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Abstract: We analyse the low energy predictions of the minimal supersymmetric standard

model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by

an A4 × Z5 family symmetry, resulting in four soft scalar masses at the GUT scale: one

left-handed soft mass m0 and three right-handed soft masses m1,m2,m3, one for each

generation. We demonstrate that this model, which was initially developed to describe

the neutrino sector, can explain collider and non-collider measurements such as the dark

matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic

moment of the muon (g − 2)µ. Since about two decades, (g − 2)µ suffers a puzzling about

3σ excess of the experimentally measured value over the theoretical prediction, which our

model is able to fully resolve. As the consequence of this resolution, our model predicts

specific regions of the parameter space with the specific properties including light smuons

and neutralinos, which could also potentially explain di-lepton excesses observed by CMS

and ATLAS.
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1 Introduction

Supersymmetry (SUSY) (for a review see e.g. [1]) remains an attractive candidate for new

physics beyond the Standard Model (SM), even if there is to date no direct evidence for

it at colliders, most notably the Large Hadron Collider (LHC). However, there remain

good motivations for considering SUSY, which are worth repeating, namely that it opens

up the possibility for gauge coupling unification, provides a viable dark matter (DM)

candidate such as the R-parity stabilized lightest neutralino, and addresses the big hierarchy

problem of the SM. Despite the lack of evidence for SUSY at the LHC, including the lack

of non-standard flavour signals in LHCb detector, almost for two decades there remains

one stubborn experimental inconsistency in the SM coming from the anomalous magnetic

moment of the muon, which is often overlooked or ignored for one or another reason. It

is well known that SUSY can account for this inconsistency, provided that there are light

sleptons and charginos, which by themselves are not inconsistent with LHC constraints on

new coloured particles. It remains an intriguing question, which we shall address in this

paper, whether this data can be accounted for by a well motivated unified SUSY model

consistent with other collider and non-collider constraints including DM.

The magnetic moment of the muon, as predicted by the Dirac equation, is related to

the particle’s spin S by

M = gµ
e

2mµ
S , (1.1)
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where, at classical level, the gyromagnetic ratio is gµ = 2. Small deviations from this value

are induced at the quantum level and can be parametrized by the so called anomalous

magnetic moment of the muon

aµ =
gµ − 2

2
. (1.2)

aµ is one of the most precisely measured quantities in modern particle physics. The E821

experiment at the Brookhaven National Laboratory has measured aµ to 0.54 ppm [2, 3],

resulting in

aexpµ = 116592091(63)× 10−11. (1.3)

New experiments at Fermilab [4] and J-PARC [5] promise to improve this accuracy by a

factor of four. The SM theory prediction is of a comparable accuracy (for useful reviews,

see [6–9]). This prediction includes QED corrections to five loops [10] (see also [11–14]) as

well as weak corrections to two loops [15, 16] and hadronic corrections [17–27] (see also [28–

32] for lattice QCD evaluations). The uncertainties in the hadronic corrections, which

rely on data for e+e− → hadrons, vary somewhat between authors. In all combinations,

there remains a significant tension between experiment and theoretical prediction. This

discrepancy ranges from

∆aµ = aexpµ − aSMµ = 237(86)× 10−11 (1.4)

to

∆aµ = aexpµ − aSMµ = 278(80)× 10−11, (1.5)

which are 2.8σ and 3.4σ tensions respectively [9]. In the interest of compatibility with

other studies, here we will use the deviation of experiment from the SM prediction quoted

in ref. [3], which is

∆aµ = aexpµ − aSMµ = 288(80)× 10−11 . (1.6)

If this discrepancy persists and reaches even higher significance when confronted with

new experiments and/or improvements to the SM hadronic contributions, it may become

a sign of new physics beyond the SM. In particular, within supersymmtric models, the

deviation from the SM prediction may be totally or partially attributed to smuon-neutralino

and sneutrino-chargino loops [33–64]. Although ∆aµ may be accommodated in the Minimal

Supersymmetric Standard Model (MSSM) (see e.g. [50, 52]) with its large number of free

parameters, finding a suitable value in more constrained supersymmetric models can be

challenging. For example, in the well studied Constrained MSSM (CMSSM), in which the

supersymmetric soft-breaking masses are given common values at some high energy scale,

it is difficult to achieve the desired value of aµ [65–67]. Of course, if one is willing to

attribute only part of the discrepancy to supersymmetric effects, then simple models of

Grand Unification that satisfy all constraints become viable (see e.g. [68, 69]) but are no

more attractive for explaining aµ than the SM.
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Another possible class of models which could address (g − 2)µ are the SUSY GUT

models with normal mass hierarchy with non-universal scalar masses for the first two and

the third generation of sfermions [70]. Also, the (g − 2)µ problem can be addressed in the

essentialy non-universal model such as the phenomenological MSSM (pMSSM) scenario [71]

which is based on the following simplifying assumptions:

• First and second generation universality for low energy soft masses mQ1 ,mU1 ,mD1 ,

mL1 ,mE1 (equal to mQ2 ,mU2 ,mD2 ,mL2 ,mE2 , respectively)

• Separate low energy soft masses for third generation scalar masses mQ3 ,mU3 ,mD3 ,

mL3 ,mE3

• Separate low energy gaugino masses M1,M2,M3

• Separate trilinear parameters At, Ab, Aτ

In this paper we will investigate contributions to aµ that arise from a conceptually

different MSSM model based on a high energy (GUT scale) Pati-Salam gauge group com-

bined with an A4 × Z5 family symmetry [72]. The point is that this model was initially

motivated not by (g−2)µ but by the fact that it provides an excellent description of quark

and lepton masses, mixing and CP violation. The model predicts the following high energy

(GUT scale) soft mass parameters:

• A universal high energy soft scalar mass for all left-handed squarks and sleptons of

all three families, m0 (i.e. mQi and mLi are unified into m0 at the GUT scale )

• Three high energy soft mass parameters for the right-handed squarks and leptons,

one for each family m1, m2, m3 (i.e. mUi , mDi and mEi are unified into mi at the

GUT scale, respectively for i = 1, 2, 3 )

• Separate high energy gaugino masses M1,M2,M3

• Separate trilinear parameters At, Ab, Aτ

These soft mass boundary conditions are consistent with the (s)particle groupings dictated

by the model as shown in figure 1. We will show that this model has also a great potential to

predict aµ that is in agreement with the experimental value, while simultaneously providing

a viable Dark Matter candidate, maintaining vacuum stability and remaining consistent

with all experimental constraints.

