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1 Introduction

Prior to the discovery of a Higgs boson at the LHC [1, 2] with a mass my, ~ 125 GeV [3],
theoretical considerations were used to place upper limits on how heavy the Higgs boson of
the Standard Model (SM) could be. Lee, Quigg, and Thacker famously derived an upper
bound of A < 167/3, or equivalently m; < 1/167/3v ~ 1TeV with v ~ 246 GeV, by
translating the unitarity of the S-matrix into an upper limit on the magnitude of partial
wave amplitudes for 2 — 2 longitudinal vector boson and Higgs boson scattering [4, 5], see
also [6]. This work was subsequently extended to the one-loop [7-9] and two-loop [10, 11]
levels, which allowed for the study of bounds on mj, due to perturbativity as well unitarity,
and their interplay.

Despite the tremendous success of the Standard Model, there are good reasons to
think that Nature might be described by an extended scalar sector. For starters, multiple
generations of fermions are known to exist, so why shouldn’t there be multiple Higgs dou-
blets (or other multiplets) as well? More concretely, the couplings of the Higgs boson to
vector bosons are consistent with the SM predictions, but the experimental uncertainties
are currently in the tens of percents [12-14]. Any deviation from the SM in these mea-
surements would be a clear signal of additional Higgs bosons, and the uncertainties are
currently large enough that this is a possibility.! There are theoretical arguments which
favor extended scalar sectors as well. The mass-squared parameter of the Higgs doublet
of the SM is quadratically sensitive to the highest scale in the problem, rendering it un-
stable against quantum corrections. Beyond the SM solutions to this naturalness problem
typically introduce new particles around TeV scale. The most well studied solution, the
Minimal Supersymmetric Standard Model (MSSM), contains two Higgs doublets.

After the Standard Model, the theory with the next simplest scalar sector is the two-
Higgs doublet model (2HDM) [16-19]. Clearly, it is interesting to study the unitarity
bounds in the 2HDM as the scale at which new particles are expected to appear is the
same scale as the Lee, Quigg, Thacker upper limit on the Higgs mass in the SM. In fact,
many authors have studied the tree level unitarity bounds on the quartic couplings and
Higgs masses of the 2HDM [20-29]. Extracting bounds on the masses of the Higgs bosons
from the bounds on the quartic coupling is not as straightforward in the 2HDM as it
was in the SM because in general the squares of the masses of the Higgs bosons of the
2HDM are not simply proportional to a linear combination of quartic couplings. In this
work, we present the first one-loop level analysis of the perturbative unitarity bounds in
the two-Higgs doublet model. Specifically, we compute all of the one-loop corrections that
are enhanced, O(\;);/167%), in the limit s > |\;|v? > M3, s > m3, to all the 2 — 2
longitudinal vector boson and Higgs boson scattering amplitudes. As this is a first work, we
do not consider the most general scalar potential in the 2HDM, but rather require that the
potential is C' P-conserving with a Zs symmetry that is at most softly broken. Furthermore,
we content ourselves with bounding the quartic couplings at the one-loop level, and save

LCombining these experimental measurements of Higgs couplings with the bounds from perturbative uni-
tarity is an efficient way to reduce the parameter space available in theories with extended Higgs sectors [15].



bounding the masses of the Higgs bosons for future studies. To this end, we study two
simplified scenarios, and find that the typical bound on the quartic couplings is [A;(s)| S 4.

The structure of the rest of the paper is as follows. We start in section 2 by giving
the background necessary to understand the calculations and analysis we perform. After
describing the 2HDM, which also gives us a chance to define our notation, we review the
partial-wave analysis that is used to obtain upper limits on the quartic couplings. The
details of the one-loop computation are discussed next in section 3. In particular, the
computation is greatly simplified through use of the Goldstone boson equivalence theorem,
which relates scattering amplitudes with external longitudinal vector bosons to amplitudes
external Goldstone bosons. The conditions for the Goldstone boson equivalence theorem to
hold at the one-loop level place restrictions on which renormalization schemes can be used
to render the one-loop amplitudes finite. We then move on to the analysis of constraints
on the quartic couplings due perturbative unitarity at the one-loop level, which is done in
section 4. After making some general considerations and reproducing the SM results, we
analyze two simplified scenarios, the 2HDM in the limit where the longitudinal Goldstone
boson scattering amplitudes possess an SO(3) symmetry, as well as a scenario inspired by
the form of the scalar potential in the MSSM. After that, our conclusions are given in
section 5. Finally, appendix A contains our results for the self-energies, while appendices B
and C contain our results for the scattering amplitudes.

2 Background

2.1 Two-Higgs doublet model

The two-Higgs doublet model contains two SU(2), scalar doublets each with hypercharge
Y = 1/2. We are using the convention @ = 7% + Y, where T* = 7%/2 are the SU(2),
generators and 7F are the Pauli matrices. The most general scalar potential consistent
with SU(2)z, x U(1)y can be written as,

V =m? (@1@1) +mi, (@5%) - [m§2 (cbicbz) + h.c.} (2.1)
1 te. ). o L TRY i i i i
+ 2)\1 q)l‘IH + 2)\2 (I)QCI)Q + A3 (I)l(I)l @2(132 + A4 (I)lq)g (132(1)1

" {;)\5 (¢§¢2>2 n [)\6 (@{@1) T (@5@)] (cb}%) n h.c.} .

The parameters A5, Ag, A7, and m?, are in general complex, while the rest of the parameters
are always real. However, for the scalar potential to explicitly conserve C'P-symmetry, there
must exist a basis where the parameters A5, Ag, A7, and m%2 are all simultaneously real. To
avoid Higgs mediated flavor changing neutral currents (FCNCs) at tree level, we restrict the
form of the potential by imposing a Zo symmetry under which the scalar fields transform
as ¢ — &1 and &9 — —Py. We are agnostic about the Zs charge assignments for the
fermions in the theory. This symmetry forces A\g, A7 — 0, which then allows for A5 to be
made real with a rephasing of ®; [30]. For the Zs symmetry to be exact, m2, must also
be zero. However, we will allow for a soft breaking of the Zs symmetry by keeping m3,



real to achieve a C' P-conserving potential, but non-zero in general, as this scenario is more
phenomenologically interesting. In any case, the bounds from perturbative unitarity on
the quartic couplings are only very weakly dependent on m2, at large s. This dependence
is induced at one-loop due to terms of the form, for example, Inm? /m3? (with m4 being
the mass of the C'P-odd Higgs). With these restrictions, the potential now has the form,

1 2
V =m? (@I@l) +mi, (q);%) —m?, [(cb{@g) + h.c.} + 5N (@}@1) (2.2)
1 fo.)’ f f f i 1 TRE
+5A (0@2) + 23 (@]@1) (@1@s) + A4 (@]@,) (@hr) + 5 [(@1%) +h.c.] .

Requiring eq. (2.2) to be bounded from below leads to the following tree level constraints
on the parameters in the potential [17],

AM >0, A>0, A3>—vVAMAy, A3+ A\— |)\5| > —1/ A As. (2.3)

In what follows, it will be convenient to expand the fields in the basis where the Zs is
manifest as,

wl hj +1z;
P; = J . onj=—21—" (j=12). 2.4
I (nj—l—vj/ﬂ " V2 U ) (2.4)

Here we have <(I>;r) = (0, v;/V/2) with v; = veg, va = v sg, where we are using the notation
sg, cg, and tg are the sine, cosine, and tangent of 6 respectively. The minimization of scalar
potential, which breaks SU(2);, x U(1)y — U(1)gu, is given by

1 1
iy = it = 207 (e + daissd) . iy = ity — 207 (hash + hascd) . (25)

with 345 = A3+ Ay + As. The relationships between the rest of the parameters in eq. (2.4)
and the Goldstone boson and physical Higgs states are: h; = coH — sqh, ha = so H + cqh,
21 = cgz — SgA, 20 = sgz+cgA, where h and H are the neutral, C'P-even Higgs bosons, A
is the neutral, C'P-odd Higgs boson, and z is the would-be neutral Goldstone boson. The
relations for the charged bosons are analogous to those for the C'P-odd bosons.

In some instances, it will prove more convenient to use the Higgs basis rather than
the Zo basis. The Higgs basis can be obtained from the Zy basis by making the following
rotation, H; = Cﬂq)l + 85(132, Hsy = —55@1 + Cﬂq)g, such that

V2wt V2H*
V2H, = (u+¢1+iz>’ V2H,; = <¢>g+z’A>’ (2:6)

with ¢1 = cg_oH + sg_ah, ¢p2 = —s3_oH + cg_oh. In the notation of [31], the potential
in this basis is given by

V= Mf (HIH1> + M3, <H5H2> — M7, [(HlTH2) + h.c.] (2.7)
o () + o0 () + s (B (Bim) + Ay (m]m) (#im)

+ {;A5 (HIHQ)2 + Ao (mlmn ) + Az (dm )| (i) + h’c} ’



where all the parameters are real due to the CP-symmetry. Since there are only five
quartic couplings in the Zs-basis, two of the seven quartic couplings in the Higgs basis are
dependent upon the other five. The minimization conditions are simpler in the Higgs basis,
and are given by

1 1
M121 = —§A1U2, M122 = §A6U2. (28)

We will occasionally refer to the alignment limit of the 2HDM, where sg_, — 1 for
mp < mpg or cg_o — 1 for mg < my, and the couplings of the aligned Higgs boson
approach those of the SM, see [18] or more recently [32-34]. Results from Run-1 of the
LHC have pushed the parameter space of the 2HDM towards this limit [35]. There are two
ways to achieve the alignment limit, decoupling, or alignment without decoupling (or both
simultaneously). In the Higgs basis, decoupling occurs when M2, > v2, while alignment

without decoupling can achieved by taking Ag < 1.

2.2 Partial-wave analysis

We are interested in seeing how large the parameters of the 2HDM can be. To this end,
we perform a partial-wave analysis. Partial wave amplitudes are bounded by the unitarity
of the S-matrix, STS = 1, which requires

2—2 1.

ag —1

2
Si| + 2 ladm = %. (2.9)

n>2

Here, aﬁ_ﬁ are the eigenvalues of the matrix of 2 — 2 ¢-th partial-wave amplitudes, a%‘”.

In this work, we do not compute any of the inelastic scattering amplitudes that appear
in eq. (2.9).2 We do however make a few comments about the 2 — n amplitudes before
continuing with the analysis of the 2 — 2 amplitudes. The inelastic scattering amplitudes
in eq. (2.9) are computed in a basis where a2 is diagonal, and in each term in the sum
contains an implicit integral over the n-body phase space. The scattering amplitudes that

enter the 2 — 3 partial-wave amplitudes scale as M?>73 ~ A\2uv/s, leading to |aZ 73

)\;‘»‘212 /s after the phase space integration is performed. Thus, in the energy limit under
consideration, s > \;v?, the 2 — 3 partial-wave amplitudes can be neglected. The leading
inelastic amplitudes that persist in the energy regime we are considering are the 2 — 4
scatterings, which have the following scalings, M?>7* ~ A?/s and [a?7*? ~ A}. In the
SM, the 2 — 4 amplitudes are a few percent of the total contribution to the partial-wave
amplitudes for moderate values of the quartic coupling [9].

