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1 Introduction

It is a truth almost universally acknowledged that there are no non-trivial unitary conformal

field theories in more than six dimensions. Indeed for superconformal theories this is a long

established result [1], and it is often conjectured that the superconformal (2, 0) theory in

six dimensions is the one theory to rule them all and in the light bind them.

However, there is now good evidence that there are interacting conformal theories,

which contain an energy-momentum tensor, in more than four dimensions and, indeed, for

non-unitary CFTs, for dimensions larger than six. The O(N) non-linear sigma model has

a tractable 1/N expansion without restriction on the spatial dimension d [2–4], defining a

conformal theory with calculable scaling dimensions, at least for sufficiently large N [5].

This suggests a non-trivial five-dimensional CFT which is also accessible by ε-expansion

methods starting from 4+ε and 6−ε dimensions. Generalisations to higher dimensions were

recently explored in [6, 7]. To leading order in 1/N the non-linear sigma model comprises

an N -component scalar ϕi with dimension 1
2(d− 2) and also a singlet σ with dimension 2,

clearly violating the unitarity bound for scalars when d > 6.

Apart from the scaling dimensions for conformal primary operators and the parameters

determining the three-point functions and, hence, the operator product expansion, crucial

data defining a CFT are given by the correlation functions involving the energy-momentum

tensor. In any CFT CT , the coefficient of the two-point function which is fixed up to an

overall constant by conformal invariance, plays a crucial role. The scale of the energy-

momentum tensor is determined by Ward identities and with our conventions

Sd
2
〈
Tµν(x)T σρ(0)

〉
= CT

1

(x2)d
Iµν,σρ(x) , (1.1)

for Sd = 2π
1
2
d/Γ(1

2d) and where I is the inversion tensor for symmetric traceless tensors,

constructed in terms of the inversion tensor I for vectors

Iµν,σρ =
1

2
(IµσIνρ + IµρIνσ)− 1

d
ηµνησρ , Iµν(x) = ηµν − 2

x2
xµxν . (1.2)
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CT may be regarded as a measure of the number of degrees of freedom. It determines

the contribution of the energy-momentum tensor in the conformal partial-wave expansion,

and so is readily determined in bootstrap calculations. For the conventional free scalar

and fermion theories CT was determined for arbitrary d and for vector gauge theories for

d = 4 some time ago in [8], and later CT was calculated for (n− 1)-form gauge in d = 2n

dimensions in [9]. For the O(N) sigma model results for CT to first order in 1/N were

obtained by Petkou [10, 11] by applying the operator product expansion to the four-point

function for φi, and have recently been rederived by direct calculation and extended to the

Gross-Neveu model in [12]. In the non-linear sigma model

C
O(N)
T = CT,S

(
N + C

O(N)
T,1 + O(N−1)

)
, CT,S =

d

d− 1
, (1.3)

where CT,S is the result for a free scalar in d dimensions. For general d, C
O(N)
T,1 depends on

the digamma function, ψ(x) = Γ′(x)/Γ(x) but for d = 4 + 2p only the contribution of the

poles ψ(x) ∼ −1/(x+ n), n = 0, 1, . . . for some n are relevant. In consequence, the result

for general d reduces to

C
O(N)
T,1

∣∣∣
d=4+2p

= (−1)p−1 4 (2p+ 1)!

(p− 1)! (p+ 3)!
, (1.4)

which is an integer [6]. Thus, C
O(N)
T,1

∣∣
d=4

= 0, since then the theory reduces to N free

scalars with σ non-dynamical, whereas C
O(N)
T,1

∣∣
d=6

= 1. The extra 1 was interpreted in [5]

as the contribution of the dynamical free scalar σ and for d = 6− ε the ε-expansion defines

a CFT at a fixed point starting from the renormalisable O(N)-invariant Lagrangian

L6 = −1

2

(
∂µϕi∂µϕi + ∂µσ∂µσ + g σ ϕiϕi

)
− 1

6
λσ3 , (1.5)

with g, λ = O(ε). In higher even dimensions there are corresponding renormalisable La-

grangians with higher-derivative kinetic terms for σ. For d = 8− ε there is a perturbative

fixed point starting from

L8 = −1

2

(
∂µϕi∂µϕi + ∂2σ∂2σ + g σϕiϕi + λ′ σ2∂2σ

)
− 1

24
λσ4 . (1.6)

The β functions for the couplings g, λ′, λ have recently been calculated by Gracey [7]. In

this case C
O(N)
T,1

∣∣
d=8

= −4, which we show arises from the higher-derivative σ contribution.

A similar narrative emerges for the Gross-Neveu model with N fermion fields ψi. There

is also a self-consistent 1/N expansion as a conformal field theory for any dimension d. To

leading order ψi has dimension 1
2(d − 1), and there is a singlet scalar field σ with scale

dimension 1, which is consequently below the unitary bound for d > 4. The leading 1/N

correction to CT has been recently determined in [12], and can be expressed in the form

CGN
T =

1

2
d tr(1)N + CT,S

(
CGN
T,1 + O(N−1)

)
, (1.7)

where 1
2d tr(1) is the contribution to CT for a single fermion with tr(1) the sum over

spinorial indices. For general d the result [12] for CGN
T,1 is similar to that for the sigma
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model; for even dimensions it reduces to

CGN
T,1

∣∣∣
d=2+2p

= (−1)p−1 (2p+ 1)!

(p− 1)! (p+ 2)!
. (1.8)

In this case CGN
T,1

∣∣
d=4

= 1, representing the contribution of the dynamical scalar σ whereas

CGN
T,1

∣∣
d=6

= −5. For d = 4 − ε equivalent results can be obtained as a perturbative ε

expansion at the RG fixed point starting from the renormalisable Lagrangian

LGN,4 = −ψ̄ /∂ψ − 1

2
∂µσ∂µσ − g σ ψ̄ψ −

1

24
λσ4 , (1.9)

with N Dirac fields ψ.

In this paper we calculate the contributions to CT corresponding to higher-derivative

scalars, such as that for σ in (1.6), for general d. The energy-momentum tensor is de-

termined from the corresponding local Weyl-invariant actions on curved space quadratic

in a scalar field ϕ. The construction of such actions is equivalent to obtaining conformal

differential operators starting from powers of the Laplacian. We then determine CT for

scalar theories with kinetic terms with 2p derivatives for p = 2, 3, and conjecture a result

for general p.1 The formula agrees with (1.4) and (1.8) for the relevant values of d.

In section 3 we consider (n − 1)-form gauge theories with additional derivatives in

2n+ 2 dimensions when they also define a CFT and obtain CT in this case. Reflecting the

lack of unitarity, CT < 0. We also discuss in section 4 the (n − 1)-form theory, without

additional derivatives, extended to define a CFT away from d = 2n dimensions when gauge

invariance is lost.

The energy-momentum tensors in the higher-derivative theories are rather non-trivial.

In section 5 we discuss an alternative construction which constructs a spin-two conformal

primary by successively subtracting the descendants of lower-dimension primary operators.

The final expressions thereby obtained are identical with those derived from curved-space

Weyl-invariant actions; the subtractions are related to improvement terms which need to

be added to the canonical energy-momentum tensor to obtain a tensor which is traceless

as well as symmetric.

2 Higher-derivative scalar theories

The actions for higher-derivative free scalars considered here have the form

S4[ϕ] = −
∫

ddx
1

2
∂2ϕ∂2ϕ , S6[ϕ] = −

∫
ddx

1

2
∂µ∂2ϕ∂µ∂

2ϕ . (2.1)

Theories starting from such actions were considered in [13, 14]. A symmetric traceless

energy-momentum tensor may be obtained by the usual Noether procedure or by extend-

ing (2.1) to a general curved space background so as to be invariant under Weyl rescalings of

the metric. Assuming diffeomorphism invariance then reducing to flat space ensures that

the resulting energy momentum tensor satisfies conformal Ward identities which ensure

that it is a conformal primary.

