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1 Introduction

The ATLAS and the CMS collaborations have recently reported some excess of events

in the diphoton invariant mass (mγγ) distribution based on 3.2 and 2.6 fb−1 of proton-

proton collision data respectively collected at a center-of-mass energy of 13 TeV. ATLAS

observed the most significant deviation from the background hypothesis at mγγ ≈ 750 GeV,

corresponding to a local (global) significance of 3.6 (2.0)1 [1]. The largest excess in the CMS

data was seen around the 760 GeV mass bin with a local (global) significance of 2.6 (. 1.2)

standard deviations [2]. This excess is also found consistent with the constraints from the

run 1 data [3]. It was also reported by ATLAS that the properties of the events in the

signal region were found to be compatible with those in the invariant mass regions above

and below the excess. As suggested by many authors, the most simple-minded explanation

of this excess is to propose the existence of a resonance (S) of mass ∼ 750 GeV. In order

to generate the correct amount of signal, the resonance must have couplings that produce

σsignal ≡ σ(pp→ S)Br(S → γ γ) about 5 fb [3–5].

In this article, we consider the possibility of this resonance being an sgoldstino,2 the

“superpartner” of the goldstino, the goldstone fermion of spontaneous global supersym-

metry (SUSY) breaking. This possibility has been discussed by [7–11] using an effective

description of how the SUSY breaking is mediated to the MSSM sector. In this article, we

scrutinise the viability of this proposal when realistic models for the mediation of SUSY

breaking are considered. But before we start discussing that, we would like to make a few

general comments about SUSY breaking in order to put things in perspective.

Unlike other symmetries, there are some interesting limitations on the possibility of

spontaneous global SUSY breaking. For example, neither a pure super Yang-Mills (SYM)

nor a SYM theory with massive matter in real representations of the gauge group breaks

SUSY spontaneously.3 In particular, global N = 2 SYM theories (that have matter in real

representations) cannot have SUSY spontaneously broken. This is one of the reasons why

one needs global N = 1 SUSY with complex representation for phenomenology (i.e., MSSM)

as there is a hope that SUSY can be spontaneously broken as required by experiments.

However, even in MSSM, it turns out to be impossible to break SUSY spontaneously.

In fact, with the minimal field content of MSSM both the SUSY and the EW symmetry

remain unbroken.4 Hence, adding more fields to the MSSM is unavoidable. However, even

after adding many heavy fields, the gaugino masses cannot arise in a renormalisable SUSY

theory at tree-level. This is because SUSY does not contain any (gaugino)-(gaugino)-

(scalar) coupling that could give rise to a gaugino mass term when the scalar gets a vac-

uum expectation value (VEV). Moreover, the tree level supertrace rules do not allow a

phenomenologically acceptable spectrum.

Hence, one possibility for breaking SUSY spontaneously in the MSSM is to have tree

level SUSY breaking in a so-called “hidden sector” and radiatively mediate the information

1This was obtained using a narrow width of the signal component. The statistical significance increases

slightly once the possibility of larger width is taken into account. See [1] for more details.
2To our knowledge, the name “sgoldstino” was first used in [6].
3This follows from the fact that Witten Index of these theories is non-zero [12]. See also [13, 14].
4A Fayet-Iliopoulos D-term breaking also turns out to be phenomenologically unacceptable [15].
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of SUSY breaking to the MSSM sector.5 This also helps in finding a solution of the SUSY

flavour problem. As the pattern of SUSY breaking interactions in the visible MSSM sector

is determined by the interactions of the messenger particles with the MSSM, a natural way

to avoid additional flavour violation in the MSSM is to have flavour symmetries in the

messenger interactions. The models of gauge mediation, where the information of SUSY

breaking is communicated to the MSSM sector by gauge interactions, achieve this goal in

a natural way.6 In the gauge mediation scenarios, one assumes the existence of “messenger

fields” that are charged both under the SM gauge group as well as the hidden sector

quantum numbers. The mass scale of these messengers is arbitrary and, in principle, can

be as low as ∼ 10 TeV. These models are often called “low scale SUSY breaking” scenarios

and, as we will see later, are the only ones (among the different SUSY breaking scenarios)

relevant for the diphoton excess.

In the following section, we review the general framework that leads to the sgoldstino

explanation of the diphoton excess and present the necessary formulae to study the phe-

nomenology. In section 3, we will discuss the ordinary gauge mediation (OGM) scenario

and point out the various theoretical issues it confronts in connection to the diphoton ex-

cess. The generalisation of the OGM framework, called the extraordinary gauge mediation

(EOGM), will be discussed in section 4. In section 5, we will investigate whether there

is some way out of the difficulties raised in the previous sections. We will conclude in

section 6.

2 Generalities

2.1 Theoretical framework

In order to parameterise the effect of SUSY breaking in the visible sector, it is usually

assumed that SUSY is broken in the hidden sector by the VEV of the F component of a

chiral superfield X. In particular, the gaugino masses are generated by the following terms,

L ⊂ −1

2

c1

M1

∫
d2θXW 1αW 1

α −
1

2

c2

M2

∫
d2θXW 2αAW 2A

α

− 1

2

c3

M3

∫
d2θXW 3αAW 3A

α + h.c. (2.1)

where the superscripts {1,2,3} refer to the U(1), SU(2) and SU(3) gauge groups respectively

(the adjoint indices for both the gauge groups SU(2) and SU(3) are denoted by A), and α

is the spinor index. The scale Mi denotes the mass scale of the messeger fields which have

been integrated out to get the above Lagrangian terms.7 The chiral superfield X and Wα

5Note that, in four space-time dimensions, if supersymmetry is not broken spontaneously at the tree

level, then it can not be broken by radiative Coleman-Weinberg mechanism [16].
6This is however not true in general, as the messenger fields can have renormalisable superpotential

couplings to the MSSM [17–22].
7In models of gravity mediation, the scale Mi is of the order of the planck scale. It is then clear that

gravity mediation models are not relevant for the diphoton excess.
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have the following expansion in terms of the ordinary fields,

X = S +
√

2θξ(y) + θθFx(y) (2.2)

=
1√
2

(φ(y) + ia(y)) +
√

2θξ(y) + θθFx(y) (2.3)

WA
α = −iλAα (y) +DA(y)θα − (σµνθ)αF

A
µν(y)− θθσµ

αβ̇
D(y)
µ λ†A β̇(y) , (2.4)

where, yµ = xµ − iθσµθ†.
Once the F term of X gets a VEV, say 〈Fx〉, the above Lagrangian terms generate the

following Majorana masses for the gauginos,

mi = ci
〈Fx〉
Mi

. (2.5)

The Lagrangian of eq. (2.1) also generates couplings of the scalar components of X to

the gauge bosons,

Lgg =
1

2
√

2

c3

M3

(
φGaµνG

µνa − aGµνG̃µν
)

(2.6)

LWW =
1

2
√

2

2c2

M2

(
φW+

µνW
−µν − aW+

µνW̃
−µν
)

(2.7)

Lγγ =
1

2
√

2

(
c1

M1
c2
W +

c2

M2
s2
W

) (
φFµνF

µν − aFµνF̃µν
)

(2.8)

LZZ =
1

2
√

2

(
c1

M1
s2
W +

c2

M2
c2
W

) (
φZµνZ

µν − aZµνZ̃µν
)

(2.9)

LZγ =
1

2
√

2
2sW cW

(
c2

M2
− c1

M1

) (
φZµνF

µν − aZµνF̃µν
)
. (2.10)

The scalars φ and a can decay to the gauge bosons through these couplings. The

corresponding partial decay rates are given by (see appendix A for details)8

Γγγ ≡ Γ(φ→ γγ) =

[
1

2mφ

] [
1

8π

] [
1

8

(
c1

M1
c2
W +

c2

M2
s2
W

)2
] [

8m4
φ

] [1

2

]
(2.11)

Γgg ≡ Γ(φ→ gg) =

[
1

2mφ

] [
1

8π

] [
1

8

(
c3

M3

)2
] [

64m4
φ

] [1

2

]
(2.12)

Γzγ ≡ Γ(φ→ Zγ) =

[
1

2mφ

] [
1

8π

(
1− m2

Z

m2
φ

)] [
1

8

(
c2

M2
− c1

M1

)2

4s2
W c

2
W

]
(2.13)

×

2m4
φ

(
1− m2

Z

m2
φ

)2


Γzz ≡ Γ(φ→ ZZ) =

[
1

2mφ

] 1

8π

(
1− 4

m2
Z

m2
φ

)1/2
 [1

8

(
c1

M1
s2
W +

c2

M2
c2
W

)2
]

×
[

8m4
φ

(
1− 4

m2
Z

m2
φ

+ 6
m4
Z

m4
φ

)][
1

2

]
(2.14)

8Signatures of sgoldstino at the e+e− and hadron colliders were first studied in [23, 24] where the

formulae for the decay rates can also be found.
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Γww ≡ Γ(φ→WW ) =

[
1

2mφ

] 1

8π

(
1− 4

m2
W

m2
φ

)1/2
 [1

8

(
2c2

M2

)2
]

×
[

8m4
φ

(
1− 4

m2
W

m2
φ

+ 6
m4
W

m4
φ

)]
(2.15)

Here sW and cW denote the sine and cosine of the Weinberg angle respectively. The

partial decay rates for the scalar a can be obtained from the above expressions by replacing

mφ by ma. There is slight difference between the decay rates of φ → ZZ(W+W−) and

a→ ZZ(W+W−); however, that is numerically insignificant (see appendix A).