Henceforth we will drop the superscripts from a, and only consider elastic scattering,
unless explicitly stated otherwise. In this case, the unitarity of the S-matrix puts an upper
limit on the magnitude of the eigenvalues of ay,

2

1
< —. 2.1
— 4 (2.10)

ag—ii

2Note that because the a,’s are eigenvalues, all of the 2 — 2 processes in eq. (2.9) are elastic, and

similarly, all of the inelastic processes in eq. (2.9) are the 2 — n amplitudes. This is course not true in

+

general, e.g. wTw~ — zz is inelastic 2 — 2 scattering.



Y | T Zo-even Zo-odd
1 (! 1 (T

0 0 V2 <(I)1(I)l) V2 ((1)1‘1)2)
5 (¢2¢>2) € (¢2¢>1)
1 Tk 1 Tk

ol1| v (@;T ™) (‘1’17 )
& (elrtes) 3 (alrte)

11]0 — L (ci>1<1>2)
1(& -k 1 (& .k

1 1 5 (?1’7’ (1)1) ﬁ ((1)1’7’ @2)
% (@27k¢2>

Table 1. Initial states for 2 — 2 scattering broken down by total hypercharge, total weak isospin,
and transformation under Zs. The Zs-even, Y = 1, 7 = 0 states are identically zero. We have
omitted the Y = —1 states, which can be obtained from the ¥ = 1 states by charge conjugation.

As can be seen from eq. (2.9), the equality is satisfied if and only if all of the inelastic
scattering processes vanish. From (2.10), two perhaps slightly more familiar, but in general
weaker bounds can be derived,

lag) <1, |Re(ar)| < =. (2.11)

DN | =

At tree level, and for the energy regime of interest, s > |\;|[v? > M3, s > m?2,, the only
non-zero partial wave is the £ = 0 wave, so it will be the only partial-wave we will consider.

To compute ag, we adapt the approach of [25, 26] to the one-loop level. Refs. [25, 26]
showed that the tree level derivation simplifies considerably in the Zs basis with non-
physical Higgs fields wf, nj, and n}. At high energies, the SU(2)r x U(1)y symmetry is
manifest, and weak isospin (7) and hypercharge (V') are conserved by the 2 — 2 scattering
processes at tree level. Thus, ag is block diagonal at leading order, with blocks of definite
isospin and hypercharge. These blocks can themselves be broken down into smaller blocks
by noting that, at tree level, Zo-even and -odd states do not mix.

The full set of initial states, and their representations under these symmetries is given
in table 1. For the 7 = 1 states, k = {3, 4, —}. We have defined Ci)j = (i7?®;)T. The states
with Zo-even, Y =1, 7 =0, i.e. %(&)1 ®,), are identically zero since they are proportional to
€¢;5. States with hypercharge —1 can be obtained from the states with Y = 1 by charge
conjugation.

For a given initial state ¢ and final state f, the corresponding element of ag is given by,

0
(a0)is = — / dt Moy (s, 1), (2.12)

~ 167s s

where we have assumed the states can be treated as massless. Here, M;g represents the
sum of all possible amplitudes involving wj[, nj, and n; (with the appropriate weights)



that can be formed from the initial and final states. For example, suppressing the explicit
dependence on s and t,

1
; ; (2.13)

M — - (M Mo
1 (‘biél)@% (q%TSq)Q) ) ww] —wy w, w] w] —nand

V2
+ Mnln?%w;w; - Mnln’iﬁnzn;) .

The amplitude in eq. (2.13) is actually zero at tree level (it’s non-zero at one-loop), but
was chosen as it is a simple example of the combinatoric exercise.

The block diagonal structure of ag does not hold beyond tree level. However, it still has
an important consequence for the analysis at the one-loop level. For all tree level blocks
whose eigenvalues are unique (for a given net electric charge in the scattering process),
because the block diagonal elements start at tree level and the off-block diagonal elements
start at one-loop, the off-block diagonal elements do not affect these eigenvalues until
the two-loop level. Thus, they can be ignored for the purposes of the one-loop analysis.
For neutral initial states, eight of the 14 eigenvalues are unique, with three additional
eigenvalues appearing twice. On the other hand, all of the eigenvalues for the charged
initial states are unique. This difference occurs because, for example, both %(i’ﬂﬂﬁj) and
%(ifT*@;) are neutral initial states (that lead to the same block of scattering amplitudes),
whereas %(&)n?’@j) and %(@;‘73@;‘?) have opposite electric charges.

At one-loop, the approach of [25, 26] works for all diagrams where the particles can
all be treated as massless. In the high energy limit under consideration, this corresponds
to all the 1PI one-loop diagrams. The only diagrams that can not be computed using this
strategy are the external wavefunction corrections, as they are independent of s (and t).

3 One-loop calculation

3.1 Equivalence theorem

We are interested in the full set of one-loop amplitudes for longitudinal vector boson and
Higgs boson scattering in the energy regime, s > |\;|v? > M%,, s> m2,.3 The compu-
tation of these amplitudes can be greatly simplified through use of the Goldstone boson
equivalence theorem [4, 5, 37-39]. At the one-loop level, the theorem states that an ampli-
tude involving n external, longitudinally polarized vector bosons is related to an amplitude

with n external Goldstone bosons as,
M (WE, Zp, h,...) = (GC)" M (wF, 2, hy...) + O (M /+/5) . (3.1)

To make the computation of scattering amplitudes involving longitudinal vector bosons
as simple as possible, we will use eq. (3.1) and choose our renormalization scheme, to be

3Note that this energy regime does not imply the decoupling limit discussed in section 2.1 as this set
of conditions does not generally require that one of the Higgs bosons be parametrically lighter than the
rest. Furthermore, it is worth mentioning that partial-wave amplitudes satisfy unitarity bounds uniformly
for all s and ¢ that are sufficiently far away from the resonances of the theory [7, 8, 36]. We have chosen
to examine the bounds from perturbative unitarity in this energy regime as the computation in simpler in
this case.



discuss in section 3.2, such that C = 1. As was just alluded to, the constant C' depends on
the choice of renormalization scheme [38],

1/2
My Zyty,
- My Z1/2

wtw—

c [1+0(g3)] , (3.2)

where MI(/]V and My, are the bare and renormalized mass of W respectively. In general,
we denote the bare value of a parameter X, as X°, and its counterterm is defined by
60X =X°— X. Zyy+w- and Z,+,- are the wavefunction renormalization constants of the
physical W* bosons and the charged Goldstone bosons, w*, respectively.

Ref. [38] showed that C = 1+ O(g3) when the Goldstone bosons are renormalized
using a momentum subtraction scheme with subtraction scale m? < \jv?, where go is the
gauge coupling of SU(2)r. Since M3, = g5v?/4 at tree level, the O(g3) terms are small
in the parameter regime of interest, g3 < ;. In addition, this hierarchy in parameters
further simplifies that calculation by allowing us to consider only scalar particles in the

loop diagrams. Furthermore, since Z‘%iw_ =1+ O(g3), then it follows that M, /My =
1+ 6Mw /My = Z;/fw_ [1 4+ O(g3)]. This relation implies

Sv?
With Zy = Zytop- -

3.2 Renormalization

The renormalization of the two-Higgs doublet model is discussed in depth in [40]. In
contrast with that work, and the loop level SM perturbative unitarity analyses [7—11], we
use the MS renormalization scheme with two exceptions, which are necessary to satisfy the
Goldstone boson equivalence theorem. The first exception is the finite renormalization of v,
eq. (3.3). In addition, instead of MS, we exactly cancel the tadpole diagrams by subtracting
the appropriate combination of Goldstone boson self-energy and Goldstone-Higgs mixing
at zero momentum from all the scalar self-energies and mixings [41]. The relevant part of
the bare Lagrangian in the Higgs basis is,

1 1 1
LD — <(M121)0 + §A(1) (02)0) <w+w_222 + 5@1)% + vo¢1> (3.4)
1
_ ((Mg)o I (v2)0> (whH™ 4 How + 2A+ b1 + 0).
At tree level, the right hand side of (3.4) is zero due to egs. (2.8), but this cancellation
does not hold in general at the loop level. More to the point, (3.4) shows that the tadpole

counterterms are related to the self-energies of the Goldstone bosons and the Goldstone-
Higgs mixing at zero momentum. The particular combinations are,

(STh = —UO[Sﬁfasz(O) + Cﬁ*aHZA(O)]’ (35)
0Ty = —0°[cp_all.2(0) — sg_all.4(0)].



Note that II,,(0) = II,+,-(0) and I1,4(0) = I+ - (0), and II;;(p?) = IL;;(p?). All the
tadpole diagrams can then be ignored provided the scalar self-energies are modified as

follows,
ﬁw"’w— (p2) = Hw+w— (p2) - sz (0) s (36)
ﬁzz (p2) =1l (PQ) —IL,. (O) )
ﬁhh (p2) = Hpn (p2) - 5,23—04HZZ (0) - 285—0405—04HZA (0) )
Oyn (0?) = Muy (07) — 3 oIL2(0) + 255_acs—all.(0),

with I+ - and II44 unchanged. The mixing between the Goldstone bosons and the
physical Higgs bosons must also be modified,

Hw+H‘ (pZ) = Hw+H— (pQ) - HZA (0) ’ (37)
1/_V[zA (P2) =14 (pz) — 11,4 (0),
W (p?) = My (%) = $5-aCs—allez(0) — (3o — 53_)L.a(0).

Explicit expressions for the self-energies can be found in appendix A. The wavefunction
renormalization then depends on the shifted self-energies as well,

1 dIly; (p?
ZV =142 # : (3.8)
2 dp
p2—m?
12 _ i (m7)
K m? — m?
N 1/2 . . 12 1/2 .
ote that Z;;" is not symmetric, e.g. Z "y =0, but Z,;7 _ # 0. For later convenience,
we define a reduced wavefunction renormalization,
2 =162 (27~ 5 ) - (3.9)

Importantly, in addition to exactly canceling the tadpoles diagrams, this scheme renormal-
izes the Goldstone bosons on-shell, which satisfies the condition for the Goldstone boson
equivalence theorem to hold at one-loop as discussed in section 3.1.

The quartic couplings and the soft Zy breaking parameter are renormalized using the
MS scheme. The renormalized parameters are defined in terms of the bare parameters as,

A =\ + 0N, (mfz)o = miy + 0mi, (3.10)

where, as previously stated, X° are bare parameters and X are renormalized parameters.
In D = 4 — 2¢ dimensions, after making the following replacements in the Lagrangian,
i — A\ ji%€ with u? = 4me~7[i%, the counterterms can be written as

1

0X =
1672¢

Bx. (3.11)



Our findings for the beta functions in eq. (3.11) agree with the well known results in the
literature, see e.g. [42],*

Bay = 6T + 2X3 + 2230 + A + A2, (3.12)
Bay = 6A% 4 222 4+ 22304 + A3 + A2,
Brg = 203+ AT+ (M1 + A2) (BA3 + A1) + A2,
Bay = (A1 4 Xo +4X3) Ay + 207 + 402,
Brs = (A1 + A2+ 4A3 +6X4) A5,
Bz, = miz (A3 + 20 + 3X5)

my

For a given parameter X in eq. (3.12),

dXx
Bx = 16m*u°——. (3.13)
du
From egs. (3.3) and (3.11), it is straightforward to derive counterterms for the mass pa-
rameters,
smj, = (5mh)MS + (Zw = 1) (mj, + m%,c5_4) (3.14)
% = ((5 ) Zw —1) (m%{ + mQZwS%,a) ,
6 (mamr) = (6 (mhmH)) ~(Zw = 1) M, 55-aCs-a,
5mH+ = (6m3 g+ (Zw—1) (m3s +m7, ),
= (%) 5 + (Zo = 1) (ma+m7,)
where we have defined,
ZmQZw = m,%s%fa + m%cgﬁ,a + (mh m%{) 528—2al 25 2m1235 cﬁ . (3.15)

These counterterms render the Higgs self-energies finite, which in turn modify the tree level
relations between the physical Higgs masses and the parameters in eq. (2.2). The loop level
relations can be written in a form analogous to the tree level relations,

o2 cﬂ = myc: +mis? m%ztg, (3.16)
Agv? 85 = m%{sz + mhc — mmtﬁ ,
Agvs2g = (MY — mj,) s2a — 2(miy — M s2),

Ao? = m%sglcgl + ’I”TL124 — 2m%,+,

Asv? = mfgsglcgl —m3,
with m? = m? — Re [ﬁ”(m?)} (and II being the renormalized self-energy). We have chosen

not to rediagonalize the mass matrix for the neutral, C'P-even Higgs bosons, which would
have induced a dependence of eq. (3.16) on II,z and a redefinition of «.