1CT,S in (1.3) corresponds to p = 1.
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For S4 the extension to a Weyl invariant form on curved space is equivalent to con-

structing the Paneitz operator [15] (see also [16] and [17] for the d = 4 version of the Paneitz

operator) and for S6 this involves the generalisation of the d = 6 Branson operator [18] to

general d. These operators provide extensions of ∇2∇2 and −∇2∇2∇2 to conformal differ-

ential operators. A convenient form for the Branson operator for general d was constructed

in [19]2 by extending S6 to a Weyl invariant form on an arbitrary curved background. A

useful mathematical discussion for arbitrary powers of the Laplacian is contained in [20],

such operators fail to exist in particular integer dimensions, for the Paneitz, Branson opera-

tors these are d = 2, 4.3 Varying the metric about flat space gives (an alternative derivation

based on a generalised Noether procedure is given in [25])

Tµνϕ,4 = 2 ∂µ∂νϕ∂2ϕ− 1

2
ηµν ∂2ϕ∂2ϕ− ∂µ(∂νϕ∂2ϕ)− ∂ν(∂µϕ∂2ϕ) + ηµν ∂ρ(∂

ρϕ∂2ϕ)

+ 2Dµνσρ
(
∂σϕ∂ρϕ

)
− 1

d− 1
(∂µ∂ν − ηµν∂2)

(
∂ρϕ∂ρϕ−

1

2
(d− 4) ∂2ϕϕ

)
,

(2.2)

for

Dµνσρ =
1

d− 2

(
ηµ(σ∂ρ)∂ν + ην(σ∂ρ)∂µ − ηµ(σηρ)ν∂2 − ηµν∂σ∂ρ

)
− 1

(d− 2)(d− 1)

(
∂µ∂ν − ηµν∂2

)
ησρ ,

(2.3)

where ∂µDµνσρ = 0, ηµνDµνσρ = −∂σ∂ρ, and

Tµνϕ,6 = ∂µ∂2ϕ∂ν∂2ϕ− 2 ∂µ∂νϕ∂2∂2ϕ− 1

2
ηµν ∂σ∂2ϕ∂σ∂

2ϕ

+ ∂µ(∂νϕ∂2∂2ϕ) + ∂ν(∂µϕ∂2∂2ϕ)− ηµν ∂ρ(∂ρϕ∂2∂2ϕ)

+ 8Dµνσρ(∂σ∂ρϕ∂2ϕ)− 1

d− 1

(
∂µ∂ν − ηµν∂2

)
O

+ λDµνσρB (∂σϕ∂ρϕ) ,

O =
1

2
(d− 6) ∂2(∂2ϕϕ) + (10− d) ∂ρ(∂

ρϕ∂2ϕ) +
3

4
(d− 2) ∂2ϕ∂2ϕ ,

(2.4)

where

DµνσρB = Dµνσρ ∂2 − 1

d− 1

(
∂µ∂ν − ηµν∂2

)
∂σ∂ρ . (2.5)

It is useful to note that

DµνσρB (∂σvρ + ∂ρvσ) = 0 , DµνσρB ησρ = 0 , ∂µDµνσρB = 0 , ηµνDµνσρB = 0 . (2.6)

The terms in the expressions for Tµνϕ,4, T
µν
ϕ,6 involving the second- and higher-order derivative

operators Dµνσρ, ∂µ∂ν − ηµν∂2 and DµνσρB arise from explicit curvature-dependent terms

in the curved-space action and represent improvement terms to be added to the canonical

2See version 3 of [19].
3This is then an obstruction to relating Weyl and conformal invariance [21], but it also prevents the exis-

tence of a symmetric traceless energy-momentum tensor which is a conformal primary. Related discussions

are given in [22] and for d = 2 in [23, 24].
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energy-momentum tensor. In particular the contribution involving DµνσρB comes from the

reduction of a term in the curved-space result proportional to ∂µϕ∂νϕB
µν , with Bµν the

Bach tensor, and this gives

λ = − 8

d− 4
. (2.7)

The results for Tµνϕ,4 and Tµνϕ,6 in (2.2) and (2.4) obey the conservation and trace condi-

tions,

∂µT
µν
ϕ,2p = (−1)p−1(∂2)pϕ∂νϕ , ηµνT

µν
ϕ,2p = (−1)p−1∆2p (∂2)pϕϕ , ∆2p =

1

2
(d− 2p) ,

(2.8)

which of course vanish on the relevant equations of motion (∂2)pϕ = 0.

Correlators and operator products in the free field theories are determined just by〈
ϕ(x)ϕ(0)

〉
4

=
1

2(d− 4)(d− 2)Sd

1

(x2)
1
2

(d−4)
,

〈
ϕ(x)ϕ(0)

〉
6

=
1

8(d− 6)(d− 4)(d− 2)Sd

1

(x2)
1
2

(d−6)
.

(2.9)

These are respectively singular when d→ 4, 6 but in (2.2), (2.4) the only terms not involving

∂ϕ have overall factors d − 4, d − 6 in each case. From this term, for both Tµνϕ,4, T
µν
ϕ,6, we

may verify for the leading term in the operator product

Sd T
µν
ϕ,2p(x)ϕ(0) ∼ −d∆2p

d− 1

1

(x2)
1
2
d

(
xµxν

x2
− 1

d
ηµν
)
ϕ(0) . (2.10)

The coefficient is determined by Ward identities assuming T µν
ϕ,2p is canonically normalised.

In free field theories any local operator formed from ϕ with derivatives at the same

point can be decomposed in terms of conformal primaries and descendants, or derivatives,

of conformal primaries of lower dimension. Since Tµν is a conformal primary the result

in (1.1) is therefore unchanged for T σρ → T σρ + ∂τX
σρτ for any local Xσρτ expressible as

a conformal primary or descendant. This ensures that, dropping also terms which vanish

on the equations of motion,〈
T µν
ϕ,4(x)T σρ

ϕ,4(0)
〉

= 2
〈
T µν
ϕ,4(x) ∂σ∂ρϕ∂2ϕ(0)

〉
,〈

T µν
ϕ,6(x)T σρ

ϕ,6(0)
〉

= − 3
〈
T µν
ϕ,6(x) ∂σ∂ρϕ∂2∂2ϕ(0)

〉
= 3

〈
T µν
ϕ,6(x) ∂σ∂2ϕ∂ρ∂2ϕ(0)

〉
.

(2.11)

We get, with λ as in (2.7),

CT,ϕ,4 = − 2d(d+ 4)

(d− 2)(d− 1)
, CT,ϕ,6 =

3d(d+ 4)(d+ 6)

(d− 4)(d− 2)(d− 1)
. (2.12)

There is an obvious generalisation of (2.1) to actions with more derivatives, S2p formed

from (∂2)rϕ or ∂µ(∂2)rϕ for p = 2r or p = 2r + 1. On the basis of the results in (2.12) we

may guess

CT,ϕ,2p = CT,S
p (1

2d+ 2)p−1

(−1
2d+ 1)p−1

, p = 1, 2, . . . , (2.13)

where (a)n = Γ(a + n)/Γ(a) is the Pochhammer symbol and CT,S the free scalar result

given in (1.3). The result (2.13) agrees with (1.4), (1.8) for the particular cases of d.

– 5 –
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3 Higher-order (n − 1)-form gauge theories

In d = 2n dimensions free conformal theories can be formed from (n− 1)-form gauge fields

Aµ1...µn−1 with n-form field strengths Fµ1...µn = n∂[µ1Aµ2...µn] with the gauge invariant ac-

tion Sn,0[A] = − 1
2n!

∫
d2n+2x Fµ1...µnFµ1...µn , generalising the conformal invariant Maxwell

theory in four dimensions. Here we consider the corresponding theory with two additional

derivatives given by the action in d = 2n+ 2 dimensions

Sn,2[A] = − 1

2n!

∫
d2n+2x ∂λFµ1...µn∂λFµ1...µn

= − 1

2(n− 1)!

∫
d2n+2x ∂λF

λµ1...µn−1∂ρFρµ1...µn−1 .

(3.1)

This may be extended to a general curved background metric γµν so as to be invariant

under Weyl rescalings in the form

Sn,2[A] = − 1

2n!