2.2 Explaining the excess

The total cross section for the diphoton production via the resonance S is given by,9

σLHC energy = σ(p p→ S)LHC energy Br(S → γ γ)

=
∑
i

AiiLHC energy Γ(S → pi pi)
Γ(S → γ γ)

ΓS
, (2.16)

where {pi pi} refers to the initial state partons i.e., {g g}, {ū u}, {d̄ d} and so on. The

total width of S is denoted by ΓS . The numerical values of the quantities AiiLHC energy are

calculated in appendix B and are given by,

Agg13 ≡ A|gg13 TeV LHC =
5.44 pb

GeV
Agg8 ≡ A|gg8 TeV LHC =

1.15 pb

GeV

Aūu13 ≡ A|ūu13 TeV LHC =
2.94 pb

GeV
Aūu8 ≡ A|ūu8 TeV LHC =

1.2 pb

GeV

Ad̄d13 ≡ A|d̄d13 TeV LHC =
1.73 pb

GeV
Ad̄d8 ≡ A|d̄d8 TeV LHC =

0.66 pb

GeV
(2.17)

In order to explain the signal, σ13 TeV must be approximately in the range 3 − 8 fb,

assuming that the resonance has a small width . few GeV [3]. A larger width of ∼ 40 GeV

requires σ13 TeV to be slightly higher: σ13 TeV ≈ 5−14 fb [3]. As the sgoldstino typically has

a narrow width, in our estimates we will use the range 3−8 fb for the required cross section.

We will first consider the production by gluon fusion only, as the production by uū

and dd̄ initial states is slightly disfavoured [3–5]. In section 5.3, we will comment on the

possibility of quark initiated production.

3 Ordinary gauge mediation

In the OGM framework, the hidden sector is parameterised by a single chiral superfield X.

Both the scalar and auxiliary components of X are assumed to get VEVs that are denoted

by 〈S〉 and 〈Fx〉 respectively. In addition to this, OGM also includes N5 vector like pairs

9Here we use the approximation that ΓS/mS is small. This is a very good approximation even for the

case when Γ = 45 GeV, which gives ΓS/mS = 0.06.
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of messenger fields, (Φi, Φ̃i), transforming under 5 + 5̄ of SU(5).10 The corresponding

superpotential reads,

WOGM = λijXΦ̃iΦj , (3.1)

where the indices {i, j} run from 1 to N5. Note that the matrix λij can always be brought

to a diagonal form with real entries by independent unitary rotations on Φ and Φ̃ (the

Kähler potential remain unchanged). Hence, in the rest of this section, we will assume

that λij is diagonal with λii ≡ λi.
The fermions of each {Φi, Φ̃i} pair has a Dirac mass mi

F = λi〈S〉. The mass eigenstates

of the complex scalars, on the other hand, have squared masses mi2
± = λ2

i 〈S〉2 ± λi〈Fx〉.
The gaugino masses are generated at the one loop level and are given by [26],

ma =
αa
4π

N5∑
i=1

dai
λi〈Fx〉
mi
F

g(xi) (a = 1, 2, 3) (3.2)

where, xi =
λi〈Fx〉
(mi

F )2
and the function g(x) is given by [26],

g(x) =
1

x2
[(1 + x)Log(1 + x) + (1− x)Log(1− x)] . (3.3)

The symbol di denotes twice the Dynkin index for a particular representation. For example,

in the case of 5 + 5̄ of SU(5), d = 1. In eq. (3.2), we have used the GUT normalisation of

the hypercharge gauge coupling.

Note that the SUSY breaking F -term VEV 〈Fx〉 must satisfy 〈Fx〉 ≤ λi〈S〉2 , ∀i in

order to avoid the messenger scalar masses from becoming tachyonic. For simplicity, we

assume all the λi couplings to be equal and set them to a common value λ. We define the

ratio λ〈Fx〉/m2
F to be κ. With these definitions, the formula for the gaugino mass takes

the form (for messengers in 5 + 5̄ of SU(5)),

ma =
αa
4π

κmF N5 g(κ) (a = 1, 2, 3) . (3.4)

The ca couplings (see eq. (2.5)) which control the signal strength are given by,

ca
Ma

=
ma

〈Fx〉
=
αa
4π

λ

mF
N5 g(κ) (a = 1, 2, 3) . (3.5)

Similarly, the scalar masses can be written as [27, 28],

m̃2
a = 2N5 κ

2m2
F

[
Ca3

(α3

4π

)2
+ Ca2

(α2

4π

)2
+ Ca1

(α1

4π

)2
]
f(κ) (3.6)

where Ca are the quadratic Casimirs and the function f(x) is given by [26],

f(x) =
1 + x

x2

[
Log(1 + x)− 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

)]
+ (x→ −x) . (3.7)

10Complete representations of a GUT group are normally used in order to keep the unification of the gauge

couplings intact. However, in general, complete representations are not necessary. The use of incomplete

representations often also have interesting phenomenology, see for example, [25] and the references therein.
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In order to calculate the gaugino masses at the ∼ TeV scale, we use the values of αa
at 1 TeV, which we compute using the one loop SM running equations,

1

αa(µ)
' 1

αa(mZ)
+
ba
π

Ln

(
µ

mZ

)
{

1

α1(mZ)
,

1

α2(mZ)
,

1

α3(mZ)

}
= {59, 30, 8.5} (3.8)

{bSM
1 , bSM

2 , bSM
3 } =

{
− 41

20
,

19

12
,

7

2

}
(3.9)

We now examine the requirements on mF , 〈Fx〉 and N5 in order to generate the correct

cross section for the excess. In order to have a feeling for the messenger mass scale required

for the excess, we first consider a single pair of SU(5) messengers {5 + 5} i.e., N5 = 1 and

also set λ = 1. Following the discussion of the previous section, the explanation of the

diphoton excess requires,11

Agg13

ΓggΓγγ
Γgg + Γγγ + Γww + Γzz + Γzγ

& 3 fb . (3.10)

This gives,

mF . 175 GeV . (3.11)

The messenger scale can be raised if the number of messenger fields is increased. In

figure 1 we show the allowed region in the mF –N5 plane for λ = 1 and κ = 0.8. In the left

panel, only the contribution of φ to the signal is considered, while in the upper right panel

contributions from both φ and a are taken into account. As discussed before, κ should

satisfy κ ≤ 1 to avoid tachyonic states in the messenger sector. For κ very close to unity,

one of the complex scalars in every pair of messenger fields becomes too light (its squared

mass is m2
F (1−κ)). Also, the function f(κ) decreases rapidly for κ & 0.8 [26] reducing the

MSSM squark masses. Hence, we have chosen a value κ = 0.8 in figure 1.

The light green shaded region reproduces the correct amount of signal to explain the

excess. In the light red shaded region, the gaugino masses are what is required by the

exclusion limits of the LHC. In particular, the gluino mass is set to more than 1.5 TeV

and a conservative lower bound of 200 GeV is considered for the bino and wino masses (we

also show the region satisfying a stricter lower bound of 650 GeV on the bino and wino

masses [29]). Similarly, in the light blue region the squarks are heavier than a TeV. It can

be seen that a very large number of messengers & 60 is required in order to both successfully

explain the signal as well as produce sufficiently large gaugino and squark masses.