4Recently, the complete two-loop beta functions in the C'P-conserving 2HDM with a softly broken Zs
symmetry have been determined [43].



3.3 2 — 2 scattering amplitudes

The only one-loop diagrams that survive in the limit s > [\;[v? > M2, s > m3, are the
1PI diagrams with two internal lines, i.e. 1PI bubble diagrams, and the external wavefunc-
tion renormalization diagrams.® In this limit, the masses of the internal particles can be
neglected in the bubble diagrams. This allows us to use the non-physical Higgs fields wf,
n;, and n;‘ in computing the bubble diagram contribution to ag. Furthermore, in this limit,
the bubble diagrams preserve the block diagonal form of ag. Up to symmetry factors, all
of the bubble diagrams have the form,

1 1 —p? —i0"

For p? > 0, the branch cut in the log yields In(—p?) — In(p?) — 4.

Unfortunately, this trick of using non-physical Higgs fields will not work when comput-
ing the one-loop corrections to the external legs of the amplitudes because the masses of
the Higgs bosons can not be neglected for those diagrams. Instead we calculate and renor-
malize the external wavefunction corrections in the Higgs basis with the physical Higgs
fields, as the expressions are simpler in this basis. The results are then converted back to
the parameters of the Zs-basis such that the parameterization of the scattering amplitudes
is consistent amongst all of its contributions.

All of the energy dependence of ag in this limit can be subsumed into running couplings
through standard renormalization group (RG) methods. The running couplings, A;(u?),
are the solutions to eq. (3.12) with initial conditions at the scale pg given by eq. (3.16). By
setting 42 = s in the fixed order scattering amplitudes, we remove all of the explicit energy
dependence from (the high energy limit of) the amplitudes. Then the couplings appearing
in the scattering amplitudes should be interpreted as the running couplings evaluated at
p? = s, ie. \(s).

Consider a generic block of one-loop scattering amplitudes in ag,

2 2
2567-r3aQYTZQ - (1671' bo + b1 —167“cy + Cl>
0 = .

) ) (3.18)
—167%cy + ¢1 —167°dy + dy

We label blocks of ag and their eigenvalues by the electric charge (Q), hypercharge (Y),
weak isospin (7), and transformation under Zsy of their initial state. For a given @, if the
tree level eigenvalues for this block are unique (with respect to all of the eigenvalues of ag
for that @), the corresponding one-loop level eigenvalues are

2567l T2 = 82 (bo +do £ \/ (bo — do)? + 4c3> (3.19)

(b(] — d(]) (bl — dl) + 46061
\/(b() — d0)2 + 403

®The 1PI diagrams with three and four internal lines scale as v?/s and v*/s? respectively. The contri-

1
+§ b1+d1:l:

bution of these diagrams to longitudinal vector boson scattering in the SM is IR-finite [8]. In the 2HDM,
there are no new topologies, and the presence of extra masses in the loops can only serve to improve the
regulation of the IR behavior of these diagrams, such that they can indeed be neglected in the limit s > v?.
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Explicit expressions for the scattering amplitudes that form the block diagonal and off-
block diagonal elements of ay are given in appendices B and C respectively. With this
organization, for eigenvalues that are unique at tree level, the corresponding one-loop
eigenvalues only depend on the results of appendix B. On the other hand, for degenerate
tree level eigenvalues, the corresponding one-loop eigenvalues depend on the results of both
appendices B and C. Our results for the tree level eigenvalues agree with those of [23-26],

—16mag s = (Al + Aot \/ (A — Xo)? + 4A3> , —16madledd = A3+ X5, (3.20)

1
2
1
2

—16mag e = ()\1 + o+ \/()\1 — ) + 4A§> , —16magt®dd = A3 + Ay,

1
—16madleven = 3 (3>\1 +3X2 + \/(3)\1 —3\)2 44 (203 + >\4)2> ,
—16madl° = A3 + 204 £3)5,  —16ma? = N3 — Ay

In eq. (3.20), the tree level eigenvalues are not labeled with @ as, unlike the one-loop
eigenvalues, they are degenerate with respect to the electric charge of the initial state.

4 Analysis of one-loop perturbative unitarity constraints

In this section, we analyze the one-loop level unitarity constraints on the 2HDM. In addi-
tion to reproducing the SM results with our methods, we consider two simplified scenarios
for the 2HDM: the case where the Goldstone boson scattering amplitudes have an SO(3)
symmetry, and a 2HDM whose parameters are inspired by the form of the Higgs potential
in the MSSM. It should be noted however that the results in appendices A, B, and C can
be used to analyze the C P-conserving 2HDM with a softly-broken Zs symmetry, which is
more general than any of the scenarios considered in this section.

4.1 General considerations

Before getting into specific examples, we make some general considerations regarding the
bounds on one-loop amplitudes from perturbative unitarity. Consider the case of when the
tree level eigenvalue does not contain a square root, e.g. all of the Zo-odd eigenvalues in
egs. (3.20). At one-loop, an eigenvalue of this type can be parameterized as

256m3ag = —1672bg + by. (4.1)

We will explicitly break by up into its real and imaginary parts in what follows, by = br+ib;.
The two constraints that are commonly considered in tree level analyses are (2.11), 1 > |ag|
and 1 > |Re(ap)|. At one-loop, these bounds become

1 1

@bRP + (Wbl)z' (4.2)

1
> by — —— > —
8 = |bo 167r2bR|7 167 = \/(bo
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From this, we see the usual interplay between perturbativity and unitarity. The more
interesting bound is (2.10), & > |ag — i/2|, which first becomes non-trivial at the one-
loop order. Expanding this unitarity constraint yields

11 b2 b bob b? b?
>4 0 I 0YR R + I . (43)
4 =4 256m2 25673 20487% 6553676 6553670
The leading order bound from (4.3) is
by = Tm(by) > wb2. (4.4)

Assuming (4.4) is saturated, or that perturbation theory holds, leads to a constraint on
the real part of by,

b b
bobr > 3on2 T 53,2 (4.5)
b2

bobp > —L
071 = 3272

by > 327’7";2 (bg > 0).

Neglecting the wavefunction renormalization contribution to the scattering amplitude, (4.5)
leads to bounds on the beta functions of the theory,

bo <167r2 + by 4 m4/25672 — bg) > 36, > bo <16772 + by — /25672 — bﬁ) , (4.6)

where 161 > |bg| and [y, is the linear combination of beta functions appearing in the
scattering amplitude. For example, if by = A3 + 24 + 35, then By, = B, + 265, + 38),-
Expanding (4.6) to leading order in by yields,

327 bo| Z 3B, 2 G- (4.7)

Now consider the more general case where the eigenvalue has the form of eq. (3.19).
We will again expand the one-loop parts of the eigenvalues into the real and imaginary
parts. The leading order bound from (2.10) is,

(b[ — d[)(b(] — do) + 4creg + (b[ + d])\/(b() — d0)2 + 40(% (4.8)

zw(%—d@@m—mg+qm+d@%+(%+m%+%)¢®U—%P+4ﬁy
The constraint (4.8) is saturated when,
b[ZTF(bg—l—Cg), cr = m (bo + dp) co, d[:Tr(dg—f—Cg). (4.9)

For all of the scattering amplitudes in appendix B, the 1PI contribution to the amplitudes
satisfies egs. (4.9). This property of the scattering amplitudes is perfectly consistent with
the statement that the equality in (2.10) (or (4.8)) is satisfied only when all of the 2 — n
scattering processes vanish. When the wavefunction renormalization contribution to the
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scattering amplitudes contains an imaginary part, it is due to there being open decay
channels. Clearly, decays are inelastic, and so the equality in (2.10) cannot be satisfied in
this case. Neglecting the imaginary parts of the one-loop amplitudes, the generalization
of (4.5) to eigenvalues with the form of eq. (3.19) is,

327 [(bobr + 2cock + dodg) 1/ (bo — do)” + 4¢3 (4.10)

+ (b5 + 2¢3) br + (d§ + 2¢3) dr + 2¢o (bo + do) cr — bodo (br + dR))]

> (bk + 2¢% + dF,) \/(bo — do)? + 4c} + by (b, — dF) + do (df — bF)
2cg

(b — do)* + 4¢3

+ bheodo — 4bobrerdy — 4eockdo + 4brerdy + 2dRr (2b5cr + co (4cocr — brdo)

+ 2 (bp + dop) C%{ [bob%Co + SbRC%CR — 4bococ%

— bo (breo + 2¢rdp) ) + co (bo + do) dF).

4.2 Reproduction of the Standard Model results

Since neither this renormalization scheme nor this basis for computing ag has been used
for the Standard Model, we begin our analysis of specific models by reproducing the results
of the SM. The matrix of scattering amplitudes for neutral initial states is,

256m°af=0 /A = (4.11)
3(—64n+(51+12im+2v/3m)\) (13—2v/37)A (—134+2v37)A (—134+2v37)A
(13—24\/§7r),\ —647r2+(59+24i7r+2\/§7r))\ (13—22\/§7r)>\ (13—22\/57'?)/\
(—13+§\/§7r))\ (13—2:1;/%),\ —327r2+(23+;12i7r+2\/§7r))\ S ’
(—13+§\/§W)A (13—2;/571’))\ 0 —32772+(23+22i7r+2\/§7r)>\

where the initial (final) states of the columns (rows) are,

oo Jsofrle [erte oo

2 2
L oo
o Lgpts3
a9=0 = vz*' ¢ , (4.12)
3O P
%@*T‘@*

and @ is the Higgs doublet of the SM with the Higgs mass at tree level given by m% =\’
Note that at tree level, ay is diagonal in the SM, as opposed to the block diagonal structure
of the 2HDM. The eigenvalues of eq. (4.11) are

- (1534 36im +6v3m) A2 oy

ad70 = —6X + ;oA = (4.13)
’ s ’ ™
_ - (46 + i + 4/37) A2 _ - (33 +4im +6/371) A2

afs’ = —2X + ( i + 4/57) . ag =2+ ( in +6v/3) ,
’ ™ ) T
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where A\ = \/327. Eq. (4.13) is in agreement with ref. [9]. Notice that aglzo is unaffected
by the diagonalization of eq. (4.11). This is due to the fact at tree level, ag 1:0 is different

from the other three diagonal elements of eq. (4.11). Along the same lines, because aé’%; 0 —
aOQ3 0 = agz 40 at tree level, all three of these eigenvalues are affected by the off-diagonal

elements of ag.