In section 2 we will describe the model in some detail, and in section 3 we clarify

the leading contributions to ∆aµ. We will discuss constraints from experiment, including

collider constraints and those on the Dark Matter relic density, in section 4. We present

our results, including some example scenarios, in section 5. Finally we investigate vacuum

stability for these example scenarios in section 6, before concluding in section 7.
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Figure 1. A to Z of flavour with Pati-Salam, where A ≡ A4 and Z ≡ Z5. The left-handed families

form a triplet of A4 and are doublets of SU(2)L. The right-handed families are distinguished by Z5

and are doublets of SU(2)R. The SU(4)C unifies the quarks and leptons with leptons as the fourth

colour, depicted here as white.

2 The model

An “A to Z of flavour with Pati-Salam” based on the Pati-Salam gauge group has been

proposed [72] as sketched in figure 1. The Pati-Salam symmetry leads to Y u = Y ν , where

the columns of the Yukawa matrices are determined by flavon alignments. The first column

is proportional to the alignment (0, e, e), the second column proportional to the orthogonal

alignment (a, 4a, 2a), and the third column is proportional to the alignment (0, 0, c), where

e � a � c gives the hierarchy mu � mc � mt. This structure predicts a Cabibbo angle

θC ≈ 1/4 in the diagonal Y d ∼ Y e basis enforced by the first three alignments. It also

predicts a normal neutrino mass hierarchy with θ13 ≈ 9◦, θ23 ≈ 45◦ and δ ≈ 260◦ [72].

The model is based on the Pati-Salam (PS) gauge group, with A4×Z5 (A to Z) family

symmetry,

SU(4)C × SU(2)L × SU(2)R ×A4 × Z5. (2.1)

The quarks and leptons are unified in the PS representations as follows,

F = (4, 2, 1)i =

(
u u u ν

d d d e

)
i

→ (Qi, Li),

F ci = (4̄, 1, 2)i =

(
uc uc uc νc

dc dc dc ec

)
i

→ (uci , d
c
i , ν

c
i , e

c
i ),

(2.2)

where the SM multiplets Qi, Li, u
c
i , d

c
i , ν

c
i , e

c
i resulting from PS breaking are also shown

and the subscript i (= 1, 2, 3) denotes the family index. The left-handed quarks and

leptons form an A4 triplet F , while the three (CP conjugated) right-handed fields F ci
are A4 singlets, distinguished by Z5 charges α, α3, 1, for i = 1, 2, 3, respectively. Clearly

the Pati-Salam model cannot be embedded into an SO(10) Grand Unified Theory (GUT)

since different components of the 16-dimensional representation of SO(10) would have to

transform differently under A4 × Z5, which is impossible, but the PS gauge group and A4

could emerge directly from string theory.

– 4 –
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In the SUSY theory at the GUT scale, from (2.2) there are therefore four different

matter multiplets: F, F c1 , F
c
2 , F

c
3 , corresponding to the left-handed block and the three dis-

tinct right-handed blocks in figure 1 respectively. The GUT-scale scalar soft mass of F will

be called m0, while the soft masses of F c1 , F
c
2 , F

c
3 will be denoted m1,m2,m3, respectively,

as discussed in the introduction. The model therefore provides novel SUSY boundary con-

ditions for soft masses at the GUT scale, more constrained than the general MSSM, but

less so than the CMSSM. As we shall see, this allows us to account for the experimentally

observed g-2 of the muon, and will lead to a distinctive and novel low energy superpartner

mass spectrum, with characteristic signatures at the LHC.

The Pati-Salam gauge group is broken at the GUT scale to the SM gauge group,

SU(4)C × SU(2)L × SU(2)R → SU(3)C × SU(2)L ×U(1)Y , (2.3)

by PS Higgs, Hc and Hc,

Hc = (ucH , d
c
H , ν

c
H , e

c
H) ∈ (4̄, 1, 2),

H
c

= (ūcH , d̄
c
H , ν̄

c
H , ē

c
H) ∈ (4, 1, 2).

(2.4)

These acquire vacuum expectation values (VEVs) in the “right-handed neutrino” direc-

tions, with equal VEVs close to the GUT scale 2 × 1016 GeV,

〈Hc〉 = 〈νcH〉 = 〈Hc〉 = 〈ν̄cH〉 ∼ 2× 1016 GeV, (2.5)

so as to maintain supersymmetric gauge coupling unification.

The model will involve Higgs bi-doublets of two kinds, hu which lead to up-type quark

and neutrino Yukawa couplings and hd which lead to down-type quark and charged lepton

Yukawa couplings. In addition a Higgs bidoublet h3, which is also an A4 triplet, is used to

give the third family Yukawa couplings. After the PS and A4 breaking, most of these Higgs

bi-doublets will get high scale masses and will not appear in the low energy spectrum. In

fact only two light Higgs doublets will survive down to the TeV scale, namely Hu and Hd.

The light Higgs doublet Hu with hypercharge Y = +1/2, which couples to up-type quarks

and neutrinos, is a linear combination of components of the Higgs bi-doublets of the kind

hu and h3, while the light Higgs doublet Hd with hypercharge Y = −1/2, which couples

to down-type quarks and charged leptons, is a linear combination of components of Higgs

bi-doublets of the kind hd and h3,

hu, h3 → Hu, hd, h3 → Hd. (2.6)

Therefore, below the GUT scale, the model reduces to the usual MSSM, but with GUT

scale boundary conditions for soft scalar masses as discussed above.

3 One-loop contributions to ∆aµ

The magnetic moment of a massive charged particle is a result of the interaction of its spin

with the electromagnetic field. At zeroth order in perturbation theory, the gyromagnetic

– 5 –
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Figure 2. One-loop contributions to the anomalous magnetic moment of the muon for supersym-

metric models with low-scale MSSM.

ratio is predicted to be 2 for every massive particle with semi-integer spin. Deviations from

this classical value emerge at the loop-level, where besides SM corrections, new physics

contributions may also be relevant. This is indeed the case for the anomalous magnetic

moment of the muon, where one-loop supersymmetric contributions are represented in the

Feynman diagrams of figure 2.

