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E-46100, València, Spain

E-mail: Jose.Bernabeu@uv.es, Francisco.J.Botella@uv.es,

Miguel.Nebot@uv.es

Abstract: The precise connection between the theoretical T, CP, CPT asymmetries, in

terms of transition probabilities between the filtered neutral meson Bd states, and the

experimental asymmetries, in terms of the double decay rate intensities for Flavour-CP

eigenstate decay products in a B-factory of entangled states, is established. This allows

the identification of genuine Asymmetry Parameters in the time distribution of the asym-

metries and their measurability by disentangling genuine and possible fake terms. We

express the nine asymmetry parameters — three different observables for each one of the

three symmetries — in terms of the ingredients of the Weisskopf-Wigner dynamical de-

scription of the entangled Bd-meson states and we obtain a global fit to their values from

the BaBar collaboration experimental results. The possible fake terms are all compati-

ble with zero and the information content of the nine asymmetry parameters is indeed

different. The non-vanishing ∆S T
c = −0.687 ± 0.020 and ∆S CP

c = −0.680 ± 0.021 are

impressive separate direct evidence of Time-Reversal-violation and CP-violation in these

transitions and compatible with Standard Model expectations. An intriguing 2σ effect for

the Re(θ) parameter responsible of CPT-violation appears which, interpreted as an upper

limit, leads to |MB̄0B̄0 − MB0B0 | < 4.0 × 10−5 eV at 95% C.L. for the diagonal flavour

terms of the mass matrix. It contributes to the CP-violating ∆C CP
c asymmetry parameter

in an unorthodox manner — in its cos(∆M t) time dependence —, and it is accessible in

facilities with non-entangled Bd’s, like the LHCb experiment.
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1 Introduction

The BaBar collaboration has demonstrated [1] a 14σ direct evidence of Time Reversal viola-

tion in the time evolution of the neutral B0
d-B̄0

d meson system, independent of CP violation

or CPT invariance. This result is independent of any particular dynamical framework

for discussing the dynamics of the neutral B0
d-B̄0

d system and it is established in terms of

asymmetries of observable transition rates. Only the quantum mechanical properties of (i)

entanglement of the Bd pair before the first decay in a B-Factory, (ii) the decays as filtering

measurements for the preparation and detection of the initial and final B meson states in

the transition, as well as (iii) the time dependence of the double decay rate intensities, are

used. The conceptual basis had previously been discussed in refs. [2, 3] and the methodol-

ogy for an actual experimental analysis given in [4], bypassing the need of the T-reversal

of the decay. As emphasized by Wolfenstein [5, 6], the T-reverse of a decaying state is not

a physical state.

The transitions of interest are between Flavour and CP eigenstate decay products,

with the possibility of having an interference of mixing with no-mixing amplitudes, without

any need of absorptive parts, something impossible for transitions between flavour-specific

states. In addition, a well defined orthogonality between the meson states filtered by both

Flavour and CP eigenstate decay products, the so-called Flavour-Tag and CP-Tag [7], is
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present under certain conditions [4, 8, 9], leading to genuine Asymmetries without the

contamination of fake terms. The eight different transitions of this kind provide separate

independent asymmetries for the T, CP, CPT symmetry transformations. A good time

resolution was also a requirement for fixing the precise time ordering of the two decays, as

needed for the T and CPT symmetries implemented by antiunitary operators [10, 11].

The present study has two main objectives: first, to establish the precise connection

between the theoretical asymmetries in terms of transition probabilities for the meson

states and the experimental asymmetries in terms of the double decay rate intensities,

allowing the identification of genuine Asymmetry Parameters for the model-independent

T, CP, CPT time dependent asymmetries. Second, the projection of these Asymmetry

Parameters into the ingredients of the Weisskopf-Wigner Approach (WWA) [12–14] for the

dynamical description of the time evolution of the neutral B0
d-B̄0

d system. In particular,

we obtain explicit results for:

1. The construction of the B+, B− meson states filtered by the CP eigenstate decay

products and check their orthogonality.

2. The building of the Asymmetry Parameters for T, CP, CPT in terms of the WWA

description. This is of high interest for checking that they are genuine for each of the

three symmetries and for demonstrating that the observables for CP and T have, in

general, a different information content.

3. The measurability, in the same eight experimental double decay rate intensities, of

WWA parameters including possible fake terms in the asymmetries, checking whether

the conditions for their absence are met. In general one would be able to disentangle

genuine and fake contributions to the asymmetry parameters.

4. The extraction of the values, or limits, of selected WWA parameters, in particular

the one responsible of inducing CPT-violation, from a global fit to the observables.

Final values for the genuine Asymmetry Parameters characterizing the three T, CP,

CPT symmetry transformations are given.

The paper is organized as follows: in section 2 we review some generalities of the B0
d-

B̄0
d effective hamiltonian, the time evolution of an initial entangled state and the basic

expressions for the double decay rate intensities. In section 3 we discuss in detail under

which conditions the Flavour-CP eigenstate decay channels are truly appropriate for time

reversal genuine asymmetries. Then, in section 4, we analyse the experimental asymme-

tries, normalized as in reference [1], focusing on the connection with the time evolution

described in section 2. In section 5 we show how the complete genuine asymmetries can

be reconstructed beyond ratios through the addition of a single piece of information on

the B0
d-B̄0

d mixing. In section 6 we address how deviations of the conditions discussed

in section 3 can contaminate genuine T and CPT asymmetries, quantifying their effect.

In section 7 we present the results of a global fit to the experimental results in terms of

the basic WWA parameters introduced in section 2 and the final results for the genuine

asymmetry parameters. Some conclusions are given in section 8.
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2 Double decay rate time dependent intensities

The known Weisskopf-Wigner approach (WWA) [12] for the time evolution of a one level

decaying system concluded with the appearance of an absorptive part in the hamiltonian

of the Schrödinger equation governing its time evolution. The generalization to the two

level system gives rise to an effective 2× 2 Hamiltonian matrix with an antihermitian part

taking care of the decay channels [13]. These approximations can be obtained using time

dependent perturbation theory and have a limited range of validity excluding very short

and very long times [14, 15].