∫
d2n+2x

√
−γ

(
∇λFµ1...µn∇λFµ1...µn

+
(
2nPλρ + (n+ 2) γλρ R̂

)
F λµ1...µn−1F ρµ1...µn−1

+ cW n(n− 1)Wµνλρ F
µνµ1...µn−2F λρµ1...µn−2

)
,

(3.2)

where Pλρ = 1
d−2(Rλρ − γλρ R̂) is the Schouten tensor, R̂ = 1

2(d−1)R a rescaled scalar

curvature and Wµνλρ the Weyl tensor. The Weyl tensor term is invariant under Weyl

rescaling by itself and so, for n > 1, has an arbitrary coefficient. The expression for the

action may be written in various forms with the aid of the identity, for d arbitrary,

n∇λ∇ρ
(
F λµ1...µn−1F ρµ1...µn−1

)
−∇2

(
Fµ1...µnFµ1...µn

)
= −∇λFµ1...µn∇λFµ1...µn + n∇λF λµ1...µn−1∇ρFρµ1...µn−1

− n
(
(d− 2n)Pλρ + γλρ R̂

)
F λµ1...µn−1F ρµ1...µn−1

+
1

2
n(n− 1)Wµνλρ F

µνµ1...µn−2F λρµ1...µn−2 ,

(3.3)

depending on the Bianchi identity for F .4

Varying the metric in (3.3) determines the corresponding flat space energy momentum

tensor for (n− 1)-form gauge fields involving two derivatives

n!Tµνn,2 = n∂λFµµ1...µn−1 ∂λF
ν
µ1...µn−1 + ∂µFµ1...µn ∂νFµ1...µn

− 1

2
ηµν ∂λFµ1...µn∂λFµ1...µn + 2n∂λ

(
F λµ1...µn−1∂

↔(µF ν)
µ1...µn−1

)
4In d-dimensions there is a conformal scalar

(4n+ 2− d)
(
(d− 2n)∇λFµ1...µn∇λFµ1...µn − n∇λF

λµ1...µn−1∇ρFρµ1...µn−1

)
− (n+ 1)(d− 2n) (∇2 − 2n R̂)

(
Fµ1...µnFµ1...µn

)
,

(3.4)

which generalises an expression obtained by Parker and Rosenberg [26]. For d = 4n + 2 this is just the

conformal Laplacian acting on F 2.
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− 1

2
n∂2

(
Fµµ1...µn−1F νµ1...µn−1

)
+ nDµνσρ

(
Fσ

µ1...µn−1Fρµ1...µn−1

)
− n+ 2

2(2n+ 1)
(∂µ∂ν − ηµν∂2)

(
Fµ1...µnFµ1...µn

)
+ cW n(n− 1) EWµσνρ,εηκλ ∂σ∂ρ

(
Fεη

µ1...µn−2Fκλµ1...µn−2

)
, (3.5)

where ∂
↔

= 1
2(∂ − ∂

←
). In the last line EW is the projector for traceless tensors satisfying

the symmetries of the Weyl tensor and has the properties EWµσνρ,εηκλ = EW [µσ][νρ],[εη][κλ] =

EWεηκλ,µσνρ, ηµν EWµσνρ,εηκλ = EWµ[σνρ],εηκλ = 0. The energy-momentum tensor in (3.5)

satisfies, using the Bianchi identity,

n! ∂µT
µν
n,2 = −n∂2∂µF

µµ1...µn−1 F νµ1...µn−1 , n! ηµνT
µν
n,2 = 0 , (3.6)

and so Tµνn,2 is conserved subject to the equation of motion ∂2∂µF
µµ1...µn−1 = 0.

In a Feynman type gauge the action (3.1) reduces to

Sn,2[A] = − 1

2(n− 1)!

∫
d2n+2x ∂2Aµ1...µn−1 ∂2Aµ1...µn−1 , (3.7)

so that in this gauge〈
Aµ1...µn−1(x)Aν1...νn−1(0)

〉
=

(n− 2)!

8nS2n+2

1

(x2)n−1
E(n−1)

µ1...µn−1, ν1...νn−1 , (3.8)

where

E(n)
µ1...µn,

ν1...νn = δ[µ1
ν1 . . . δµn]

νn , (3.9)

is the projector on to rank n antisymmetric tensors. Then, with F defined in (3.1), the

two-point function for F , which is gauge independent, is given by〈
Fµ1...µn(x)Fν1...νn(0)

〉
=

n!

4S2n+2

1

(x2)n
E(n)

µ1...µn,
λ1...λnIλ1 ν1(x) . . . Iλn νn(x) , (3.10)

with Iλν(x) determined by (1.2). The result (3.10) has the expected form for Fµ1...µn a

conformal primary of dimension n.

For this theory the two-point function of the energy-momentum tensor is deter-

mined from 〈
T µν
n,2(x)T σρ

n,2(0)
〉

=
〈
T µν
n,2(x)Xσρ

n (0)
〉
, (3.11)

for, discarding total derivatives and terms which vanish on the equations of motion,

n!Xσρ
n = n∂λF σµ1...µn−1 ∂λF

ρ
µ1...µn−1 + ∂σFµ1...µn ∂ρFµ1...µn . (3.12)

The cW contribution in (3.5) can also be dropped since this term is a conformal primary

descendant of a conformal primary and does not contribute to (3.11). Using the two-point

function (3.10) the combinatorics for arbitrary n can be handled with the identities

E(n)
µ1...µn, σ1...σpλ1...λn−p E(n)µ1...µn,

ρ1...ρp
λ1...λn−p = E(n)

σ1...σpλ1...λn−p, ρ1...ρp
λ1...λn−p

= A(n)
p E(p)

σ1...σp, ρ1...ρp , p = 0, . . . , n , A(n)
p =

p!

n!

Γ(d− p+ 1)

Γ(d− n+ 1)
, (3.13)
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and, if n ≥ 1,

E(n)
µµ1...µn−1, σ1...σpλ1...λn−p E(n)

ν
µ1...µn−1,

ρ1...ρp
λ1...λn−p

= B(n)
p δµ

λ δν
λ′ E(p)

σ1...σp, λλ1...λp−1 E(p)
ρ1...ρp, λ′

λ1...λp−1 + C(n)
p ηµν E(p)

σ1...σp, ρ1...ρp , (3.14)

where

B(n)
p =

p p!

nn!

Γ(d− p)
Γ(d− n)

, C(n)
p =

(n− p) p!
nn!

Γ(d− p)
Γ(d− n+ 1)

, p = 0, . . . , n . (3.15)

Consistency requires B
(n)
p +dC

(n)
p = A

(n)
p , B

(n)
p−1 = B

(n)
p B

(p)
p−1, as well as C

(n)
p−1 = B

(n)
p C

(p)
p−1+

B
(n)
p A

(p)
p−1. Evaluating (3.11) then gives

Cgauge
T,n,2 = −2n(n+ 1)(n+ 3) (2n)!

(n+ 2)n!2
. (3.16)

Note that Cgauge
T,1,2 = CT,ϕ,4 for d = 4.

Large N methods, similar to those for the O(N) and Gross-Neveu models, have been

extended to an Abelian gauge theory coupled to N fermions [27]. For d = 4 + 2p, p =

0, 1, . . . , this becomes equivalent to a renormalisable theory with N fermions and a higher-

derivative gauge theory with a Lagrangian −1
4 F

µν(−∂2)pFµν . Using the large N results

for CT and subtracting the free fermion contribution [27], in the notation used above,

predicted that for the free gauge theory Cgauge
T,2,2p = (−1)p 2(p+ 2)(2p+ 4)!/((p+ 1)!(p+ 3)!).

For p = 0 this is the standard result and the case p = 1 agrees with (3.16) when n = 2.

4 (n − 1)-form theories away from integer dimensions

The usual gauge invariant action for (n−1)-form gauge fields is only conformally invariant

in d = 2n dimensions although it may be extended, as in the previous section, in higher

even dimensions with additional derivatives. However abandoning gauge invariance the

action may be extended to be conformal for general d. The corresponding Weyl-invariant

action on a curved-space background was obtained by Erdmenger [28], following from

the construction of a conformal second-order differential operator on k-forms obtained by

Branson [18], and the corresponding flat-space action for vector fields or one-forms was

given in [29].

The curved-space action obtained in [28] may be expressed, with a similar notation

to (3.2), as

Sn,0[A] = − 1

2n!

∫
ddx
√
−γ

(
Fµ1...µnFµ1...µn + α∇λAλµ1...µn−2 ∇ρAρµ1...µn−2

+
1

2
n(d− 2n)

(
γλρ R̂− 2(n− 1)Pλρ

)
Aλµ1...µn−2Aρµ1...µn−2

)
, (4.1)

α = n(n− 1)
d− 2n

d− 2n+ 4
.
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On flat space this is tantamount to a particular choice of a covariant gauge fixing term [29].

