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1 Introduction and summary

Double monolayer graphene is a two-dimensional electronic system formed by two parallel

layers of graphene brought in close proximity (on the order of nanometers) but still sepa-

rated by an insulator so that direct transfer of electric charge carriers between the layers

can be neglected. The attractive Coulomb interaction between electrons and holes can

lead to the formation of electron-hole bound states, called excitons. In a double monolayer

system there are two types of excitons: an inter-layer exciton which is a bound state of

an electron in one layer and a hole in the other layer; or an intra-layer exciton which is a

bound state an electron and a hole in the same monolayer. Both of these quasi-particles

are bosons and they can Bose condense to form a condensate which we shall call an inter-

layer condensate and an intra-layer condensate, respectively. The possible existence of

these exciton condensates is particularly intriguing because of the possible outstanding

technological applications they can be used for [1–6]. This justifies the exceptional scien-

tific interest and the amount of efforts spent in trying to fully understand the condensation

mechanisms in such double-layer structures [7–12].

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
1
4
1

L

D3

D5 D5

2 + 1-dim defects

Figure 1. Scheme of the D3/D5-D5 -brane system configuration.

A quantitative analysis of this kind of systems is seriously hampered because of the

strength of the Coulomb interaction, which prevents a perturbative approach. In this paper

we use a non-perturbative holographic model of strongly coupled layer systems. Physical

parameters such as external magnetic field, charge density and finite temperatures can

be incorporated into the solution giving shape to a rich phase diagram with intra- and

inter-layer exciton condensate domains.

In our model the double monolayer system is described by two parallel, planar 2+1-

dimensional defects separated by a length L embedded in 3+1-dimensional Minkowski

spacetime. A U(1) potential is turned on to include a balanced charge density on the

layers. We further switch on a constant external magnetic field and we put the system at

finite temperature and study the layers in a thermal state. The case with unpaired charges

is not taken in consideration in this paper. A detailed treatment where the emergent SU(4)

symmetry of graphene [13] is accounted can be found in [14].

The holographic top-down model we employ for the relativistic defect quantum field

theory setup described above is given by a D3/D5-D5-brane system. This same model was

studied before in [14] but only at zero temperature. Here we analyze the finite temper-

ature generalization of this holographic system. We consider the background generated

by a stack of N coincident non-extremal D3-branes. In the near horizon limit this gives

rise to the well-known AdS5 × S5 black hole geometry. Then we embed the D5 and the

D5 (anti-D5) branes as probes of this background in such a way that they have a 2+1-

dimensional intersections with the 3+1-dimesional D3-brane worldvolume, as depicted in

figure 1. These intersections are the dual holographic realizations of the Dirac semimetal

monolayers. We use a brane-anti-brane pair because, as we will discuss, they can par-

tially annihilate and the annihilation will be the string theory dual of the formation of an

inter-layer exciton condensate.

According to AdS/CFT correspondence we can use this brane setup to describe two

2+1-dimensional defect theories interacting through the exchange of SU(N) N = 4 SYM

degrees of freedom that propagate in 3+1-dimensions. As usual the string model is effective

in the strong coupling regime, i.e. when the ’t Hooft coupling λ ≡ gsN/4π = g2
YMN is
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large. Here, gs is the string coupling and gYM is the coupling constant of the gauge fields

in the defect quantum field theory. However this is not enough and in order for the dual

theory to be tractable we have to take N → ∞, while keeping λ ≡ gsN/4π = g2
YMN

constant, in such a way to suppress quantum effects.

In practice the procedure we have to follow in order to study the holographic model

consists in finding all the allowed configurations for the D5- and the D5-branes and then

comparing their free energy in order to determine the favored one. In the probe regime this

is achieved by looking for the solutions of the Dirac-Born-Infeld action for the D5 and the

D5 in the AdS5 × S5 black hole background with the suitable boundary conditions.1 The

geometry of the brane worldvolume is then related through the AdS/CFT dictionary to the

relevant field theory quantities, in this case the expectation values of the condensates. The

geometry of the D5 and the D5 at the boundary is fixed to be AdS4×S2, with maximal S2

radius. As the branes penetrate the AdS5 bulk their geometry can change in two ways: the

radius of the S2 can decrease and possibly also become zero before reaching the horizon.

This would correspond to the presence of a non-zero value for the intra-layer condensate.

The other possible modification of the geometry is induced by the presence of the pair of

branes: being like a particle-hole pair, the D5-brane and the D5-brane have a tendency to

annihilate. Note though that we impose boundary conditions which prevent their complete

annihilation. As the D5-brane approaches the boundary of the AdS5 we require that it

has to be parallel to the D5-brane and it has to be separated from the D5-brane by a

spatial distance L. However, as they enter into the bulk of AdS5, they can still partially

annihilate by joining smoothly at some finite value of the radial coordinate of the AdS5

space. This joining of the brane and anti-brane is the AdS/CFT dual of inter-layer exciton

condensation.

Before considering the case we are intrested in, namely the double monolayer system,

let us briefly review the results that the D3/D5 model provides in the simplest case of a

single monolayer [18–20]. Of course in this case only the intra-layer condensation can occur.

At zero temperature and in absence of magnetic fields and charge densities, the D5-brane

configuration is supersymmetric and conformally invariant. The D5 worldvolume has an

AdS4 × S2 geometry and stretches from the boundary of AdS5 to the Poincaré horizon.

This is a maximally symmetric solution that corresponds to a configuration without any

condensate. Its quantum field theory dual is well known [21–24].

As soon as one introduces an external magnetic field on the brane world volume, the

single D5-brane geometry changes drastically [25]. The brane pinches off and truncates at a

finite AdS5 radius, before it reaches the horizon and then it has a “Minkowski embedding”.

This has to be interpreted as formation of a fermion anti-fermion condensate which induces

a mass gap, since the open strings stretching from the D5-brane to the horizon have a

minimum length greater than zero.