However, for such a large number of messenger fields, the gauge couplings lose asymp-

totic freedom. The one-loop running of the gauge couplings above the messenger fermion

mass mF is shown in figure 2 for two sets of values of {mF , N5}, shown as black dots in

11Here we have neglected any decay mode other than the gauge boson final states. However, existence of

other decay modes will increase the total width of the resonance, hence adding an extra contribution to the

denominator of eq. (3.10). This means that the required signal cross section will be even higher, as pointed

out also in the end of section 2.2. Thus our estimate is on the conservative side.

– 7 –
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Figure 1. Allowed region in the OGM parameter space that successfully explains the signal and

satisfy LHC bounds on squark and gaugino masses. While in the left panel the contribution from

only φ is considered, the right panel takes into account both φ and a contributions.

figure 1. The point {mF , N5} = {14 TeV, 65} is chosen such that all the requirements

namely, correct amount of the signal cross section and heavy enough gaugino and squark

masses are satisfied. It can be seen from the left panel of figure 2 that the SU(3) gauge

coupling in this case hits a one-loop Landau pole below ∼ 50 TeV. The right panel of

figure 2 shows the renormalisation group (RG) running for {mF , N5} = {7 TeV, 35} i.e.,

when the constraint from the squark masses is relaxed. This is relevant for example, in

models where the squark masses are generated at the tree level [30, 31]. However, even in

this case, the required number of messenger pairs is & 35 and the one-loop Landau pole is

encountered below ∼ 80 TeV.

Before concluding this section, we would like to make two final comments:

i) Although we have presented our results for messengers transforming under {5 + 5}
of SU(5), our general conclusions hold for other representations also and even in the

case when the possibility of doublet-triplet splitting is considered (this will be more

clear in section 5.3).

ii) The formula in eq. (3.5) is strictly valid only if the SUSY breaking VEV is small

namely, κ� 1. For κ ∼ 1, one has to compute the separate loop contributions from

the messenger scalar with masses m2
± = m2

F (1 ± κ). This gives a correction factor

∼
(1−2/3κ2

1−κ2
)2

in the decay rates for the scalar φ ( here we have assumed λ = 1 for

simplicity). This factor is only ≈ 2.5 for κ = 0.8 which we use for our analysis12 and

is absent for a. Hence, this does not affect our numerical analysis.

12The paper [32] which appeared after the first version of our paper considered the very fine tuned

possibility of κ being extremely close to unity which may somewhat mitigate the problem, however, at the

cost of very large trilinear coupling between the sgoldstino and some of the light messenger scalars. We do

not consider this extremely fine-tuned possibility in this paper.

– 8 –
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Figure 2. RG running of the SM gauge couplings above mF for the two representative sets of

values of {mF , N5} shown as black dots in figure 1, see text for more details. The values of the

couplings at the scale mF is obtained using the SM evolution from mZ to 2 TeV and the MSSM

evoulution from 2 TeV to mF .

Triplet

Doublet

50 100 150 200 250

2

4

6

8

10

Λ (TeV)

λ

N5=5, λ(10 TeV)=1

Triplet

Doublet

10 12 14 16 18 20 22

2

4

6

8

10

Λ(TeV)

λ

N5=5, λ(10 TeV)=2

Figure 3. RG evolution of λ for N5 = 5 and for two initial values of λ: λ(10 TeV) = 1 (left) and

λ(10 TeV) = 2 (right).

3.1 Possibility of larger λ

It can be seen from eq. (3.5) that, for a given gaugino mass, the ci coefficients (hence,

diphoton signal cross section) can be increased by increasing λ. However, one should first

check the RG running of λ in order to see the maximum value of λ that is safe.

As the fundamental representation of SU(5) can be decomposed into representations

of SU(3)⊗ SU(2)⊗U(1) in the following way,

5→ (3, 1)−1/3 ⊕ (1, 2)1/2 (3.12)

– 9 –
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the superpotential can be rewritten as,

W = λD
c

i XΦDc

i Φ̃Dc

i + λLi XΦL
i Φ̃L

i (3.13)

Note that, the notation Dc and L have been used just for notational convenience and they

do not represent the MSSM fields. The beta functions of these couplings are given by

βλDci
= λD

c

i

(
γ(ΦDc

i ) + γ(Φ̃Dc

i ) + γ(X)
)
, (3.14)

βλLi
= λLi

(
γ(ΦL

i ) + γ(Φ̃L
i ) + γ(X)

)
, (3.15)

where

γ(ΦDc

i ) = γ(Φ̃Dc

i ) =
1

4π

(
− 2α1

15
+ αd i −

8α3

3

)
(3.16)

γ(ΦL
i ) = γ(Φ̃L

i ) =
1

4π

(
− 3α1

10
+ αl i −

3α2

2

)
(3.17)

γ(X) =
∑
i

1

4π
(3αd i + 2αl i) (3.18)

We have used the notation, αd i ≡ (λD
c

i )2

4π and αl i ≡ (λLi )2

4π .

Hence, the RG equations for the λ couplings are,

d λD
c

i

dt
=

1

16π2
λD

c

i

[
(3N + 2)

(
λD

c

i

)2 − 16

3
g2

3 −
4

15
g2

1 + 2N(λLi )2

]
, (3.19)

d λLi
dt

=
1

16π2
λLi

[
(2N + 2)

(
λLi
)2 − 3g2

2 −
3

5
g2

1 + 3N(λD
c

i )2

]
, (3.20)

In figure 3 we show the running of these λ couplings for five pairs of {5+ 5̄} messengers

and for two initial values of λ at the scale 10 TeV, λ(10 TeV) = 1 and 2. It can be seen

from the right panel of figure 3 that even for λ(10 TeV) = 2, it grows very fast and hits a

one-loop Landau-pole below ∼ 25 TeV. Needless to say, the situation gets worse if a larger

number of messenger pairs is considered. Hence, we conclude from this analysis that values

of λ much larger than unity at the messenger scale is not a possibility.

3.2 Estimate of the mass of S

It was shown in [33] that in renormalizable Wess-Zumino models with canonical Kähler

potential, the existence of a massless fermion implies that the complex scalar in the same

chiral multiplet remains massless at the tree level even if SUSY is spontaneously broken.

As the fermion component of X is the goldstino in our case (which is exactly massless

even at loop level), the scalar component of X, the sgoldstino will be massless at the tree

level. However, in general, the sgoldstino is expected to acquire non-zero mass when loop

corrections are included.

In our scenario, the sgoldstino mass gets contribution from the loops of messenger fields

(apart from possible contributions from the hidden sector). The messenger contribution is

computed in appendix C. The final result is given by (for N5 pairs of 5 + 5̄ of SU(5)),

Π(p2 = 0) = −
(
λ

g2
3

)2 (
4π

√
5

N5
F (x)

)2

m2
g̃ (3.21)
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Hence, the potential for the sgoldstino gets a one-loop negative quadratic contribution

from the messenger fields and this contribution is considerably larger in magnitude than

the squared gluino mass.13 This means that a large contribution from the hidden sector is

required to stabilise the sgoldstino potential and somehow generate a small mass ∼ 750 GeV

for the sgoldstino.

At this point, we would like to remind the readers that, in our discussions till now,

we have completely ignored specifying the details of the hidden sector and how SUSY is

broken there. We just assumed that the chiral superfield X gets a SUSY breaking F -term

VEV from the dynamics of the hidden sector without specifying the hidden sector at all.

However, in order to understand whether a light sgoldstino can be obtained without too

much tuning, we are now forced to consider the hidden sector as part of our model and

think about the problem in its entirety. We postpone any further investigation of this issue

to section 5.

4 Extra ordinary gauge mediation

We have seen in the previous section that the OGM framework needs a very large number

of messengers in order to explain the diphoton signal and avoid the strong constraints on

the gluino and squark masses from LHC. We have also seen that such a large number of

messengers renders the theory non-perturbative at scales as low as ∼ 50 TeV, much below

the GUT scale.