These diagrams were computed in [42, 50] and give contributions

∆a(A)µ =

(
M1µ

m2
µ̃L
m2
µ̃R

)
α1

4π
m2
µ tanβ · f (A)N

(
m2
µ̃L

M2
1

,
m2
µ̃R

M2
1

)
, (3.1a)

∆a(B)
µ = −

(
1

M1µ

)
α1

4π
m2
µ tanβ · f (B)

N

(
M2

1

m2
µ̃R

,
µ2

m2
µ̃R

)
, (3.1b)

∆a(C)
µ =

(
1

M1µ

)
α1

8π
m2
µ tanβ · f (C)

N

(
M2

1

m2
µ̃L

,
µ2

m2
µ̃L

)
, (3.1c)

∆a(D)
µ = −

(
1

M2µ

)
α2

8π
m2
µ tanβ · f (D)

N

(
M2

2

m2
µ̃L

,
µ2

m2
µ̃L

)
, (3.1d)

∆a(E)
µ =

(
1

M2µ

)
α2

4π
m2
µ tanβ · f (E)

C

(
M2

2

m2
ν̃µ

,
µ2

m2
ν̃µ

)
, (3.1e)

with α1 and α2 the U(1)Y and SU(2)L fine structure constants respectively. The functions

f
(A,B,C,D)
N (x, y) and f

(E)
C (x, y) are given by

f
(A,B,C,D)
N (x, y) = xy

[
−3 + x+ y + xy

(x− 1)2 (y − 1)2
+

2x log x

(x− y) (x− 1)3
− 2y log y

(x− y) (y − 1)3

]
, (3.2a)

f
(E)
C (x, y) = xy

[
5− 3 (x+ y) + xy

(x− 1)2 (y − 1)2
− 2 log x

(x− y) (x− 1)3
+

2 log y

(x− y) (y − 1)3

]
, (3.2b)

– 6 –
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Figure 3. Contour plots for fN (x, y) (left) and fC (x, y) (right).

where we use the superscripts (A,B,C,D) and (E) as a short notation to allow omission of

the mass ratio arguments. As described in [50], the loop-functions f
(A,B,C,D)
N and f

(E)
C are

monotonically increasing for both x and y and are defined in 0 ≤ fN,C ≤ 1. From (3.1), we

see that the size of each ∆a
(i)
µ contribution is largely governed by the pre-factor between

brackets on the r.h.s. . Therefore, a large µ combined with light smuons enhances ∆aµ via

diagram (A) in figure 2, while keeping the remaining contributions suppressed. However

this solution is not unique and in the limit of small µ the size of the functions f
(A,B,C,D)
N

and f
(E)
C themselves may distinguish the dominant contributions among diagrams (B) to

(E). In particular, we see from the contour plots of figure 3, that for a fixed (x, y), say x ∼
y ∼ 0.2, f

(E)
C ∼ 0.2 is approximately one order of magnitude larger than f

(A,B,C,D)
N ∼ 0.02.

We will see in section 5 the importance of these functions for the explanation of ∆aµ.

4 Experimental constraints

Any successful high-energy completion of the SM should satisfy all known low-energy ex-

perimental constraints. In particular, we require our scenarios to conform to measurements

of the Dark Matter (DM) relic density and obey constraints from the direct detection of

DM. The current combined best fit of the DM relic density to data from Planck and

Wmap is Ωh2 = 0.1198± 0.0026 [73]. We will also consider smaller values of Ωh2, allowing

the possibility that our model does not account for DM in its entirety, which opens up the

bound to Ωh2 ∈ [0.06, 0.1224]. For DM direct detection constraints, we apply the current

90% upper confidence level cross-sections for spin-independent models with a WIMP mass

of 33 GeV, which are given by σDD-SI ≤ 7.6×10−46 cm−2 = 7.6×10−10 pb [74]. For WIMP

masses less or greater than 33 GeV the direct detection bound is weaker, so this choice

is conservative.

Furthermore we require agreement with the recently measured Higgs mass, the correct

branching ratios for the decays b → sγ and Bs → µ+µ−, and agreement with the ρ-

parameter. The current combined ATLAS and CMS measurement of the Higgs boson

mass is mH = (125.09 ± 0.21 (stat.) ± 0.11 (sys.)) GeV [75]. However, these experimental

– 7 –
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uncertainties are dominated by our much larger theoretical uncertainty, and consequently

we relax our constraint to scenarios with mH = (125.09 ± 1.5) GeV. We directly apply

limits on the branching ratios Br(b→ sγ) = (3.29± 0.19± 0.48)× 10−4 [76] and Br(Bs →
µ+µ−)= 3.0+1.0

−0.9 × 10−9 [77].

Apart from the fixed experimental constraints, we are free to further modify the pa-

rameter space in order to include some useful features. For example, having light sleptons,

especially smuons, is one of these features. This is reasoned by the fact that light smuons

heavily increase the ∆aµ contribution from diagram (A) (see eq. (3.1a)). Also, having light

sleptons grants a suitably higher possibility to explore them during current or upcoming

experimental studies, e.g. at the LHC, due to the comparably clean muonic signals. The

corresponding parameters for the smuons are m0 and m2, which need to be light in order

to get light smuons. For actual parameter choices, see tables 1, 2 and 4.

Two other useful features are a bino-like LSP (denoted by χ̃) and a large mass gap

between the LSP and the smuon masses. These characteristics are helpful to provide the

correct dark matter relic density while preventing leptons arising from µ̃± → χ̃ µ± decays

to be soft, which would render them nearly undetectable at any collider. None of the

parameters of our model is directly responsible for these features, so analysing different

scans with different parameter choices is necessary.