2.1 The evolution Hamiltonian

The effective Hamiltonian of the two meson system B0
d-B̄0

d is H = M − iΓ/2, where the

2 × 2 hermitian matrices M and Γ are respectively the hermitian and the antihermitian

parts of H. We follow the notation of [16] for the eigenvalues

µH,L = MH,L −
i

2
ΓH,L, (2.1)

and eigenvectors

H|BH〉 = µH |BH〉 = pH |B0
d〉+ qH |B̄0

d〉, (2.2)

H|BL〉 = µL|BL〉 = pL|B0
d〉 − qL|B̄0

d〉. (2.3)

In general, with H not being a normal operator, [M,Γ] 6= 0, the states (2.2) and (2.3) are

not orthogonal. It is convenient to use the averages and differences of masses and widths:1

µ =
MH +ML

2
− i

2

ΓH + ΓL
2

≡M − i

2
Γ, (2.4)

∆µ = MH −ML −
i

2
(ΓH − ΓL) ≡ ∆M − i

2
∆Γ, (2.5)

together with the complex parameters θ and q/p:

qH
pH

=
q

p

√
1 + θ

1− θ
,

qL
pL

=
q

p

√
1− θ
1 + θ

, (2.6)

and

δ =
1− |q/p|2

1 + |q/p|2
. (2.7)

It straightforward to check that

θ =
H22 −H11

∆µ
,

(
q

p

)2

=
H21

H12
. (2.8)

1Subindices “H” and “L” correspond to the “heavy” and “light” states respectively, and thus ∆M > 0

while the sign of ∆Γ is not a matter of convention, it is not fixed here.
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Here θ is a CP and CPT violating complex parameter while δ violates CP and T. In terms

of physical parameters, except for the phase of q/p which is convention dependent,2 the

effective Hamiltonian can be written as [17]

H =

(
µ− ∆µ

2 θ
p
q

∆µ
2

√
1− θ2

q
p

∆µ
2

√
1− θ2 µ+ ∆µ

2 θ

)
. (2.9)

2.2 The entangled system

In a B factory operating at the Υ(4S) peak, our initial two-meson state is Einstein-

Podolsky-Rosen [18] entangled,3

|Ψ0〉 =
1√
2

(
|B0

d〉|B̄0
d〉 − |B̄0

d〉|B0
d〉
)

=
1√

2(pLqH + pHqL)

(
|BL〉|BH〉 − |BH〉|BL〉

)
, (2.10)

which maintains its antisymmetric entangled character in the H eigenstate basis. This

implies the antisymmetric character of the two meson state at all times and for any two

independent linear combinations of B0
d and B̄0

d . The corresponding evolution is therefore

given in a simple way. The transition amplitude for the decay of the first state into |f〉 at

time t0, and then the second state into |g〉 at time t+ t0, is

〈f, t0; g, t+ t0|T |Ψ0〉 =
e−i(µH+µL)t0

√
2(pLqH + pHqL)

(
e−iµH tALfAHg − e−iµLtAHf ALg

)
, (2.11)

where the decay amplitudes of the eigenstates into the final state f are AH,Lf ≡ 〈f |T |BH,L〉.
Squaring and integrating over t0, the double decay rate I(f, g; t) is obtained:

I(f, g; t) =
e−Γ t

4Γ|pLqH + pHqL|2
∣∣∣ei∆M t/2e∆Γ t/4AHf ALg − e−i∆M t/2e−∆Γ t/4ALfAHg

∣∣∣2 . (2.12)

This expression is very useful to realize the following expected symmetry property: up to

the global exponential decay factor e−Γ t, the combined transformations t→ −t and f � g

should be the identity. Expanding the t dependence and taking the approximation ∆Γ = 0,

valid for the neutral B0
d states, one can write:

I(f, g; t) = e−Γ t 〈Γf 〉〈Γg〉
Γ

{
Ch[f, g] + Cc[f, g] cos(∆M t) + Sc[f, g] sin(∆M t)

}
, (2.13)

with 〈Γf 〉 defined below. Therefore, starting from an entangled state as in eq. (2.10), and

using the Quantum Mechanical evolution in eq. (2.11), the following symmetry properties

arise from the previous remark:

Ch[f, g] = Ch[g, f ], Cc[f, g] = Cc[g, f ], Sc[f, g] = −Sc[g, f ]. (2.14)

2Although q/p is phase convention dependent, in the CP or T invariant limits, its phase is fixed relative

to the convention adopted for the action of the CP operator on |B0
d〉 and |B̄0

d〉.
3See references [19–21] to consider corrections to this assumption.
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They will play an important role in order to assess the independent observables present

in the double decay rate measurements. We define as usual the parameters associated to

mixing times decay amplitudes

λf ≡
q

p

Āf
Af

, Cf ≡
1− |λf |2

1 + |λf |2
, Sf ≡

2Im (λf )

1 + |λf |2
, Rf ≡

2Re (λf )

1 + |λf |2
, (2.15)

with 〈f |T |B0
d〉 ≡ Af , 〈f |T |B̄0

d〉 ≡ Āf and 〈Γf 〉 = 1
2(|Af |2 + |Āf |2); note that C2

f +S2
f +R2

f =

1. For flavour specific channels f = `±+X (f = `± for short in the following), and assuming

no wrong lepton charge sign decays, C`± = ±1, R`± = S`± = 0, and thus

Ch[`±, g] = N[±,g]

(1 + |θ|2)(1∓ Cg)± 2Re
(
θ∗
√

1− θ2
)
Rg

+|1− θ2|(1± Cg) + 2Im
(
θ∗
√

1− θ2
)
Sg

 , (2.16)

Cc[`
±, g] = N[±,g]

(1− |θ|2)(1∓ Cg)∓ 2Re
(
θ∗
√

1− θ2
)
Rg

−|1− θ2|(1± Cg)− 2Im
(
θ∗
√

1− θ2
)
Sg

 , (2.17)

Sc[`
±, g] = 2N[±,g]

{
∓Re

(√
1− θ2

)
Sg + Im (θ) (±1− Cg) + Im

(√
1− θ2

)
Rg

}
, (2.18)

where N[±,g] = 1±δ
1−δCg .

To close this section, notice that the double decay rate or intensity I(f, g; t) has a trivial

normalization by construction: summing over final states f and g, and integrating over t,

we simply have the norm [16, 22] of the initial state |Ψ0〉,∫ ∞
0
dt
∑
f,g

I(f, g; t) = 1 . (2.19)

For later use, it is convenient to introduce the reduced intensity Î(f, g; t),

Î(f, g; t) ≡ Γ

〈Γf 〉〈Γg〉
I(f, g; t) = e−Γ t

{
Ch[f, g] + Cc[f, g] cos(∆M t) + Sc[f, g] sin(∆M t)

}
.

(2.20)

3 Condition to observe a genuine Motion Reversal asymmetry

The original proposal made in [2, 3] to observe a direct evidence of T violation inde-

pendently of CP violation at B factories, following reference [4] and implemented in [1],

contained three ingredients:

1. Analyse Time Reversal symmetry in the B0
d-B̄0

d Hilbert space. Therefore, first one

defines a reference transition P1 → P2(t) among meson states and compares with the

reversed transition P2 → P1(t). If the probability that an initially prepared state P1,

evolved to P1(t), behaves like a P2 is

P12(t) = |〈P2|U(t, 0)|P1〉|2 , (3.1)

then the T violating asymmetry proposed was

P12(t)− P21(t) . (3.2)
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2. Going beyond the use of P1, P2 = B0
d , B̄

0
d . If use is made of the transitions B0

d � B̄0
d ,

the corresponding asymmetry is not independent of CP: by construction it is both

CP and T violating and very small because it comes from the δ parameter. They

introduced the new reference transition B0
d → B+ to be compared with B+ → B0

d . In

a decay channel with well-defined CP = + where one can neglect CP violation, the

reference transition can be measured by looking to decay events f1 where a B meson

decays to a self-tagging channel of B̄0
d and the other B meson decays later to a CP

eigenstate fCP=+ decay where one can neglect CP violation. The main problem was

how to measure the reverse transition.

