fmg/g
Sant, V

ds; : mi o~ dSs : mi o~ (4.28)
implying that x has a mass of order H during inflation. Moreover, as shown in (4.5), x
gets a displacement in Planck units during inflation of order:

2 2 2 /2
X:\/;lnv = AX = Xinf — X Xz\[SanNO(l). (4.29)

>l n n

Thus right after inflation y starts oscillating around its minimum with an initial amplitude
of order M,,. Being only gravitationally coupled to other fields, x decays very late when it
dominates the energy density of the universe, leading to dilution of any previously produced
relic abundance and a final reheating temperature [51]:

0-3 Mx (4.30)

th & 7 ——— My
g/ /AN M,
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where ¢, is the number of relativistic degrees of freedom at reheating while AN.g is the
amount of extra axionic dark radiation produced from the decay of the lightest modu-
lus [52-54]. For g. ~ 100 and AN.g =~ 0.5,'0 and using the numbers in table 1, we find
my ~ 108-10°GeV and Ty, ~ 103-10?GeV. This value of Ty, is larger than BBN tem-
peratures of order 1 MeV, and so this model does not suffer from any cosmological moduli
problem [12-14]. Moreover, since my /ms/; ~ V=12 « 1, the decay of the lightest mod-
ulus into gravitinos is kinematically forbidden, implying the absence of moduli-induced
gravitino problem [15, 16].

4.4 Generation of baryon asymmetry

We now compute the baryon asymmetry of the universe generated via the AD mechanism in
our model. As mentioned earlier, the decay of the lightest modulus y reheats the universe
at late times and dilutes the entropy produced from the decay of the inflaton o. We are
therefore interested in deriving the ratio ng/s, where ng is the baryon number density
stored in the AD field and s is the entropy density produced by the decay of x. The decay
of ¢ takes place when its VEV is redshifted to a sufficiently low value such that y|¢| < m,
(y being a gauge or Yukawa coupling), at which point the decay of ¢ to the fields that are
coupled to it and acquire an induced mass y|¢|, is kinematically allowed. We have checked
that even for ¢g ~ M, the decay of the AD field occurs well before the decay of x, and
hence any entropy that it may produce will be diluted by the decay of .

Let us focus on the split SUSY case where the AD field can acquire a tachyonic mass
during inflation. In this case, mgy ~ mxm > my ~ Hi,¢, implying that both ¢ and x
start oscillating straight after the end of inflation when the AD field makes a very rapid

transition from the tachyonic to the non-tachyonic regime.!! Hence, at the onset of y
oscillations, i.e. at H ~ Hi,¢, we have:
2
n m
KN <¢0> , (4.31)
ny My \ M,

where we have used n, ~ mXMg and ng ~ m¢¢(2). The BAU generated via the AD

mechanism is then given by:
ng ng 7‘L¢ nx

B _ 4.32
S Ngny S ( )
where:
x _ 3T (4.33)
S 4m,,’

is the yield from y decay and T, is the reheating temperature of the universe after y decay.
After using the expression (2.5), and for nf; ~ O(1), we arrive at the final result for baryon
asymmetry (see also [57] for a similar result):

@NﬂTrh @ ’ (4.34)
s my my \M,/) '

10The actual prediction for axionic dark radiation is model-dependent: in MSSM-like scenarios the main

visible sector decay channel for x is into Higgses, while in split SUSY models ¢ can also decay into squarks
and sleptons. For details, see [52-54].

"n cases where mg < Hing, thermal effects from inflaton decay may lead to early oscillations of the AD
field [55, 56]. However, this is not an important effect in our model.
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5 Results and discussion

5.1 Numerical results

In this section, we numerically analyse the parameters of the model so that the following
requirements are satisfied:

a) A successful model with around 60 e-foldings of inflation that creates density pertur-
bations of the correct size with all underlying parameters in their natural range;

b) Low-energy gauginos which are well motivated by gauge coupling unification;
c¢) A correct generation of the observed BAU, ng/s ~ 10710, via the AD mechanism.