Another check of our SM result is to look at the fixed order expressions for aOQZO in

terms of the physical Higgs mass. Expanding the running coupling to the one-loop order,

-1
M) =2 (8) (1- g )5 ) (414)
3 s
m)\(u%) <1+8 )\(,uo)l M%>7

and eliminating A through

2 4 2
M) ="k - h (3/3r — 954 12In 2 (4.15)
v 32m2t U3

we find

2 2
Q=0 _  3my my,
agy = 1602 {1 ~ T6m202 < + 3im + 237 — 61n —

— )+O(47rv) ] (4.16)

h

Eq. (4.16) is also in agreement with the results of [9].

The unitarity constraint ‘ao 1 — 1/2‘ < 1/2 yields the bound A(s) < 15.5. It’s inter-
esting to note that a numerically similar bound is obtained when only the 1PI diagrams
are included in the analysis, ‘(a(?f[)hm - 2/2‘ < 1/2 — A(s) < 15.1. While unitarity can
in principle hold up to A(s) &~ 15, perturbativity does not hold for such large couplings.
To see this consider the following quantities,

|CL(()1 | / Qg
R1 = 0 Rl = 0. (417)
ag” + ag| lag”|

(0)

where a

and a((]l) are the tree level and one-loop contributions to the eigenvalue ag

respectively. Minimal requirements for perturbation theory to hold are that the next-to-
leading order contribution to an amplitude should be smaller in magnitude than both the
leading order contribution and the total amplitude. Thus, perturbativity is violated when
Ry =1 or R} = 1. Based on the criterion, perturbativity is violated when A(s) ~ 4.3 —5.1,
as can be seen from figure 1. The solid curves and dashed lines in figure 1 correspond to Ry
and R) respectively. The eigenvalues entering into R; and R} in the green, blue, orange,
and red curves in figure 1 are agg 1 0 aono, %Q:,)O, and a(cffo respectively. Ref. [9] states
that the range of R; for A(s) = 5 (in our notation) is 1.08 — 1.31.5 Whereas we find that

Ry = {0.97, 1.31, 1.15, 1.08} for ag;, with A(s) =

SNOte that Athis work = 2)\ref. [9]
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Figure 1. The validity of perturbation theory in the SM. The solid curves and dashed lines

correspond to Ry and R] respectively, which are defined by (4.17). The green, blue, orange, and

. =0 =0 =0 =0 s
red curves/lines correspond to a(? 1 aOQ2 , a(? 3 ,and aOQ4 respectively.

4.3 SO(3) symmetric limit

In the SM, the Goldstone boson scattering amplitudes possess an SO(3) symmetry, analo-
gous to the strong isospin symmetry of the pions. We start our analysis of the 2HDM by
considering the highly simplified scenario where the Goldstone boson scattering amplitudes
in the 2HDM retain the SO(3) symmetry they had in the SM.

In the Higgs basis, it’s clear that if the Goldstone boson scattering amplitudes are
to have an SO(3) symmetry, at least at high energies, then only Aj, Ay, and Ag can be
non-zero. This choice brings about the alignment limit, and forces mg = my+ = ma. In
the Zs-basis, these choices can only be achieved if Ay = Ay = A3, and Ay = A5 = 0. Thus,
we have the further simplification, A; = Ay = A3. For definiteness, the potential in this

case is,
1 02\ 2
V =m2, (qﬂcbltﬁ + @)yt — By — @3@1) +5M (@J{@l + Pldy — 2) . (418)
The masses of the Higgs bosons are,
mi = Mv?, mi =my =mi, = m%s/glcgl. (4.19)

There are other symmetry considerations that lead to the mass spectrum in eqgs. (4.19) as
well, such as the Maximally Symmetric 2HDM potential based on SO(5) [32]. Alternatively,
this mass spectrum can also be obtained by demanding the stability of the scalar potential
up to the Planck scale [44].

The reason for considering such a simple scenario is that it isolates one of the differences
between one-loop scattering amplitudes in the SM and the 2HDM. The main difference
between the tree level scattering amplitudes in the SM and the 2HDM is that there are
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five parameters in the 2HDM versus only one parameter in the SM. This scenario allows
us to eliminate that difference. In doing so, we are able to isolate another difference, in the
2HDM the external wavefunction corrections contain terms of the form Inm? /m3.

Due to this being such a simplified scenario, there are only two unique tree level

eigenvalues, aJ)™"*™ = —5X; /167, while all the rest are —\;/167. As a result, we will focus

on the agooe"en block of ag,

256> adl0even — (4.20)

16n2) 32 /ﬁ C1 + 240%]”(:1:) + 483%9(3;) Cy+ 8f(z) + 16g(x)
TMNg3 8 Cy+8f(x) + 16g(x) Ci1+ 24s%f(x) + 480%9(:1:) '

The definitions in eq. (4.20) are

x=m?%/m3, (4.21)
Oy = 445 + 104im 4 6v/3m + 3(2V31 — 9)cas,

Co = 270 + 47 (24i + V/3),

1= 4o — 20T = Iy In ( L0/t

/(@) —1+4x ’
[4z — h(x)][22 + (1 — z) In(x)] — 2(1 — 3z)h(z)In (%)
9(x) = 222 [h(z) — 4a] ’
h(z) =1+ V1 —4x.
The functions f and g have similar limiting behavior,
2v3 1
f)y=g9(1)=-1+ \9f717 f(x>>1),g(ac>>1)oc;. (4.22)
At one-loop, the eigenvalue of interest is
5\ 5A7
000even __ 1 1 .
agiperen = — 220 4 2L (143 +40im + 2v/37 + 4f () + Sg(x)) L (4.23)
The Argand diagram of a83_0even is shown in figure 2 as a function of the running

coupling A1 (s). The solid circle is the bound |ag —i/2| < 1/2, whereas the dashed arc and
the dotted vertical lines represent the bounds |ag| < 1 and |Re(ag)| < 1/2 respectively.
The blue curve corresponds to my = my, and is labeled with various values of Ai(s).
The orange curve instead corresponds to the limit s > mi > m,zl In practice, this limit
amounts to setting f(z) = g(x) = 0 in eq. (4.23), but the heavy Higgses do not decouple
completely (s > m?) as there is an O(1) difference between the orange curve and the SM
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Figure 2. Argand diagram of aga_oe"en in the SO(3) symmetric 2HDM as a function of the running
coupling Aq(s). The blue and red curves corresponds to mi = m? and m,% = 8m? respectively,
and are labeled with various values of \;(s). The orange curve is the limit s > m?% > m?. Finally,
the green corresponds to the contribution of the 1PI diagrams alone. The solid circle is the bound
|ag —i/2| < 1/2, whereas the dashed arc and the dotted vertical lines represent the bounds |ag| < 1
and |Re(ag)| < 1/2 respectively.

value, ag(fé’f/}‘ = —3\1/167. Figure 2 shows that the effect of the real parts of the Inm? /m?2
terms are numerically unimportant, at least in the limit of an SO(3) symmetry. The green
curve emphasizes a similar point, as it corresponds to neglecting the external wavefunction
corrections completely. This shows that the contribution of the external wavefunction
renormalization diagrams are typically small with respect to the 1PI diagrams (tree -+
one-loop), again at least in the case of an SO(3) symmetry. On the other hand, the red
curve corresponds to m,% = Smi, leading to an imaginary part for Z; because the decay
h — AA is now allowed. As can be seen from figure 2, the imaginary part of Z, is positive.
However, even though this curve is further away from the other three curves in the Argand
plane, it still doesn’t cause a significant change to the bound on the quartic coupling; the

orange curve yields A;(s) < 9.85, whereas the red curve yields A;(s) < 9.76.

As we have just shown, unitarity can in principle hold up to Ai(s) =~ 9.8 in the SO(3)
symmetric limit. However, just as in the SM, perturbativity does not hold for such large
couplings. Based on the criterion R; < 1, perturbativity is violated when A;(s) ~ 4.0—4.2,
which can be seen from figure 3. Similarly, based on R} < 1, perturbativity is violated
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Figure 3. The validity of perturbation theory in SO(3) symmetric limit of the 2HDM. The solid
curves and dashed lines correspond to Ry and R} for the eigenvalue aggoeve“ respectively. The blue,

orange, green, and red curves have the same parameterizations as they do in figure 2.

when A\;(s) ~ 6.3 —6.4. The solid curves and dashed lines in figure 3 correspond to R; and

000even
0

R for the eigevnalue ag) respectively. The blue, orange, green, and red curves/lines

in figure 3 have the same parameterizations as the curves in figure 2.

4.4 MSSM-like 2HDM

In the MSSM, the Higgs quartic couplings are related to the gauge couplings,

2 2 2 2 2
_|_ —_
A :AQ:%, )\3:%, A4:—%2, As = 0, (4.24)

where g; is the gauge coupling associated with U(1)y, and again, gs is the gauge coupling
of SU(2)r. The soft Zy-breaking parameter is given by m?2, = mz‘s[g%. Loop corrections
to the MSSM potential are important, as at tree level the MSSM predicts min{my,, mg} <
Mz, which is incompatible with the LHC measurements of a Higgs boson at 125 GeV.
Clearly, the quartic coupling of the MSSM satisfy the tree level unitarity bounds, as we
have assumed \; > ¢21 in everything that proceeded eq. (4.24).

However, by considering a scenario inspired by eq. (4.24), we can get a feel for the
impact of the one-loop corrections without having to deal with the full complexity of
the 2HDM parameter space. Specifically, we will take A1, A3, ma, and tan 8 to be free
parameters, and enforce at tree level

M =Xy, M=—(A1+2A3), As=0. (4.25)

It should noted however that the relations in eqs. (4.24) are RG-invariant in the MSSM,
whereas the analogous relations, egs. (4.25), are not RG-invariant if supersymmetry is
not imposed on the 2HDM [19]. In this analysis, we impose the relations in egs. (4.25)

at = +/s.
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As was the case for the SO(3) symmetric 2HDM, because of the relative simplicity of
the MSSM-like 2HDM, there are more degenerate tree level eigenvalues of ay than there
are in the general case of a C'P-conserving 2HDM with a softly broken Z,; symmetry.
Due to this fact, we will first focus on a}?dd = —(\; 4+ 2A3), which is unique at tree level.
Neglecting the external wavefunction corrections, the one-loop eigenvalue in the MSSM-like
2HDM is

256m3agt0° = —1672 (A1 + 2X3) — (2A1 — 11A3)(2A1 + A3) +im(A 4 2X3)2. (4.26)

The full expression for a}'%°44, which valid for the more general case of the C'P-conserving

2HDM with a softly broken Zs symmetry, is given in eq. (B.19). A typical result of our
investigation in shown in figure 4, which is an Argand diagram of the eigenvalue a[l)OOOdd
for A\3(s) = 9A1(s)/10. The various unitarity bounds in gray are the same as they were in
figure 2. The blue curve corresponds to neglecting the external wavefunction corrections.
Several values of Ai(s) are labeled along the curve. For each labeled value of Ai(s) we
plotted the complete one-loop prediction for aéOOOdd for three choices of m4. The blue,
orange, and green points respectively correspond to my = {1 TeV, 14 TeV, 400 GeV}. Five
choices for tan 3 are plotted for each value of m4, tan = {1.1, 1.6, 2.5, 5.0, 60}. The
scalar integrals entering into the wavefunction renormalization terms are computed using
LoopTools-2.12 [45]. It’s clear from figure 4 that the approximation of neglecting the
external wavefunction corrections becomes worse as the theory becomes more strongly
coupled. However, the overall change in the bound extracted on Ai(s) does not change

much despite this modest spread in predictions for aéoo‘)dd

near the unitarity circle, as can
be seen by inspecting figure 4.