1The D5-branes we are considering are probes in a finite temperature background. Using the Dirac-

Born-Infeld action to describe the D5-branes dynamics we are neglecting the thermal degrees of freedom

induced on the D5’s by the background. However this is a good approximation in the large N limit. In

order to take into account the thermal excitation of the probes one could use the alternative approach

developed in [15, 16] based on the blackfold approach [17].
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When a nonzero charge density is introduced in addition to the magnetic field, the D5-

brane embedding switches to a “Black Hole embedding”, meaning that the brane stretches

from the boundary of AdS5 to the event horizon. This is due to the fact that the brane car-

ries worldvolume electric flux. It is not possible for the worldvolume to pinch off smoothly

unless there is a sink to absorb the electric flux. Such a sink is provided by a density

of fundamental strings suspended between the worldvolume and the horizon. However,

fundamental strings with the necessary configuration always have a larger tension than

the D5-brane, and they would pull the D5-brane to the horizon [26]. This means that the

theory no longer has a mass gap.

Moreover for high enough chemical potential the system undergoes a phase transition

with BKT scaling to a phase in which the condensate disappears and the symmetry is

restored [27]. Also the temperature promotes the symmetry restoration but at finite tem-

perature the transition is no longer of BKT type. The full phase diagram for the single

monolayer case can be found in [18].

D3/D5-D5-brane model for the double monolayer system has been studied at zero

temperature in [14, 28]. In presence of a magnetic field B and keeping a vanishing charge

density on the branes the phase structure is determined by the competition of two op-

posite effects: on the one hand the magnetic field induces the pinching off of the brane

worldvolume, which corresponds to the the condensation in the intra-layer channel; on the

other hand the proximity of the branes promotes the partial annihilation of the brane and

the anti-brane, which is the holographic dual of the inter-layer condensation. These two

effects are governed by the (dimensionless) parameter
√
BL. Exploring all the possible

values for the latter one sees that the phase diagram contains only two regions: for small√
BL the stable phase is the one with the inter-layer condensate only; increasing

√
BL the

system undergoes a phase transition to a state in which only the intra-layer condensate is

present [28].

Turning on a balanced charge density q on each brane introduces a new dimensionless

parameter to play with, q/
√
B (or µ/

√
B, µ being the chemical potential). In this case a

new region appears in the phase diagram, which corresponds to a configuration where both

the inter- and intra-layer condensates are simultaneously present [14]. Similar results can

be obtained using top-down model with D7-brane probes instead of D5’s [29, 30].

In [31, 32] a different model of flavor chiral symmetry breaking in a (2+1)-dimensional

defect gauge theory of strongly coupled fermions was proposed by introducing probe

D5/anti-D5-flavor branes on the Klebanov-Witten background. Introducing finite tem-

perature, an r-dependent profile in the x3-direction transverse to the (domain wall) defects

and an external magnetic field the thermodynamics of the resulting configurations was

studied and a detailed phase diagram of the model was established.

In this paper we further generalize the model considered in [14] by taking into account

also the effect of the temperature: namely we study the D3/D5-D5-brane model with a mag-

netic field, balanced charge densities on the branes and at finite temperature. Remarkably

the temperature makes the phase structure of the system even richer and unlike before all

the four possible phases play a dominant role for suitable domains in the phase space. We

will show indeed that, besides the three phases already present at zero temperature, for suf-
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Figure 2. Slice of the phase diagram for D3/D5-D5-brane model with a magnetic field and balanced

charge densities, at a fixed value of the temperature, T = 0.1×
√
2
π . The brane separation is plotted

on the vertical axis and the charge density on the horizontal one. We employ units where the length

scale λ1/4
√
2π B

is set to one.

ficiently high charge densities and separations, a symmetric phase emerges where both the

intra- and inter-layer condensates are vanishing. This effect is completely consistent with

the fact that both the charge density and the temperature induce a symmetry restoration.

An example of phase diagram is shown in figure 2 for a particular value of the temperature.

In the remainder of the paper, we will describe the quantitative analysis which leads

to the phase diagram of the D3-probe-D5-brane system. In section 2 we will discuss the

geometry of the D5-branes embedded in AdS5 × S5 black hole background. Then we will

find the equations of motion and we will list all their possible solutions. In section 3 we

will give a more detailed characterization of the solutions, showing the procedures we used

to find them. In section 4 we will show the numerical analysis of the solutions and in

particular the comparison of the their free energies as a function of the layer separation,

the charge density and the temperature. This will allows us to draw of the phase diagrams

of the system. In appendix A we will restore the physical units to give an estimate of the

orders of magnitude of the parameters.

2 Geometric setup

We consider a pair of probe branes, a D5 brane and an D5 brane suspended in AdS5 × S5

black hole background, with a metric of the form

ds2 = r2(−h(r)dt2 + dx2 + dy2 + dz2) +
dr2

r2h(r)
+ dψ2 + sin2 ψdΩ2

2 + cos2 ψdΩ̃2
2 (2.1)
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t x y z r ψ θ φ θ̃ φ̃

D3 • • • •
D5/D5 • • • z(r) • ψ(r) • •

Table 1. Choice of the D5- and D5-brane embedding coordinates.

Here, the coordinates of S5 are a fibration of the 5-sphere by two 2-spheres over the interval

ψ ∈ [0, π/2] and (t, x, y, z, r) are coordinates of AdS5 spacetime. The metrics of the two

2-spheres S2 and S̃2 are d2Ω2 = dθ2 + sin2 θdφ2 and d2Ω̃2 = dθ̃2 + sin2 θ̃dφ̃2 respectively.

The h(r) factor appearing in the temporal and radial components is

h(r) = 1−
r4
h

r4
(2.2)

where rh is the radius of the event horizon and T = rh/π is the Hawking temperature. Our

choice of branes coordinates is shown in table 1.