The flat space energy-momentum tensor is then

n!Tµνn,0 = nFµµ1...µn−1F νµ1...µn−1 −
1

2
ηµν Fµ1...µnFµ1...µn

+ (n− 2)α∂λA
λµµ1...µn−3 ∂ρA

ρν
µ1...µn−3 − 2αA(µ|µ1...µn−2 ∂ν)∂ρA

ρ
µ1...µn−2

− 1

2
αηµν ∂λA

λµ1...µn−2 ∂ρA
ρ
µ1...µn−2

− 2(n− 2)α∂λ
(
Aλ(µ|µ1...µn−3 ∂ρA

ρ|ν)
µ1...µn−3

)
(4.2)

+ αηµν ∂λ
(
Aλµ1...µn−2 ∂ρA

ρ
µ1...µn−2

)
+

1

2
n(n− 1)(d− 2n)Dµνσρ

(
Aσ

µ1...µn−2Aρµ1...µn−2

)
− n(d− 2n)

4(d− 1)
(∂µ∂ν − ηµν∂2)

(
Aµ1...µn−1Aµ1...µn−1

)
. (4.3)

This satisfies

n! ∂µT
µν
n,0 =

(
n∂µF

µµ1...µn−1 + α∂µ1∂ρA
ρµ2...µn−1

)
F νµ1...µn−1 (4.4)

− α∂2∂ρA
ρµ1...µn−2Aνµ1...µn−2 ,

n! ηµνT
µν
n,0 = − 1

4
(d− 2n)

(
n∂µF

µµ1...µn−1 + α∂µ1∂ρA
ρµ2...µn−1

)
Aµ1...µn−1 , (4.5)

and so the energy-momentum tensor is conserved and traceless on the equations of motion.

Of course for d = 2n, Tµνn,0 reduces to the usual gauge invariant form.

The two-point function for the (n−1)-form field determined by the action (4.1) on flat

space was calculated in [28] by inverting the Fourier transform of the kinetic differential

operator and then returning to x-space giving〈
Aµ1...µn−1(x)Aν1...νn−1(0)

〉
=

(n− 1)!

(d− 2n)Sd

1

(x2)
1
2

(d−2)
E(n−1)

µ1...µn−1,
λ1...λn−1Iλ1 ν1(x) . . . Iλn νn−1(x) , (4.6)

which has the form required by conformal invariance for Aµ1...µn−1 a conformal primary.

From (4.6)〈
Fµ1...µn(x)Aν1...νn−1(0)

〉
=

n!

(d− 2n)Sd
∂λ

(
1

(x2)
1
2

(d−2)
δκ
η − 2(n− 1)

1

(x2)
1
2
d
xκx

η

)
× E (n)

µ1...µn−1,
λκλ1...λn−2 E(n−1)

ηλ1...λn−2, ν1...νn−1

= − n!

Sd

1

(x2)
1
2
d
xλ E(n)

µ1...µn, λν1...νn−1 , (4.7)

and〈
Fµ1...µn(x)Fν1...νn(0)

〉
=
nn!

Sd
∂ρ

(
1

(x2)
1
2
d
xλ
)
E(n)

µ1...µn−1, λλ1...λn−1 E(n)ρλ1...λn−1,
ν1...νn

=
nn!

Sd

1

(x2)
1
2
d

(
δλ
ρ − d 1

x2
xλx

ρ

)
E(n)

µ1...µn,
λλ1...λn−1 E(n)

ρλ1...λn−1, ν1...νn . (4.8)
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This has the conformally invariant form in terms of the inversion tensor only when d = 2n

and is identical in this case to the expression obtained for gauge choices for Aµ1...µn−1 other

than that implicit in (4.6) [25].

As in other cases, evaluating the energy-momentum tensor two-point function can be

simplified to〈
T µν
n,0(x)T σρ

n,0(0)
〉

=
〈
T µν
n,0(x)Y σρ

n (0)
〉
,

n!Y σρ
n = nF σµ1...µn−1F ρµ1...µn−1 + (n− 2)α∂λA

λσµ1...µn−3 ∂κA
κρ
µ1...µn−3

− 2αA(σ |µ1...µn−2 ∂ρ)∂κA
κ
µ1...µn−2 . (4.9)

This then determines

CT,n =
d

d− 1

(d− n+ 2)n−1

(n− 1)!
, n = 1, 2, . . . . (4.10)

As expected CT,1 = CT,S . The corresponding result for (n− 1)-form gauge fields in d = 2n

dimensions, whose energy-momentum tensor is obtained just from the FF terms in (4.5),

is Cgauge
T,n,0 = 2n2(2n−2)!/(n−1)!2, [9, 25]. This is not equal to CT,n in (4.10) when d = 2n,

although (4.3) apparently reduces to the required form for this d.5 The difference arises

since the 〈AA〉 two-point function in (4.6) is also singular when d = 2n. The representation

of the conformal group generated from a conformal primary Aµ1...µn−1 is reducible when

d = 2n and an irreducible representation for the associated gauge theory is obtained by

quotienting by the invariant subspace corresponding to gauge transformations. Since CT
is related to the number of degrees of freedom it is expected to differ between the gauge

theory and that corresponding to the (n− 1)-form Aµ1...µn−1 .

To demonstrate this further we may consider the Fourier transform of the two-point

function in (4.6) letting 1
2(d−2)→ ∆, k = n−1 and also setting the overall coefficient to 1,

π
1
2
d Γ(∆− 1

2d+ 1)

Γ(∆ + 1)
F (p2)Aµ1...µk, ν1...νk(p) , F (p2) = − π

sinπ(∆− 1
2d)

(
1

4
p2

)∆− 1
2
d

,

Aµ1...µk, ν1...νk(p) =(
(∆− k) δλ

ρ − 2k

(
∆− 1

2
d

)
1

p2
pλ p

ρ

)
E(k)

µ1...µk,
λλ1...λk−1 E(k)

ρλ1...λk−1, ν1...νk . (4.11)

Noting that
(
F (p2−iε)−F (p2 +iε)

)
/2πi = θ(−p2)

(
−1

4 p
2
)∆− 1

2
d

unitarity requires that the

matrix Aµ1...µk, ν1...νk(p) should be positive definite for p2 < 0. The eigenvalues are ∆ − k,

d−∆− k, but for the the second case the eigenvectors p[µ1 εµ2...µk] have negative norm for

p2 < 0 so that we must have, for a unitary CFT of k-forms,

∆ > k , ∆ > d− k . (4.12)

5If the energy-momentum tensor (4.3) is restricted to the gauge-invariant FF terms and we use (4.8)

then the resulting two-point function is not of the required conformal form (1.1). If CT is identified through

the coefficient of the xxxx terms for n = 2 then CT,2 = 1
2
d2(d− 2) as obtained in [27]. This prescription in

general gives CT,n = 1
2
d2(d− 2) · · · (d− n)/(n− 1)!.
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When ∆ = k or ∆ = d − k there are zero modes related to the reducibility of the repre-

sentation. For the case of interest above ∆ = 1
2(d− 2) and ∆ = k corresponds to d = 2n.

For d an integer it should be noted that the conditions (4.12) are invariant under duality

Aµ1...µk → (∗A)µ1...µd−k .

5 Conformal primary operators

The energy-momentum tensor is a conformal primary operator. The detailed expressions

in (2.2) and (2.4) are necessary to ensure this and we show here how they can be recovered

by requiring Tϕ,n,µν to be a conformal primary, and that this determines the parameter λ

in accord with (2.7), although this term is conserved and traceless by itself.

For a local tensor operator Xα1...αn formed from multinomials in ϕ and derivatives at

x = 0 we define[
Kb, ∂µ

]
Xα1...αn = bµDXα1...αn +

∑
i

(
bαi Xα1...µ...αn − ηµαi bλXα1...λ...αn

)
, (5.1)

with

D∂µ = ∂µ(D + 1) , DXα1...αn = ∆X Xα1...αn , (5.2)

where ∆X is determined just by counting the number of derivatives and fields ϕ in Xα1...αn .

For any conformal primary XA, A = {α1 . . . αn}, then KbXA = 0 (this is of course the

usual condition KµXA(0) = 0). Otherwise XA is not a conformal primary and generates a

reducible representation of the conformal group. Acting with Kb removes derivatives so that

for some finite N , Kb
N+1XA = 0 and hence we can write Kb

NXA =
∑

r,I fA,rI(b)OI , where

{OI} is a basis of conformal primaries with ∆OI = ∆X−N and fA,rI(b) = O(bN ). For YA =∑
r,I DA,rI(∂)OI then Kb

N (XA−YA) = 0 gives
∑

s,JMrI,sJ DA,sJ(b) = fA,rI(b). Extending

{fA,rI(b)} to include all possible rotationally covariant forms, with fA,rI = 0 for some r if

necessary, M is a square matrix and we may solve for DA,rI(b) unless {OI} have conformal

primary descendants with N derivatives so that detM = 0. For generic ∆X this does not

arise. Iterating this construction then gives the conformal primary XA −
∑

Y YA which is

the lowest weight state for an irreducible representation. If detM = 0, for particular ∆X ,

the representation space obtained from XA is reducible but not decomposable.