Requirement a) has already been studied in section 4.1. For concreteness, we consider
the points in the parameter space listed in table 1. Scalar masses are completely determined
by requirement a) since, as we have shown in (3.2.2), they depend only on Wy and V once
the string coupling constant has been fixed. On the contrary, requirement b) can be easily
fulfilled using the additional freedom of gaugino masses: the possibility to vary A(U,S)
in (3.29) by tuning background fluxes. In particular we require that M = 5 x 103 GeV
when Wy = 100 and the value of the volume is the corresponding V|, g, in case (C) of
table 1. In order for requirement ¢) to be fulfilled, it is necessary to find the exact value
of the AD field displacement ¢o/M,, such that the baryon asymmetry estimated in (4.34)
matches the measured value. We focus on the split SUSY case where late-time scalars are
non-tachyonic while the AD field during inflation becomes tachyonic. Moreover we assume
that the A-terms are determined solely by the first term in (3.40). We stress that these
choices do not affect the qualitative behaviour of our final results.

In figure 1 we illustrate the correlation between the produced baryon asymmetry and
the gaugino masses in the split SUSY case. For the sake of concreteness we choose to
work in the dS; scenario but the results are not dramatically affected by changing the
dS sector. Differently coloured bands in figure 1 correspond to different ranges for the
reheating temperature. The dotted black lines correspond to constant values of W in
the natural range: 1,10,100 from left to right. The continuous blue line corresponds to
the locus where the amplitude of the density perturbations matches the measured value.
It intersects the dotted black lines in the blue dots which respectively correspond to the
cases (A),(B),(C) in table 1. In table 2 we report the values of scalar masses, which
are around 109719 GeV, the reheating temperature, which is larger than 100 GeV, and the
displacement of the AD field. Notice that it is possible to satisfy the requirements a), b)
and c) for natural O(1) values of the parameter A, and for ¢9 ~ 0.1 M,. Moreover Ty
shown in table 2 and given in (4.30) is completely determined by the requirement of getting
the right amplitude of density perturbations.

5.2 Origin of dark matter abundance

In order to determine whether the DM relic abundance has a thermal or non-thermal origin,
we have to compare Ty, with the DM freeze-out temperature Ty ~ mpy /20. If Ty, > T,
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T/ GeV < 10
#10 < T/ GeV < 10°
“10% < T/ GeV < 10%
#10° < T,/ GeV < 10%

10" < Tyn/ GeV < 10°
* Tyl GeV > 10°

3.5t ‘ ! B . i
45 50 &5 60 65 70 75 8.0

Log[V]

Figure 1. T}}, as a function of V and gaugino masses M for a; = 27 and g5 = 0.06. The blue dots
correspond to the points of the parameter space in table 1. The amplitude of density perturbations
in these points matches the measured one provided that the displacement of the AD field at the
start of oscillations is that given in table 2.

M [GeV] mg[GeV] Ty, [GeV]  ¢o/M,
(A) 54x10° 3x10" 6.7x10° 0.03
(B) 5.2x10* 9.2x10° 1.1x10* 0.08
(C) 5x10% 2.8 x10° 195 0.19

Table 2. Gaugino masses M, scalar masses my, reheating temperature Ty, and displacement ¢q /M,
needed to match the measured amplitude of density perturbations for the cases listed in table 1.

the DM content is set by thermal freeze-out while, for T}, < Tf, the DM abundance is
produced non-thermally from the decay of the lightest modulus. Since the lowest reheating
temperature that is compatible with successful inflation and baryogenesis is T}, ~ 195 GeV,
the non-thermal mechanism requires mpy > 3.9 TeV. Due to the gravity-mediated pattern
of gaugino masses, the lightest gaugino is the Bino, and hence the DM candidate in our
model is either a Bino- or a Higgsino-like neutralino. Binos typically have a small annihi-
lation rate, (oannv) < 3 x 10726 cm3s7!, especially for a split SUSY spectrum because of
the extremely heavy sparticles. For Higgsinos with a mass above ~ 1.2 TeV, we also have
(Tannv) < 3 x 10720 cm3 s 1.