We require Poincaré invariance in the 2 + 1-dimensional intersection of the branes. So

both the D5- and the D5 -brane wrap the (t, x, y) subspace of AdS5. We also assume that

the D5- and D5 -brane worldvolumes wrap the 2-sphere S2 with coordinates θ, φ providing

an SO(3) symmetry for the solutions. The D5- and D5 -branes sit at points in the remaining

directions, z, ψ, θ̃, φ̃. We require that z(r) and ψ(r) depend on the radial coordinate r in

order to have a non trivial dynamics of the embeddings. Note that the point ψ = π
2 where

S2 is maximal has an additional SO(3) symmetry.

However, in order to find all the possible solutions and to avoid the presence of off-

diagonal terms in the metric we move to different coordinates. Following the steps of

ref. [28] we define a new radial coordinate w in such a way that

dr2

h(r)r2
=
dw2

w2
→ rdr√

r4 − r4
h

=
dw

w
. (2.3)

By integrating the last relation and requiring that w = r in the zero-temperature limit

rh = 0 we get

w(r) =

√
r2 +

√
r4 − r4

h
√

2
.

The event horizon r = rh in the new coordinate is placed at w = wh ≡ rh/
√

2. The inverse

coordinate transformation is then

r2 =
w4 + w4

h

w2
.

The AdS5 metric components in the new coordinate system turn out to be

gtt = h(r)r2 =
(w4 − w4

h)2

w2(w4 + w4
h)
, gxx = gyy = gzz = r2 =

w4 + w4
h

w2
, (2.4)
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t x y z ρ θ φ l θ̃ φ̃

D3 • • • •
D5/D5 • • • z(ρ) • • • l(ρ)

Table 2. Choice of the D5- and D5-brane embedding coordinates in the planar frame.

so that we can rewrite the metric (2.1) as

ds2 =−
(w4 − w4

h)2

w2(w4 + w4
h)
dt2 +

w4 + w4
h

w2
(dx2 + dy2 + dz2)

+
dw2

w2
+ dψ2 + sin2 ψ dΩ2

2 + cos2 ψ dΩ̃2
2 .

(2.5)

The last step is to switch to planar coordinates by defining

ρ = w sinψ , l = w cosψ ,

in such a way that ρ2 + l2 = w2. The AdS5 × S5 metric finally becomes

ds2 =−
(w4 − w4

h)2

w2(w4 + w4
h)
dt2 +

w4 + w4
h

w2
(dx2 + dy2 + dz2)

+
dρ2

ρ2 + l2
+

ρ2

ρ2 + l2
dΩ2

2 +
dl2

ρ2 + l2
+

l2

ρ2 + l2
dΩ̃2

2.

(2.6)

Now the ρ-dependent dynamic variables are z(ρ) and l(ρ). With these new coordinates the

point ψ = π
2 where S2 is maximal becomes the point l = 0. The branes coordinates ansatz

is shown in table 2.

The asymptotic behavior at ρ→∞ for the embedding function l(ρ) is

l(ρ)→ c0 +
c1

ρ
+ . . . (2.7)

while the asymptotic expansion for z(ρ) is such that the D5-brane and D5-brane remain

separated by a distance L as ρ→∞

z(ρ)→ ±L
2
∓ f

ρ5
+ . . . (2.8)

Every coefficient in the last two formulas has a specific physical interpretation in terms of

a field theory dual quantity. In particular c0 and c1 in eq. (2.7) are related to the fermion

mass and to the expectation value of the intra-layer chiral condensate respectively. Intra-

layer means that the condensation occurs between fermionic species on a single layer. In

eq. (2.8) f is proportional to the expectation value of the inter-layer chiral condensate,

meaning that the condensation occurs between a fermionic species on one layer and a

fermionic species on the other layer. In this paper, we will only consider solutions where

c0 = 0. This is the boundary condition that is needed for the Dirac fermions in the defect

quantum field theory to be massless.

When c1 = 0 and l = 0 for all values of ρ we have a chirally symmetric phase. If c1 6= 0

this implies l(ρ) 6= 0. This breaks the maximal SO(3) and we have a phase where the chiral

symmetry is spontaneously broken with the formation of an intra-layer condensate.
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2.1 Equations of motion

The Born-Infeld action for either the D5-brane or the D5 -brane is given by

S = −N5

∫
d6σ

√
− det (γ + 2πα′F) (2.9)

where σa are the coordinates of the D5-brane worldvolume, γab(σ) is the induced metric

on the D5-branes

γabdσ
adσb =−

(w4 − w4
h)2

w2(w4 + w4
h)
dt2 +

w4 + w4
h

w2
(dx2 + dy2)

+
1 + l′2 +

(
w4 + w4

h

)
z′2

w2
dρ2 +

ρ2

w2
dΩ2

2

(2.10)

and N5 is defined as

N5 =

√
λNN5

2π3
V2+1

where V2+1 is the volume of the 2+1-dimensional space-time, N is the number of D3-branes

and N5 is the number of D5-branes. The field strength 2-form F , needed to introduce a

U(1) charge density on the D5-branes and an external magnetic field, is given by

2π√
λ
F = a′0(ρ) dρ ∧ dt+ b dx ∧ dy. (2.11)

In this equation, b will give a constant external magnetic field in the holographic dual and

a0(ρ) will result in the world volume electric field related to a non-zero U(1) charge density

in the field theory. The magnetic field B and the gauge field A0 are defined as

b =
2π√
λ
B , a0 =

2π√
λ
A0. (2.12)

The asymptotic behavior of the gauge field is

a0(ρ) = µ− q

ρ
+ . . . (2.13)

where µ and q are the chemical potential and the charge density, respectively.

The Born-Infeld action for the particular embeddings we are considering is

S =N5

∫
dρ

ρ2
√

(b2w4 + (w4 + w4
h)2)

w6
√
w4 + w4

h)
×

√
−w4(w4 + w4

h)a′20 + (w4 − w4
h)2(1 + l′2 + (w4 + w4

h)z′2) .