3. Using the entangled character of the initial state was the crucial ingredient to (i)

connect double decay rates with specific meson transitions rates and (ii) to identify

the reverse transition. If one assumes that observing a fCP=− one filters in that side

a B−, then, due to the entanglement, one is tagging the orthogonal state to B− in the

opposite side. This state, in the approximation at will, should be a B+. In general,

from the entangled state (2.10) we can say that if at time t1 we observe in one side

the decay product f , the (still living) meson at time t1 is tagged as the state that

does not decay into f , |B9f 〉,

|B9f 〉 =
1√

|Af |2 + |Āf |2
(
Āf |B0

d〉 −Af |B̄0
d〉
)
. (3.3)

The corresponding orthogonal state 〈B⊥9f |B9f 〉 = 0 is given by

|B⊥9f 〉 =
1√

|Af |2 + |Āf |2
(
A∗f |B0

d〉+ Ā∗f |B̄0
d〉
)
, (3.4)

and is the one filtered by a decay f . What we call the filtering identity — easy to

prove [9, 23] — defines the precise meaning of the last statement:

∣∣∣〈B⊥9f |B1〉
∣∣∣2 =

|〈f |T |B1〉|2

|Af |2 + |Āf |2
. (3.5)

Note that if B1 = B9g(t), the previous quantity is exactly the reduced intensity

Î(g, f ; t) introduced in eq. (2.20):

Î(g, f ; t) =
|〈f |T |B9g(t)〉|2

|Af |2 + |Āf |2
=
∣∣∣〈B⊥9f |B9g(t)〉

∣∣∣2 . (3.6)

Therefore, here is the precise connection between meson transition probabilities and

double decay rates. By measuring Î(f1, f2; t), — from now on we will use the notation

(f1, f2) to refer to the first and the second decays considered — we are studying

probabilities P12(t) for transitions between meson states (B1, B2) which, as we have

seen, are

|B1〉 = |B9f1〉 , |B2〉 = |B⊥9f2〉 , (3.7)

– 6 –
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that is transition probabilities for (B1, B2) = (B9f1 , B
⊥
9f2

). In order to compare with

P21(t), we need to study the reverse transition (B⊥9f2
, B9f1), but the filtering and tag-

ging applied methods do not give us this transition. Two new decay channels f ′1 and

f ′2 in the reduced double decay rate (f ′2, f
′
1) will give us the transition (B9f ′2

, B⊥9f ′1
);

therefore, provided these two new decay channels fulfill the following identity

|B9f ′i
〉 = |B⊥9fi

〉, (3.8)

this new transition (f ′2, f
′
1) will give the reversed meson transition. For flavour specific

decay channels, assuming no wrong lepton charge sign decays, |B0
d〉 = |B9`−〉 and

|B̄0
d〉 = |B9`+〉, this identity is obviously |B̄0

d〉 = |(B0
d)⊥〉, and tells us that if f1 =

X`+ν`, then f ′1 = X`−ν̄` (f1 = `+ and f ′1 = `−). The other channel, a CP one, should

also satisfy this last equation, which, combined with equations (3.3) and (3.4), will

give the condition these channels should satisfy:

λf2λ
∗
f ′2

= −
∣∣∣∣qp
∣∣∣∣2 . (3.9)

The originally proposed decay channels f2 = J/ψK+ and f ′2 = J/ψK− satisfy this

condition, where K± are the neutral kaon states filtered by the CP eigenstate decay

channels. Consequently, the states B∓ are well defined and given by equation (3.4) for

each of the two decay channels. From now on, we use KS for K+ and KL for K− since

it is an accurate approximation up to CP violation in the kaon system. Taking into

account that λJ/ψKS ≡ λKS ∼
∣∣∣ qp ∣∣∣ e−i2β and λJ/ψKL ≡ λKL ∼ −

∣∣∣ qp ∣∣∣ e−i2β , to control

potential deviations from condition (3.9), we will use the general parameterisation

λKS =

∣∣∣∣qp
∣∣∣∣ ρ (1 + ερ) e

−i(2β+εβ) , λKL = −
∣∣∣∣qp
∣∣∣∣ 1

ρ
(1 + ερ) e

−i(2β−εβ) , (3.10)

in terms of the real parameters {ρ, β, ερ, εβ}. Therefore, by properly comparing double

decay rates corresponding to two channels, one from {`+, `−} and the other from

{J/ψKS , J/ψKL} (KS and KL for short in the following), we will be able to measure

genuine time-reverse processes provided

ερ = 0 , εβ = 0 . (3.11)

Any deviation of this measurable relation produces some contamination in time re-

versal asymmetries and therefore should be conveniently subtracted out. It is im-

portant to notice that eq. (3.9) is fulfilled even if ρ 6= 1. It has to be pointed out

that eq. (3.9) guarantees that the considered channels allow to truly compare the

transition P2 → P1(t) with the reversed transition P1 → P2(t). Nevertheless, in or-

der to ensure that this motion reversal asymmetry is truly a time reversal asymmetry,

one has to use decay channels f such that in the limit of T invariance, Sf = 0 [9, 23].

For CP eigenstates, T invariance implies Sf = 0 provided there is no CPT violation in

the corresponding decay amplitude, in accordance with the analysis in reference [8].

This is equivalent to no CP violation in the decay, in the T invariant limit, giv-

ing, in addition to eq. (3.11), the condition ρ = 1. We therefore conclude that we
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should perform the data analysis with arbitrary parameters ρ, ερ and εβ and that

any deviation from

ρ = 1 , ερ = 0 , εβ = 0 , (3.12)

will be a source of fake T violation that should be subtracted out. Notice that in

the absence of CP violation in the decays that filter the states B±, these states

would be orthogonal, implying eq. (3.12), and therefore the orthogonality condition

in equation (3.9) would be automatically satisfied. Before ending this section it is

convenient to clarify that in the absence of wrong flavour decays in B0
d → J/ψK0

and B̄0
d → J/ψK̄0, one has λKS + λKL = 0 (see [24]); in our parameterisation, this

implies

ρ = 1 , εβ = 0 , (3.13)

clearly showing full compatibility among the condition in eq. (3.9) and the absence

of wrong flavour decays. Using more conventional notation in terms of CKS , CKL ,

SKS , SKL , RKS and RKL (eq. (2.15)), no wrong flavour decays imply

CKS − CKL = 0 , SKS + SKL = 0 , RKS +RKL = 0 . (3.14)