As a last point, we have verified that benchmarks we consider below do not violate

any of the 8 TeV ATLAS and CMS analyses. This is necessary, since one of the scenarios

we have found — the small µ scenario — could give rise to light χ̃0
1, χ̃

0
2 and χ̃±

1 with

comparatively low (few dozen GeV) mass splittings. This region of the parameter space

provides distinctive di-lepton or tri-lepton signatures at the LHC which are not observed

and which therefore rule out the respective parameter space. To do this verification we have

used the chain consisting of MadGraph 5.2.2.3 [78] to generate all relevant combinations

for chargino-neutralino pair production, PYTHIA 6.4 [79] linked to MadGraph to simulate

the parton showering and hadronisation and CheckMATE 1.2.1 [80] to perform fast detector

simulations with DELPHES 3.0 [81] and event analysis. Using the same set of cuts as

the experimental analyses (either CMS or ATLAS), CheckMATE allowed us to establish

whether a given point from the parameter space is ruled out or not making use of the data

given by the collaborations in their published analyses which are validated in CheckMATE.

In particular, we found that tri-lepton signatures explored in refs. [82, 83] are the most

constraining ones for the small µ region. On the other hand, di-lepton signatures are

also worth mentioning, albeit turning out to be less constraining for the parameter space

under study.

5 Results

After selecting a certain point in parameter space by choosing all relevant model parameters

(cf. section 1 and 2), we use SoftSUSY 3.5.2 [84] to generate the mass spectrum of that

point and exclude any point with a Higgs mass out of the bounds chosen in section 4. In

case the Higgs mass is in bounds, we use micrOMEGAs 3.6.9.2 [85] to compute the relic

density as well as the remaining constraints described in section 4.

– 8 –
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Parameter range

|Atri| 1 – 3000

m0, m1, m2 1 – 500

m3 1 – 3000

mH1 , mH2 1 – 3000

Parameter range

|M1|, |M2| 1 – 600

|M3| 1 – 6000

tanβ 5 – 50

sgn (µ) ±1

Table 1. Model parameters at the GUT scale. Dimensionful parameters are in GeV.

5.1 An inclusive scan

The lack of evidence for strongly interacting superpartners at the LHC puts low scale super-

symmetry under pressure. However, while gluinos and squarks of the first two generations

need to be heavier than ∼ 1.5 TeV, electroweak sector searches are still rather weak. As

light supersymmetric particles could be the source for a sizable ∆aµ deviation, we investi-

gate scenarios with light smuons and light selectrons in our low scale spectrum that avoid

conflict with current experimental exclusion limits. To do this we first preform an inclusive

scan on the parameter space varying the GUT scale parameters as shown in table 1. We

allow the SU(3)C gaugino mass, M3, and the third generation right-handed scalar mass,

m3, to acquire large values so the stops may provide a significant contribution to the Higgs

mass via loops. In figure 4, we show viable scenarios in the ∆aµ-µ (top), ∆aµ-M1 (bottom-

left) and ∆aµ–M2 (bottom-right) planes, where the light green and orange triangles have

too low relic density, the turquoise and salmon circles have only the relic density in bounds

and the dark blue and red diamonds have ∆aµ as well as the relic density in bounds. It

turns out there are two classes of solutions for the correct values of ∆aµ, which can be

distinguished as a large µ (the v-shaped bands at |µ| & 2 TeV) and a small µ (the single

blue diamond at µ ≈ 0 and the red band around it) region. As can be seen, the first class

of solutions requires not only a rather large SUSY-preserving mass parameter |µ| & 2 TeV,

but also a soft breaking gaugino mass |M1| & 100 GeV. However, if we relax the relic

density requirement, we find solutions from the latter class with small µ and satisfactory

values of ∆aµ. In particular, the isolated dark blue point in the top of figure 4 at small µ

has ∆aµ = 25.96 × 10−10, µ = 262.5 GeV, M1 = −475.8 GeV and M2 = 588.9 GeV, and

predicts a LSP (bino) with mass mB0 = 200.1 GeV.

In figure 5, we display the correlation between µ, M1 and mχ̃0
1
, where we have selected

only those points where the lightest neutralino wave function is dominated by the bino

component. In this figure, we show that for the rare points with light µ, the smallness of

the U(1)Y gaugino mass at the GUT scale ensures that the LSP is predominantly bino via

RGE running to the electroweak scale.

5.2 Small µ

As we verified in section 5.1, there are two preferred regions compatible with the correct

value for the anomalous magnetic moment of the muon. We first investigate the small µ

region corresponding to solutions in the vicinity of the isolated band on the top panel of

figure 4. We perform a dedicated scan to generate small µ and the ranges used for the
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Figure 4. Viable scenarios in the ∆aµ–µ (top) and ∆aµ-M1 (bottom-left), ∆aµ-M2 (bottom-right)

planes. Dark blue and red diamonds are scenarios with bino-like DM, whereas the light green and

orange triangles and turquoise and salmon circles are scenarios with mainly wino and partially

higgsino-like DM. The reddish points correspond to a separate scan around the isolated dark blue

point in the top plot at small µ. The input parameters are shown in table 2.
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Figure 5. Correlation between µ(Q) and M1. The left plot shows points satisfying the given

constraints, where the dark blue and red diamonds show points fulfilling both the relic density

and ∆aµ constraints, turquoise and salmon circles only have the relic density in bounds, but not

∆aµ, and light green and orange triangles refer to points with neither the relic density nor ∆aµ in

bounds. The plot on the right shows the same data, but the colour gradients now correspond to

the LSP mass mχ̃0
1

for the inclusive scan (blue points, see table 1) and the small µ scan (red points,

see table 2), as indicated by the colour bars on the right.
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Parameter Range

Atri −4000 – −2300

m0 400 – 700

m1 300 – 500

m2 200 – 400

m3 200 – 2000

mH1 , mH2 1500 – 2500

Parameter Range

M1 −500 – −100

M2 100 – 600

M3 750 – 1200

tanβ 15 – 35

sgn (µ) +1

Table 2. Theory parameters at the GUT scale. The soft-SUSY breaking parameters are given in

GeV.
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Figure 6. Lightest neutralino mass vs. smuon masses. All dark blue diamonds are bino-like,

whereas the light green triangles and turquoise circles are wino-like. The orange pentagons represent

the benchmark points defined in table 3.