(2.14)

It is more convenient to switch to magnetic units where the the magnetic field b is rescaled

to one by means of the following replacements

ρ→
√
bρ , l→

√
bl , f →b2f , w →

√
bw,

q →bq , L→
√
bL , Fi →b3/2Fi . (2.15)
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The Born-Infeld action in magnetic units becomes

S =N5

∫
dρ

ρ2
√

(w4 + (w4 + w4
h)2)

w6
√
w4 + w4

h)
×

√
−w4(w4 + w4

h)a′20 + (w4 − w4
h)2(1 + l′2 + (w4 + w4

h)z′2) .

(2.16)

The variational problem of extremizing the Born-Infeld action (2.16) involves two cyclic

variables, a0(ρ) and z(ρ). Being cyclic, their canonical momenta are constants,

Q = − δS

δA′0
=

2πN5√
λ
q , Πz =

δS

δz′
= N5f. (2.17)

We can invert these relations in order to write a′0 and z′ as function of the parameters q

and f finding

a′0(ρ) =
qw2(w4 − w4

h)2
√

1 + l′2√
(w4 + w4

h)
(
−f2w12 + (w4 − w4

h)2(q2w8 + (w4 + (w4 + w4
h)2)ρ4)

) (2.18)

and

z′(ρ) =
fw6
√

1 + l′2√
(w4 + w4

h)
(
−f2w12 + (w4 − w4

h)2(q2w8 + (w4 + (w4 + w4
h)2)ρ4)

) . (2.19)

Using (2.18) and (2.19) we can write the Euler-Lagrange equation of motion for l in

term of the parameters q, f and wh. This is a second order ODE for l(ρ), and being quite a

long and complicated equation, we do not show it explicitly. This equation admits a trivial

constant solution, l = 0. The other solutions with the right asymptotic behavior (2.7) have

to be found numerically. However an asymptotic expansion of the solution can be worked

out analytically up to desired order: the first few terms in this expansion, fixing c0 = 0 in

eq. (2.7), are for instance

l(ρ) =
c1

ρ
+
c1(−2 + c2

1 − q2 + 2w4
h)

10 ρ5
+

c1(32 + 15c4
1 + 30f2 + 46q2 + 15q4 + 56w4

h + 44q2w4
h + 72w8

h + c2
1(4− 30q2 − 4w4

h))

360 ρ9

+O
(

1

ρ13

)
. (2.20)

We see that this asymptotic expansion is written in terms of the modulus c1 which, as we

already pointed out, is related to the expectation value of the intra-layer condensate. The

constant solution l = 0 corresponds to a configuration without intra-layer condensate.

– 9 –
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2.2 Classification of solutions

We can distinguish four types of solutions of the equations of motion.

• Unconnected (f = 0) constant (c1 = 0) solutions: they correspond to state of the

double monolayer where both the intra- and inter-layer condensates vanish. We will

call them “symmetric” or “black” solutions. These solutions reach the event horizon,

namely they are Black Hole embedding.

• Connected (f 6= 0) constant (c1 = 0) solutions: z(ρ) has a non trivial profile with a

boundary condition given by eq. (2.8). These solutions correspond to double layers

with a non-zero inter-layer condensate and a zero intra-layer condensate. They will

be called “connected constant” or “blue” solutions.

• Unconnected (f = 0) non-constant (c1 6= 0) solutions: non constant means that the

embedding function l is ρ-dependent. Its asymptotic behavior is given by (2.20).

Instead the z profile is such that the D5-branes are kept apart by a fixed distance

L for every value of ρ. These embeddings correspond to double monolayers with a

non-zero intra-layer condensate and a vanishing inter-layer condensate. We will refer

to these as “unconnected non-constant” or “red” solutions. These solutions can be

in principle either Minkowski or Black Hole embeddings depending on the value of

the charge density.

• Connected (f 6= 0) non-constant (c1 6= 0) solutions: The profiles along both z(ρ)

and l(ρ) are non trivial. These solutions correspond to double monolayers with both

intra-layer and inter-layer condensates. These will be the “connected non-constant”

or “green” solutions.

Note that the connected configurations are allowed only if the profiles of the D5-brane

and the D5-brane join smoothly at a certain ρ = ρt. This is possible only if z′(ρt) = ∞,

thus ρt is the point where the denominator of (2.19) vanishes. We will refer to this point

as the “turning point” of the solution. One can construct such configurations only if the

whole system is charge neutral, i.e. q ≡ qD5 = −qD̄5. Furthermore we must also have

f ≡ fD5 = −fD̄5. We will take into account only configurations where these condition are

satisfied.

2.3 Routhians and brane separation

Consider the on-shell action (2.16) evaluated on solutions of the equations of motion F1 ≡
S(l, z, a0)/N5. This gives the free energy of our system as a function of the chemical

potential µ and the separation L. Indeed if we take a variation of these parameters the

variation of the on-shell action is

δF1 =

∫ ∞
0

dρ
(∂L
∂l′

δl +
∂L
∂a′0

δa0 +
∂L
∂z′

δz
)

= −qδµ+ fδL (2.21)

where we have used (2.17) and δl ∼ 1/ρ ' 0.
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Since a0 and z are two cyclic variables we can write down two Routhians related to

the on-shell action by Legendre transforms. Performing a Legendre transform with respect

to the charge density q we can define the Routhian F2

F2 = F1 + qµ = F1 +

∫
dρ q a′0(ρ) = (2.22)

∫
dρ

(
w4 − w4

h

)√(
q2w8 +

((
w4 + w4

h

)2
+ w4

)
ρ4
) (

1 + l′(ρ)2 +
(
w4 + w4

h

)
z′(ρ)2

)
w6
√
w4 + w4

h

.

where we used

a′0 =
qw2

(
w4 − w4

h

)√
1 + l′2 +

(
w4 + w4

h

)
z′2√(

w4 + w4
h

) (
q2w8 +

(
w8 + w8

h + w4
(
1 + 2w4

h

))
ρ4
) .

This Routhian is a function of q and L and then it provides the free energy in an ensemble

where the charge density and the separation are kept fixed.

The last Routhian is obtained performing a second Legendre transform on F2 with

respect to L, giving as a result

F3 = F2 −
∫
dρ f z′(ρ) = (2.23)

∫
dρ

√(
−f2w12 +

(
w4 − w4

h

)2 (
q2w8 +

((
w4 + w4

h

)2
+ w4

)
ρ4
))

(1 + l′(ρ)2)

w6
√
w4 + w4

h

.