If we impose in addition eq. (3.9), we also have

CKS = CKL = δ . (3.15)

4 The BaBar normalization and the independent asymmetries

To avoid strong dependences on the detection efficiencies in the different channels, refer-

ence [1], instead of measuring Ch[f, g], Cc[f, g] and Sc[f, g] in eq. (2.13) or eq. (2.20), fixed

the normalization of the constant term and used the normalized decay intensity

gf,g(t) ∝ e−Γ t {1 + C[f, g] cos(∆M t) + S[f, g] sin(∆M t)} , (4.1)

in such a way that two quantities,

C[f, g] =
Cc[f, g]

Ch[f, g]
, S[f, g] =

Sc[f, g]

Ch[f, g]
, (4.2)

are measured for each pair (f, g). Following eq. (2.14), they verify

C[f, g] = C[g, f ], S[f, g] = −S[g, f ] . (4.3)

We are interested in the study of the genuine discrete asymmetries that can be constructed

combining one flavour specific channel and one CP channel. Starting from one reference

transition, we can generate another three by means of T, CP and CPT transformations.

It turns out that because of the relation (4.3), these four transitions B̄0
d → B−, B− → B̄0

d ,

B0
d → B− and B− → B0

d saturate all the independent parameters that can be measured

with one flavour specific and one CP decays. In table 1 we present the meson state transi-

tions and the corresponding decay channels, and we see how with one reference transition
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Transition gf,g(t) gg,f (t) Transition

Reference B̄0
d → B− (`+,KS) (KS , `

+) B+ → B0
d Reference

T-transformed B− → B̄0
d (KL, `

−) (`−,KL) B0
d → B− T-transformed

CP-transformed B0
d → B− (`−,KS) (KS , `

−) B+ → B̄0
d CP-transformed

CPT-transformed B− → B0
d (KL, `

+) (`+,KL) B̄0
d → B+ CPT-transformed

Table 1. Double decay channels, the associated filtered meson states and their transformed tran-

sitions under the three discrete symmetries.

and its discrete symmetry transformed ones, all the independent parameters are saturated:

the order below the gf,g(t) column makes clear that the parameters of these transitions are

related to the ones appearing in the column gg,f (t). We conclude that only eight parame-

ters are independent: they are the C[f, g] and S[f, g] corresponding to the decays (`+,KS),

(KL, `
−), (`−,KS) and (KL, `

+). Of course, there are at least two independent ways of

measuring the same parameter by means of the time-ordering of the two decays. This

operation is not a symmetry transformation from the left to the right-hand side of table 1;

in order to interpret the information it is very important to know exactly the number of

independent parameters in a general framework.

The authors in reference [4] proposed the construction of several CP, T or CPT asym-

metries as BaBar did, in order to present genuine and model independent tests of these

symmetries. By now, it should be clear that only six independent asymmetries can be

constructed out of the eight independent parameters. The three time dependent asymme-

tries are

AT(t) = gKL,`−(t)− g`+,KS (t) , (4.4)

ACP(t) = g`−,KS (t)− g`+,KS (t) , (4.5)

ACPT(t) = gKL,`+(t)− g`+,KS (t) , (4.6)

which can be explicitely expanded as

AS(t) = e−Γt
{

∆CS[`+,KS ] cos(∆M t) + ∆SS[`+,KS ] sin(∆M t)
}
, S = T,CP,CPT ,

(4.7)

where

∆C+
T ≡ ∆CT[`+,KS ] = C[KL, `

−]− C[`+,KS ] , (4.8)

∆C+
CP ≡ ∆CCP[`+,KS ] = C[`−,KS ]− C[`+,KS ] , (4.9)

∆C+
CPT ≡ ∆CCPT[`+,KS ] = C[KL, `

+]− C[`+,KS ] , (4.10)

∆S+
T ≡ ∆ST[`+,KS ] = S[KL, `

−]− S[`+,KS ] , (4.11)

∆S+
CP ≡ ∆SCP[`+,KS ] = S[`−,KS ]− S[`+,KS ] , (4.12)

∆S+
CPT ≡ ∆SCPT[`+,KS ] = S[KL, `

+]− S[`+,KS ] , (4.13)

are the six independent asymmetries that can be constructed (we use the same notation of

reference [1] for easy comparison). To appreciate the difference among asymmetries that in
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a CPT invariant world would be equivalent, we can write them expanding to linear order

in Re (θ), Im (θ):

∆S+
T ' SKS − SKL − Re (θ) (SKSRKS + SKLRKL)

+ Im (θ) (S2
KS
− S2

KL
+ CKS + CKL), (4.14)

∆S+
CP ' 2SKS + 2Im (θ) (S2

KS
− 1), (4.15)

∆S+
CPT ' SKL + SKS − Re (θ) (SKLRKL + SKSRKS )

+ Im (θ) (−2 + S2
KS

+ S2
KL

+ CKS + CKL), (4.16)

∆C+
T ' CKS + CKL + Re (θ) (RKS (1− CKS ) +RKL(1 + CKL))

+ Im (θ) (SKL(1 + CKL)− SKS (1− CKS )), (4.17)

∆C+
CP ' 2CKS + 2Re (θ)RKS + 2Im (θ)SKSCKS , (4.18)

∆C+
CPT ' CKS − CKL + Re (θ) (RKS (1− CKS )−RKL(1− CKL))

+ Im (θ) (SKL(1− CKL)− SKS (1− CKS )). (4.19)

No matter whether CPT Violation is expected to be small, conceptually it is very important

to emphasize that ∆S+
T 6= ∆S+

CP for several reasons. We have seen that for ∆S+
T to be

a true T violating asymmetry, eqs. (3.14) and (3.15) should be fulfilled. Therefore, the

dominant term in equations (4.14) and (4.15) should be equal: SKS −SKL = 2SKS . But in

general ∆S+
T and ∆S+

CP differ by terms that are CPT violating and CP invariant in ∆S+
T ,

and by terms that are CPT violating and T invariant in ∆S+
CP. Only the pieces that do

not depend on θ are identical. Similarly for ∆C+
T 6= ∆C+

CP: in order for ∆C+
T to be a

true T violating asymmetry, we need CKS +CKL = 2CKS = 2δ, and thus ∆C+
T and ∆C+

CP

are again equal up to CPT violation in the mixing: they differ by terms that are CPT

violating and CP invariant in ∆C+
T and by terms that are CPT violating and T invariant

in ∆C+
CP. It is a very important check to realize that both ∆S+

CPT and ∆C+
CPT only contain

pieces proportional to CPT violating parameters: they have terms proportional to the θ

parameter controlling the amount of CPT violation in the mixing. ∆S+
CPT also contains

SKS + SKL , which should be equal to zero if ∆S+
CPT is a true CPT asymmetry (the same

condition in eq. (3.9) for a true T asymmetry). Finally, ∆C+
CPT contains CKS−CKL , which

should vanish provided eq. (3.9) is fulfilled and there is no CPT violation in the decay.