The result (5.1) can be extended successively to multiple derivatives. For a scalar

conformal primary ϕ with scale dimension δ, so that Dϕ = δ ϕ, and an arbitrary vector a,

we have

Kb (a · ∂)nϕ = n(δ + n− 1) a · b (a · ∂)n−1ϕ− 1

2
n(n− 1) a2 b · ∂ (a · ∂)n−2ϕ , (5.3)

from which, by acting with ∂a · ∂a,

Kb (a · ∂)n∂2ϕ = n(δ + n+ 1) a · b (a · ∂)n−1∂2ϕ+ (2δ + 2− d) b · ∂ (a · ∂)nϕ

− 1

2
n(n− 1) a2 b · ∂ (a · ∂)n−2∂2ϕ .

(5.4)

From (5.3) then

Φn(a) = aµ1 . . . aµn Φµ1...µn =
n∑
r=0

(
n

r

)
(−1)r

(δ)r (δ)n−r
(a · ∂)rϕ (a · ∂)n−rϕ (5.5)
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satisfies Kb Φn(a) = O(a2) and so taking a2 = 0, which projects out the traces, this

demonstrates that Φn(a) defines a symmetric traceless conformal primary with ∆Φn =

2δ+n and twist 2δ [30, 31]. For higher twist results are more complicated. In the following

we will work out O(a2) terms in a few examples and obtain some results for higher twist.

Note that (5.5) of course gives Φn(a) = 0 for n odd.

In the remainder of this section we apply the procedure outlined above for constructing

conformal primaries. Initially we construct a conformal primary starting from ∂µϕ∂νϕ.

Using (5.1) we get

Kb
2(∂µϕ∂νϕ) = 2δ2 bµbν ϕ

2 , (5.6)

and also

Kb
2(∂µ∂νϕ

2) = 2δ
(
2(2δ + 1) bµbν − ηµν b2

)
ϕ2 . (5.7)

Hence, a symmetric tensor conformal primary with dimension ∆O2 = 2δ + 2 and twist 2δ

is given by

O2,µν = ∂µϕ∂νϕ−
δ

2(2δ + 1)

(
∂µ∂ν +

1

4δ + 2− d
ηµν ∂

2

)
ϕ2

= − ∂µ∂νϕϕ+
1

2(2δ + 1)

(
(δ + 1) ∂µ∂ν −

δ

4δ + 2− d
ηµν ∂

2

)
ϕ2 ,

(5.8)

so that KbO2,µν = 0. A scalar conformal primary is then

ηµνO2,µν = −∂2ϕϕ+
2δ + 2− d

2(4δ + 2− d)
∂2ϕ2 . (5.9)

For δ = 1
2(d− 2) we have

Tϕ,2,µν = O2,µν −
1

2
ηµν O2,σσ . (5.10)

With more derivatives the construction becomes more lengthy as the descendants of

more conformal primaries have to be subtracted. To construct conformal primary symmet-

ric tensors with four derivatives we start from

Kb
4
(
(a·∂)4ϕϕ

)
= 6δ(δ+1)

(
4(δ+2)(δ+3) (a·b)4−12(δ+2) (a·b)2a2b2+3(a2b2)2

)
ϕ2 . (5.11)

This can be cancelled by terms involving four derivatives acting on ϕ2 so that

Kb
2
(
(a · ∂)4ϕϕ−D4,ϕ2 ϕ2

)
= −6(δ + 2)

(
2(δ + 3)(a · b)2 − a2b2

)
O2,aa

+ 24(δ + 2) a · b a2O2,ab + 6(a2)2O2,bb ,
(5.12)

where

D4,ϕ2 =
1

4(2δ + 1)(2δ + 3)

(
(δ + 2)(δ + 3) (a · ∂)4 − 6δ(δ + 2)

4δ + 2− d
a2(a · ∂)2∂2

+
3δ(δ + 1)

(4δ + 2− d)(4δ + 4− d)
(a2)2(∂2)2

)
,

(5.13)

and O2,aa = aµaνO2,µν with O2,µν the conformal primary given by (5.8). By adding extra

contributions with two derivatives acting on O2,µν the remaining terms in (5.12) may be

cancelled so as to obtain a four index conformal primary

aµaνaσaρO4,µνσρ = (a · ∂)4ϕϕ−D4,ϕ2 ϕ2 −D4
µνO2,µν , (5.14)

– 12 –



J
H
E
P
0
6
(
2
0
1
6
)
0
7
9

where

D4
µν =− 3

2δ + 5

(
(δ + 3)(a · ∂)2 − δ + 2

4δ + 6− d
a2 ∂2

)
aµaν

− 3

(2δ + 5)(4δ + 6− d)

(
2 a2a · ∂ a(µ∂ν) +

1

2δ + 3− d
(a2)2 ∂µ∂ν

)
+

3

(2δ + 3)(2δ + 5)(4δ + 6− d)

(
a2(a · ∂)2 +

1

2δ + 3− d
(a2)2∂2

)
ηµν .

(5.15)

It is straightforward to check that KbO4,µνρσ = 0, as guaranteed by the fact that there

are no primaries with three derivatives and two ϕ’s. By acting with ∂a · ∂a we obtain a

spin-two primary with twist 2δ + 2,

ησρaµaν O4,µνσρ

= (a · ∂)2∂2ϕϕ

− 2δ + 2− d
4(2δ + 1)(4δ + 2− d)

(
(δ + 2) (a · ∂)2∂2 − δ

4δ + 4− d
a2 (∂2)2

)
ϕ2

+
1

2(4δ + 6− d)

(
(2δ + 2− d) ∂2 aµaν

+ 2(4δ + 8− d) a · ∂ aµ∂ν +
2

2δ + 3− d
a2 ∂µ∂ν

)
O2,µν

+
1

2(2δ + 3)(4δ + 6− d)

((
(2(δ + 1)(2δ + 5)− d(δ + 2)

)
(a · ∂)2

− 2δ2 + 5δ + 5− d(δ + 1)

2δ + 3− d
a2∂2

)
ηµνO2,µν ,

(5.16)

as well as a scalar primary,

ηµνησρO4,µνσρ = (∂2)2ϕϕ− (δ + 1)(2δ + 2− d)(2δ + 4− d)

2(2δ + 1)(4δ + 2− d)(4δ + 4− d)
(∂2)2ϕ2

+
2δ + 4− d
2δ + 3− d

(
∂µ∂ν +

2δ + 2− d
4δ + 6− d

∂2 ηµν
)
O2,µν .

(5.17)

For δ = 1
2(d− 4),

Tϕ,4,µν = 2O4,µνσσ −
1

2
ηµν O4,σσρρ . (5.18)

In this case 4δ + 6 − d = d − 2 and the construction of T4,µν fails when d = 2 since then

O2,µν has a spin two conformal primary descendant with two derivatives.

For six derivatives (5.11) is extended to

Kb
6
(
(a · ∂)6ϕϕ

)
= 90δ(δ + 1)(δ + 2)

(
8(δ + 3)(δ + 4)(δ + 5) (a · b)6

− 60(δ + 3)(δ + 4) (a · b)4a2b2

+ 90(δ + 3)(a · b)2(a2b2)2 − 15(a2b2)3
)
ϕ2 .

(5.19)
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Then,

Kb
4
(
(a · ∂)6ϕϕ−D6,ϕ2 ϕ2

)
= − 90(δ + 2)(δ + 3)

(
4(a · b)2(δ + 4)

(
(δ + 5)(a · b)2 − 3 a2b2

)
O2,aa

+ 3(a2b2)2O2,aa − 8 a · b a2
(
2(a · b)2 − 3 a2b2

)
O2,ab

+ 6(a2)2
(
2(δ + 3)(a · b)2 − a2b2

)
O2,bb

)
,

(5.20)

with

D6,ϕ2 =
1

8(2δ + 5)

(
(δ + 3)(δ + 4)

(
δ + 5

(2δ + 1)(2δ + 3)
(a · ∂)2

− 15δ(
4δ(δ + 2) + 3

)
(4δ + 2− d)

a2∂2

)
(a · ∂)4

+
15δ(δ + 1)

(4δ + 2− d)(4δ + 4− d)

(
3(δ + 3)

4δ(δ + 2) + 3
(a · ∂)2

− δ + 2

(2δ + 1)(2δ + 3)(4δ + 6− d)
a2∂2

)
(a2∂2)2

)
.