F3 is the free energy as a function of f and q.

In this paper we work in the ensemble where the charge density q and the separation

L are held fixed. Thus we shall use the Routhian F2 to compute the free free energies of

the solutions.

The separation of the D5 and D5 -branes for the connected solutions can be obtained

simply by integrating the expression (2.19) for z′(ρ) evaluated on the solutions of the

equations of motion

L = 2

∫ ∞
ρt

dρ z′(ρ)

= 2f

∫ ∞
ρt

dρ
w6
√

1 + l′2√
(w4 + w4

h)
(
−f2w12 + (w4 − w4

h)2(q2w8 + (w4 + (w4 + w4
h)2)ρ4)

) (2.24)

where ρt is the turning point, i.e. the point where the denominator in the integrand

vanishes.

3 Solutions

In the previous section we introduced all the possible types of solutions, now we discuss

them in more detail showing also the procedure we used to find them.
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3.1 Symmetric (black) solutions

The symmetric configuration is the trivial solution in which both the intra- and inter-layer

condensates vanish. This means that the D5-branes have flat profiles both along z and l

directions. Accordingly the separation between the branes is given by z(ρ) = L and the

embedding functions are vanishing l(ρ) = 0. The free energy F2 of this solution is given

by (2.22) where we set l(ρ) = l′(ρ) = f = 0 (which in turn implies w = ρ)

Fsymm =

∫
dρ

(
ρ4 − w4

h

ρ4

)√
w8
h + 2w4

hρ
4 + ρ4(1 + q2 + ρ4)

ρ4 + w4
h

. (3.1)

If we now turn off the temperature by setting wh = 0, we find Fsymm =
∫
dρ
√

1 + q2 + ρ4

in agreement with [14].

Note that the free energy as defined in (3.1) is divergent since as ρ→∞ because the

integrand goes as ρ2. From now on, throughout the paper, we will consider regularized

free energies which are obtained as the difference of the ρ2-divergent free energy F with

another ρ2-divergent simpler term, namely

∆F = F −
∫ ∞

0
dρ ρ2 (3.2)

in order to obtain a finite result. We will use this same regularization for every type of

solution.

3.2 Connected constant (blue) solutions

Connected constant solutions have only an inter-layer condensate, meaning f 6= 0. Because

of the vanishing intra-layer condensate c1 = 0, as for the symmetric solution, we can

simplify the expressions for z′(ρ) and for the free energy by setting l(ρ) = l′(ρ) = 0.

This gives

z′(ρ) =
2fρ4√

(w4
h + ρ4)

(
−f2ρ8 + (w4

h − ρ4)2(ρ4 + q2ρ4 + (w4
h + ρ4)2)

) (3.3)

and the separation is

L =

∫ ∞
ρt

dρ
2fρ4√

(w4
h + ρ4)

(
−f2ρ8 + (w4

h − ρ4)2(ρ4 + q2ρ4 + (w4
h + ρ4)2)

) . (3.4)

The turning point ρt, where the denominator of the integrand vanishes, is given by

ρt =
1√
2

(
−1− q2 + J +

√
2
√

2f2 + (1 + q2)
(
1 + q2 + 4w4

h − J
))1/4

(3.5)

where J =
√

4f2 + (1 + q2 + 4w4
h)2.

The free energy for this solution is obtained by plugging z′(ρ) as given in (3.3) and

l = l′ = 0 into the Routhian (2.22)

Fblue =

∫ ∞
ρt

w4 − w4
h

w6
√
w4 + w4

h

√
H
(

1 +
f2w12

(w4 − w4
h)2H− f2w12

)
(3.6)

where H = q2w8 + (w8 + w8
h + w4 + 2w4w4

h)ρ4.
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3.3 Unconnected non-constant (red) solutions

Unconnected non-constant solutions have a vanishing inter-layer condensate f = 0 and a

non-zero intra-layer condensate c1 6= 0. The profile along the z direction is flat, z = ±L/2,

while that along l is not trivial and has to be determined by solving numerically the

equation of motion. The procedure to follow is quite involved. Let us explain it briefly.

First let us consider the charge neutral case, q = 0. In this case the solutions are

Minkwoski embeddings and they can be found by means of a shooting technique. On

the one side we have the boundary condition at infinity (2.7) with c0 = 0, in terms of

the modulus c1. On the other side one can work out an expansion around ρ = 0 for the

solution where again a modulus, l(0), appears. We can then “shoot” both from infinity

and from zero varying the moduli and look for the solutions that smoothly intersect in an

intermediate point ρ = ρ∗.

At finite charge density, as we already explained, only Black Hole embeddings are

allowed. In this case it seems not possible to use the same shooting procedure like before,

since we cannot find a power series expansion for the solution for l around the horizon.

However it is still possible to set up a shooting procedure, where the shooting from the

horizon is done by simply imposing Neumann boundary condition.2

The free energy of these solutions is given by the Routhian (2.23) with f = 0 and l(ρ)

solution of equation of motion

Fred =

∫ ∞
ρmin

dρ
(w4 − w4

h

w6

)√((q2w8 + (w4 + w8 + 2w4w4
h + w8

h)ρ4)
)(

1 + l′(ρ)2
)

w4 + w4
h

. (3.7)

The turning point ρmin is the point where the solution pinches off for a Minkowski embed-

ding or a particular point in the event horizon, i.e. such that ρ2
min + l(ρmin)2 = w2

h for a

Black Hole embedding.

3.4 Connected non-constant (green) solutions

The last kind of solutions is formed by the connected non-constant solutions where both

f and c1 are non vanishing, meaning that both the inter- and intra-layer condensates

are present.