In this section we will consider a generalisation of the OGM framework namely, the

Extra Ordinary Gauge Mediation (EOGM) where the OGM Lagrangian (eq. (3.1)) is sup-

plemented with vector-like mass terms for the chiral superfiels Φ̃i and Φj [35]. Hence, we

now have the EOGM superpotential

WEOGM = (λijX +mij) Φ̃iΦj , (4.1)

where, λij and mij are arbitrary complex matrices. As in the OGM scenario, the auxiliary

field of X is assumed to get a VEV to break SUSY spontaneously. The fermion components

of the messenger fields have the Dirac mass matrix,

mF = λij〈S〉+mij . (4.2)

Without loss of generality, one can always go to the basis of Φ̃ and Φ (by independent

unitary rotations on them that do not affect their Kähler potential) where mF is diagonal

with real eigenvalues (mF )i. Hence, from now on we will assume that the matrix mF is

diagonal and the matrices λij and mij are defined in the basis where mF is diagonal. The

scalar mass-squared matrix in this basis can now be written as,

m̃2 =

(
mF

2 −λ〈Fx〉
−λ〈Fx〉 mF

2

)
. (4.3)

13Note that, models with non-polynomial superpotential can give rise to tree level sgoldstino mass. We

compute the sgoldstino mass in one such model [34] in appendix C.3, however, again it turns out to be in

general much larger than the gluino mass.
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We will assume the matrix λ to be real and symmetric in order to impose invariance under

CP and messenger parity (i.e., Φi → Φ̃i in the basis where mF is diagonal) in the messenger

sector [36, 37].

The matrix m̃2 can be block diagonalised by a suitable change of basis of the scalar

fields, the block diagonalised matrix being,

M2 =

(
m2

+ 0

0 m2
−

)
, (4.4)

where m2
± = m2

F ± λ〈Fx〉. Now assuming that the matrices m2
± are diagonalised by the

unitary matrices U±, the gaugino masses can be written as [38],

ma =
αa
4π

∑
±

N∑
i,j=1

(±)(U †±)ij(U±)jimj

m2
±iLog(m2

±i/m
2
j )

m2
±i −m2

j

. (4.5)

Let us now consider only one pair of messengers to simplify the discussion. In this

case the expressions of the gaugino masses and couplings ca take the same form as the

OGM case,

ma =
αa
4π

κmF g(κ) (4.6)

ca
Ma

=
αa
4π

λ

mF
g(κ) (4.7)

the only difference being in the definition of mF which now has the form,

mF = λ〈S〉+m. (4.8)

Hence, for fixed values of the messenger fermion masses, the situation is exactly the

same as OGM. In the presence of many pair of messengers, if [mF , λ] = 0 then the matrix

λ can be diagonalised simultaneously with mF and hence, the situation is again exactly

the same as OGM with many messenger fields. In the case when [mF , λ] 6= 0, in general,

one has to analyse the situation numerically. Analytic results are known even in this case

for λ〈Fx〉 � m2
F [35, 39]:

• The R charge for the field X, R(X) 6= 0: in this case the expression of the gaugino

mass can be written as,

ma =
αa
4π

neff
〈Fx〉
〈S〉 (4.9)

where,

neff =
1

R(X)

∑
i

(
2−R(Φi)−R(Φ̃i)

)
. (4.10)

As neff is less than the total number of messengers, the gaugino mass in this case is

always less than that in the OGM case.
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• R(X) = 0, even in this case the expression of the gaugino mass simplifies to,

ma =
αa
4π
〈Fx〉

∑
i

λii
mi
F

, (4.11)

If min(mi
F ) = m, then

ma ≤
αa
4π

〈Fx〉
m

Trλ . (4.12)

Hence, the situation is again the same as the OGM case.

We have checked numerically that the situation does not improve for the case when

λ〈Fx〉∼m2
F .

5 Way out?

We have seen in the previous sections that an sgoldstino explanation of the diphoton excess

faces two major issues: i) the gaugino masses, and in particular the gluino mass, turn out to

be rather low unless a very large number of messenger fields is considered; ii) the messenger

particles yield a large negative one loop contribution to the sgoldstino potential. In this

section, our goal is to look for potential solutions of the above problems.

5.1 D-term contribution to the gaugino mass

We have only considered F -term contribution to the gaugino mass in the previous sections.

We will now assume that the messenger fields are also charged under some new U(1) gauge

group. The Φ fields have charge +1 and the Φ̃ fields carry a charge −1 under this new

U(1). The relevant part of the Lagrangian is given by,

L ⊂
∫
d4θ

(
Φ†ie

gV Φi + Φ̃†ie
−gV Φ̃i

)
+

∫
d2θ (λijX +mij) Φ̃iΦj + h.c. . (5.1)

The F -term of the chiral superfield X and the D-term of the vector superfield V are

assumed to have VEVs 〈Fx〉 and 〈D〉 respectively.14 However, since the above Lagrangian

possesses an U(1) R-symmetry, the charges being R(Φ) = 1, R(Φ̃) = 1, R(X) = 0 and

R(V ) = 0, it follows that the F -term and the D-term have the R-charges R(F ) = 2 and

R(D) = 0. Hence, 〈Fx〉 6= 0 breaks R-symmetry spontaneously, while 〈D〉 6= 0 does not. It

is then clear that the gaugino masses must be associated with non-zero 〈Fx〉.
As we discussed previously, the leading F -term contribution to the gaugino mass comes

from the term

−1

2

cF
Λ
XWAW

A . (5.2)

As the gaugino mass is always associated with 〈Fx〉, the D-term contribution must always

be suppressed by higher powers of Λ and hence, subdominant compared to the leading

F -term contribution. That there is no D-term contribution at the leading order in the F -

term VEV can also be understood diagrammatically. It can be seen from figure 4 that, in

order to join the scalar lines, one needs a term φ1φ2 in the Lagrangian (refer to appendix C

for the notation) which does not arise from the D-term.

14Note that the existence of non-zero 〈D〉 breaks the messenger parity spontaneously.
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ξ1

λ λ

φ1 φ2

ξ2

Figure 4. Diagram showing that a D-term does not contribute to the the Majorana gaugino mass

at the leading order in the F -term VEV.

In models with explicitly broken R-symmetry, the lowest dimensional operators that

can give rise to the gaugino mass should be,

−1

2

cD
Λ3
D

W̃W̃WAW
A (5.3)

which generates a contribution,

mλ = cD
〈D

W̃
〉2

Λ3
D

, (5.4)

which is subleading compared to (5.2). The chiral superfield W̃ belongs to the hidden

sector and corresponds to either an abelian or a non-abelian gauge group. Note that, as

mentioned before, the term in (5.3) breaks R-symmetry explicitly. We thus conclude that

D-term contribution can not enhance the gaugino mass considerably.

We would like to comment in passing on the problem of vanishing leading order (in

SUSY breaking F term VEV) gaugino masses in models of direct gauge mediation [40, 41]

and semi-direct gauge mediation [42], regardless of how the R-symmetry is broken. The

authors of [33] proved this in generalised renormalizable O’Raifeartaigh models assuming

a locally stable pseudomoduli space. This problem can be avoided with non-polynomial

superpotential which naturally appears in many models of dynamical/non-perturbative

SUSY breaking (DSB) [43–45]. Hence, the gaugino mass to leading order in 〈Fx〉 that

were considered in the previous sections should indeed be thought in the framework of

DSB models.

5.2 Metastable SUSY breaking

Before going to the discussion of metastable SUSY breaking, it is worth reviewing briefly

the relation between R-symmetry and spontaneous SUSY breaking.

Consider a generic model of gauge mediated supersymmetry breaking in which a Hid-

den sector (HS) consisting of the superfields (Ya, X) breaks supersymmetry and then mes-

senger fields (Φi, Φ̃i) communicate the supersymmetry breaking to the visible MSSM sector

via loop effects. The hidden sector fields are neutral under the Standard Model gauge group

but could have its own gauge dynamics while the messenger fields (Φi, Φ̃i) transform in

a vector like representation of SM gauge group and could also be charged under the HS

gauge group.

– 14 –



J
H
E
P
0
6
(
2
0
1
6
)
1
2
9

Let us write the full superpotential of the theory as follows

W = WHS({Ya}, X) +WM(X,Φi, Φ̃i) +WMSSM,

with WM = λijXΦiΦ̃j +mijΦiΦ̃j .
(5.5)

Here WMSSM is the MSSM superpotential and WHS is hidden sector superpotential which

spontaneously breaks SUSY.15

What can one say about the R-symmetry in WHS? Note that, for generic superpo-

tential without R-symmetry, Nelson and Seiberg showed that a supersymmetric vacuum

always exists [46]. In other words, R-symmetry is a necessary (but not sufficient) condition

for spontaneous breaking of supersymmetry. However, unbroken R-symmetry forbids (Ma-

jorana) masses for the gauginos. Thus, it must be broken spontaneously which, in turn,

would lead to a massless R-axion that may be dangerous for phenomenology.16

Another possibility is to break R-symmetry explicitly in hidden sector (WHS). Now it

is possible to write down models with no R-symmetry which break SUSY spontaneously but

these models have a non-generic superpotential in the sense that it doesn’t allow all renor-

malisable terms allowed by symmetries. As superpotential couplings are protected from

renormalisation and hence are not generated at loop levels, a non generic superpotential is

technically natural. However, it is tuned and not satisfactory.