5 Genuine asymmetry parameters

The time-dependent reduced intensity Î(f, g; t) involves three coefficients Ch, Cc and Sc

in eqs. (2.16), (2.17) and (2.18); nevertheless, as mentioned before, the analysis of refer-

ence [1] focused on the ratios C = Cc/Ch and S = Sc/Ch in eq. (4.2). Although from the

experimental point of view those ratios might be more appropriate, from the theoretical

point of view, access to the three independent coefficients would be more desirable: for

instance, while an asymmetry in the ratios does imply a symmetry violation, no asymme-

try in the ratios may nevertheless come from asymmetries in both the numerator and the

denominator. Obtaining the three independent coefficients Ch, Cc and Sc for each pair of

decay channels might be particularly interesting for asymmetries in the ratios with values
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that are, within uncertainties, compatible with zero, like e.g. CPT asymmetries. Is that

programme possible? Fortunately, using input information for |q/p| or, equivalently δ, it

can be achieved. First, from eqs. (2.16) and (2.17), we have

Ch[`±,KS,L] + Cc[`
±,KS,L] =

(1± δ)(1∓ CKS,L)

2(1− δCKS,L)
= Ch[`±,KS,L]

(
1 + C[`±,KS,L]

)
. (5.1)

Equation (5.1) is interpreted in the following way: while C[`±,KS,L] and CKS,L will be

constrained or extracted from the data, through the addition of δ, we can also compute

Ch[`±,KS,L], and thus Cc[`±,KS,L] and Sc[`
±,KS,L] separately. It is then possible to build

T, CP and CPT complete time-dependent asymmetries analog to eqs. (4.4), (4.5) and (4.6),

AT(t) = Î(KL, `
−; t)− Î(`+,KS ; t) , (5.2)

ACP(t) = Î(`−,KS ; t)− Î(`+,KS ; t) , (5.3)

ACPT(t) = Î(KL, `
+; t)− Î(`+,KS ; t) , (5.4)

which can also be expanded as

AS(t) = e−Γt
{

∆C S
h + ∆C S

c cos(∆M t) + ∆S S
c sin(∆M t)

}
, S = T,CP,CPT . (5.5)

We refer to ∆C S
h , ∆C S

c and ∆S S
c in these asymmetries as “genuine asymmetry parameters”

since they are the ones which collect the full time-dependent difference of probabilities in

transitions among meson states given in eq. (3.2). For completeness, we write down the

general expressions in eqs. (2.16), (2.17) and (2.18) expanded up to linear order in θ and δ,

Ch[`±, g] =
1

2

{
1 + δ(Cg ± 1)± Re (θ)Rg − Im (θ)Sg

}
, (5.6)

Cc[`
±, g] =

1

2

{
∓ Cg + δCg(∓Cg − 1)∓ Re (θ)Rg + Im (θ)Sg

}
, (5.7)

Sc[`
±, g] =

1

2

{
∓ Sg + δSg(∓Cg − 1) + Im (θ) (±1− Cg)

}
, (5.8)

from which the genuine asymmetry parameters in the coefficients Ch, Cc and Sc, up to

linear order in θ and δ, follow:

∆C T
h ≡ Ch[KL, `

−]− Ch[`+,KS ] =

1

2

{
δ(CKL − CKS − 2)− Re (θ) (RKL +RKS ) + Im (θ) (SKS − SKL)

}
, (5.9)

∆C CP
h ≡ Ch[`−,KS ]− Ch[`+,KS ] = −

{
δ + Re (θ)RKS

}
, (5.10)

∆C CPT
h ≡ Ch[KL, `

+]− Ch[`+,KS ] =

1

2

{
δ(CKL − CKS ) + Re (θ) (RKL −RKS ) + Im (θ) (SKS − SKL)

}
, (5.11)

∆C T
c ≡ Cc[KL, `

−]− Cc[`
+,KS ] =

1

2

{
CKS + CKL

+ δ(CKL(CKL − 1) + CKS (CKS + 1)) + Re (θ) (RKS +RKL) + Im (θ) (SKL − SKS )
}
,

(5.12)
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∆C CP
c ≡ Cc[`

−,KS ]− Cc[`
+,KS ] =

{
CKS + δC2

KS
+ Re (θ)RKS

}
, (5.13)

∆C CPT
c ≡ Cc[KL, `

+]− Cc[`
+,KS ] =

1

2

{
CKS − CKL

+ δ(CKS (CKS+1)−CKL(CKL+1))+Re (θ) (RKS−RKL)+Im (θ) (SKL−SKS )
}
, (5.14)

∆S T
c ≡ Sc[KL, `

−]−Sc[`
+,KS ] =

1

2

{
SKS − SKL

+ δ(SKS (1 + CKS ) + SKL(1− CKL)) + Im (θ) (CKS + CKL)
}
, (5.15)

∆S CP
c ≡ Sc[`

−,KS ]−Sc[`
+,KS ] =

{
SKS + δSKSCKS − Im (θ)

}
, (5.16)

∆S CPT
c ≡ Sc[KL, `

+]−Sc[`
+,KS ] =

1

2

{
SKS + SKL

+ δ(SKS (CKS + 1) + SKL(CKL + 1))− Im (θ) (2 + CKS − CKL)
}
. (5.17)

It is important to stress from (5.1) that it has a straightforward physical interpretation:

from eq. (2.20), the reduced intensity prior to any time evolution is

Î(f, g; 0) = Ch[f, g] + Cc[f, g] . (5.18)

Following the filtering identity in eq. (3.6), this is simply the overlap between |B⊥9g〉
and |B9f 〉:

Î(f, g; 0) =
∣∣∣〈B⊥9g|B9f 〉

∣∣∣2 =

∣∣ĀfAg −Af Āg∣∣2
(|Af |2 + |Āf |2)(|Ag|2 + |Āg|2)

. (5.19)

Furthermore, it can be easily seen that, if the condition in eq. (3.9) for a genuine Motion

Reversal measurement is verified, AT(0) = 0, since

AT(0) = Î(KL, `
−; 0)− Î(`+,KS ; 0) =

∣∣∣〈B⊥9KL
|B9`−〉

∣∣∣2 − ∣∣∣〈B⊥9`+ |B9KS 〉
∣∣∣2

=
|AKL |2

|AKL |2 + |ĀKL |2
− |ĀKS |2

|AKS |2 + |ĀKS |2
, (5.20)

and thus

AT(0) = 0⇔ |ĀKL |
2

|AKL |2
=
|AKS |2

|ĀKS |2
, while λKLλ

∗
KS

= −
∣∣∣∣qp
∣∣∣∣2 ⇔ ĀKL

AKL
= −

A∗KS
Ā∗KS

. (5.21)

This is consistent with the intuitive requirement that a genuine Motion Reversal asymmetry

cannot be already present at t = 0, i.e. in the absence of time evolution. Concerning CPT,