(5.21)

Further, we have

Kb
2
(
(a · ∂)6ϕϕ−D6

µν O2,µν −D6,ϕ2 ϕ2
)

= 15(δ + 4)
(
2(δ + 5)(a · b)2 − a2b2

)
O4,aaaa

− 120(δ + 4) a · b a2O4,aaab + 90(a2)2O4,aabb ,

(5.22)

with

D6
µν = − 15

4(2δ + 5)(2δ + 7)

(
(δ + 4)(δ + 5)(a · ∂)4 − 6(δ + 2)(δ + 4)

4δ + 6− d
a2(a · ∂)2∂2

+
3(δ + 2)(δ + 3)

(4δ + 6− d)(4δ + 8− d)
(a2)2(∂2)2

)
aµaν

− 45

(2δ + 5)(2δ + 7)(4δ + 6− d)

(
(δ + 4)(a · ∂)2 − δ + 2

4δ + 8− d
a2∂2

)
a2a · ∂ a(µ∂ν)

− 45

2(2δ + 5)(2δ + 7)(2δ + 3− d)(4δ + 6− d)(4δ + 8− d)

×
((

4δ2 + 26δ + 36− d(δ + 5)
)
(a · ∂)2 − (δ + 2) a2∂2

)
(a2)2∂µ∂ν

+
45

2(2δ + 3)(2δ + 5)(2δ + 7)(4δ + 6− d)

(
(δ + 4)(a · ∂)4

+
2δ2 + 19δ + 30− 3d

(2δ + 3− d)(4δ + 8− d)
a2(a · ∂)2∂2

− δ + 2

(2δ + 3− d)(4δ + 8− d)
(a2)2(∂2)2

)
a2ηµν .

(5.23)

A two-derivative operator on O4,µνσρ can now be constructed to obtain a conformal primary

with six indices, namely

aµaνaσaρaτaω O6,µνσρτω = −(a · ∂)6ϕϕ+D6,ϕ2 ϕ2 +D6
µνO2,µν +D6

µνσρO4,µνσρ , (5.24)
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where

D6
µνσρ =

15

2(2δ + 9)

(
(δ + 5)(a · ∂)2 − δ + 4

4δ + 10− d
a2∂2

)
aµaνaσaρ

+
30

(2δ + 9)(4δ + 10− d)
a · ∂ a(µaνaσ∂ρ)

+
45

(2δ + 9)(2δ + 3− d)(4δ + 10− d)
(a2)2a(µaν∂σ∂ρ)

− 45

(2δ + 7)(2δ + 9)(4δ + 10− d)

(
(a · ∂)2 +

1

2δ + 3− d
a2∂2

)
a(µaνησρ)

− 180

(2δ + 7)(2δ + 9)(2δ + 3− d)(4δ + 10− d)
(a2)2a · ∂ a(µ∂νησρ)

− 90

(2δ + 7)(2δ + 9)(2δ + 3− d)(2δ + 5− d)(4δ + 10− d)
(a2)3∂(µ∂νησρ)

+
90

(2δ + 5)(2δ + 7)(2δ + 9)(2δ + 3− d)(4δ + 10− d)

×
(

(a · ∂)2 +
1

2δ + 5− d
a2∂2

)
(a2)2ηµ(νησ)ρ .

(5.25)

We have KbO6,µνσρτω = 0 since there are no conformal primaries with five derivatives and

two ϕ’s.

A four-index as well as a two-index and a scalar conformal primary can be obtained

from O6 by acting with ∂a · ∂a. To avoid even more lengthy expressions we only list here

the scalar primary,

ηµνησρητωO6,µνσρτω = −(∂2)3ϕϕ

+
(δ + 2)(2δ + 2− d)(2δ + 4− d)(2δ + 6− d)

4(2δ + 1)(4δ + 2− d)(4δ + 4− d)(4δ + 6− d)
(∂2)3ϕ2

− 3(2δ + 4− d)(2δ + 6− d)

2(2δ + 3− d)(4δ + 6− d)

(
∂µ∂ν

+
2δ2 + 5δ + 1− (δ + 2)d

(2δ + 3)(4δ + 8− d)
∂2 ηµν

)
∂2O2,µν

+
3(2δ + 6− d)

2(2δ + 5− d)

(
2 ∂µ∂ν +

2δ + 3− d
4δ + 10− d

∂2 ηµν
)
O4,µνσσ .

(5.26)

For δ = 1
2(d− 6) we can express

Tϕ,6,µν = 3O6,µνσσρρ −
1

2
ηµν O6,ττσσρρ , if λ = − 8

d− 4
. (5.27)

Thus, we see that the requirement that Tϕ,6,µν be a conformal primary determines λ,

independently and consistently with the result (2.7) obtained from the curved-space action

contribution of the Bach tensor.

The poles in (5.13), (5.15), (5.21), (5.23), (5.25) at 4δ = 4 − 2k, for k = 1, 2, . . . ,

arise for these δ since there are corresponding differential operators generating conformal
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primary descendants given by, for Oµ1...µ` a symmetric traceless tensor,

Dµ1...µ`n,` Oµ1...µ` =∑̀
r=0,−n

(−1)r
(1

2d+ `+ n− 1)r

2r r! (`− r)! (n+ r)!
(a · ∂)`−r(∂2)n+raµ1 . . . aµr∂µr+1∂µ` Oµ1...µ` ,

a2 = 0, n+ ` ≥ 1, ∆O =
1

2
d− n− ` , (5.28)

is a conformal primary symmetric traceless tensor of rank ` and ∆ = 1
2d+n. Thus (∂2)nO

is a conformal primary scalar for ∆O = 1
2d−n. The poles (5.15), (5.23), (5.25) at 2δ = d−n

for n = 3, 5 correspond to conformal primary descendants

∂µk . . . ∂µ` Oµ1...µ` , k = 1, . . . , ` , ∆O = d+ k − 2 , (5.29)

which are symmetric traceless tensors of rank ` − k. There are also conformal primary

traceless tensor descendants of the form

(a · ∂)kaµ1 . . . aµ` Oµ1...µ` , a2 = 0 , k = 1, 2, . . . , ∆O = 1− `− k , (5.30)

of rank k + ` and correspond to the poles at 2δ = −n for n = 1, 3, . . . .

6 Conclusion

In this paper we have computed CT for various free field theories outside the usual range.

Although such theories involving higher derivatives in general correspond to non-unitary

quantum field theories, they appear to be relevant in understanding some CFTs for large

N numbers of component fields where the 1/N expansion remains valid for arbitrary di-

mension d. Of course there are additional parameters, such as those associated with the

energy-momentum tensor three-point function, one of which is related to CT by Ward iden-

tities. For the usual free CFTs these were also calculated in [8]. The theories discussed here

might also be extended to determine the energy-momentum tensor three-point function,

but the complexity of the expressions for Tµν makes this a rather formidable task, as are

the corresponding large N calculations.

In general in even dimensions CT in a CFT is related to a particular term quadratic

in the Weyl tensor in the energy-momentum tensor trace on a curved space background.

In four and six dimensions, where the trace anomaly coefficients are c and c3, the relations

are [19]

CT =
4

3
× 5! c , CT =

3

5
× 7! c3 , (6.1)

with a normalisation chosen so that for conventional free field theories c, c3 are given by

5! c = nS + 3nW + 12nA, 7! c3 = 2nS + 40nW + 180nB with nS scalars, nW Weyl fermions

and nA, nB the number of vector, 2-form gauge fields in four, six dimensions. There is of

course complete agreement between the results for CT and the curved space results based

on using the heat kernel for second-order conformal differential operators. The results

obtained here allow some contributions to the heat kernel for higher-order operators on
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curved backgrounds to be obtained. These have been discussed for Ricci flat backgrounds

in [32, 33].