input parameters at the GUT scale can be found in table 2. We show in figure 6 the

results obtained for this scan in the mχ̃0
1

vs mµ̃R plane, where only points with positive

contribution to the anomalous magnetic moment of the muon are displayed. We observe

two clear bands and a bulk region corresponding to distinct regions, where dark matter

efficiently annihilates due to different physics processes. In particular, the vertical band

with mχ̃0
1
. 50 GeV corresponds to LSP annihilation via Z boson resonant decay, whereas

the band with mχ̃0
1
& 60 GeV the annihilation into visible SM particles is possible due

to Higgs boson exchange. The lower diagonal band with mχ̃0
1
∼ mµ̃R corresponds to the

neutralino-smuon co-annihilation region whereas the bulk region on top of this band shows

scenarios where dark matter co-annihilates with non-smuon NLSP. In figure 7, we show the

mass differences for mµ̃L/R −mχ̃0
1

versus the lightest neutralino mass. While the mass gap

for the left handed smuon never deceeds 200 GeV, mass gaps for the right handed smuon

can be as small as 1 GeV, thus rendering any muons emerging from smuon decays nearly

undetectable. However, the orange benchmark points have both smuon masses & 100 GeV,

which prevents the muons from smuon decays to be soft. For such small values of µ it may

seem that the leading contributions to ∆aµ arise from diagrams (B), (C), (D) and (E) in

figure 2 as the factor of 1
µ in equations (3.1b) to (3.1e) becomes large for small µ. However,
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Figure 7. Mass gaps between the smuon and lightest neutralino masses mµ̃L/R
and mχ̃0

1
. All dark

blue diamonds are bino-like, whereas the light green triangles and turquoise circles are wino-like.

The orange pentagons represent the benchmark points defined in table 3.

as we discussed in section 3, the functions f
(A,B,C,D)
N (x, y) and f

(E)
C (x, y) may also play

an important role and should not be disregarded in this analysis. In order to understand

which diagrams are indeed relevant for enhancing ∆aµ we show in figure 8 each individual

contribution ∆a
(X)
µ against the corresponding fN,C (x, y) function and the total ∆aµ in the

color scale. The only relevant positive contributions are coming from diagrams (B) and

(E). This agrees with equations (3.1b) and (3.1e) as in our scan M1 is negative and both

µ and M2 are positive. Furthermore, the leading contributions to ∆aµ are also coming

from these two diagrams and the reason for such an enhancement is the dependency on

the fN,C (x, y) functions. In particular, as the right-handed smuon is always lighter than

its left-handed counterpart, we have that f
(B)
N

(
M2

1

m2
µ̃R

, µ2

m2
µ̃R

)
� f

(C,D)
N

(
M2

1,2

m2
µ̃L

, µ2

m2
µ̃L

)
, which

explains the enhancement of digram (B) and the suppression of the absolute value of ∆a
(X)
µ

for diagrams (C) and (D). For the particular case of diagram (E), one could also expect

a strong suppression as the muon sneutrino and the left-handed smuon are very close in

mass and the fN,C (x, y) functions share the same asymptotic limits. However this is not

what we observe, and if we refer back to the contour plots of figure 3 and the discussion

carried out in section 3, we realise that for the same values of (x, y) we have in general that

f
(E)
C (x, y)� f

(A,B,C,D)
N (x, y). Therefore, in diagram (E), it is the function f

(E)
C

(
M2

2

m2
ν̃µ

, µ2

m2
ν̃µ

)
that is responsible for the enhancement of ∆aµ, explaining our results. Benchmark points

for the small µ scenario can be found in table 3.

5.3 Large µ

The other class of solutions that provides the full contribution to the anomalous magnetic

moment of the muon requires |µ| & 2 TeV. In order to study this region in detail we

perform an enhanced scan on the parameter space around the points in figure 4 that better

approach the value of ∆aµ as given in (1.6). The new scenarios were generated with the

GUT scale parameters as in table 4.

Analogue to figure 8, we first investigate which loop diagrams from equation (3.1)

contribute most to ∆aµ. This is shown in figure 9.
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Figure 8. Individual contributions for the ∆a
(i)
µ terms, with i = {A,B,C,D,E} in equations (3.1),

vs. the fN,C (x, y) functions. The color scale indicates the total value value of ∆aµ. The orange

pentagons represent the benchmark points defined in table 3.

It is clear that, in this case, diagram (A) yields the main contribution to ∆aµ. This

is mainly due to the prefactor
(

M1µ
m2
µ̃L
m2
µ̃R

)
from equation (3.1a) being large for large µ and

small smuon masses. Additionally, eqauations (3.1b)–(3.1e) all feature µ in the denomina-

tor, thus leading to highly suppressed contributions from these diagrams. In this scenario,

dark matter is entirely bino-dominated for points with ∆aµ in the 1σ bound (dark blue

diamonds), leading to a viable relic density. This is visualised in figure 10. In figure 11, we

show the mass gaps between smuons and the LSP, which always is the lightest neutralino

in this scenario. In case of left handed smuons, the mass gap for points featuring good
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Benchmark: BP1 BP2 BP3 BP4 BP5
In

p
u
t
a
t
G
U
T

sc
a
l
e

tanβ 26.48 21.20 22.89 29.52 25.88

sgn(µ) + + + + +

m0 681.1 490.4 689.0 691.4 688.4

[G
eV

]

m1 402.0 327.5 447.0 364.4 417.9

m2 397.4 273.0 394.2 342.2 390.7

m3 1204.7 871.8 1085.4 987.4 1192.3

M1 -100.1 -124.1 -123.8 -224.9 -255.1

M2 294.9 367.5 449.9 168.6 177.9

M3 1004.6 1085.7 1109.8 1066.5 947.6

Mh1 2204.8 2108.4 2246.6 2127.3 2007.2

Mh2 2385.7 2350.9 2455.7 2330.2 2344.7

Atri -2839.1 -2762.5 -2838.5 -2764.0 -3090.0

M
a
ss
e
s

mh0 125.2 125.2 125.2 125.1 125.1

[G
eV

]