One scenario which avoids these problems is metastable supersymmetry breaking [48].

It is based on the idea that though the true vacuum is supersymmetric, our universe lies

in a metastable vacuum. In this picture, there is no need to keep R-symmetry but one

does need to worry about decay rates from the metastable vacuum to the true vacuum and

arrange for a long lived universe.

As mentioned in the previous section, the problem of vanishing leading order (in

SUSY breaking F -term) gaugino masses can be avoided in models of DSB. Hence, DSB

in a metastable vacuum is an attractive phenomenological possibility. In fact, some of

these models can potentially solve the problem mentioned in section 3.2 and give rise to

a light sgoldstino [49–51]. However, detailed exploration of these models is necessary to

see whether they can indeed serve as natural models for a light sgoldstino and avoid the

problems mentioned in section 3.

5.3 Quark anti-quark initiated production of the sgoldstino

In this section, we consider the possibility that the production cross section of sgoldstino

has a significant contribution from quark anti-quark initial state. The coupling of the

sgoldstino to the quark anti-quark pair can arise from the same effective Lagrangian that

generates the trilinear A-terms namely,

Ltrilinear ⊂
Au
〈Fx〉

∫
d2θXHuQU

c +
Ad
〈Fx〉

∫
d2θXHdQD

c + h.c. (5.6)

15Note that the R-parity conserving MSSM has three parameter worth of R-symmetries. However, R-

symmetry has gauge anomalies in the MSSM.
16R-symmetry may be broken by Gravity effects, thus giving mass to the R-axion [47].
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Figure 5. Allowed region in the case of quark anti-quark initiated production of the sgoldstino.

See text for more details.

which generates following couplings for the sgoldstino,

v sinβAu√
2〈Fx〉

S ū PL u ,
v cosβAd√

2〈Fx〉
S d̄ PL d . (5.7)

The decay rates Γ(φ → ū u) and Γ(φ → d̄ d) can now be calculated from the above

Lagrangian and read,

Γ(φ→ ū u) =

[
1

2mφ

] [
1

8π

] [(
v sinβAu√

2〈Fx〉

)2

3m2
φ

]
, (5.8)

Γ(φ→ d̄ d) =

[
1

2mφ

] [
1

8π

] [(
v cosβAd√

2〈Fx〉

)2

3m2
φ

]
, (5.9)

where we have neglected the quark masses. In this limit, the corresponding decay rates of

a have the same expressions with mφ replaced by ma.

We now assume that the production of sgoldstino is mostly by the ūu and d̄d initial

states so that a large coupling to gluons is not necessary. We define the number of mes-

sengers with quantum numbers (1, 2)1/2 to be N12. Their mass will be denoted by mweak
F .

In the left panel of figure 5 we show the allowed region in the N12–mweak
F plane when two

sets of values for Au and Ad are chosen.17 Similarly, in the right panel the allowed region

in the N12–Au/Ad plane is shown for mweak
F = 8 TeV. It can be seen that even for very

large value of Au = Ad ∼ 10 TeV,18 quite low masses for the electroweak messenger fields

mweak
F . 10 TeV with a very large multiplicity & 50 are necessary. Consequently, the SU(2)

17In general, A-terms are generated at 1-loop level in the models of messenger matter interactions. Thus

they are of same order of the gaugino masses. Larger A-terms can be obtained from model where A-terms

are generated at the tree level [52]. These models have the advantage of being free from A/m2 problem [20].
18Note that very large A-terms may give rise to electric charge and SU(3) colour breaking minima in the

potential [53, 54], thus we restrict them to 10 TeV in our analysis.
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Figure 6. Allowed region in the case of quark anti-quark initiated production of the sgoldstino

with only light hypercharge messengers.

and U(1) couplings (i.e., g2
i /4π) hit Landau poles typically below few hundred TeV. For

example, for mweak
F = 8 TeV and N12 = 100, the one loop Landau poles for SU(2) and U(1)

appear around 50 TeV and 200 TeV respectively.

As the SUSY breaking F -term VEV 〈Fx〉 must be less than (mweak
F )2 in order to avoid

tachyons in the messenger sector, it also turns out that a gluino mass of more than 1.5 TeV

again requires a very large number of SU(3) messengers, exactly as in the OGM scenario

discussed earlier.

However, one could consider a scenario where the X superfields that couple to the

SU(3) messengers (denoted by Φ3 and Φ̃3 below) are different from the X superfields that

couple to the SU(2) messengers (denoted by Φ2 and Φ̃2 below) so that,

W = (X2 +m2)Φ̃2Φ2 + (X3 +m3)Φ̃3Φ3 , (5.10)

The X2 and X3 superfields get VEVs given by,

〈X2〉 = 〈S2〉+ θθ〈F2〉 , (5.11)

〈X3〉 = 〈S3〉+ θθ〈F3〉 . (5.12)

One can define two complex scalars that are linear combinations of S2 and S3,

Sh =
F2S2 + F3S3√

F 2
2 + F 2

3

(5.13)

Sl =
−F3S2 + F2S3√

F 2
2 + F 2

3

(5.14)

In the limit of F3 � F2, Sh ≈ S3 and Sl ≈ S2. If we now assume that the scalar Sl is

actually the 750 GeV resonance and the other scalar Sh is much heavier then the diphoton
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signal can be explained. Moreover, as F3 is now assumed to be much large than F2, large

gluino mass can also be easily obtained.

However, it should be mentioned that the scalar Sl is actually not the sgoldstino. It is

actually Sh which appears in the goldstino multiplet, hence, Sh should be identified as the

sgoldstino. In this sense, we have not solved the original problem with sgoldstino being

the candidate for the 750 GeV resonance.

Before concluding this section, we would also like to point out that one can also consider

the extreme case when there are three different superfields X1, X2 and X3 that couple to

the U(1), SU(2) and SU(3) messengers respectively. In this case, both the SU(2) and SU(3)

messenger masses can be very high. In figure 6 we show the number of U(1) messengers

(N1) and their mass (mY
F ) required for the correct amount of signal and also mass of Bino

more than 200 GeV. It can be seen that for mY
F ∼ 5 TeV one needs N1 & 50. The landau

pole in the U(1) gauge coupling only appears around 2000 TeV in this case.

6 Conclusion

In this paper we have carefully studied the possibility of an sgoldstino being a candidate

for the signal of a possible new resonance with mass ∼ 750 GeV recently reported by the

ATLAS and CMS collaborations. We have found that the explanation of the signal is in

tension with the lower bound on masses from direct searches of gauginos, in particular, the

gluino. In order to achieve a large enough gluino mass, a very large number of messenger

fields is required, which, in turn, renders the theory non-perturbative at a rather low scale

of order few tens of TeV. Moreover, we find that the one-loop messenger contribution to

the sgoldstino potential is negative and large in magnitude (larger than the gluino mass

squared). Hence, a large positive contribution from the hidden sector is required to tune

this away and get a small mass ∼ 750 GeV for the sgoldstino.

While there exist examples of models with dynamically broken SUSY where a light

sgoldstino can, in principle, be achieved, perhaps without large tuning, getting both the cor-

rect amount of signal cross-section and also large enough gluino and squark masses (without

spoiling the calculability of the theory at a rather low scale) seems to be a stubborn prob-

lem. It would be interesting to find explicit models where these problems can be overcome

in a satisfactory way. We postpone investigation in this direction to future studies.