Heat kernel techniques allow a perturbation expansion for arbitrary curved back-

grounds so as to determine the leading corrections to c, c3. In six dimensions for a cubic

interaction 1
6 λijkφiφjφk then results in [19, 34] give to lowest order

7! c3,1 = − 7

36
λ̂ijkλ̂ijk , λ̂ijk = λijk/(4π)

3
2 . (6.2)

For the theory defined by (1.5), where φi → (σ, ϕi), λ̂ijkλ̂ijk = 3N ĝ2 + λ̂2 and to lowest

order β ĝ = −1
2ε ĝ + 1

12(N − 8) ĝ3 − ĝ2λ̂ + 1
12 ĝ λ̂

2 , βλ̂ = −ε λ̂ − N ĝ3 + 1
4N ĝ2λ̂ − 3

4 λ̂
3,

so that at the fixed point, to leading order in ε, 1/N , ĝ2 = 6ε/N, λ̂2 = 63ε/N and hence

in (1.3), (1.5) gives for the CFT at d = 6− ε for large N

CT,1 = 1− 7

4
ε , (6.3)

agreeing with the perturbative flat space calculation in [12] and also the expansion of the

large N result. The corresponding results for four-dimensional renormalisable theories

were obtained some time ago. For nA gauge fields, with a simple gauge group and coupling

g, Dirac fermions and Yukawa, scalar interactions ψ̄Yiψ φi,
1
24 λijklφiφjφkφl the results

obtained in [35–38] by expanding about flat space and, using heat kernel methods for a

curved background, [39, 40] give6

c1 = −2

9

(
C − 7

8
Rψ −

1

4
Rφ

)
nA ĝ

2 − 1

24
tr(ŶiŶi)−

1

32× 27
λ̂ijklλ̂ijkl , (6.4)

for ĝ = g/4π, Ŷi = Yi/4π, λ̂ijkl = λijkl/16π2 and we take the spinorial trace tr(1) = 4. The

conventions in (6.4) for C,Rψ, Rφ are such that the lowest order gauge β-function becomes

βĝ = −1
2ε ĝ+ 1

3(11C−4Rψ− 1
2Rφ)ĝ3. For the O(N) scalar theory, with interaction 1

8 λ(ϕ2)2

and βλ̂ = −ε λ̂ + (N + 8) λ̂2, this was shown in [11] to give a O(ε2) contribution to c at

the RG fixed point in 4− ε dimensions, 5! c1 = − 5
12N(N + 2)/(N + 8)2 ε2, consistent with

large N results. For the Gross-Neveu model starting from (1.9) the one-loop β-functions

are β ĝ = −1
2ε ĝ + (2N + 3)ĝ3, βλ̂ = −ε λ̂+ 3 λ̂2 + 8N λ̂ ĝ2 − 48N ĝ4. At the fixed point to

leading order for large N from the Yukawa terms in (6.4) 5! c1 = −5N/(4N + 6) ε, which

agrees with explicit calculations and the expansion of the large N Gross-Neveu result for

CT in [12].

For scalar and fermion theories large N methods allow non-trivial CFTs to be for-

mally defined for general dimensions d which interpolate between physical theories for d

an integer. The situation is less clear for gauge theories since maintaining conformal in-

variance and gauge invariance is more difficult, as was demonstrated in section 4. For

a gauge-invariant quantum field theory the energy-momentum tensor in general contains

contributions arising from the gauge fixing and ghost terms in the action. However these

are BRS exact and do not contribute to correlation functions for gauge-invariant operators

6In terms of some previous literature c = −16π2βa. In [39] in the final result a misprint in (4.16) is

corrected by taking 1
9
→ 2

9
.
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so that the calculations of CT in [8, 9] did not take account of them. In section 4 the gauge

fixing terms made a contribution to the energy-momentum tensor (4.3) whose effect did not

disappear in correlation functions when they notionally decoupled. It is an open question

whether the ghost contributions to Tµν could be extended to general d while maintaining

conformal invariance. Their contributions to CT should account for the difference between

CT in (4.10) and the corresponding gauge theory result when d = 2n.

Note added: for higher-derivative scalar theories calculations of CT have also been car-

ried out by Guerrieri et al. [41], who further considered the theory with eight derivatives.

Prompted by their discussion there is a quick derivation of CT,ϕ,2p, agreeing with (2.13) for

any p, based on known results for conformal partial-wave expansions of four-point func-

tions as a sum over conformal primaries. Using Mellin transform methods Fitzpatrick and

Kaplan [42] obtained a conformal partial-wave expansion for the four-point function of

generalised free fields in any dimension d. Their results give the expansion

uδ =
∞∑

`,τ=0

cτ,` G2δ+2τ+`,`(u, v) , (6.5)

where u, v are the standard conformal invariants and G∆,`(u, v) are the conformal partial

waves for a conformal primary operator with scaling dimension ∆ and spin ` and its

descendants. The partial waves are normalised here so that G∆,`(u, v) ∼ u
1
2

(∆−`)(−1 + v)`

as u→ 0, v → 1. From [42],

cτ,` =

(
(δ − 1

2d+ 1)τ (δ)`+τ
)2

`! τ ! (`+ 1
2d)τ (2δ + τ − d+ 1)τ (2δ + `+ τ − 1

2d)τ (2δ + 2τ + `− 1)`
. (6.6)

The four-point function for free fields 〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉 defines a function of the

conformal invariants F (u, v) = Nϕ
2
(
1 +u∆ϕ + (u/v)∆ϕ

)
, where Nϕ is the coefficient for the

two-point function, which may be expanded in terms of conformal partial waves using (6.5),

for u→ u/v cτ,` → (−1)`cτ,`. Coresponding to the operator product (2.9),

ϕ(x)ϕ(0) ∼ − Nϕ

CT,ϕ

d∆ϕ

d− 1

1

(x2)∆ϕ− 1
2
d+1

xµxν T
µν
ϕ (0) . (6.7)

Since x12µx34 ν I
µν(x24)

/
(x12

2x34
2)

1
2 ∼ −(1− v)/(2

√
u) as x12, x34 → 0, we must have

cp−1,2

∣∣∣
δ= 1

2
(d−2p)

=

(
d∆2p

d− 1

)2 1

8CT,ϕ,2p
= (−1)p−1 d(d− 2p)2

32 p(d− 1)

(1
2d− p+ 1)p−1

(1
2d+ 2)p−1

. (6.8)

This gives a result for CT,ϕ,2p identical to that in (2.13). The restriction on δ is of course

necessary to ensure that the expansion contains a conformal primary contribution which

may be identified with the energy-momentum tensor, for this case in (6.5) τ ≤ p−1 and the

operators which contribute have ∆− ` = d+ 2(τ − p) and are expressible as ϕ(∂
↔

)` (∂2)τϕ.

These results can easily be extended to consider the differing conserved currents present

in these free theories. If we allow ϕ→ ϕi, there is a conserved current Jµϕ,ij = −Jµϕ,ji with〈
Jµϕ,ij(x) Jνϕ,kl(0)

〉
= CJ,ϕ

1

(x2)d−1
Iµν(x) (δikδjl − δilδjk) . (6.9)
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For its contribution in the operator product expansion we have

ϕi(x)ϕj(0) ∼ − Nϕ

CJ,ϕ

1

(x2)∆ϕ− 1
2
d+1

xµ J
µ
ϕ,ij(0) . (6.10)

The four-point function in this case has the form Fijkl(u, v) = Nϕ
2
(
δijδkl + δikδjl u

∆ϕ +

δilδjk (u/v)∆ϕ
)
, and using (6.5) we find

1

CJ,ϕ,2p
= 2 cp−1,1

∣∣∣
δ= 1

2
(d−2p)

= (−1)p−1 1

p

(1
2d− p)p

(1
2d+ 1)p−1

. (6.11)

Acknowledgments

For some of our computations we have used Mathematica with the package FeynCalc [43,

44]. AS would like to thank Brian Henning, David Poland, and Siddharth Prabhu for useful

discussions. The research of AS is supported in part by the National Science Foundation

under Grant No. 1350180.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149

[INSPIRE].

[2] A.N. Vasiliev et al., Simple method of calculating the critical indices in the 1/N expansion,

Theor. Math. Phys. 46 (1981) 104 [INSPIRE].

[3] A.N. Vasiliev, Yu.M. Pismak and Yu.R. Khonkonen, 1/N expansion: calculation of the

exponents η and ν in the order 1/N2 for arbitrary number of dimensions, Theor. Math.

Phys. 47 (1981) 465 [INSPIRE].

[4] A.N. Vasiliev, Yu.M. Pismak and Yu.R. Khonkonen, 1/N expansion: calculation of the

exponent eta in the order 1/N3 by the conformal bootstrap method, Theor. Math. Phys. 50

(1982) 127 [INSPIRE].

[5] L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6− ε dimensions, Phys. Rev.

D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].

[6] A. Stergiou, Symplectic critical models in 6 + ε dimensions, Phys. Lett. B 751 (2015) 184

[arXiv:1508.03639] [INSPIRE].

[7] J.A. Gracey, Six dimensional QCD at two loops, Phys. Rev. D 93 (2016) 025025,

[arXiv:1512.0444].

[8] H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for

general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

[9] A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111

[arXiv:0911.4257] [INSPIRE].