mg̃ 2220.9 2373.5 2427.3 2349.4 2108.5

m
q̃1,2L

2040.6 2122.7 2220.1 2149.1 1949.0

mb̃1
1424.1 1537.5 1592.3 1506.8 1234.0

mt̃1
1120.3 1117.4 1207.9 1184.6 962.3

mq̃1R
1963.9 2086.2 2149.9 2070.3 1872.7

mq̃2R
1962.9 2078.1 2136.3 2066.3 1866.5

mb̃2
2164.4 2108.7 2209.8 2026.6 1984.0

mt̃2
1488.6 1584.3 1641.0 1561.4 1323.4

mẽL 710.5 555.8 752.4 705.3 715.6

mẽR 352.7 244.2 396.3 313.5 335.2

mµ̃L 710.1 555.2 751.8 704.5 714.9

mµ̃R 346.1 160.7 333.5 283.9 297.6

mτ̃1 594.8 375.0 589.5 424.9 483.8

mτ̃2 1054.1 612.5 834.6 560.1 894.9

mχ̃0
1

-48.58 -59.58 -60.00 -101.0 -113.2

mχ̃0
2

169.5 215.5 243.3 115.9 127.9

mχ̃0
3

-228.2 -265.1 -277.4 -350.7 -411.9

mχ̃0
4

287.7 337.3 391.5 357.2 416.9

mχ̃±
1

171.3 217.3 245.0 116.3 128.2

mχ̃±
2

287.4 336.9 390.8 360.4 419.9

mν̃eL
705.8 549.9 747.9 700.5 711.0

mν̃µL
705.5 549.4 747.5 704.5 710.4

mν̃τL
589.5 367.5 584.5 421.6 478.1

Q 1293.4 1337.0 1409.0 1360.4 1143.6

µ(Q) 212.3 250.5 263.2 335.2 397.9

C
o
n
st

r
a
in
t
s Br(b→ sγ) 2.89× 10−4 2.91× 10−4 2.91× 10−4 3.25× 10−4 3.25× 10−4

Br(Bs → µ+µ−) 2.69× 10−9 2.97× 10−9 2.97× 10−9 3.06× 10−9 3.11× 10−9

σDD SI 1.31× 10−11 1.28× 10−11 1.18× 10−11 2.42× 10−11 1.06× 10−11 [pb]

Ωh2 1.05× 10−1 1.25× 10−1 1.23× 10−1 8.32× 10−2 8.47× 10−2

∆aµ 1.37× 10−9 2.28× 10−9 1.30× 10−9 1.99× 10−9 1.52× 10−9

Table 3. Input and Output parameters for the benchmark points with the most accurate ∆aµ and

Ωh2 in the case of small µ(Q) and all other constraints being fulfilled. q̃i labels the i-th generation

of squarks.
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Parameter Range

Atri −3000 – 0

m0 100 – 300

m1 500 – 1500

m2 100 – 400

m3 1000 – 2000

mH1 , mH2 100 – 3000

Parameter Range

M1 −1000 – 1000

M2 −2000 – 2000

M3 2000 – 3000

tanβ 5 – 50

sgn (µ) ±1

Table 4. Theory parameters at the GUT scale. The soft-SUSY breaking parameters are given in

GeV.

∆aµ and relic density (dark blue diamonds) is in a range of roughly 50 - 700 GeV, which is

important for any collider phenomenology (cf. section 4). As an example, muons emitted

in the decay µ̃L → χ̃0
1 µL would be very energetic, but most likely soft in the case of right

handed smuons, as there are plenty of points with a mass gap below 50 GeV. Figure 12

shows the mass gaps between the LSP and NLSP vs. the LSP mass for too low relic density

(top left plot), relic density in bounds (top right) and relic density as well as ∆aµ in bounds

(bottom). In case of too low relic density, the first chargino is the NLSP for the majority

of points and is degenerated in mass with the LSP. If the relic density increases, there are

almost no chargino-NLSP’s left and the NLSP changes to the right-handed smuon, but the

first stauon and the τ -sneutrino also yield significant amounts of NLSP’s for this scenario.

Also, all three of them are mass degenerated up to roughly 10 GeV with the LSP. In case

of both relic density and ∆aµ being in the 1σ bound, this picture does not change, but the

favoured LSP mass is narrowed down from 100–400 GeV to 200–300 GeV for right-handed

smuons. In case of τ̃1 or ν̃τ , the LSP mass range is only slightly reduced. In figure 13,

we show the ∆aµ-Ωh2 plane and the respective 1σ bounds as a grey shaded area. There

are plenty of points lying close to the 1σ bound w.r.t. Ωh2 and still many points in both

1σ bounds. Based on the best points in the 1σ bound (lower plot), we set up benchmark

points (shown as orange pentagons in figures 9–13) for the upcoming analysis for vacuum

stability. All benchmark points and their respective input parameters as well as a selection

of the output parameters are shown below in table 5.

6 Vacuum stability

SoftSUSY implements two-loop tadpole contributions to the minimization conditions to

ensure the breaking of electroweak symmetry by Higgs VEVs. As with other spectrum

generators, the minimization conditions are used to fix parameters of the theory in such

a way that the desired vacuum is a minimum of the scalar potential. One downside of

this procedure is that other solutions to the minimization conditions might exist and lie

lower in the scalar potential of the theory. At the same time, color- and charge- breaking

(CCB) VEVs are usually ignored and such minima might also exist and lie lower than the

desired vacuum.

It is then interesting to understand if the points in our scans suffer from CCB minima,

whether they are lower than the desired vacuum and in that case if the desired vacuum is
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Figure 9. Individual contributions for the ∆a
(i)
µ terms, with i = {A,B,C,D,E} in equations (3.1),

vs. µ(Q). The color scale indicates the total value value of ∆aµ, while the black bars in the top left

panel show the 1σ bound of ∆aµ. The orange pentagons represent the benchmark points defined

in table 5.

sufficiently long-lived (meta-stable). Although approximate analytical conditions for the

avoidance of CCB minima exist for the MSSM, a full numerical study of the one-loop

effective potential is often needed as the conditions are neither sufficient nor necessary to

ensure the absence of such minima [86]. In addition, such analytical rules are based on a

tree-level analysis and are thus irrelevant for points where the symmetry breaking occurs

only at one-loop.
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pentagons represent the benchmark points defined in table 5.
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Figure 11. Mass gaps between the smuon and lightest neutralino masses mµ̃L/R
and mχ̃0

1
. All dark

blue diamonds are bino-like, whereas the light green triangles and turquoise circles are wino-like.