ACPT(0) = 0 on the same grounds that AT(0) = 0, once the CP properties of the decay

states and the absence of CP violation in the decays are considered. One final comment is

in order: attending to the previous results, the presence of δ in eq. (5.1), that is at t = 0, is

a priori surprising, since it is solely related to the B0
d-B̄0

d mixing; this is simply an artifact

due to the use of the mixing times decay quantities in eq. (2.15), as illustrated by the

absence of δ in eq. (5.19). In any case we should keep the normalization of eq. (5.1) since

we also want to measure deviations from eq. (3.12).
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6 Genuine T-reverse and fake asymmetries

In section 3 we have discussed how asymmetries like eqs. (4.4) and (4.6) are “contami-

nated”, i.e. can receive contributions which are not truly T-violating; this also applies to

the genuine asymmetry parameters introduced in section 5. It occurs when the condi-

tions in eq. (3.12) are not fulfilled. The question is, how can we disentangle fake effects

in T and CPT asymmetries due to deviations from the requirements of eq. (3.12)? We

illustrate the reasoning using, for example, the asymmetry ∆S T
c in eq. (5.15). First,

we remind the reader that in terms of all parameters involved in the problem — δ, ρ,

β, ερ and εβ in eq. (3.10), plus the complex θ parameter —, ∆S T
c is simply a function

∆S T
c (ρ, β, ερ, εβ , δ, θ). ∆S T

c would be a true T-violation asymmetry if ερ = εβ = 0 and

ρ = 1 (eq. (3.12)). It is then possible to do the following separation, at each point in

parameter space, when performing a fit to the observables:

∆S T
c (ρ, β, ερ, εβ , δ, θ) =

[
∆S T

c (ρ, β, ερ, εβ , δ, θ)−∆S T
c (1, β, 0, 0, δ, θ)

]
+ ∆S T

c (1, β, 0, 0, δ, θ) . (6.1)

The term within square brackets,

∆S T
c (ρ, β, ερ, εβ , δ, θ)−∆S T

c (1, β, 0, 0, δ, θ) , (6.2)

has exactly the desired properties for the fake contribution: independently of β, δ and θ,

it vanishes when the conditions eqs. (3.9) and (3.12) are fulfilled. Then, the last term,

∆S T
c (1, β, 0, 0, δ, θ) , (6.3)

is the truly T-violating contribution, the genuine T-reverse one. It is then possible to

quantify the amounts of fake and genuine T-reverse contributions to T and CPT asym-

metries like ∆S+
T , ∆C+

T , ∆S+
CPT, ∆C+

CPT, and also, of course, to the T and CPT genuine

asymmetry parameters involving the individual Ch, Cc and Sc coefficients. They are ex-

plicitely shown in the results of the fit in section 7. In terms of the parameters δ, ρ, β, ερ
and εβ in eq. (3.10), the genuine T-reverse asymmetries are simply obtained for{

CKS
CKL

}
→ δ,

{
SKS
−SKL

}
→ −

√
1− δ2 sin 2β,

{
RKS
−RKL

}
→
√

1− δ2 cos 2β . (6.4)

7 Results

Following the ideas developed in the previous sections, we now present results obtained

from a global fit to the available experimental information. First, we discuss in section 7.1

the basics of the global fit and the main results, including in particular the new best

determination of the real part of the CPT violating parameter θ. Then, in section 7.2,

we illustrate and discuss several specific aspects of the results: the difference between CP

and T asymmetries — as discussed in section 4 —, the separation of genuine T-reverse

asymmetries and fake contributions, and finally the sensitivity of different asymmetries to

Re (θ) and Im (θ).
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7.1 Global fit

With the information on the single C[`±,KS,L] and S[`±,KS,L] coefficients provided by the

BaBar collaboration in [1], including full covariance information and separate statistical

and systematic uncertainties, supplemented with information on |q/p|, for which we use [25]

(obtained without assuming CPT invariance in the B0
d-B̄0

d mixing)∣∣∣∣qp
∣∣∣∣ = 1 + (0.5± 1.1)× 10−3 , (7.1)

we perform a fit in terms of the set of parameters {Re (θ) , Im (θ) , δ, ρ, β, ερ, εβ} (see eq.

(3.10)). Furthermore, we can also address a more restricted situation where no wrong

flavour decays (i.e. ∆F = ∆Q) are allowed in B0
d , B̄

0
d → J/ΨKS,L, that is imposing λKS +

λKL = 0: in terms of the previous set of parameters, that means setting ρ = 1 and εβ = 0.

All the results shown in the following are obtained from a standard frequentist likelihood

analysis. An additional bayesian analysis has also been performed with simple flat priors

for the basic parameters, yielding almost identical results. Starting with the CPT violating

θ parameter, the results that follow from these fits,{
Re (θ) = ±(5.92± 3.03)× 10−2

Im (θ) = (0.22± 1.90)× 10−2

}

and

{
Re (θ) = ±(3.92± 1.43)× 10−2

Im (θ) = (−0.22± 1.64)× 10−2

}
with λKS + λKL = 0, (7.2)

improve significantly on the uncertainty of the real part quoted by the Particle Data Group

(PDG) in [25], based on BaBar [26, 27] and Belle [28] results (the PDG uses z for our

parameter θ):

Re (θ)PDF = ±(1.9± 3.7± 3.3)× 10−2 , Im (θ)PDF = (−0.8± 0.4)× 10−2 . (7.3)

The sign ambiguity for Re (θ) in eqs. (7.2) and (7.3) is associated to the sign of RKS and

RKL : in the different asymmetries in sections 4 and 5, expanded to linear order in θ, Re (θ)

and RKS,L only appear multiplied together. Equation (7.2) indeed corresponds to

Re (θ) sign(RKS ) = (5.92± 3.03)× 10−2,

and Re (θ) sign(RKS ) = (3.92± 1.43)× 10−2 with λKS + λKL = 0. (7.4)

Following eq. (2.8) with ∆Γ = 0, equation (7.2) yields{
M22 −M11 = ±(2.0± 1.0)

Γ22 − Γ11 = −0.1± 1.3

}
10−5eV

and

{
M22 −M11 = ±(1.3± 0.5)

Γ22 − Γ11 = 0.1± 1.1

}
10−5eV with λKS + λKL = 0. (7.5)

Figure 1 shows the result of the fit for the imaginary vs. real part of θ.
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Figure 1. Im (θ) vs. Re (θ)sign(RKS
) in the full fit (blue regions, solid contours), and in the fit

with λKS
+ λKL

= 0 (red regions, dashed contours); dark to light regions correspond, respectively,

to two-dimensional 68%, 95% and 99% C.L. here and in all plots in the following.