We have also considered the possibility of the resonance being produced by quark anti-

quark initial state. While in this case the problem of Landau poles can be delayed beyond

few thousand TeV, the scalar resonance can not be the sgoldstino.
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A Calculation of the partial decay widths

In this appendix we will calculate the partial decay rate of φ and a to two vector bosons.
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A.1 φ → γ γ

We start with the decay φ→ γ γ which arises from the following term in the Lagrangian,

L ⊂ 1

Λ
φFµνF

µν . (A.1)

This yields the following Feynman rule,

[i] [2!] [− 2

Λ
(p1 · p2 gµν − p1µp2ν)]

(A.2)

Thus, the matrix element is given by,

iM = − 4

Λ
i (p1 · p2gµν − p1µp2ν) ε∗ν(p1)ε∗µ(p2) (A.3)

This gives,

|M|2 =
16

Λ2
(p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β) ε∗ν(p1)ε∗µ(p2)εβ(p1)εα(p2)

(A.4)

Summing over the polarizations, i.e.,∑
εµ(p)ε∗ν(p) = −gµν

we get,

|M|2 =
16

Λ2
(p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β) gαµgβν

=
16

Λ2

(
p2

1 p
2
2 + 4(p1 · p2)2 − 2(p1 · p2)2

)
=

32

Λ2
(p1 · p2)2

=
32

Λ2

(
m2
φ

2

)2

=
8m4

φ

Λ2
(A.5)

Hence,

Γ(φ→ γ γ) =
1

Λ2

[
1

2mφ

] [
1

8π

] [
8m4

φ

] [1

2

]
. (A.6)

The factor of 1/2 in the end is due to the presence of two identical particles in the

final state.
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A.2 a → γ γ

The decay a→ γ γ arises from the Lagrangian

L ⊂ 1

Λ
aFµνF̃

µν =
1

2Λ
aFµνFαβ ε

µναβ (A.7)

The Feynman rule for this vertex is given by

p

a

p1

p2

ν

σ

[i] [2!] [− 2

Λ
εµνρσp1µp2ρ]

(A.8)

The matrix element and its square are given by,

iM = − 4

Λ
i εµνρσp1µp2ρε

∗
ν(p1)ε∗σ(p2)

|M|2 =
16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γε

∗
ν(p1)ε∗σ(p2)εβ(p1)εδ(p2) (A.9)

Summing over the polarisations we get,∑
|M|2 =

16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γgνβgσδ

=
16

Λ2
εµρσβ εβαγσ p1µp1αp2ρp2γgνβgσδ

=
32

Λ2
(−gµαgργ + gµγgρα) p1µp1αp2ρp2ν

=
32

Λ2
(p1 · p2)2

=
32

Λ2

(
m2
a

2

)2

=
8m4

a

Λ2
(A.10)

Hence, finally we get

Γ(a→ γ γ) =
1

Λ2

[
1

2ma

] [
1

8π

] [
8m4

a

] [1

2

]
. (A.11)

A.3 φ → Z Z

The relevant part of the Lagrangian is

L ⊂ 1

Λ
φZµνZ

µν . (A.12)

The Feynman rule is same as the decay φ→ γγ (eq. (A.2)).

The squared matrix element is given by,

|M|2 =
16

Λ2
(p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β) ε∗ν(p1)ε∗µ(p2)εβ(p1)εα(p2) (A.13)
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Summation over the polarization vectors,∑
εµ(p)ε∗ν(p) = −gµν +

pµpν

m2
Z

we get,

|M|2 = 16 (p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β)×

×
(
−gµα +

pµ2p
α
2

m2
Z

)(
−gνβ +

pν1p
β
1

m2
Z

)
= 16 (p1 · p2gµν − p1µp2ν) (p1 · p2gαβ − p1αp2β) (−gµα)

(
−gβν

)
= 16

(
2(p1.p2)2 + p2

1p
2
2

)
= 8m4

φ

(
1− 4

m2
Z

m2
φ

+ 6
m4
Z

m4
φ

)
(A.14)

Γ(φ→ Z Z) =

[
1

2mφ

] [
λ1/2(1,m2

Z/m
2
φ,m

2
Z/m

2
φ)

8π

]
|M|2

[
1

2

]
(A.15)

where,

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc (A.16)

Γ(φ→ Z Z) =
1

Λ2

[
1

2mφ

] 1

8π

(
1− 4

m2
Z

m2
φ

)1/2
 |M|2 [1

2

]
(A.17)

=
1

Λ2

[
1

2mφ

] 1

8π

(
1− 4m2

Z

m2
φ

)1/2


×
[

8m4
φ

(
1− 4

m2
Z

m2
φ

+ 6
m4
Z

m4
φ

)][
1

2

]
(A.18)

A.4 a → Z Z

The relevant part of the Lagrangian is

L ⊂ 1

Λ
aZµνZ̃

µν . (A.19)

The Feynman rule is same as the decay a→ γγ (eq. (A.8)).

The squared matrix element is given by,

|M|2 =
16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γε

∗
ν(p1)εβ(p1)ε∗σ(p2)εδ(p2) (A.20)

Summing over the polarisations, we have,

|M|2 =
16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γ

(
−gνβ +

p1νp1β

M2
Z

)(
−gσδ +

p2σp2δ

M2
Z

)
(A.21)

=
16

Λ2
εµνρσεαβγδp1µp1αp2ρp2γgνβgσδ (A.22)
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where we have used the fact that the second terms in each of the parenthesis vanish due

to the anstisymmetry of the Levi-civita symbols. We thus have,

|M|2 =
16

Λ2
εµρσβ εβαγσ p1µp1αp2ρp2γ (A.23)

Using the relation,

εµρσβ εβαγσ = 2 (−gµαgργ + gµγgρα) (A.24)

we get,

|M|2 =
32

Λ2
(−gµαgργ + gµγgρα) p1µp1αp2ρp2γ (A.25)

=
32

Λ2

(
−p2

1p
2
2 + (p1 · p2)2

)
(A.26)

=
32

Λ2

(
−m4

Z +
(m2

a − 2m2
Z)2

4

)
(A.27)

=
8m4

a

Λ2

(
1− 4m2

Z

m2
a

)
(A.28)

Γ(a→ Z Z) =

[
1

2ma

] [
λ1/2(1,m2

Z/m
2
a,m

2
Z/m

2
a)

8π

]
|M|2

[
1

2

]
(A.29)

=
1

Λ2

[
1

2ma

] [
1

8π

(
1− 4

m2
Z

m2
a

)1/2
]
|M|2

[
1

2

]
(A.30)

=
1

Λ2

[
1

2ma

] [
1

8π

(
1− 4m2

Z

m2
a

)1/2
]

×
[
8m4

a

(
1− 4

m2
Z

m2
a

)][
1

2

]
(A.31)

B Calculation of Aii
LHC energy

In this appendix we will calculate the quantities AiiLHC energy defined in section 2.2 for two

LHC energies 8 TeV and 13 TeV, and for the initial states {gg}, {ūu} and {d̄d}.

B.1 Production by gluon fusion

The partonic cross section for the process g(p) g(k)→ φ(q) is given by

σ̂(g(p) g(k)→ φ(q)) (B.1)

=
1

22

1

82

1

2Ep 2Ek

1

|vp − vk|

∫
d3q

(2π)3

1

2Eq
|M|2 (2π)4δ(4)(p+ k − q) (B.2)

⇒ using the identity

∫
dq0 δ(q2 −m2

φ) Θ(q0) =
1

2Eq
, we get (B.3)

=
1

22

1

82

2π

2Ep 2Ek

1

|vp − vk|

∫
d4q δ(q2 −m2

φ) Θ(q0) |M|2 δ(4)(p+ k − q) (B.4)

=
1

22

1

82

2π

2Ep 2Ek

1

|vp − vk|
|M|2 δ((p+ k)2 −m2

φ) (B.5)
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=
1

22

1

82

2π

x1x2S

1

2
|M|2 δ(x1x2S −m2

φ) (B.6)

=
π

256

1

x1x2S
|M|2 δ(x1x2S −m2

φ) (B.7)

where the following definitions have been used,

p = x1P1, k = x2P2, P1 =

√
S

2
(1, 0, 0, 1) and P2 =

√
S

2
(1, 0, 0,−1).

Here, P1 and P2 are the 4-momenta of the two protons and
√
S is their centre-of-mass

energy.