In order to find the solutions we have to solve a boundary value problem with two

boundary conditions: one is the usual asymptotic condition at ρ → ∞, given by (2.20);

the second one has to be given at the turning point ρ = ρt. Remember that the brane

and anti-brane worldvolumes have to join smoothly at ρt and that in order to fulfill this

requirement we must have that z′(ρt) =∞. Then the turning point is the point where the

denominator of (2.19) is zero, namely

− f2w12
t +

(
w4
t − w4

h

)2 (
q2w8

t + (w4
t + (w4

t + w4
h)2)ρ4

t

)
= 0 , (3.8)

2Neumann boundary condition means that we have to fix the value of the derivative of l at the horizon,

which is the locus of points (ρh, l(ρh)) in the first quadrant of the (ρ, l)-plane such that ρ2h + l(ρh)2 = w2
h. In

principle we have no hints for the value of l′(ρh) to be imposed at the horizon. Because of the equation of

motion we can only exclude that l′(ρh) is zero (this can hold only for the trivial constant solution). However

it turns out that the numerical integration, carried out with the built-in Mathematica tool for numerical

ODE solving, is insensitive to the value we impose for such a derivative.
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Figure 3. Plot of lt as a function of ρt for f = q = wh = 0.1. A similar behavior holds for every

value of the parameters.

where we defined lt ≡ l(ρt) and wt ≡
√
ρ2
t + l2t . This equation provides a relation between

the turning point ρt and the value of l at the turning point, lt. Plotting lt as a function of

ρt (see figure 3) we find that there is a maximum turning point coordinate, call it ρt,max.

Solving the eq. (3.8) for lt we obtain lt as a function of the turning point value. We can then

evaluate the equation of motion for l at ρ = ρt, plugging the expression for lt from (3.8).

Doing this, the coefficient of l′′ in the equation of motion vanishes and we are left with an

expression which can be solved for l′t = l′(ρt), the derivative of the embedding function at

the turning point. In this way we basically obtain both the lt and l′t as a function of ρt.

This information can be used to implement a shooting procedure to solve numerically the

boundary value problem. When we shoot from infinity the parameter we vary is again c1

while when we shoot from the turning point we vary ρt itself.

Once we have the solution for l we can compute the separation L through (2.24) and

the free energy through the Routhian (2.22) where z′(ρ) is replaced by eq. (2.19)

Fgreen =
(w4 − w4

h)2H
w6

√
1 + l′(ρ)2

(w4 + w4
h)
(
−f2w12 + (w4 − w4

h)2H
) (3.9)

with H = q2w8 + (w8 + w8
h + w4 + 2w4w4

h)ρ4.

4 Free energy comparison

The main goal of the paper is to draw the full phase diagram for the D3/D5-D5-brane

system. This is obtained by determining the dominant configuration, i.e. the one with

least free energy, for each set of values of the variables considered, in our case the brane

separation L, the charge density q and the temperature T ∼ wh. We accomplish our goal by

sectioning the variable space in lines of constant charge density and temperature. Basically

we draw several plots of the free energy as a function of the separation for different fixed

values of q and wh. This allows us to reconstruct the whole phase diagram.
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Figure 4. The separation of the monolayers, L, is plotted on the vertical axis and the parameter

f is plotted on the horizontal axis. The blue line is for the constant connected (blue) solution. The

green line is for the connected ρ-dependent (green) solution. Here the temperature is wh = 0.1.

Figure 5. Neutral charge layers in a magnetic field. The regularized free energy is plotted on

the vertical axis, and the inter-layer separation L is plotted on the horizontal axis. The blue

line corresponds to the connected constant solution, the red line to the unconnected ρ-dependent

solution, the black line to the symmetric solution and the green line to the connected ρ-dependent

solution. The symmetric and green solutions never have the lowest energy. For large L, the red

solution is preferred and for small L the blue solution is more stable.

4.1 Neutral charge double monolayer

We start by considering the neutral charge case, q = 0. For the connected solutions, in

order to draw the free energy as a function of the separation, we have to invert numerically

the relation between f and L. For such solutions the behavior of the brane separation as a

function of the parameter f is depicted in figure 4. It is clear that for connected solutions,

unlike in the zero temperature case, there exists a maximum value for the brane separation

Lmax, which means that for separations L > Lmax only disconnected solutions are allowed.

Figure 5 shows an example of plots of the free energies of all solutions as functions of

L for a temperature wh = 0.1. This shows that increasing L the system faces a first order

transition from a the connected constant solution with an inter-layer condensate only to

the disconnected non-constant solution, with an intra-layer condensate only. Even if we are

now at finite temperature, we find a behavior analogous to the zero temperature one [28].
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(a) wh = 0.2 (b) wh = 0.3

Figure 6. The regularized free energy is plotted on the vertical axis, and the charge density q is

plotted on the horizontal axis. The solid red line refers to the disconnected ρ-dependent solution

and the dotted black line refers to the symmetric solution. For small charges the red phase is

favorite. Then there is a phase transition after which the dominant phase is the chirally symmetric

one. Note that we have different types of transition according to the value of the temperature as

shown in [18], where for wh > 0.277 they are first order and for wh < 0.277 they are second order

phase transitions.

4.2 Charged monolayers

Before discussing the double monolayer system let us briefly review the monolayer case [18].

This means that for the moment we consider only the disconnected solutions. We know that

raising both the temperature and the charge density leads to chiral symmetry restoration.

In particular, for any given temperature (or charge density) there is a maximum value

of the charge density (or temperature) above which the stable solution is the symmetric

one. Let us denote this value of the charge density as qcrit, the critical charge density. As

an example we show two of the plots of the free energies of the disconnected solutions as

functions of q in figure 6.

Note that as the temperature grows the corresponding critical charge density value

gets smaller, till it vanishes for wh ' 0.3435. For larger temperatures the D5-brane con-

figurations with non constant profile are no longer allowed: wh ' 0.3435 is the maximum

temperature for which the intra-layer condensate can form. The single monolayer phase

diagram is shown in figure 7 [18].

4.3 Charge-balanced double monolayer

Now we take into account also the connected configurations, in order to fully study the

phase structure of the double monolayer system at finite temperature and finite density.