The orange pentagons represent the benchmark points defined in table 5.

Using Vevacious [87] we performed a numerical analysis of the tree and one-loop ef-

fective potential for a set of benchmark parameter points allowing for stop and stau VEVs.

Due to the fact that the desired vacuum comes as a solution of two-loop minimization

conditions we found that quite often the EWSB minimum only appears after two-loop con-

tributions to the effective potential are considered. For such parameter points an analysis

with Vevacious, which uses the one-loop effective potential, was not possible and thus the

vacuum stability analysis was inconclusive. However, it was still possible to find parameter

points where the EWSB minimum (the desired vacuum) develops at tree-level or one-loop.

In the case of minima appearing only at one-loop, a careful numerical minimization of

the one-loop effective potential was required, as Vevacious uses the tree-level minima as

starting points for numerical minimization therefore missing such cases out of the box. It

was possible however to study the vacuum stability in a point by point basis by starting

the numerical minimization around the field values for the EWSB minimum that develops

once two-loop contributions are considered.
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Figure 12. Mass differences between the LSP and NLSP compared to the LSP mass. The top

left plot has too small relic density, whereas the top right plot has the relic density in bounds and

the lower central plot additionally has ∆aµ in bounds. For this plot, the LSP always is the lightest

neutralino χ̃0
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Figure 13. ∆aµ vs. Ωh2. The top left plot shows the full parameter spectrum, the top right plot

a smaller excerpt of it with the grey shaded area being the 1σ bound of ∆aµ and Ωh2. All dark

blue diamonds are bino-like, whereas the light green triangles and turquoise circles are wino-like.

The orange pentagons represent the benchmark points defined in table 5.

For the points considered in section 5.2 and shown in table 3, the desired vacuum

was the global minimum of the one-loop effective potential. For the points considered

in section 5.3, we started with a set of benchmark points satisfying all the constraints
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Benchmark: BP6 BP7 BP8 BP9 BP10
In

p
u
t
a
t
G
U
T

sc
a
l
e

tanβ 16.96 26.88 32.15 22.21 40.22

sgn(µ) + + + + +

m0 238.8 149.6 106.5 271.5 137.5

[G
eV

]

m1 1426.7 1131.1 626.5 508.9 1470.7

m2 239.2 302.7 125.3 193.5 178.4

m3 1458.7 1631.9 1076.3 1434.2 1847.8

M1 577.9 292.3 711.6 579.8 760.7

M2 412.8 612.4 948.8 -436.4 982.8

M3 2195.7 2055.2 2680.5 2456.0 2524.6

Mh1 670.6 2924.4 577.0 1512.8 1577.3

Mh2 814.9 925.9 918.8 1306.2 1362.7

Atri -2244.8 -2776.6 -1113.2 -2896.2 -2370.1

M
a
ss
e
s

mh0 124.1 124.1 123.5 124.5 123.6

[G
eV

]

mg̃ 4595.1 4308.9 5497.4 5089.9 5201.7

m
q̃1,2L

3931.0 3697.9 4709.6 4356.0 4468.8

mb̃1
3527.8 3216.6 4257.5 3893.5 3878.2

mt̃1
3412.9 3154.1 4068.0 3743.2 3842.3

mq̃1R
4183.9 3859.4 4731.4 4378.0 4683.5

mq̃2R
3936.0 3699.4 4690.4 4352.2 4445.5

mb̃2
4137.3 3891.1 4637.2 4478.3 4510.4

mt̃2
3586.5 3334.7 4286.0 3936.8 4038.8

mẽL 328.2 393.0 588.3 375.9 627.6

mẽR 1442.2 1136.2 684.3 552.4 1497.9

mµ̃L 328.2 393.0 588.1 375.9 627.7

mµ̃R 315.0 318.7 298.4 289.1 328.5

mτ̃1 248.1 120.0 485.0 244.9 328.2

mτ̃2 1445.0 1553.8 1052.4 1399.6 1720.5

mχ̃0
1

235.5 113.0 294.8 237.6 319.7

mχ̃0
2

310.4 483.2 758.4 -426.1 792.1

mχ̃0
3

-2942.2 -2921.4 -3116.3 3226.7 -3273.1

mχ̃0
4

2942.6 2921.6 3116.9 -3226.9 3273.5

mχ̃±
1

310.6 483.4 758.5 426.3 792.2

mχ̃±
2

2943.5 2922.6 3117.6 3227.8 3274.3

mν̃eL
318.5 384.8 582.7 367.4 622.4

mν̃µL
318.5 384.8 582.7 367.4 622.5

mν̃τL
243.3 129.8 517.2 247.0 350.5

Q 3409.7 3163.2 4072.1 3742.4 3845.1

µ(Q) 2932.7 2917.6 3105.9 3217.7 3271.1

C
o
n
st

r
a
in
t
s Br(b→ sγ) 3.32× 10−4 3.29× 10−4 3.30× 10−4 3.32× 10−4 3.28× 10−4

Br(Bs → µ+µ−) 3.07× 10−9 3.13× 10−9 3.14× 10−9 3.08× 10−9 3.32× 10−9

σDD SI 9.69× 10−13 4.44× 10−13 6.65× 10−13 5.50× 10−13 6.31× 10−13 [pb]

Ωh2 1.20× 10−1 1.22× 10−1 1.20× 10−1 1.20× 10−1 1.19× 10−1

∆aµ 2.71× 10−9 3.06× 10−9 2.23× 10−9 2.98× 10−9 2.36× 10−9

Table 5. Input and Output parameters for the benchmark points with the most accurate ∆aµ and

Ωh2 in the case of large µ(Q) and all other constraints being fulfilled. q̃i labels the i-th generation

of squarks.
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Figure 14. Vacuum stability analysis for set of points fulfilling all other constraints in the large-µ

region: orange and red points correspond to the final benchmark points for which the desired vacua

are stable or long-lived respectively. For light blue points (labeled “Minimum at two-loop” ) the

desired vacuum appears only when two-loop corrections are included and thus could not be studied

with current tools. Black points showed deeper CCB minima with < 1% survival probability of the

desired vacuum. Gray points showed CCB minima at 1-loop but the desired vacua appear after

two-loop corrections are included.