Stronger limits can be obtained by combining the bounds for multiple channels. Fig-
ure 5 shows the upper limits on Ai(s) and A3(s) obtained by combining the constraints
in the nine unique channels, neglecting the external wavefunction corrections, from the
unitarity bound |ag—1i/2| < 1/2. The solid blue, orange, green, red, and purple curves cor-
respond to ag(fe"en, ag(loeven, ag(lleven, agne"en, and a(l)lo‘)dd respectively. While the dashed
blue, orange, green, and red curves correspond to agileve“, agooodd, a801°dd, and agllodd
respectively. Note that the subscript + or — has been dropped in some cases because those
eigenvalues become degenerate when the wavefunction corrections are omitted. Lastly, the
gray parameter space is ruled out due to at least one of the eigenvalue exceeding the bound
lap — i/2| < 1/2. Much of the parameter space in figure 5 that is viable with respect
to unitarity can be eliminated by enforcing the tree level stability bounds, which in the
MSSM-like 2HDM take the form A; > 0, A3 > —A;. The black, dotted line in the right
panel of figure 5 indicates the tree level stability bound, and the parameter space to the
left of this line is ruled out this bound.

Figure 5 requires A3 to be negative at the high scale, u = /s. Curiously, in the MSSM
A3 = (g5 — g7)/4 is positive at the low scale, say u = M. However, one should not rush
to conclusions as there are important differences between the MSSM-like 2HDM and the
actual MSSM, as noted at the beginning of this subsection, 4.4.

As was the case for the SM and the SO(3) symmetric limit of the 2HDM, we also

consider the limits obtained from perturbativity. Figure 6 shows the limits on A;(s) and

~19 —



12..¥..
1.0-— l

0.8}

T

0.6

Im(aa10 Odd)

T

0.4

T

0.2

1 " " " 1

0.0 0.2 0.4 0.6

Re(a(1)10 Odd)

0.0

-0.6 -0.4 -0.2

Figure 4. Argand diagram of a}'%°d¢ in the MSSM-like 2HDM as a function of the running
coupling A;(s) with As(s) = 9A1(s)/10. The blue curve corresponds to the contribution of the 1PI
diagrams alone, and is labeled with various values of A;(s). The blue, orange, and green points are
the complete one-loop calculations for a}'?°dd at each of the labeled values of A;(s). The choices
for m 4 and tan 8 for each point are given in the text. The unitarity bounds are the same as those
in figure 2.

Az(s) in the MSSM-like 2HDM due to perturbativity from requiring R; < 1 in the left
panel, and R} < 1 in the right panel. The various solid and dashed curves correspond
to the same eigenvalues as they did in figure 5. As was the case for figure 5, the gray
parameter space is ruled out. Unlike the cases of the SM and the SO(3) symmetric limit
of the 2HDM, there are two unique quartic couplings in the MSSM-like 2HDM. This can
lead to accidental cancellations in the tree level partial-wave amplitudes, which may fail

the perturbativity tests Rgl) even for reasonable values of A\; and A3. To prevent this

80) | > aé?:)ut, to prevent the tree level amplitudes

from happening, we imposed a cut, |a
from accidentally becoming small. We choose aogut = 0.01, as this roughly corresponds to
|Ai| > 1/2 assuming aéo) ~ \i/(167).

Combining the bounds from figures 5 and 6, the limits on the quartic couplings are
|A1,3(s)| < 4, at least for the regions of parameter space that satisfy the tree level stability
bounds. In the MSSM-like 2HDM, the neglect of the external wavefunction corrections
is justified a posteriori by comparing figure 4 against figures 5 and 6. Interestingly, both

unitarity and perturbativity dominate the bounds on A 3(s) in certain regions of parameter
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Figure 5. (left) Limits on A;(s) and A3(s) in the MSSM-like 2HDM due to unitarity, |ag — /2] <
1/2. See the text for which eigenvalue corresponds to which curve. (right) Zoomed in version of
the left panel, which also includes the tree level stability bound, A3 > —A;, given by the dotted,
black line.

As(s)

As(s)

0 ' \ 10 % 0 5 10

A(s) A(s)
Figure 6. Limits on \;(s) and As(s) in the MSSM-like 2HDM due to perturbativity from requiring
(left) Ry < 1 (right) R} < 1. The cut |a(()0)| > 0.01 is imposed to prevent the tree level amplitudes

from accidentally becoming small. See the text more details on this cut, and for which eigenvalue
corresponds to which curve.
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space, whereas perturbativity was always the more dominant constraint in the SM and
SO(3) symmetric limit of the 2HDM.

5 Conclusions

In this work, we computed all of the one-loop corrections that are enhanced in the limit
s > [ Nfv? > Ma,, s > m%Q to all the 2 — 2 longitudinal vector boson and Higgs
boson scattering amplitudes in the C P-conserving two-Higgs doublet model with a softly
broken Zs symmetry. We found that the external wavefunction corrections are generally
numerically subdominant with respect to the 1PI one-loop corrections, and that they can
often be neglected to a good approximation. In the two simplified scenarios we studied, it
was shown that combining perturbativity and unitarity places bounds on the magnitude
of the quartic couplings of |\;(s)| £ 4. It would be interesting to compute the tree level
2 — 4 scattering amplitudes in the 2HDM, which should be the leading contribution to the
2 — n partial-wave amplitudes. Then the equality eq. (2.9) could be used to bound the
quartic couplings rather than the inequality (2.10).
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A Results for self-energies

Our results for the self-energies in the 2HDM, which enter into the external wavefunction
renormalization of the scattering amplitudes given in appendices B and C, as well as the
threshold corrections to the parameters of the 2HDM, are given in A.1. The cubic and
quartic couplings that enter into the self-energies are given in A.2 and A.3 respectively. The
particles that interact through a given coupling are listed to the left of the formula for the
coupling, and the corresponding Feynman rules for these three- and four-point interactions
are imy, and g, respectively. The self-energies are given in terms of the finite parts of the
usual one-point and two-point scalar integrals, in D = 4 — 2¢ dimensions,

2
Ay [m?] = mT + Ag [m?],  Bo[p*.mi,m3] = % + By [p*, mi, m3] . (A1)

- 29 —



Explicitly, the finite pieces of the scalar integrals are,

Ag [m?] = m? <_ In 7;‘22 n 1) , (A.2)

1 2,.2 2 2 2 2 _ 0+
_ ¢ —x —m7j 4+ m35) +ms — 10
By [pz m%,m%}:—/ dx lnp (p LZ 2) 2 .
0

A.1 Self-energies

ﬁw+w_ (pz) = 162 (m% (Bo [p2,0,m,2l] — By [0, O,mi]) (A.3)
+ mg (BO [an 07 m%—]] - BO[Ov 07 m%{]) + m?) (BO [p27 m?’{Jmm%L]
— Bo[0, m3,m}]) +m? (Bolp®, m%+, m¥] — Bol0, m3, m3))
+ ‘m9‘2 (BO [pza m%]Jra m?4j| - BO [Oam%[+7m,24:|) )

ﬁzz (pz) =162 (m2 (Bo [p 0, mh} By [0,0,m,%]) (A.4)
-l—mi (Bo [p ,O,mH} — By [O,O,mH]) —l—m% (BO [p2,m?47mﬂ — By [O,mi,mﬁ])
+ mg (Bo [p2,m2A,m%{] — By [O,mi,qu]) )

M- () = g0
+ mamy (Bo [p?,0,m%] — By [0,0,m%]) + msmao(Bo [p?, mFy+, mj]

— By [0,m%+,m}] ) + mymaz (Bo [p®, mips, m3;] — Bo [0,m34,m¥]))

(m1m5 (BO [pz,o,mz] — BO [0, O,WZ]) (A5)

ea (") = 150
+mams (Bo [p*,0,m¥%] — By [0,0,m%]) + memay (Bo [p*, m%, mj]

(mgmg (Bo [p2,0,m;2l] — By [O, O,mi]) (A.6)

— By [O,mi,mz] ) + mgmai3 (BO [pQ,mi,m%] — By [O,mi,m%q]) )

I1,.(0) = I+, (0) = g1 4o [mi] +go Ao [m%{] +2g3 Ay [mﬁﬁ} +g440 [mi]) (A.7)

1
3272 (
1
~ 1o —— (m3By [0,0,m}] +mjBy [0,0,m% ] +mgBo [0, m%, mj]

+m830 [O,mA,mH] )

I, 4(0) =+ 5 (0) = #(95]10 [mi[+g6 Ao [m3]+297 40 [m3 4 ] +9s Ao [m%])  (A8)
161 5 (mamg By [0,0,m3] + mams By [0,0,m7| + mema1Bo [0,m%,mj)
+mgmas By [0, m%, m¥;] )
Ty, (r*) = 321 5 (29940 [m3+] + 91040 [m%] + 91540 [m}] + g17 Ao [mE]) (A.9)
- 3217Tz ((2m? +m3) Bo [p*,0,0] +4m3Bo [p*,0,m; | + 2miBo [p*,0,m3]

+2m3y By [p?, mip+, mis | +mi Bo [p*, m%, m%4] +miyBo [p*, mj, mj)
+ 2m%5B0 [an 777,121], mizz] + m%GBO [p27 m%{a m%[] ) - ngaHZZ(O)

—255_aCa—allLa(0) + (Zy — 1) (mj, + mzzwc%_a)
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- 1 _ _ - _
gp (p°) = 392 (291140 [m%1 ] + g12do [mZ] + g174o [} + g10do [m3])  (A.10)

— oy (23 m2) By [52,0,0] + 4m2Bo [p2,0,m%. ] + 2mi By [52,0,m3]
+ Qm%QBO [p2a m%—[-‘r; m?’—[-‘r] + m%3BO |:p27 m124’ m2A] + m%5BO |:p27 mia m}2l:|
+ 2mfﬁBo [p2, m%,mﬁ] + m%7Bo [pQ,m%{, m%{] ) — c%_aHzZ(O)

+253_aCs—allz4(0) + (Zy — 1) (qu + mQZw s%_a)

~ 1 B - B )
M (%) = 55— (201840 [ ] + g1ado [m3] + g6 Ao [m7] + gisdo [my]) (A1)
1 — —
o m( (2m1m3 + m2m4) By [p27 0, 0] + 4dmsm~7 By [pQ, 0, m%q+]

+ 2mgmsBo [p*,0,m%] + 2migmaz By [p®, mips, mips | + muimasBo [p®, m%, m? ]
+ miamisBo [pQ,mi, m;ﬂ + 2my5mi6Bo [PQ,m%{,m%] + migmi7 Bo [p2,m%{, qu] )

— Sg—aCa—all;2(0) — (c%_a — s%_a) IL4(0) — (Zw — 1)m%,_ Sp—aCs—a

(gng [m;ﬂ + g11 4y [m%[] + 2¢2040 [m%ﬁ] + g21 4y [mi]) (A.12)

Wrn- (pZ) = 3072

1 _ _ _
- @(mgBo [p%,0,mj};| +mZBy [p*,0,m3;] + [mo|*Bo [p*,0,m%]
+m?2,By [pZ,m%JF,m,ﬂ + m3,By [p2, may, m%{} )+ (Zw —1) (m§1+ + m2Zw)

IMaa (pz) (91040 [mi] + 91240 [m%{] + 2921 Ao [m%ﬁ] + g22 Ao [m,%;]) (A.13)