Let us fix the value of the temperature and charge density to wh = 0.1 and q = 0.1,

respectively. The behavior of brane separation for the connected solutions as a function of

f is plotted in figure 8. The behavior of ρ-dependent connected solution (green line) shows

the presence of three branches: starting from small f , first L grows rapidly with f , till it

reaches a maximum, Lmax; after that there is the decreasing branch, while finally, for large

enough f , L switches back to the growing behavior. When q → 0 the first two branches
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Figure 7. The temperature is plotted on the vertical axis and the charge density q is plotted on the

horizontal axis. We see that for large enough temperature or charge density the stable disconnected

solution is the symmetric one. The maximum temperature for which one can still have a non-

constant solution is wh ' 0.3435 (at q = 0); the maximum charge is the critical charge at zero

temperature, qcrit(wh = 0) =
√

7. The latter point corresponds to a transition to a symmetric

phase with BKT scaling. These results are in agreement with [18].

Figure 8. The separation of the monolayers, L, is plotted on the vertical axis and the parameter

f is plotted on the horizontal axis. The blue line is for the constant connected (blue) solution. The

green line is for the connected ρ-dependent (green) solution.

flatten on the vertical axis and eventually disappear for q = 0, so to recover the behavior

of figure 4.

Two plots of the free energies are shown in figure 9. These show that the dominant

configuration is the connected constant one with an inter-layer condensate for small brane

separation L. Increasing L the system first switches to the connected ρ-dependent phase,

with both an intra-layer and an inter-layer condensate and then, for larger separations, to

the disconnected ρ-dependent.

Now we analyze what happens if we increase the value of the charge density. It turns

out that also the connected non constant solutions exist only when q < qcrit, just like
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(a) q = 0.25, wh = 0.1 (b) q = 0.05, wh = 0.3

Figure 9. Charged layers in a magnetic field. The regularized free energy is plotted on the vertical

axis, and the inter-layer separation L is plotted on the horizontal axis. The blue line corresponds

to the connected constant solution, the red line to the unconnected ρ-dependent solution, the black

line to the symmetric solution and the green line to the connected ρ-dependent solution. At small

L the dominant configuration is the blue connected constant with an inter-layer condensate. As

the separation starts growing a first order phase transition occurs. Up on this transition length

the green solution will remain the stable one with nonzero intra- and inter-layer condensates until

it reaches a maximum separation where there is another first order phase transition in favor of a

disconnected non constant red phase with only nonzero intra-layer condensate.

the disconnected non constant ones. Thus basically qcrit is the value of the charge above

which only the trivial profile l = 0 is allowed. Let us fix the temperature to wh = 0.1.

The critical charge density for such temperature is qcrit ' 1.163. For fixed small charges

q < qcrit, increasing the separation the system undergoes two phase transitions. The first

one is from the connected constant configuration, which is favored for small separations,

to the connected non-constant configuration. Then for larger separation the disconnected

non constant solution becomes dominant (see figure 9). However this behavior is not valid

for any q < qcrit. For charge densities very close to qcrit indeed there is a small domain

q∗ < q < qcrit where the green solution is never stable and by increasing L the system faces

only one transition, between the connected constant configuration and the disconnected

non-constant one (see figure 10).

Once the charge density gets larger than qcrit the only allowed solutions are the constant

ones. Two examples of plots of the free energy as a function of the separation in such cases

are shown in figure 11. Note that the transition between blue and symmetric solutions

takes up approximately the same separation for any value of the charge density (the slope

of the corresponding transition curve in the phase diagram is nearly zero).

We performed the same computations for a wide range of temperatures wh < 0.3435

and we found no substantial modifications in the shapes of the curves of the energy as

a function of the separation shown above. There are only two differences: as one lowers

the temperature the transition separation value Lmax between the green and red phases

increases and eventually reaches infinity in the limit wh → 0, giving back the zero tem-

perature phase diagram shown in [14]. The other difference is that for large temperatures

the qcrit and q∗ points can be distinguished explicitly, while for small temperatures they
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(a) q = 1.1 (b) q = 1.1 A closer look.

(c) q = 1.15 (d) q = 1.15 A closer look.

Figure 10. Plots of the regularized free energy as a function of the separation for different values

of q. Note that in subfigure (d) the green solution already starts above the red solution and it is

never the stable one. Here the only transition is between blue and red phases.

(a) q = 1.2 (b) q = 1.5

Figure 11. Plots of the regularized free energy as a function of the separation for q > qcrit. The

blue line is the connected constant solution and the black one is the symmetric solution.
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Figure 12. Plots of the regularized free energy as a function of the separation for q = 0.5 and

wh = 0.5. The blue line is the connected constant solution and the black one is the symmetric

solution.

become almost coincident (see figures 13 and 14). In particular, in the zero temperature

limit, they both will take up the qBKT =
√

7 value in correspondence of infinite separations.

When wh > 0.3435, no matter how small the charge is, the non constant solutions

cease to exist and then the behavior is analogous to the one we saw before for large charge

densities, q > qcrit. An example of the free energy comparison as a function of the separation

is shown in figure 12.

4.4 Phase diagram

The final step is to merge all the (q, L) coordinates of the various transition points in some

constant temperature phase diagrams. We show four examples of such phase diagrams for

wh = 0.1, wh = 0.3, wh = 0.32 and wh = 0.5 in figures 13–16.