considered in the previous sections, and after performing the vacuum stability analysis

we selected those where the desired vacuum was either the global minimum (and thus

stable) or long-lived after considering tunneling to deeper CCB minima at zero and non-

zero temperature. The result of the analysis is shown in figure 14. In this figure we can

see that points with larger µ roughly correspond to those for which the desired vacuum

develops once two-loop corrections are considered, as could be naively expected. In addition

the stable and long-lived points tend to have larger |At| and A0 together with lower tan β

values. This comes from the fact that the larger tan β is the smaller m2
τ̃R

, increasing the

chance for τ̃ VEVs. Conversely, lower tan β thus allows for higher values of A0 and |At|
a combination that allows the points to fulfill all other constrains together with vacuum

stability. The points for which the desired vacuum was either global or long-lived minimum

(red and orange in figure 14) correspond to the benchmark points shown in light orange in

figures 10, 11 and 13.

7 Conclusions

The anomalous magnetic moment of the muon continues to show a disagreement with the

SM which suggests new physics at a relatively low mass scale. The leading candidate for

such new physics is the MSSM with light sleptons and light charginos and neutralinos,

which can contribute substantially to ∆aµ at one-loop and explain the experimental ∆aµ
measurements. Such a SUSY spectrum as low as a few hundreds GeV requires to explain

∆aµ contrasts with the failure of the LHC to discover coloured superpartners such as

squarks and gluinos, leading to stringent bounds on such sparticles, requiring their masses

to typically lie above the TeV scale. The Higgs boson mass also requires at least some stop

masses above the TeV scale in the MSSM.
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From the experimental side, these constraints are not inconsistent with having light

sleptons and gauginos down to about 100 GeV, since the LHC sensitivity to colour singlets

is significantly lower than to coloured particles. At the same time, from the theory side it

is very hard to accommodate light sleptons and heavy squarks for all generations at the

weak scale in the cMSSM or mSUGRA model with universal sfermion masses at the GUT

scale. This is especially difficult if one takes into account combined collider and non-collider

constraints including those from the dark matter relic density.

Such a tension strongly favours MSSM models with non-universal sfermion masses

at the GUT scale like the pMSSM which relax the constraints of the CMSSM without

introducing excessive flavour changing neutral currents and without unleashing all the 100

or so parameters of the MSSM. However, the pMSSM still contains 19 SUSY parameters

and is not particularly well theoretically motivated. In this paper, we have considered a

theoretically very well motivated scenario, which involves just four soft scalar masses at

the GUT scale, namely m0 (a universal left-handed scalar mass) and m1, m2, m3 (three

universal right-handed scalar masses, one for each family), together with non-universal

gaugino and trilinear soft masses. In this model, the first and second family sleptons can

be light to explain ∆aµ while simultaneously, m3 can be large enough to provide enough

mass for the Higgs boson and the agreement with other observables such as Br(b → sγ)

and Br(Bs → µ+µ−) stays valid.

The comprehensive scan over the soft parameter space of the model, exploiting the

relatively small number of soft input masses (as compared for example to the pMSSM), has

confirmed the existence of viable points which satisfy both ∆aµ and dark matter constaints

neatly dividing into two sets: small µ and large µ, which we subsequently investigated

in detail separately. For these two parameter regions, we were able to understand the

dominant effects leading to successful ∆aµ as well as the characteristics of the dark matter

candidate, while satisfying all other experimental constraints. For example we investigated

the NLSP to understand which SUSY particle is responsible for the effective co-annihilation

as well as the LSP-NLSP mass splitting, which is very important experimentally. We also

proposed sets of benchmark points for each scenario and checked the vacuum stability for

all benchmark points, especially for the large µ case where vacuum stability is an issue.

The small µ . 400 GeV region involves a bino-like neutralino LSP which annihilates

in the early Universe either resonantly, if its mass is around half the mass of the Z or

Higgs boson, or via co-annihilation with the higgsino states if the µ parameter is about

15 GeV higher than the LSP mass. The benchmarks are chosen such that there is a large

mass gap of around 100 GeV between the LSP and the smuon mass, so that the smuon

decay will involve a hard muon, providing a clear signal at the LHC. For all these small

µ cases, ∆aµ is dominated by diagrams (B) and (E) of figure 2. The large µ ∼ 3 TeV

region also involves a bino-like neutralino LSP which co-annihilates in the early Universe

with an NLSP which may be τ̃1, ν̃τ , χ̃2 or µ̃, depending on the precise parameters. In

all these cases, the dominant contribution to ∆aµ comes from diagram (A) of figure 2. In

both scenarios, heavy gluinos (above 2 TeV) help to split the squark and slepton masses

of the first two generations, yielding heavy squark masses satisfying the LHC bounds on

the first and second family squarks, while allowing light sleptons. These scenarios both
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predict light smuons (100–300 GeV), which can be probed via leptonic signatures and even

potentially explain di-lepton excesses reported by the ATLAS and CMS collaborations. In

addition, the small µ scenario also predicts quite light charginos and second neutralinos

exhibiting di-lepton or tri-lepton signatures which can be tested in the near future and/or

explain the di-lepton excesses mentioned above.

In conclusion, the MSSM with a Pati-Salam gauge group broken at the GUT scale

and flavour symmetries A4 and Z5, which unify the soft masses of the left-handed (but not

right-handed) squarks and sleptons, provides a well motivated framework with a relatively

low number of input soft masses, which is capable of accounting for ∆aµ as well as provid-

ing good dark matter candidates, consistently with all other experimental and theoretical

constraints. We emphasise that (unlike some other models) the A to Z Pati-Salam model

initially was not designed to explain ∆aµ, since its primary motivation was to explain the

flavour mass and mixing of quarks and leptons, in particular neutrinos. Nevertheless, we

have seen that the model is well suited to account for ∆aµ, while simultaneously providing

a good dark matter candidate, namely the lightest neutralino, which is consistently bino-

like in nature. The characteristic SUSY spectra presented here should enable this model

to be distinguished from other less well motivated models such as the pMSSM.
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