Because of the smallness of the annihilation rate, non-thermal DM production must
proceed through the ‘Branching’ scenario where the correct relic abundance is produced
directly from the decay of the lightest modulus [58]. In this scenario, the DM abundance
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is given by:

3T
(nDM) — 7h BrDIVI 5 (51)
S non—th

where Brpy, is the branching ratio for producing R-parity odd particles (which eventually
decay to the DM particle) from modulus decay. Even allowing for Brpy ~ 1073, which
is the smallest value allowed in this scenario [59], and after using the values in table 2,
we find that the ‘Branching’ scenario would lead to DM overproduction by few orders of
magnitude above the observed value:

(nDM> NEEE 10710 <1G6V> : (5.2)

S Mpwm

This implies that non-thermal DM is not compatible with inflation and baryogenesis in
this model. We are therefore forced to consider thermal Higgsino DM with mpy >~ 1.2 TeV
where thermal freeze-out can produce the right DM abundance. For mpy < 1.2TeV, the
Higgsino is thermally underproduced, and so we need to consider mixed DM, as in the
axion-Higgsino scenario [60].

Regarding the production of dark radiation, it has recently been shown [54] that split
SUSY models arising in sequestered string compactifications do not feature any overpro-
duction. This is due to the large suppression of the excess of the effective neutrino number
A Nyg coming from the decay of x into MSSM scalars, which is allowed in a vast region of
the parameter space.

Finally we would like to comment on obtaining a large VEV for the AD field and
possible implications for the DM content of the universe. It is seen in table 2 that the
generation of the observed BAU needs m ~ 10°-10'Y GeV and ¢y ~ 0.1 M,,. 1t is possible
to get ¢p in this ballpark, see (2.4), if the AD field is lifted by a non-renormalisable term
of level n = 9 where \g ~ 1.12 In this case, depending on the Higgsino mass, one can have
either Higgsino or mixed DM scenario as mentioned above.

One may also obtain the required value of ¢q if the AD field is lifted by a renormal-
isable term with n = 3. However, in this case, a very small coupling A3 ~ 10781077
is needed. This is much smaller than all of the SM Yukawa couplings, but it may arise
from renormalisable superpotential terms that violate R-parity (namely LLE, UDD, QLD
terms). Such terms destabilise the Higgsino, and a question is whether this can lead to
a cosmologically consistent scenario. To answer this, let us consider the situation in the
presence of the LLE term. In this case, the Higgsino can decay to three leptons via an
off-shell slepton. The decay rate is ' ~ (Agyl)Qm%/(Sw : 327r2)m;~1, where y; is a leptonic
Yukawa coupling, m g and m; denote the Higgsino and slepton masses respectively, and
the factor of 3272 arises due to the three-body final state. For Az ~ 1077, y; ~ 1072,
my ~ 109 GeV, and my S 200GeV, we may find a decay lifetime 75 2 107 sec. This
is compatible with the tightest cosmological bounds on decaying DM from the cosmic mi-
crowave background [61]. The DM content of the universe can be explained within a mixed
scenario where the Higgsino is the sub-dominant component.

1211 fact, all of the MSSM flat directions are lifted at this level if the superpotential includes all higher-
order terms that are compatible with gauge symmetry [28].
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6 Conclusions

In this paper, we have proposed a way to successfully embed AD baryogenesis in type
IIB sequestered string models. AD baryogenesis is a suitable mechanism for generating
the observed BAU at temperatures below the EW scale. Such relatively low temperatures
typically arise from the late-time decay of long-lived moduli in string compactifications.
However, an explicit embedding of AD baryogenesis in such models is non-trivial as super-
gravity corrections can ruin the flatness of the AD field that is essential for the success of
the AD mechanism.

The model presented here is in the context of LVS models and describes the cosmo-
logical evolution of the universe from inflation to the final stage of reheating by the decay
of the volume modulus. Inflation is driven by a blow-up mode and generating density per-
turbations of the correct size requires gaugino masses within the range M ~ 10*-10° GeV.
The crucial point is that if the Kéhler metric of the matter fields has a suitable depen-
dence on the inflaton, sleptons and squarks in split SUSY models can become tachyonic
during inflation, while being non-tachyonic in the post-inflationary era. In consequence,
the AD field can develop a large VEV during inflation and its subsequent motion can lead
to the generation of a baryon asymmetry that survives the dilution due to entropy release
in the final stage of reheating driven by the decay of the lightest modulus. The final re-
heating temperature is sufficiently high to allow thermal Higgsino-like DM with a mass
around 1TeV.
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