Let us briefly summarize the structure of the phase diagrams. First let us consider

the case of temperatures wh < 0.3435 ≡ wc, figures 13, 14. For zero charge we have

only two competitors: a connected constant blue phase with an inter-layer condensate

f 6= 0 that is dominant for L < Ltr (Ltr ' 1.355 for wh = 0.1 and Ltr ' 1.38 for

wh = 0.3) and a disconnected non-constant red double monolayer phase where the D5-

branes are independent Minkowski embeddings with an intra-layer condensate for any

L > Ltr separation. In the 0 < q < q∗ region, for small separations the blue solution is

always favorite while for large separations the green connected non-constant phase with

both condensates becomes the stable one. There is a first order phase transition between

the two. In particular the green solution will be dominant for any value of L > Ltr until

L reaches a maximum separation Lmax. Beyond Lmax the stable phase is the disconnected

ρ-dependent red one where the D5-branes have black hole embeddings. In the q∗ < q < qcrit

region the green solution, even if it still exists, is no longer stable and the only transition

is between the blue and the red phases. Finally, for q > qcrit the green and red phases

disappear and we find a competition just between the blue and symmetric configurations.
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Figure 13. Phase diagram for wh = 0.1: L is plotted on the vertical axis and q on the hori-

zontal axis. The vertical black line corresponds to the critical value qcrit of the charge density at

a given temperature that can be found in figure 7. The red line for neutral charge corresponds

to a Minkowski embedding phase and the red region to a black hole embedding phase; both have

nonvanishing intra-layer condensate. The blue region is the connected constant phase with only an

inter-layer condensate. The green region is the connected non-constant phase with both nonvan-

ishing intra- and inter-layer condensates. Finally the gray region is the chirally symmetric phase

where both condensates are zero. Here q∗ ' 1.15 and qcrit ' 1.163.

The transition length between these two takes up approximately the same value for any

value of the charge density larger that qcrit.

Note the different behavior of the transition lines between the green and red solutions

for the wh = 0.1 and wh = 0.3 cases. In the wh = 0.1 phase diagram this line is almost

horizontal, with a negligible positive slope dL/dq > 0 while for the wh = 0.3 diagram it

shows an explicit negative slope dL/dq < 0. The lowest charge we could analyze is q = 0.001

in both cases: for lower values of q the numerical analysis seems unreliable.

Notice that as one raises the temperature, the symmetric solution domain has the

tendency to enlarge and overcome the other non-symmetric solution domains. When the

temperature approaches the critical temperature wh = wc, both q∗ and qcrit go to zero, so

that the green and red regions tend to disappear, only a small region of the phase diagram

is occupied by them as can be seen from figure 15. This matches the expectation that high

temperatures lead to chiral symmetry restoration.

For wh ≥ 0.3435, indeed the phase structure simplifies since the configurations with

non-zero intra-layer condensate are no longer allowed. We are then left with only two

relevant phases: the connected constant one with only the inter-layer condensate and the
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Figure 14. Phase diagram for wh = 0.3. Here q∗ ' 0.07 and qcrit ' 0.2105.

Figure 15. Phase diagram for wh = 0.32. Here q∗ ' 0.0015 and qcrit ' 0.1138.

chirally symmetric one. The transition between these two phases is first order as can be

seen from figure 12, where the lowest energy configuration changes from one solution to

the other with a discontinuous first derivative.
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Figure 16. Phase diagram for wh = 0.5.

Therefore for temperatures at and above the critical temperature, the system switches

from the phase with only the inter-layer condensate to the chirally symmetric one increasing

the layer separation, as shown in the diagram in figure 16.
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A From natural units to cgs units

Throughout the paper, for ease of notation, we used natural units with the length scale

b−1/2 =

√ √
λ

2πB set to one (by means of the rescalings (2.15)), in such a way that all

the physical quantities became adimensional. Now we are interested in re-convert the

characteristic values we found for the physical quantities, like the separation, the magnetic

field and the temperature, in the more intelligible Gaussian cgs units, in order to make

more apparent the connection with their real world material counterparts.

The rescaled magnetic field b is related to the magnetic field in natural units Bnu

through the relation

b =
2π√
λ
Bnu.
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Let us consider first the brane separation L. From (2.15) we know that the values that

appears in the phase diagrams are actually the values of L→ L
√
b. Then we can write

L̄ = Lnu

√
b = Lnu

√
2πBnu

λ1/4
→ Lnu = L̄

λ1/4

√
2πBnu

(A.1)

where L̄ is the numerical value appearing on the vertical axis in the phase diagrams while

Lnu is the separation expressed in natural units. We know that the magnetic field natural

units are proportional to the inverse of a square length

[Bnu] =
1

[length]2
,

while a magnetic field in Gaussian units has

[Bcgs] =
[charge]

[length]2
.

Since
√
~c has the unit of a charge we have that

Bnu =
Bcgs√
~c
. (A.2)

Plugging (A.2) into eq. (A.1) we find

Lcgs = L̄
λ1/4(~c)1/4√

2πBcgs

(A.3)

where Lcgs is the separation in centimeters and Bcgs is the magnetic field expressed in

Gauss. If we evaluate this expression for the typical values in play, like L̄ ' 1 and 1 T

magnetic field, Bcgs = 104, we obtain

L ∼ 3× 10−7λ1/4 cm . (A.4)

For the temperature we can proceed in an analogous way. The temperature is related

to the horizon radius as follows

(kBT )nu =
rh
π

=

√
2wh
π

and using (2.15) we can write it as

(kBT )nu =

√
2w̄h
√

2πBnu

πλ1/4
,

where w̄h is the numerical value as the temperature. Now use again the relation (A.2) for

the magnetic field and we obtain

Tcgs =
2w̄h(~c)3/4

√
Bcgs

kB
√
πλ1/4

(A.5)
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where Tcgs is expressed in Kelvin. Evaluating this expression for 1 Tesla magnetic field and

w̄h = 0.005 yields

T ∼ 103

λ1/4
K . (A.6)

Note that the values we obtained for the layer separation and the temperatures are

given in terms of an undetermined parameter, λ, which is the ’t Hooft coupling, and it is

proportional to the number of D3-branes and to the string coupling gs. Because the model

we used describes a strongly coupled system, λ has to be taken large.

To give an idea of the orders of magnitude that can be found in room temperature

superfluidity configurations, one can take the physical quantities to be for example λ ∼
10÷ 100 in such a way that λ1/4 ∼ 1.78÷ 3.16. Plugging it in (A.4) and (A.6) one finds

L ∼ (5.3÷ 9.5)× 10−7 cm , T ∼ (0.31÷ 0.55)× 103 K.
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