– 19 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(78)90218-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B135,149%22
http://dx.doi.org/10.1007/BF01030844
http://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,46,104%22
http://dx.doi.org/10.1007/BF01019296
http://dx.doi.org/10.1007/BF01019296
http://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,47,465%22
http://dx.doi.org/10.1007/BF01015292
http://dx.doi.org/10.1007/BF01015292
http://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,50,127%22
http://dx.doi.org/10.1103/PhysRevD.90.025018
http://dx.doi.org/10.1103/PhysRevD.90.025018
http://arxiv.org/abs/1404.1094
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1094
http://dx.doi.org/10.1016/j.physletb.2015.10.044
http://arxiv.org/abs/1508.03639
http://inspirehep.net/search?p=find+J+PHLTA,B751,184
http://arxiv.org/abs/1512.0444
http://dx.doi.org/10.1006/aphy.1994.1045
http://arxiv.org/abs/hep-th/9307010
http://inspirehep.net/search?p=find+EPRINT+hep-th/9307010
http://dx.doi.org/10.1007/JHEP03(2010)111
http://arxiv.org/abs/0911.4257
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4257


J
H
E
P
0
6
(
2
0
1
6
)
0
7
9

[10] A. Petkou, Conserved currents, consistency relations and operator product expansions in the

conformally invariant O(N) vector model, Annals Phys. 249 (1996) 180 [hep-th/9410093]

[INSPIRE].

[11] A.C. Petkou, C(T ) and C(J) up to next-to-leading order in 1/N in the conformally invariant

O(N) vector model for 2 < d < 4, Phys. Lett. B 359 (1995) 101 [hep-th/9506116] [INSPIRE].

[12] K. Diab et al., On CJ and CT in the gross-neveu and O(N) models, arXiv:1601.00719.

[13] F. David, B. Duplantier and E. Guitter, Renormalization theory for interacting crumpled

manifolds, Nucl. Phys. B 394 (1993) 555 [hep-th/9211038] [INSPIRE].

[14] F. David, B. Duplantier and E. Guitter, Renormalization of crumpled manifolds, Phys. Rev.

Lett. 70 (1993) 2205 [hep-th/9212102] [INSPIRE].

[15] S.M. Paneitz, A quartic conformally covariant differential operator for arbitrary

pseudo-riemannian manifolds (summary), SIGMA 4 (2008) 036 [arXiv:0803.4331].

[16] E.S. Fradkin and A.A. Tseytlin, Asymptotic freedom in extended conformal supergravities,

Phys. Lett. B 110 (1982) 117 [INSPIRE].

[17] R.J. Riegert, A nonlocal action for the trace anomaly, Phys. Lett. B 134 (1984) 56 [INSPIRE].

[18] T. P. Branson, Differential operators canonically associated to a conformal structure, Math.

Scand. 57 (1985) 293.

[19] G. Wang et al., Beam energy distribution influences on density modulation efficiency in

seeded free-electron lasers, Phys. Rev. ST Accel. Beams 18 (2015) 060701

[arXiv:1501.00130] [INSPIRE].

[20] A.R. Gover and L.J. Peterson, Conformally invariant powers of the Laplacian, Q-curvature

and tractor calculus, Commun. Math. Phys. 235 (2003) 339 [math-ph/0201030] [INSPIRE].

[21] G. K. Karananas and A. Monin, Weyl vs. conformal, arXiv:1510.08042.

[22] M.A. Rajabpour, Conformal symmetry in non-local field theories, JHEP 06 (2011) 076

[arXiv:1103.3625] [INSPIRE].

[23] K.J. Wiese, Classification of perturbations for membranes with bending rigidity, Phys. Lett.

B 387 (1996) 57 [cond-mat/9607192] [INSPIRE].

[24] Y. Nakayama, Hidden global conformal symmetry without Virasoro extension in theory of

elasticity, arXiv:1604.00810.

[25] H. Osborn, Lecture notes on conformal field theories in more than two dimensions, in

preparation but available at http://www.damtp.cam.ac.uk/user/ho.

[26] T. Parker et al., Invariants of conformal laplacians, J. Diff. Geom. 25 (1987) 199.

[27] S. Giombi, G. Tarnopolsky and I.R. Klebanov, On CJ and CT in conformal QED,

arXiv:1602.01076.

[28] J. Erdmenger, Conformally covariant differential operators: properties and applications,

Class. Quant. Grav. 14 (1997) 2061 [hep-th/9704108] [INSPIRE].

[29] S. El-Showk, Y. Nakayama and S. Rychkov, What Maxwell theory in D 6= 4 teaches us about

scale and conformal invariance, Nucl. Phys. B 848 (2011) 578 [arXiv:1101.5385] [INSPIRE].

[30] A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].

– 20 –

http://dx.doi.org/10.1006/aphy.1996.0068
http://arxiv.org/abs/hep-th/9410093
http://inspirehep.net/search?p=find+EPRINT+hep-th/9410093
http://dx.doi.org/10.1016/0370-2693(95)00936-F
http://arxiv.org/abs/hep-th/9506116
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506116
http://arxiv.org/abs/1601.00719
http://dx.doi.org/10.1016/0550-3213(93)90226-F
http://arxiv.org/abs/hep-th/9211038
http://inspirehep.net/search?p=find+EPRINT+hep-th/9211038
http://dx.doi.org/10.1103/PhysRevLett.70.2205
http://dx.doi.org/10.1103/PhysRevLett.70.2205
http://arxiv.org/abs/hep-th/9212102
http://inspirehep.net/search?p=find+EPRINT+hep-th/9212102
http://dx.doi.org/10.3842/SIGMA.2008.036
http://arxiv.org/abs/0803.4331
http://dx.doi.org/10.1016/0370-2693(82)91018-8
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B110,117%22
http://dx.doi.org/10.1016/0370-2693(84)90983-3
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B134,56%22
http://dx.doi.org/10.1103/PhysRevSTAB.18.060701
http://arxiv.org/abs/1501.00130
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.00130
http://dx.doi.org/10.1007/s00220-002-0790-4
http://arxiv.org/abs/math-ph/0201030
http://inspirehep.net/search?p=find+EPRINT+math-ph/0201030
http://arxiv.org/abs/1510.08042
http://dx.doi.org/10.1007/JHEP06(2011)076
http://arxiv.org/abs/1103.3625
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3625
http://dx.doi.org/10.1016/0370-2693(96)00989-6
http://dx.doi.org/10.1016/0370-2693(96)00989-6
http://arxiv.org/abs/cond-mat/9607192
http://inspirehep.net/search?p=find+EPRINT+cond-mat/9607192
http://arxiv.org/abs/1604.00810
http://www.damtp.cam.ac.uk/user/ho
http://arxiv.org/abs/1602.01076
http://dx.doi.org/10.1088/0264-9381/14/8/008
http://arxiv.org/abs/hep-th/9704108
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704108
http://dx.doi.org/10.1016/j.nuclphysb.2011.03.008
http://arxiv.org/abs/1101.5385
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5385
http://arxiv.org/abs/hep-th/0201019
http://inspirehep.net/search?p=find+EPRINT+hep-th/0201019


J
H
E
P
0
6
(
2
0
1
6
)
0
7
9

[31] V.M. Braun, G.P. Korchemsky and D. Mueller, The uses of conformal symmetry in QCD,

Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].

[32] M. Beccaria and A.A. Tseytlin, Conformal a-anomaly of some non-unitary 6d

superconformal theories, JHEP 09 (2015) 017 [arXiv:1506.08727].

[33] M. Beccaria and A. A. Tseytlin, Conformal anomaly c-coefficients of superconformal 6d

theories, JHEP 01 (2016) 001 [arXiv:1510.02685].

[34] B. Grinstein et al., Two-loop renormalization of multiflavor φ3 theory in six dimensions and

the trace anomaly, Phys. Rev. D 92 (2015) 045013 [arXiv:1504.05959].

[35] S.J. Hathrell, Trace anomalies and λφ4 theory in curved space, Annals Phys. 139 (1982) 136

[INSPIRE].

[36] S.J. Hathrell, Trace anomalies and QED in curved space, Annals Phys. 142 (1982) 34

[INSPIRE].

[37] M.D. Freeman, The renormalization of nonabelian gauge theories in curved space-time,

Annals Phys. 153 (1984) 339 [INSPIRE].

[38] A. Cappelli, D. Friedan and J.I. Latorre, C theorem and spectral representation, Nucl. Phys.

B 352 (1991) 616 [INSPIRE].

[39] I. Jack, Background field calculations in curved space-time. 3. Application to a general gauge

theory coupled to fermions and scalars, Nucl. Phys. B 253 (1985) 323 [INSPIRE].

[40] I. Jack and H. Osborn, Analogs for the c theorem for four-dimensional renormalizable field

theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].

[41] A. Guerrieri, A.C. Petkou and C. Wen, The free σCFTs, arXiv:1604.07310.

[42] A.L. Fitzpatrick and J. Kaplan, Unitarity and the holographic S-matrix, JHEP 10 (2012) 032

[arXiv:1112.4845] [INSPIRE].
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