1
3272
1 _ _ _
- @(m%BO [p°,0,mz] +mgBo [p*,0,m¥]| + 2|mo|*Bo [p®,0,m3;+ |
+mi, By [p*,m%, mi] + misBo [p*,mA,m¥] ) + (Zw — 1) (m% + mZ,)

A.2 Cubic couplings

hwtw™ 1 miv=—miss_q (A.14)
hzz: ma=my (A.15)
Huwtw™ : mav=—mcs_q (A.16)
Hzz: my=mg3 (A.17)
hwtH™ @ msv=— (m% — miﬁ) Ch—a (A.18)
hzA: mgv = — (m,% - mi) Ch—a (A.19)
HwtH™ : mqv = (my —my:) Sp—a (A.20)
HzA: mgv= (m%[ - mi) 58—a (A.21)
AwtH™ : mgv = —i (m4 — mi) (A.22)
hRHYH™ : myov= sglcgl (m%QC/BJrasglcEl —m%02505_a) — (m%—l—Qmiﬁ) Sg—a  (A.23)
hAA: mpv= sglcgl (m%205+asglclgl —m%cwcﬁ,a) —(mj+2m%)sp_a  (A.24)
HHTH™ : mlgv:sglcgl (m%235+asrglcg1+m%{62535_a> - (m%{+2m%{+)05_a (A.25)
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HAA: mlgv:sglcgl (m%285+asrglcgl+m%{62555_a) - (m%+2mi)05_a (A.26)
hhh : 4m14vs§6/3: 16m%205+ac%_a—m%(3835+a+355_a+835_3a+85+3a) (A.27)
hhH :  misvseg = —Cg—q [2m%2 + (mlzq + Qm% — 3m12351051) $2a:| (A.28)
hHH : migvseg = Sg—q {—2m%2 + (m% + Qm% — Smlgsglc[?) 82a] (A.29)
HHH : 4m17vs%5/3: 16m%235+as%,a+m12q(3035+a—305,a+036,3a—05+3a) (A.30)
A.3 Quartic couplings

hhzz: —g? = m%{c%_a +2 (mj, — m) c%_a%_atgﬁl + m%sé_a (A.31)

+ C%_a [Qmi — 2mlgsglcgl + (Sm% — m%{) s%_a]
HHzz: —gov? = m%,c%_a +2 (mj — mj) 05_,13%_&152_51 + m%sé_a (A.32)

+ 5%_a {Qmi - 2mlgsglc/§1 + (Bm% - m%) c%_a]
HYH zz: gp?= 2m%2351051 —2m%, — m%{c%,a — m%s%,a (A.33)

+ (mi —mi) tys 52524

AAzz:  g® = 2m%23glc/§1 — (m3; +2mj) c%_a — (mj + meq) s%_a (A.34)

+ (m¥y —m}) 5552524

hhzA : 2g5v2325 = m%{sw_gasza - 2m?452552a_25 (A.35)

+ Cs_a |:4m%265_a8510510213 —mj, (C—pt3a + 305+Q)}

HHzA : 2g6v2325 = m%sm,ga@a + 2m?482552a,25 (A.36)

+ 55— [4mf25ﬂ—a8510§10w —mi; (S-g43a — 35ﬂ+a)}

HTH 2A: 8971}2335 = 32miycas (A.37)

+2 (m%{ — m%) (3c2a + c4p—2a) 525 — 4 (m}% + ml%l) S4p

AAzA: g3 =3g; (A.38)
hhHTH™ : 16991)2825:25%2652[620_65+2(3+62a_25—|—645)+502a+25]m%2 (A.39)

- 851051 (94 3caa + 6can—25 + Caa—ap + 3cap + 10c24425) M}

— 2sglcglsga (3520 + S20—48 + 2528) m%{ — 323§_532gm%,+

hhAA : 169101}2825 = 2552652 [CQQ_GQ +2(3+02a_25+045) +562a+2ﬂ]m%2 (A40)

- 551051 (9 + 3caa + 6caq—28 + Caa—a + 3cag + 10c20423) m%

- 25[;165132(1 (3520 + S20—48 + 2523) m%l — 323§,ﬁ325mi

HHH+H_: 16911’0282ﬁ:2852052[2(3—020[,254-045)—02a765—502a+25]m%2 (A41)

— 351051(9 + 3C4a — 6C20—28 + Caa—ap + 3Cap — 1002a+25)m%{

— 285105152Q(352a + S20-48 — 2525)m% — 3203_5823771%”
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HHAA :

hHHYH™ :

hHAA :

hhhh

hhhH :

hhHH

hHHH :

HHHH :

H"H HYH™ :

AAHTH™ :
AAAA :

16g120> 325 23,8 g [ (3—coa—28+cap)— cza,65—502a+25]m%2 (A.42)
— 56 s (9 + 3C4a — 6c20—28 + Can—a8 + 3cag — 1002a+25)m%{
- 255 g sza(?)sza + 52048 — 2525)m% - 3201_55257713‘

8913v°525 = Cg-as5 5 (355 + 53530 — 358130 — 535+a)mj, (A.43)
+ 35,asglcgl(305,a — €38-3a — 3CB+3a + 035+a)m%
— 8325,2a325m§{+ — 432_52(2(1 + 3c48)528-20 — 4025,2a345)m%2

89147)2525 = CB_asglcgl(SSB_a + 538-30 — 358430 — 535+a)m,2l (A.44)
+ 55_0‘5516,51(305_0‘ — €38-3a — 3CB+3a + C38+a)Miy
— 8895 2a525M% — 432_/32(2(1 + 3c45)595—20 — 4C25_20545) M35

4g15v28%5/3 = 4c%,a (4m%23§10510%+a - m%s%a) (A.45)
e pasa + Bcssa)

29161)2535 = 3594 [m%shsw,ga — m%cﬁ,a(c,/gwa + 3CB+Q)] (A.46)
+ 12m%2555105_a(55+3a — S8—a)

8g17025%ﬁ = 45%1051 (2+c4p—3Ca0)Mig+6(can—1) (m,%+m%[) (A.47)
+ (3¢_2p160 — C2pt20 — 2¢25-24) (Mj, — M)

29181)2536 = 3594 [m%szasw_ga — m%{55_a(s_5+3a — 355_5_@)} (A.48)
+1%nﬂ%§%ba®&ma—0&ﬂ)

49191)23%6/3 = 43%—04 (4m%23glc§13%+a — m%s%a) (A.49)
— m¥(5_p13a — 35p1a)’
g20212/2 = (m%[ — m,%) cwsglcglsgﬁ_ga — m%s%_a (A.50)
cﬁ o (mH + 4mht ) 475_2 (mHSB o mf2sglc§1>
921 = g20/2 (A.51)
922 = 3920/2 (A.52)

B Results for scattering amplitudes I: block diagonal elements of ag

Each amplitude, i — f, given in appendices B and C corresponds to 256m3(ag); . The

reduced wavefunction renormalization, eq. (3.9), is used heavily is these expressions. All

of the scattering amplitudes appearing in appendix B are part of the diagonal blocks of

ag. Off-block diagonal elements of ag have been relegated to appendix C, as they do not

contribute to the eigenvalues that are unique at tree level until the two-loop level.

B.1 Y =0, =0, Zs-even

x;g(@Iél)—a»V}(@I@l)::«—48w2A14—95A1+-@w——1)(9A%—k(2A34—A4f) (B.1)

3 1/2 1/2 1/2 1/2 1/2 1/2 1/2
— M [ZA/A o+ 22 g 22, A+ (ZH/H — 24 ) C2a
+ (225, — 25ty + 2 =20 eos — (s + bl ) 20 — (25117, + 217 s25]
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! (@3%) = \}i (q>§<1>2) — 4872 Ay + 9By, + (i — 1) (9A§ (203 + >\4)2> (B.2)

S

2

3
R A B S B L 5 A L

wtw=
(2l et e (A ) et (R A) ]

1 1
(qﬂcbl) aav; (q>;<1>2) = 162 (223 + M) +36m — 1) (A + X2) (203 + M) (B.3)
1/2

1
+3(28 +B) — 5 @+ M) A+ al + 200yl el + 2

wtw— zz

S

B2 Y =0,7=0, Zs-odd

1 1 .
G (@{%) aav; (cb{@g) = 1672 (Ag+2X) + (im—1) (A2 +4As A +4X2+922)  (B.4)
1
+3(Br +200) — 5 Qo+ A+ 26) 243 + 207 + 2y +afh 2l + AL
1 1 1
— <I>T<I>)—> (@Tcp):—(q>T<I>)—>—(q>Tq>) B.5
V2 < 2?1 V2 \72 1 /o \1 2 VAN 2 (B.5)
1 1
— <1>T<1>>—>—(<1>T<1>):—48w2A F 98y + 6 (i — 1) (A3 + 2\4) A B.6
75 (#f22) = 5 (2len 5+ 98, +6 (17 — 1) (g + 20) Xs (B.6)
1 12 1/2 1/2 1/2 1/2
B (Ag +2Xs5) [ZA/A + zh{l + ZZI-I/+H— + ZH/H + 2zw/+w_ + 2242}
B3 Y =0,7=1, Zz-even
Neutral Initial States:
1 7.3 1 T3 2 ; 2 2
G (cblT c1>1) RV (@17 c1>1) — —16m2A, + 3B, + (im — 1) (A2 + \2) (B.7)
1
I R el o () e
(20 -2t A ) - (4 ) (el 424 ]
1 1
7 (@373%) SV (@373%) — —167%A + 3By, + (im — 1) (A2 + A2) (B.8)
1
[ et el A (=)
(2 ety A ) () (2l 421
1 1
7 (@{T?’@l) v (@LT?’%) = —1672\g + 38y, + (im — 1) (A + A2) Ag (B.9)
1
B R T R B FPST ST
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Singly-Charged Initial States:

Sl

Sl =Sl

(qﬂr o) - \2(@%@1)
(@;T @) \2(@;7@2)

1
<@IT7®1>-%4—*

V2

“H+H-

B4 Y =0,7=1, Zs-odd

Neutral Initial States:

(i) -

7
-5 ()\3 + A —

12 (cb;r?’@l)

1

1 /2
ZAa T

Singly-Charged Initial States:

\}5 (a7 @2) - } (2l ,) =

1

+ (—221/2

wtw—

1/2

- (—QzHﬂv,

1
1
2

2

- 5)\3 [21/2 +21/2 + 2z

+

1
— =M [2114/3 + z,lf

1/2

1/2

+ 2z - + Z;/2

)]

1
- (abr=@1) = = (2lra1)

1/2

B5 Y=1,7=0, Zs-odd

(2lra2)
_%)\5 {21/2_’_ 1/2_~_2 1/2
12 (@ 3%) _
») |

( ol 3@)

7 (alr@2) - \}5 (el ) =
— % (A —2Xs5) [zi,/j + z1/2

H+H-

+ 2 + 22

+ 2z

+2z5 y- t 2y +22,

1/2 + 22

H+H-

+zl/2 + 2z

\}i (2] a:)
! (2lr*a,)

V2

1/2

Zrtw—

—16m%\g + 30, +

—167> A3+ 3065, +

1/2
H+H-

+21/2 + 2z

G (@J{T?’(I)g) —

—_— —

\}5 (2] a:)
\}5 (@573%)

— —

(im — 1) (A1 4+ A2) Mg

+ z;éﬂ

(im = 1) (A3 + X3)

V2

1/2
L+ 22l

(2]7a,)

—167%X5 + 3B, + 2 (i — 1) A3\s

1/2

—1671'2)\3 + 35)\3

pale s (2

1/2

1
— @TT—%)
ﬂ( !