Table 2 collects the results of the global fit to the data [1], while the results in table 3

correspond to the fit with the additional assumption λKS + λKL = 0. For completeness,

the CKS,L , SKS,L and RKS,L coefficients (see eq. (2.15)) are also displayed. Besides the

basic parameters, BaBar asymmetries and genuine asymmetry coefficients are also shown,

including separate values of the genuine T-reverse and fake contributions.

It has to be stressed that we do not observe any significant deviation of eq. (3.9). This

result confirms the goodness in the selection of the channels in order to constrain the T

and CPT asymmetries. We also observe compatibility with the assumption of no wrong

flavour decays in the CP final decay channel (results in table 3).

7.2 Selected results

For the BaBar asymmetries we obtain, in the present analysis, ∆S+
T = −1.317 ± 0.050

and ∆S+
T = −1.326± 0.033 (asuming no wrong flavour decays). The remarkable improve-

ment on the precision comes from imposing the WWA evolution, that includes symmetries

like eq. (4.3). The CP counterpart is the asymmetry ∆S+
CP = −1.360 ± 0.038. We now

discuss the difference between the genuine T-reverse and CP asymmetry parameters. To

illustrate this point, figure 2 shows true T-reverse asymmetries versus CP asymmetries for

∆S and for the genuine asymmetry coefficients ∆Sc and ∆Cc. The dashed diagonal line

would correspond to strict equality among both observables.

In section 6 we have shown that the genuine T-reverse and fake contributions to T

and CPT asymmetries could be separated quantitatively. This is particularly relevant for

the ∆S+
T asymmetry since sizable fake contributions could have weakened the evidence

for the time reversal violation observation independent of CP. In figure 3 we show genuine

T-reverse vs. fake contributions for ∆S+
T and for the genuine asymmetry parameters ∆S T

c ,

∆C T
c and ∆C T

h : from figures 3(a) and 3(b), it is clear that the T-fake contributions to

∆S+
T and ∆S T

c are below the percent level in accordance with expectations from the fit

to ρ, ερ and εβ . For ∆C T
h in figure 3(c), although the fake contribution is below the 10−2
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WWA Parameters

Re (θ) ±(5.92± 3.03)10−2 Im (θ) (0.22± 1.90)10−2

ρ 1.021± 0.032 β 0.380± 0.020

ερ −0.023± 0.013 εβ 0.013± 0.040

SKS −0.679± 0.022 RKS ±(0.734± 0.020)

CKS (9.4± 3.22) 10−4

SKS + SKL (1.9± 4.5)10−2 RKS +RKL (−1.9± 3.9)10−2

CKS − CKL (−4.3± 6.0)10−2

BaBar Asymmetries

∆S+
T −1.317± 0.050 ∆S+

CP −1.360± 0.038

∆S+
CPT (7.6± 4.8)10−2

∆C+
T (4.7± 3.7)10−2 ∆C+

CP (8.9± 3.2)10−2

∆C+
CPT (4.4± 3.6)10−2

Genuine T-reverse Fake

∆S+
T g. −1.318± 0.050 ∆S+

T f. (0.9± 2.0)10−3

∆S+
CPT g. (5.6± 4.3)10−2 ∆S+

CPT f. (1.9± 4.7)10−2

∆C+
T g. (0.2± 2.5)10−2 ∆C+

T f. (4.5± 2.6)10−2

∆C+
CPT g. (8.9± 5.2)10−2 ∆C+

CPT f. (−4.5± 6.2)10−2

Genuine Asymmetry Parameters

∆S T
c −0.687± 0.020 ∆S CP

c −0.680± 0.021

∆S CPT
c (0.7± 2.0)10−2

∆C T
c (2.4± 2.0)10−2 ∆C CP

c (4.4± 1.6)10−2

∆C CPT
c (2.3± 1.8)10−2

∆C T
h (−0.2± 1.4)10−2 ∆C CP

h (−4.3± 2.5)10−2

∆C CPT
h (−4.4± 2.6)10−2

Genuine T-reverse Fake

∆S T
c g. −0.687± 0.020 ∆S T

c f. (0.4± 1.2)10−3

∆S CPT
c g. (−0.2± 1.9)10−2 ∆S CPT

c f. (1.0± 2.4)10−2

∆C T
c g. (0.1± 1.4)10−2 ∆C T

c f. (2.3± 1.3)10−2

∆C CPT
c g. (2.4± 2.6)10−2 ∆C CPT

c f. (−2.1± 3.2)10−2

∆C T
h g. (−0.1± 1.4)10−2 ∆C T

h f. (−0.5± 1.6)10−3

∆C CPT
h g. (−4.4± 2.7)10−2 ∆C CPT

h f. (0.6± 5.0)10−4

Table 2. Global fit, summary of results.
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WWA Parameters

Re (θ) ±(3.92± 1.43)10−2 Im (θ) (−0.22± 1.64)10−2

ερ −0.021± 0.013 β 0.375± 0.016

SKS −0.682± 0.017 RKS ±(0.731± 0.016)

CKS (2.10± 1.31)10−2

BaBar Asymmetries

∆S+
T −1.326± 0.033 ∆S+

CP −1.362± 0.0358

∆S+
CPT (4.1± 2.3)10−2

∆C+
T (3.8± 3.4)10−2 ∆C+

CP 0.100± 0.029

∆C+
CPT (5.3± 2.9)10−2

Genuine T-reverse Fake

∆S+
T g. −1.326± 0.033 ∆S+

T f. (1.9± +10.0
−7.5 )10−4

∆S+
CPT g. (4.1± 2.3)10−2 ∆S+

CPT f. (−1.1± 8.0)10−4

∆C+
T g. (0.4± 2.2)10−2 ∆C+

T f. (4.2± 2.6)10−2

∆C+
CPT g. (5.4± 2.9)10−2 ∆C+

CPT f. (−1.2± 1.0)10−3

Genuine Asymmetry Parameters

∆S T
c −0.682± 0.017 ∆S CP

c −0.680± 0.022

∆S CPT
c (0.2± 1.6)10−2

∆C T
c (2.0± 1.8)10−2 ∆C CP

c (5.0± 1.5)10−2

∆C CPT
c (2.7± 1.5)10−2

∆C T
h (0.2± 1.2)10−2 ∆C CP

h (−2.8± 1.0)10−2

∆C CPT
h (−2.7± 1.5)10−2

Genuine T-reverse Fake

∆S T
c g. −0.682± 0.017 ∆S T

c f. (1.1± 5.1)10−4

∆S CPT
c g. (0.2± 1.7)10−2 ∆S CPT

c f. (−0.5± 4.4)10−4

∆C T
c g. (−0.2± 1.2)10−2 ∆C T

c f. (2.1± 1.3)10−2

∆C CPT
c g. (2.7± 1.5)10−2 ∆C CPT

c f. (0.6± 4.0)10−5

∆C T
h g. (0.2± 1.2)10−2 ∆C T

h f. (3.3± 4.0)10−5

∆C CPT
h g. (−2.7± 1.5)10−2 ∆C CPT

h f. (0.6± 2.0)10−5

Table 3. Global fit with λKS
+ λKL

= 0, summary of results.

level while the genuine T-reverse one can reach the few percent level, there is no evidence

of time reversal violation. For ∆C T
c in figure 3(d), fake contributions might be as large as

the genuine T-reverse ones and the same conclusion holds. It is to be noticed that, in all

cases, there is no significant correlation among genuine T-reverse and fake contributions.