We now proceed to compute the hadronic cross section which is given by

σ√
S

=

∫ 1

0
dx1

∫ 1

0
dx2 fg/p(x1)fg/p(x2) σ̂(x1, x2) (B.8)

⇒ using the change of variables {x1, x2} → {x = x1, z = x1x2},we get

=

∫ 1

0

dx

x

∫ x

0
dz fg/p(x)fg/p(z/x) σ̂(z) (B.9)

=

∫ 1

0

dx

x

∫ x

0
dz fg/p(x)fg/p(z/x)× π

256

1

z S
|M|2 δ(zS −m2

φ) (B.10)

We now use the expression for Γφ→g g (following appendix A),

Γ(φ→ g g) =

[
1

2mφ

] [
1

8π

]
|M|2

[
1

2

]
, (B.11)

to get

σ√
S

=
π

256

32πmφ Γφ→g g
S

∫ 1

0

dx

x

∫ x

0
dz fg/p(x)fg/p(z/x)

1

z
δ(zS −m2

φ) (B.12)

=
π

256

32πmφ Γφ→g g
S2

∫ 1

0

dx

x

∫ x

0
dz fg/p(x)fg/p(z/x)

1

z
δ

(
z −

m2
φ

S

)
(B.13)

=
π

256

32πmφ Γφ→g g
S2

∫ 1

m2
φ
S

dx

x
fg/p(x)fg/p(m

2
φ/Sx)

S

m2
φ

(B.14)

=
π2

8

Γφ→g g
mφS

∫ 1

m2
φ
S

dx

x
fg/p(x)fg/p(m

2
φ/Sx) (B.15)

Hence,

AggLHC energy =
π2

8

1

mφS

∫ 1

m2
φ
S

dx

x
fg/p(x)fg/p(m

2
φ/Sx) (B.16)

Using the MSTW 2008 LO parton distribution functions (PDF) we get,

Agg13 TeV =
5.44 pb

GeV
(B.17)

Agg8 TeV =
1.15 pb

GeV
. (B.18)
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B.2 Production by quarks

The cross section of the process q̄ q → φ can be calculated in the same way as above, except

for the following changes,

• The colour factor is different, so we must have 1/32 instead of 1/82 as in the case for

gluons

• The symmetry factor (1/2) for identical particle used in eq. (B.11) no longer applies

• The PDF are different — we now have quark PDF instead of the gluon PDF.

Applying the above changes, we finally get,

σ√S =
4π2

9

Γφ→qq̄
mφS

∫ 1

m2
φ
S

dx

x

(
fq/p(x)fq̄/p(m

2
φ/Sx) + fq̄/p(x)fq/p(m

2
φ/Sx)

)
Hence,

Aqq̄LHC energy =
4π2

9

1

mφS

∫ 1

m2
φ
S

dx

x

(
fq/p(x)fq̄/p(m

2
φ/Sx) + fq̄/p(x)fq/p(m

2
φ/Sx)

)
Using again the MSTW 2008 LO parton distribution functions (PDF) we get,

Aūu13 ≡ A|ūu13 TeV LHC =
2.94 pb

GeV
Aūu8 ≡ A|ūu8 TeV LHC =

1.2 pb

GeV
(B.19)

Ad̄d13 ≡ A|d̄d13 TeV LHC =
1.73 pb

GeV
Ad̄d8 ≡ A|d̄d8 TeV LHC =

0.66 pb

GeV
(B.20)

Ac̄c13 ≡ A|c̄c13 TeV LHC =
0.11 pb

GeV
Ac̄c8 ≡ A|c̄c8 TeV LHC =

0.03 pb

GeV
(B.21)

As̄s13 ≡ A|s̄s13 TeV LHC =
0.21 pb

GeV
As̄s8 ≡ A|s̄s8 TeV LHC =

0.05 pb

GeV
(B.22)

Ab̄b13 ≡ A|b̄b13 TeV LHC =
0.05 pb

GeV
Ab̄b8 ≡ A|b̄b8 TeV LHC =

0.01 pb

GeV
(B.23)

C Calculation of the sgoldstino mass

In this appendix, we want to compute the 1-loop contribution to the sgoldstino mass from

the term,

L ⊂
∫
d2θ λXΦ1Φ2 + h.c. (C.1)

We will ignore the gauge indices of Φ1 and Φ2 for the time being. The following notation

will be used for the chiral superfields:

X = S +
√

2 θ ψx + θθ Fx (C.2)

Φ1 = φ1 +
√

2 θ ξ1 + θθ F1 (C.3)

Φ2 = φ2 +
√

2 θ ξ2 + θθ F2 (C.4)
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Figure 7. One loop contributions to the sgoldstino mass from the messengers.

A Dirac fermion Ψ is constructed out of the two Weyl fermions ξ1 and ξ2,

Ψ =

(
ξ1α

ξ†α̇2

)
(C.5)

whose Dirac mass will be denoted by mΨ = λ〈S〉. The scalar mass eigenstates will be

denoted by φ+ and φ− with their mass squared given by m2
± = m2

Ψ ± λ〈Fx〉.

C.1 Diagrammatic calculation

The relevant vertex factors are given by,

S Ψ̄ Ψ : −λPL (C.6)

S∗S φ∗+φ+ : −λ2 (C.7)

S∗S φ∗−φ− : −λ2 (C.8)

S φ∗+φ+ : −λmΨ (C.9)

S φ∗−φ− : −λmΨ (C.10)

The Feynman rules can be obtained by multiplying the above vertex factors by i and

appropriate symmetry factors.

The relevant diagrams are,

We will now compute the diagrams one-by-one.

Fermion loop:

−iΠ(p2 = 0) = −(−iλ)(−iλ)

∫
d4q

(2π)4
Tr

[
PL

i

6q −mΨ
PR

i

6q −mΨ

]
= −2λ2

∫
d4q

(2π)4

q2(
q2 −m2

Ψ

)2
= −2λ2

∫
d4q

2π4

[
1

q2 −m2
Ψ

+
m2

Ψ(
q2 −m2

Ψ

)2
]

(C.11)

First scalar loop:

−iΠ(p2 = 0) = (−i λ2)
∑
φ=φ±

∫
d4q

(2π)4

i

q2 −m2
φ

= λ2

∫
d4q

(2π)4

[
1

q2 −m2
+

+
1

q2 −m2
−

]
(C.12)
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Second scalar loop:

−iΠ(p2 = 0) = (−iλmΨ)(−iλmΨ)
∑
φ=φ±

∫
d4q

(2π)4

i2

(q2 −m2
φ)2

(C.13)

= λ2m2
Ψ

∫
d4q

(2π)4

[
1

(q2 −m2
+)2

+
1

(q2 −m2
−)2

]
(C.14)

Note that the sum of the diagrams goes to zero in the limit of equal masses for the scalars

and fermions, i.e. when SUSY is unbroken.

We need to evaluate integrals of two the forms:

A0(m) =

∫
dDq

(2π)D
1

q2 −m2
; B0(0,m,m) =

∫
dDq

(2π)D
1

(q2 −m2)2 (C.15)

They are given by,

A0(m) =
i

16π2
m2

[
1

ε̂
+ 1− Ln

m2

µ2

]
(C.16)

B0(0,m,m) =
A0(m)

m2
− i

16π2
(C.17)

where,

1

ε̂
=

2

4−D − γE + Ln(4π), γE being the Euler constant. (C.18)

Putting all loop contributions in order, we have

−iΠ(p2 = 0) = −2λ2

∫
d4q

(2π)4

[
1

q2 −m2
Ψ

− 1

2

1

q2 −m2
+

− 1

2

1

q2 −m2
−

(C.19)

+m2
Ψ

1(
q2 −m2

Ψ

)2 − m2
Ψ

2

1

(q2 −m2
+)2
− m2

Ψ

2

1

(q2 −m2
−)2

]

= −2λ2 i

16π2

[
m2

Ψ

(
1

ε̂
+ 1− Ln

m2
Ψ

µ2

)
− m2

+

2

(
1

ε̂
+ 1− Ln

m2
+

µ2

)
− m2

−
2

(
1

ε̂
+ 1− Ln

m2
−
µ2

)
+m2

Ψ

(
1

ε̂
− Ln

m2
Ψ

µ2

)
− m2

Ψ

2

(
1

ε̂
− Ln

m2
+

µ2

)
− m2

Ψ

2

(
1

ε̂
− Ln

m2
−
µ2

)]
(C.20)

= −2λ2 i

16π2

[
m2

+

2
Ln
m2

+

µ2
+
m2
−

2
Ln
m2
−
µ2
−m2

ΨLn
m2

Ψ

µ2

+
m2

Ψ

2
Ln
m2

+

µ2
+
m2

Ψ

2
Ln
m2
−
µ2
−m2

ΨLn
m2

Ψ

µ2

]
(C.21)

= −2λ2 i

16π2

[
m2

ΨLn
m+m−
m2

Ψ

+ λ〈Fx〉Ln
m+

m−
+m2

ΨLn
m+m−
m2

Ψ

]
(C.22)
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Figure 8. The behaviour of F (x) as a function of x.