1
(‘ﬂf“ﬁz) - 7 (<I>$T‘<I>1) = —16m%\5 + 38, + 2 (im — 1) A3)5

1/2 1/2

wrw—

- zA/2> €25 — (’Z}{/if

+zl/2 +2z,00,

1/2

_+ 2;42}

H ~ “hh

+ 21/2) S2a

1
%7

V2

: 7+21/2]

(@{T—%)

+ (im — 1) (A3 + A9)

)(Qa

\}i ((i)lq)g> — \}§ (élqh) = —167‘(’2()\3—)\4)4‘3 (ﬁ)\g—ﬂ)\4)+(iﬂ—1> (A3—)\4)2

BTN

1/2
ZAA

+ ol 422

1/2
FH+H-

+ oz + 22

~ 98 —

1/2

Zrtw—

+z

1/2
zZZ

(B.10)
(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)



B6 Y=1,17 =1, Zs-even

Neutral Initial States:

% (é1¢+<1>1) = % (<i>17+<1>1) = 16721 + 3By, + (im — 1) (A + A2) (B.20)
=X [2is + 2+ 2+ 22+ (2 — 2 ) oo
(22 = 2{3) eas = (it + 24l ) 520 — 2525
5 (Bortds) = 1 (B77@5) = 16720 + 36, + (im — 1) (G + X)) (B.21)
= e |2+ a4l + 22— (sl — 20 cea
— (ziéz — zz/j) c2p + (z}{/}? + z}ﬁ) 820 + zil/fszg]
% (<i>1¢+<1>1) = % (5132#@2) = —1672Xs5 + 3By, + (im — 1) (A1 + A2) A5 (B.22)
[ e ]
1 (é%fcb’f) N <<i>*f<p*.) _ ! (iw*qm) N (ciw*cb ) (B.23)
2\t 2\ Y 2\ 2\
Singly-Charged Initial States:
% (6173@1) - % (ci>173<1>1) — —16m2A + 3B, + (im — 1) (A2 + A2) (B.24)
I [ R ol 2 (3 - ) e
(2 2 A ) o (4 (2 1) ]
% (B27°02) - % (82785 = ~1672s + 855, + (i — 1) (3 + A7) (B.25)
D 2l el 2 ()
(2 =2ty = ) () s e+ )]
1 (&)173@) - % (<i>273<1>2) = —1672)\; + 38y, + (im — 1) (A + A2) A5 (B.26)
— %)\4 [2114/: + 2,1122 + Qz;{EH, + z}{/?{ + QZi/fw, + z;f}
Doubly-Charged Initial States:
1 (élﬂpl) = % (élfcpl) — —16m2), + 3B, + (im — 1) (A2 + 22) (B.27)
— 2\ :z}ﬁH_ + zllu/fw_ + (z;/fw_ — z}ﬁH_> Cog — z}ﬁw_ 32/3]
% <<i>27"<1>2> = % (<i>2f<1>2) = —16m2)y + 3B, + (i1 — 1) (A3 + A2) (B.28)
— 29 :Z}{/_EH_ + z}ﬂ/fw_ — (zllu/fw_ — Z}_I/_%H_) cog + Z}_I/_Ew_ 32@]
% (cim—cbl) = % <<i>2¢—<1>2) = 16725 + 3By, + (im — 1) (A + A2) As (B.29)
—2X5 _z}{/EH, + Zilv/fw*:|
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B.7 Y=1,7 =1, Zs-odd

Neutral Initial States:

1 (5 + L — a2
= (qm @2) v (qm q>2) = —1672 (A3 + A1) + 3 (Bxg + Ba,) (B.30)
+ (imr — 1) (\g + /\4)2 — (A3 4+ Ag) [Zil/j + Zfll,é? + Z}{/I?I + 2;42}

\2 (ci)wq»;) = \2 (“{T—@;) - \2 <<i>17+<1>2) = \}5 (ci>17+<1>2) (B.31)

Singly-Charged Initial States:

\}5 <i’17’3‘1>2) — \}i (&917'3(1)2) == —167T2 ()\3 + )\4) + 3 (,3,\3 + B)u;) (B32)

+ (i — 1) (Ag + A1)? — V24

()\3 n )\5) [ZAA + 2 1/2 1/2 1/2

1/2
+ 2ZH+H7 +Zgy Tt 22w+w, + Zzé

N | —

Doubly-Charged Initial States:

1 /- 1= )
% ((I)l’i' @2) — ﬁ(q)l’r q)g) = —167 ()\3 + /\4) + 3 (5)\3 + ,8)\4) (B33)
(im = 1) (420 =20+ ) [ + 20

C Results for scattering amplitudes II: off-block diagonal elements of ag

As in appendix B, each amplitude ¢ — f given in appendix C corresponds to 256773(a0)2-7 i
The off-block diagonal elements of ag are given in appendix C, all of which vanish at
tree level.

C.1 Q =0, Zz-even — Zy-even

\2 <<I>§<I)1> — \}5 (@J{T?’CIH) =\ [zz/j—i—zif—Zz;ﬁH, —i—z}{/?{—Qz;/fw, +21/2 (C.1)
+ (z}{/é — zif) 20 — (zi/j — 2,2}1/311_ + Qz;/fw_ — z;f) c2p
() (A2 Yo

5 (0102) o 5 (o0r%0) = na[sie a2l sl -2l 2 ()

2 12 172 1/2 1/2
— (zH/H - Zh{z ) C2q + (ZA/A — QZH/JFH* + sz/ﬂlf _ Z;é?) Cop

+ (z}lbl/; + z}l/}?) Soq + (z%f - Qleq/fw_) 525}

1 1 1
2 <<I>I<I>1) - NG <<I>£7-3<I>2> =5 (A3 + A1) <zi{j + z,ll,/f - 22}{/3}], + z}{/fl (C.3)
1
2t ) 4 3 [ (aifi = o) ena (S = 20 #2000 = 2207 s

172 172 1/2 1/2
+ (Zhél + ZH/h> $20 + (ZA/z - 22H/+w*> 525}
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1 1 1
V2 <q>;q>2> - V2 (4917-3(1)1) =3 (A3 + A1) (Zi/j + z,lﬂ/f - 22}{/3}[_ + z},{/fl (C.4)
1
—22, [t 2l) oo [ (s = ) eno = (S0 - 25 220 = 2l e

+ (z}lﬁ + z}{f) Soq + (z%f - Qleq/fw_) 52,3}

1 1 /-
<<I>§<I>1) — B (<I>17'+<I>1) =\ [zz/j — z,lf — z}{/?{ + z;f — (zllq/?[ — z,ll,/f) Con (C.5)

S

2
1/2 1/2 1/2 1/2
- (ZA/A - Zif) Cop + (thq + ZH/h> S200 — ZA/Z 325]

é (#322) = 3 (Borr@a) = no [ — a2~ alfd 224 (a2 ) eaa (C0)
(Y ers (24 ) st 2]

\}i (@{@1) = % (éﬂ*@z) - % (273 + As + As) (z;/j L z;f) (C.7)
3@+ 2= 20) (42— M2 enat (222 = 242 g
+ (sh + 2if ) 520 — 2 s2s]

\}5 (ol@z) = % (®17F @) = i (28 + M+ xs) (243 — 2af” = =il + 2212) (C.8)
+ % (22 + A= 2) | (207 = 2ifr) €2 + (222 = 27 25

\2 (@{@1) = % (if;qu;) - \}5 (qﬂq)l) = % (¢1T+<I>1) (C.9)
\;5 (@3@) — % («i;f@;) - \}5 (cbgcbg) - % (q>2¢+<1>2) (C.10)
\;5 (qﬂcbl) = % (égf—cb;) = \}5 (@{@Q — % (q>2¢+c1>2> (C.11)
\2 (q>§<1>2> = % (é;f@;) - \2 (@{@Q - % (@17+<I>1) (C.12)
12 (@IT%Q = % (ci>1¢+<1>1) . [\}5 (@j@l) = (cim*cblﬂ (C.13)
T (w1r00a) = 5 (Barte) == | - (ale2) = 5 (87 2)] (C14)
12 (@%3@1) = % (@27+‘I>2) = —i (A1 + As) (zi‘/j —a oy z;f) (C.15)
o 30 (2~ 42 v+ (22 )
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1 1/~ 1
<f1>£7'3<1>2) — 5 (‘I)lTJ'_(I)l) = *Z ()\4 + )\5) (2,14/3 - Zilzi/z2 - ZJI'{/?I + Z;£2)

S

2

— % (Mg — X5) [(zi{f — z}ﬁ,) C2a + (Z;f - Ziﬁ) €2

+ (z,lﬁq + zllq/}?) S$2q — 2114/2:232,3}

1 1 /=~ 1 1/~
= <<1>§T3<1>1) -5 (CI)TT_@){) =7 (@{r?’cbl) -5 (q>lT+<1>1)

1 1 /=~ 1 1 /-~
ﬁ (@12-7'3@2) — 5 (@;T_@S) = ﬁ ((1)27'3@2) — 5 (q)QT+q)2)

1 1 Fox _— Fk 1 1, =
ﬁ(‘b%’?’@l) — 5(‘1’27 ) = ﬁ@%g%) — 5(‘1)27'+‘1>2)

1 1 /%~ 1 1 /-~
Jploioe) (5w =y o) o)
1/~ 1 /-, _

5 <<1>1¢+<1>1) —+ = (@TT @1) —0
1 /= 1 /-

5 <<p27+<1>2) -3 (cﬁ;ﬂp;) =0
1 /= + 1 Tk __— Rk

5 <(I)17— (I)1> — 5 <(I)27— (I)Q) =0
1 /= + 1 Tk — o *

5 (‘I)QT @2) — 5 (‘I’lT (I)1> =0

C.2 Q =0, Zs-odd — Zs-0dd

1 t 1 t 3 1 /2, _1/2 1/2 1/2
/2 (‘1)1‘1)2> VO) (‘Dﬁ' @2> =5 A3+ ) (ZAA + 2 —22gip- t2Hn
1/2 1/2
227+ / )
1 1 1 1
— (olo ) N (@TT?’@ ) - (qﬂcb ) N (@TT?@ )
\/5 ( 2 %1 \/5 2 1 5 1¥2 \/i 1 2
1 1
t t 3 B 172 1/2 o 1/2 1/2 1/2
ﬁ <<I>1<I>2> — ﬁ (@27 ‘I>1> = X5 <zAA+zhh =2z g-trag—22,4,-+
1 1 1 1
— (olo ) N (qﬁr?’cb ) - (ole ) N <<I>TT3Q> )
2 ( 27 V2 Ut V2 LU NN
1 1 ~ 2
—= (@]@2) & —= (B177@2) = f(2A3+3A4+3A5)Q}j—%{f—z}{éﬁz
2 V2 8
2
+ \Sf (23 + A4 — A5) [(z}lb{f — 2}1/12{) Con + (z;f — zi{j) 2

172 1/2 1/2
+ (Zhéf + ZH/h) $200 — ZA/Z 526}

(C.16)

(C.25)

(C.26)
(C.27)

(C.28)

42) (C.29)

1 1 /- 2
= (elar) - % (@177 @,) = ?(2A3+3A4+3A5)(z},/j—z}f—z}{;m;g?) (C.30)
V2 12 1/2 12 1/2
e (23 + A4 — A5) [(Zhh - ZHH) Coq + (zzz — ZAA> cop