As shown in eq. (7.2), the present analysis improves on the uncertainty on Re (θ) quoted

by the PDG; θ, introduced in eq. (2.8), is both CP and CPT violating. It is important to

stress that θ can appear not only in CPT asymmetries, but also in T and CP asymmetries,
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Figure 2. The difference between genuine T-reverse and CP asymmetries.
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Figure 3. The separation of genuine T-reverse and fake contributions.

together with, respectively, CP invariant and T invariant terms. It is then interesting to

explore which observables could be sensitive to θ from the theoretical point of view, and

how could that translate into interesting correlations among observables and θ. For Re (θ),

we focus on the genuine asymmetry parameters ∆Ch and ∆Cc in equations (5.9) to (5.14)

since, at leading order in θ, all ∆Sc are insensitive to Re (θ). Attending to eq. (5.10),

with δ ' −5 × 10−4, ∆C CP
h could be dominated by the −Re (θ)RKS contribution; for

∆C CP
c the situation is less clear because of the competing CKS terms in eq. (5.13). For

∆C T
h and ∆C CPT

h , it is interesting that the θ independent terms in eqs. (5.9) and (5.11)
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Figure 4. Correlations with Re (θ)sign(RKS
).

are suppressed by δ; furthermore, since Re (θ) enters ∆C T
h with a factor RKS + RKL ,

the genuine T-reverse ∆C T
h will be interesting for Im (θ), while the genuine T-reverse

∆C CPT
h is proportional to −Re (θ)RKS + Im (θ)SKS . Similar comments apply to genuine

T-reverse ∆C T
c and ∆C CPT

c . For Im (θ), in addition to the previous comment concerning

∆C T
h , the genuine T-reverse ∆S CPT

c is, to a very good approximation, ∆S CPT
c ' −Im (θ)

following eq. (5.17). Notice that. although ∆S CP
c has a clean dependence in Im (θ).

the dominant term SKS ' −0.7 masks this potential sensitivity.4 In some cases, the

correlations persist partially even in the presence of fake contributions to T and CPT

asymmetries. Figures 4 and 5 illustrate and confirms the previous discussion. It is to be

said that, on top of the theoretical expectations, the actual experimental input is central to

shape the sensitivity to θ, including in particular the fact that the decay channels including

KL give larger uncertainties than their counterpart with KS , and thus CP asymmetries

with the KS could be, a priori, better suited to uncover the presence of θ.

8 Conclusions

A separate direct evidence for T, CP, CPT symmetry violation needs the precise identifi-

cation of genuine Asymmetry Parameters in the time evolution of intensities between the

4For the B0
s -B̄0

s system, similar comments apply for decay channels f with |Cf | � 1, with, in addition,

potential sensitivity to CPT Violation through ∆S CP
c if |Sf | � 1.
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Figure 5. Correlations with Im (θ).

two decays in a B factory of entangled neutral B0
d-meson states. By genuine we mean a

set of observables, for each symmetry, in yes-no biunivocal correspondence with symmetry

violation. In this paper such a goal has been accomplished, and their values have been

obtained from the BaBar measurements of the Flavour-CP eigenstate decay channels.

In the course of this study several important results are worth mentioning, including

both genuine plus possible fake effects:

• The meson states B± filtered by the observation of the CP eigenstate decay channels

J/ΨK∓ are indeed orthogonal, with extracted values for non-orthogonality ερ =

−0.023± 0.013, εβ = 0.013± 0.040. B± are to be used as the meson states, together

with B0
d , B̄0

d , to obtain the transition probabilities for the asymmetry parameters.

• The condition allowing to use Motion Reversal Asymmetry as genuine Time Reversal

Asymmetry, not only with the exchange of initial and final meson states but us-

ing T-transformed states, is well satisfied with a resulting value ρ = 1.021 ± 0.032

in eq. (3.10). Similarly for CPT Reversal Asymmetry. In addition, there is consis-

tency for no wrong flavour in the decays, as required by eq. (3.13).

• With any normalization in the time dependence of the intensities, a non-vanishing

Asymmetry Parameter between the symmetry transformed transition probabilities is

a proof of symmetry violation. However, a yes-no biunivocal correspondence is only

valid with the precise connection between transition probabilities between meson

states and experimental double decay rate intensities of table 1 (see equation (3.6)).

The results obtained for these genuine Asymmetry Parameters are shown in table 2.
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The two extracted values for ∆S T
c = −0.687±0.020 and ∆S CP

c = −0.680±0.021 are

independent direct demonstrations, with high statistical significance, of T violation

and CP violation respectively. These values are compatible with the SM expectations

∆S T
c = ∆S CP

c = − sin(2β) = −0.682± 0.018.

• The information content of the nine genuine Asymmetry Parameters, three terms in

the time dependence for each of the three T, CP, CPT symmetries, is different and we

invite the reader to scrutinize the right hand sides of eqs. (5.9)–(5.17) to identify the

precise combinations of the WWA-parameters to these observables. In particular,

it is crucial that the non-vanishing Asymmetry Parameters ∆S T
c and ∆S CP

c are

a priori independent. In figure 2 one can see that they are indeed different. The

independent information of CP violating and T violating asymmetry parameters is

even more apparent in figure 2(c) where ∆C CP
c is plotted vs. ∆C T

c .

• From our analysis there is a 2σ effect for the CPT-violating WWA parameter Re (θ),

leading to a diagonal mass-term difference between B0
d and B̄0

d given in eq. (7.5). This

indication is illustrated in figure 1. Even with it, if the result is interpreted as an upper

limit for CPT-violation, it is the best one for the B0
d-system and obtained from the

same Flavour-CP eigenstate double decay products which have demonstrated direct

evidence for CP and for T violation.

• Last but not least, we also have an important implication for facilities without entan-

gled states, like the LHCb experiment at LHC with high statistics. The three genuine

Asymmetry Parameters for CP violation can be addressed in this experiment. The

term ∆C CP
c cos(∆M t), even in the time dependence, may be dominated by a CPT

violating contribution in this set of transitions, so we propose the disentanglement of

this most interesting term at LHCb.

Whereas all the precision measurements discussed in this paper for genuine Time Reversal

violation and CPT violation Asymmetry Parameters in Flavour � CP eigenstate transi-

tions need entanglement, as in the upgraded Belle experiment, the CP violation Asymmetry

Parameters do not. We have insisted on the interest of separating out the different even

and odd terms in the time dependence at LHCb for these transitions in the Bd system.
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