Hence, assuming Φ1 (Φ2) to be a 5 (5̄) of SU(5), and for Nm pairs of {Φ1,Φ2}, we have,

Π(p2 = 0) = 5Nm
2λ2

16π2

[
2m2

ΨLn
m+m−
m2

Ψ

+ λ〈Fx〉Ln
m+

m−

]
(C.23)

= 5Nm
λ2

16π2
m2

Ψ

[
2Ln

m2
+m

2
−

m4
Ψ

+
λ〈Fx〉
m2

Ψ

Ln
m2

+

m2
−

]
(C.24)

=
(

4π
√

5Nm

)2
(

λ

16π2

)2 λ2〈Fx〉2
m2

Ψ

G

(
λ〈Fx〉
m2

Ψ

)
(C.25)

where the function G(x) is given by,

G(x) =
1

x2
[(2 + x)Log(1 + x) + (2− x)Log(1− x)] . (C.26)

In terms of gaugino mass, this can be written as,

Π(p2 = 0) = −
(
λ

g2
a

)2 (
4π

√
5

Nm
F (x)

)2

m2
a (C.27)

The behaviour of the function F (x) ≡
√
−G(x)/g(x)2 is shown in figure 8.

C.2 Coleman-Weinberg potential

The Dirac mass for the fermions as a function of S is given by,

mF (S) = λS (C.28)

and the scalar mass matrix is

m̃2(S) =

(
λ2S∗S −λ〈Fx〉
−λ〈Fx〉 λ2S∗S

)
, (C.29)

with the eigenvalues,

m2
±(S∗S) = λ2S∗S ± λ〈Fx〉 . (C.30)
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Using the standard formula for the Coleman-Weinberg potential [55],

VCW =
1

64π2
STr

(
M4

[
log

M2

Λ2
cut−off

− 3

2

])
, (C.31)

we get,

VCW =
2

64π2

[ [
m2

+(S,S∗)
]2

Ln
[
m2

+(S,S∗)
]

+
[
m2
−(S,S∗)

]2
Ln
[
m2
−(S,S∗)

]
− 2 [mF (S)∗mF (S)]2 Ln [mF (S)∗mF (S)]

− λ2〈Fx〉2
(

log Λ2
cut−off +

3

2

)]
(C.32)

After replacing S → 〈S〉+ S, we get the coefficient of S∗S to be,

Π(p2 = 0) =
2λ2

16π2

[
2m2

ΨLn
m+m−
m2

Ψ

+ λ〈Fx〉Ln
m+

m−

]
(C.33)

C.3 Tree level sgoldstino mass

Here we give an example of a model where the sgoldstino gets tree level mass at the time

of SUSY breaking [34]. The mode is just an extension of the Affleck-Dine-Seiberg model

(ADS) or 3-2 model of [43–45]. The field content of the ADS model is

SU(3) SU(2)

Q 3 2

U c 3 1

Dc 3 1

L 1 2

,

and the superpotential is given by,

W3−2 = Wcl +Wnp (C.34)

where, Wcl = hQaAD
c
aL

A , (C.35)

Wnp =
Λ7

3

det(QQc)
, (C.36)

where, Qc is defined as Qc ≡ (U c, Dc). In this model h � g̃2, g̃3 which are the gauge

couplings for the groups SU(2) and SU(3) respectively. Thus, F -term contribution to the

scalar potential is subdominant compared to the D-term contribution. The minimum of

the potential can be obtained perturbatively along the D-flat directions,

Q =

 a 0

0 b

0 0

M , Qc =

 a 0

0 b

0 0

M , L =

(√
a2 − b2

0

)
M (C.37)

where,

M ≡ Λ3

h1/7
� Λ3 , (C.38)

and a ≈ 1.164, b ≈ 1.132.
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Note that L1 (the component of L getting a non-vanishing VEV) is the sgoldstino here.

The SU(2) D-term equation of motion gives,

Da
2 = g̃2

∑
f

f †T a2 f (C.39)

where T a2 = σa/2, σa being the Pauli matrices. The eq. (C.39) will get contributions from

all the fields carrying SU(2) charge i.e., Q and L,

Da = g̃2

(
L†
σa

2
L+

∑
r

Qr†i
σa

2
Qri

)
(C.40)

where the index r is the SU(3) index. This gives, for the scalar potential,

V =
1

2
DaDa (C.41)

=
g̃2

2

8

(
L†
σa

2
L+

∑
r

Qr†i
σa

2
Qri

)(
L†
σa
2
L+

∑
r

Qr†i
σa
2
Qri

)
. (C.42)

Noting that only the third Pauli matrix contributes, we have,

V =
g̃2

2

8

[(
L†1L1

)2
+ 2(L†1L1)(Qr†1 Q

r
1 −Qr†2 Qr2) + · · ·

]
, (C.43)

where the ellipses denote terms unimportant for sgoldstino mass. This generates a mass

term for L1 which is given by,

M2
L1

=
g̃2

2

8

(
4(a2 − b2)M2 + 2(a2 − b2)M2

)
(C.44)

=
3g̃2

2

4
(a2 − b2)M2 . (C.45)

This is, in general, much larger than the gaugino mass.

D Calculation of the gaugino mass

The relevant part of the Lagrangian is given by

L ⊂
∫
d4θΦ†1e

2gTaV aΦ1 +

∫
d4θΦ†2e

2gTaV aΦ2 +

(∫
d2θ yXΦ1Φ2 + h.c.

)
(D.1)

where,

V a = θσ̄µθ̄Aaµ + iθ2θ̄λ†a − iθθ̄2λa +
1

2
θ2θ̄2Da (D.2)

A Majorana fermion Ψλ is constructed out of the (Weyl) gaugino field λa,

Ψλ =

(
λα
λ†α̇

)
(D.3)

The relevant vertex factors are given by,

α ΨξΨ
A
λ : −igTA (D.4)

β ΨξΨ
A
λ : +igγ5T

A (D.5)

The gaugino mass is generated via the one loop diagrams shown in figure 9.
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q

Ψ

φ+/φ−

Ψλ Ψλ

Figure 9. One-loop contribution to the gaugino mass.

Loop with the scalar α:

− i
2
m

(α)AB
Ψλ

= Tr[TATB]

∫
d4q

(2π)4
(−g)

−i
6q +mΨ

(+g)
i

q2 −m2
α

(D.6)

= −g2 Tr[TATB]

∫
d4q

(2π)4

6q −mΨ

q2 −m2
Ψ

1

q2 −m2
α

(D.7)

= g2mΨ Tr[TATB]

∫
d4q

(2π)4

1

q2 −m2
Ψ

1

q2 −m2
α

(D.8)

= g2mΨ Tr[TATB]B0(0,mΨ,mα) (D.9)

Loop with the scalar β:

− i
2
m

(β)AB
Ψλ

= Tr[TATB]

∫
d4q

(2π)4
(−gγ5)

−i
6q +mΨ

(−gγ5)
i

q2 −m2
β

(D.10)

= g2Tr[TATB]

∫
d4q

(2π)4
γ5
6q −mΨ

q2 −m2
Ψ

γ5
1

q2 −m2
β

(D.11)

= g2Tr[TATB]

∫
d4q

(2π)4

(− 6q −mΨ)

q2 −m2
Ψ

1

q2 −m2
β

(D.12)

= −g2mΨ Tr[TATB]B0(0,mΨ,mβ) (D.13)

where, the B0 function is given by,

B0(0,m1,m2) =
A0(m1)−A0(m2)

m2
1 −m2

2

(D.14)

− i
2
mAB

Ψλ
= g2mΨ Tr[TATB] (B0(0,mΨ,mα)−B0(0,mΨ,mβ)) (D.15)

= −ig
2mΨ

16π2
Tr[TATB]

(1 + x) ln (1 + x) + (1− x) ln (1− x)

x
(D.16)

= −i g2

16π2
Tr[TATB]

〈Fx〉
mΨ

(1 + x) ln (1 + x) + (1− x) ln (1− x)

x2
(D.17)

mAB
Ψλ

=
g2

16π2
2Tr[TATB]

〈Fx〉
mΨ

g(x) (D.18)

mAB
Ψλ

=
g2

16π2

〈Fx〉
mΨ

g(x) δAB . (D.19)
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