+ (ahtr 24 ) s20 = 24 s
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1
-5 (@le2) -
1 — (o
E <¢’£q>1> R V2 2@17'(1)2) _ 1 (q)T
L 7 O~ 2 2‘13) 1
f(‘lﬂ&z trag) = 1)~ 50
e, A ploe)
5 (243 +3) 2) = —@m V2 <‘1>1T+<1>2) (C.31
+( - ZA/2)43/\5) Kz;lf— 18/2 3+)\4+)‘5)(z1/2 1 (C |
cop + (zig N Z}!Z';HH) Con AA zh{f_zl/; N 31/2) .32)
h) S2a — 12 (C.3
ZAZ 825} 3)

— (@}
V2 (‘I’ ) L
L V2 V2 <q)17+c1>
+(8 (2A3 + 3\ 2) :_ng@)\
12 —3A 3+A
7 <¢>T ZA/Q) C2B + ’ 1{/<Zi{12 - 22/1%1) o <Zil/j P
| 3<1>2) s (th? + Z}{/If) . c2e i i +Z;42)
\1[ <¢>T 3@1) \f (@17 @2) 1 2 T_ 2114/22325} (C.34)
V2 (CI)lT+(I)2 \f (@17- (1)2) _ \{i ((I)QT?’(I)l) — 1o
. ﬁ(é;f@;) ) Oﬂ (fbif?)q)z) R \{5 (‘?wﬂbz)
1 Q =0, Zz-eve Ve (¢17+q>2) (€59
L n
V2 (#l@)) = ( ’f_> #arodd (0-36)
3 P
()\1 ) V2 cI)2> — _§ (C.37)
. 345) [ 1 ()\1 - A
(2%2 - z}{/2> (zhé(2 N Z}{/]f) 345) (zA/2 L
L o)s Co0 — h
V2 ((I)T%) o ot <le4/j +22132 ( e ’ +2Z}I/§ B Z}I/2>
IO f o} ) = = o~ 25, ) as v (O3
+ 5t A315) [ 1 ()\2 — A e 1/2>
( 1/2 1/2> (Zhé12+zllq/}?) ) (ZA/ + ]11/2+ 825}
- c a H !
f( I ) 52 (Z,lq/j +2212 ( 1/2 _|_221/2 2 H/Ew }f,f)
7z (0102) - WE% e )2 “Z/2)>625 (©
1 (st 7 oI, = j@1) - — 526
f+(11 1) = 7 (] 32) . (‘I’ @y) f (¢ie2) |
2 I
+ g B+ 24 A 2) = g(Bu-22 V2 GI)E@I) (C4
(=243 + 2212 ) [<Zflz§+zl/z 3= o) (24 42, Y
“H+H- — 9,1/2 Hh) C2a + +Zh§{2_2 1/2 (C.41
ww= T z1/2) ( 02— 2207 T *_Z}f/zf) (C )
S H+
25] Wﬁ) e (Zflf /2 "
HH) S0
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\2 (cpgcbg) — \}5 (@’573@1) - f% (3X2 — 2X3 — Asa5) (4@2 + 22 (C.43)
—Qz}{/fw_ — z}{/,?) + é (3A2 4+ 2A3 + A345) [(z}ﬂ/g + z}ﬁ) Coa + (zi‘/f — 2zllq/fw_> 28
- (2%2 — z}fé) 52a + (—zz/j + 2z}{/fH_ - 2zi)/+2w_ + z;f) 525}
\2 (@{@1) — \}i (<I>£T3<I>1) - 12(<1>§<1>1) = \}5@173@2) (C.44)
\}i (cbgcbg) - \}5 (@’{73%) = \;5 <q>§<1>2> = \}5 (cbgf%l) (C.45)
\2 (o]@1) - % (8177 0,) = *f (8 = 3xs —20) (22 = +21f7)  (C46)
V2 1/2 | 1/2

5 (BA1 4+ 3A3+2)\y) [(ZhH + ZHh) C2a = Z11‘1/22025
(iAo ()]

V2

\2 (ol@z) = \}5 (B177@,) = —25 (8 — 3% — 2X) (242 = 2l +2if)  (Ca7)
- \f (3X2 + 3A3 + 2\y) [(z,lﬁ + z}{/,f) Con — 24 0o
() e (2 ) )

\2 (cb{cbl) — \}5 (<i>>{7—<1>;) - \2 (@{@Q - \;5 <<i>1¢+<1>2) (C.48)

\}5 <<I>£<I>2) = \}5 <<i>>{7—<1>;) - \}5 (<I>§<1>2> - \;5 <‘i>17'+(1>2) (C.49)

\2 (@{Tf’«bl) = \2 (@{@z) - %(A1+2)\3—3)\34g,)<z%j+ziﬁ—22}ﬁw_ —z}{/,f> (C.50)
5O =20+ %) [ (o412 4 o) eaat (2~ 222 ) s — (202 = 242 520
+(—2ih +2mfl s -2l L) 5]

\2 (¢§T3<1>2) = \g (@Qqn) - —é (A2 + 23 — 3\345) (zi{f + 22 (C.51)
222~ o) 4 2 O = 20+ Bis) [ (a0 + i) enat (2 = 20 ) o2
— (2 = 2t ) saa+ (—2da + 2050y — 25,02, + 2H2) sag)

\}5 (@{T?’@l) = \}i (cbg@l) = \}5 (@%3@1) = \}5 (@1@2) (C.52)

\2 (<I>£r3<1>2) = \2 (cb{%) = \}5 (q>§r3q>2> = ;5 (q>;¢1) (C.53)
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(qﬂ 3<1>1) o (qﬁ 3<1>2) - fé (M1 — Aaas) (z}f T P 1/2) (C.54)

7 V2
()\1 + A345) [ (zhé,2 + leq/]f) oo — ( 1/2 + 22}{/+W ) cop + (zh{f _ z}fé) S20
+ (2114/: + 22}_1/_?_]_1_ -2 ;/fw_ — ;f) 825}
7 (¢§T3<1>2) - 7 (@l ) = 1(AZ —ais) (247 + 2l + 2%, — =) (C55)
()\2 + A345) [ (z*}llfﬁ,2 + Z}I/}?) Coo — ( 1/2 + 2z}ﬁw,) c28 + (Zi1122 _ z}{/?{) $2a
+ (zi(j +221{3H, 25,07, = 2H2) 529
72 (e]r®1) - 7 (alr@1) = 12 (2]7@1) - \2 (2]a.) (C.56)
12 (@2 3<I>2) = \2 (<I>1 3<I>2) = 12 (@373@2) = \2 (@379@1) (C.57)
12 (2] @1) - \g (@177 0,) = —\f (= As—27) (247 =27 + 210 ) (C58)

+ Q (1 + s +20) | (5407 + 2ifs ) €20 — 2 eas
(3 ) (- )]

! (2l @2) — \2 (@177 0,) = *[ (o= s —2x) (22 =27 +21fn)  (C59)

2
+ £ (A2 + A3 +2)\y) [(z}llg + z}{/}?) Coq — ZXSC%

+ (zi[é— ain ) 2 (2ia 1/2) 23]

12 (@{T?’@l) \}5 (cblf o} ) (@ @1) = \}5 (ci>1¢+<1>2) (C.60)

\2 (<I>£r3<1>2) \2 (@17 <1>2) (@chz) = 7 <<I>17‘+<I>2) (C.61)

% (@177 @) = \2 (2]@2) = i(m +3%) |22 + 20 — ik (C.62)
— (2ht + 2tfn ) e2a + 2 can + (2 = 24 520+ (2442 = 243 o]

% (@277 @2) = \}5 (alar) = i(/\zl +3%) |24 = 20l + 2 (C.63)
= (2 22 caa 2Zens + (57 = 42 s+ (212 = 212 5as]

% <@1T+‘P1) \1f (@W)l) (A1 — A345) ( 2/2 flﬁ + }f;) (C.64)

1
4
1
_ Z ()\1 —+ )\345 [(ZhH + Z}J/If) Coq — ZA 625 — (Z}llf — Z}_{é) Soq — ( 1/2 _ ZA/Z) 825}
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<(i>27'+(1>2)
oL
(2]2,) = 1
—7 e =
345)
(Zil/zz - Z’Z{Q + 1/
ZH§>

(C.65)

_1(
4 )\2+
A
345) [( L
z /2
h
H —1—2}{/}?>
C2
o _21/2
Az Co
53—
1
(Zhéz _ L2
HH> .
2 — (
Z;/z
N _21/2
AA> .
2[3}

1
2 ((i)lTJr(I)l)

_( 1 S
1= Z’”;ﬂLzl/;/§ <(I)IT3‘I’2
2 <<I>27_+ Hh) c ) = 1

(@2) NS 20+ 247 ¢ 7 M =3A

_ — 2 ©2
1 (~ <Z}1L{q2 " Z}J/Q\/ﬁ ((I);T3q>1)ﬂ +1(Z}1L{12 B 2'15/)2{2114/'22 + 21/2
i bt i)t 22 =g i) o i
1/ b Az € 3\ + (zl/z "

2 (‘1>2T+ NG (cI)T , 28 + (21/2 5) [2114/2 12 12

1 (PQ) N 1 27 ‘I’1> _ hh 212 : o AA) s (C

D oy T w
f@l) . 12 173@2) _ i (q’17+¢1> ot (ZiQ - hl/

o (& — z 2
1 TQ (A1 + v2 <q)”+<1> {2 <‘i’2r+q> ) Vli (‘P*@ AA) 524 (C-67)
2 <(I)2T+(I) Aots) [( 1/ 2> N _Q 2) — L 2 1):|

/s ) = i 20t + 7, e V2 (o]@2)

-V V2 (‘f’m Hh) Cou + 7 ) (Zix/Z } (C.68
1@) 4 (o + A @2) Y zA/Z2C z +Zi/2 )
? 1T 3415) [€ = (h2— 2 + (s i i) (C.69)
5 (& -5 (@ D Nais) (24 )

1 (~ (1)2) — 12 17_@) _ e+ 24, o+ 2l 2 (z1/2 (C.70)
: 5 a3) 2 (aires - P+ (41 i) £-2)
5 (B3 7l )= n v)
1 ~27 q’;) . 12 ‘Iﬂ%) 1 ' ) 52a +( . (C.71)
2 ((I)TTf(I)* E (‘I)TQ) 5 <(I>17'+ 2242 B 21/2
1(@* 1)—>L ; 1>=1 @) - 1 i) o2
2 5T @ V2 (‘I);(I) 2 (@27-+ V2 (@T (C
}@* 2) L 1) 1 ‘1’2> o 24)1) 72)
ARG V2 (‘Pb 2 <(I’1T+ V2 (qﬂ (C
1 <<i>* 1) L 2) 1 ‘I’1> . 12 1<I>2> .73)
3 (P27 P V2 (‘13173 2 <(I)2T+ V2 ((I)T (C
(@ ) = )= ©2) - v i) i
1 ~1T_(I“1<) — \{5 <®£T3¢)1) ? <(:PIT+‘I>1> v <(I)£q)1> (C.75)
2 <¢);T_<I>* ﬁ (cI)TT3 - 9 (Ci) N - i ©
2) N 2 @1)4_ ) 27" P V2 (¢$T3 .76)
75 (o} =5 (2 )~ 7 )
17—3(1)2 2 TT P \/i (CI)TTS (C.77
) ::1,<~ 1) _%‘J;, ' ®2> )
p (B0 7 (017 ©19
2) — 1 (I)2)
V2 ((I);TSQJQ (C.79)
(C.80)
(C.81)
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% (@;T—@’{) = \}5 (ci>1¢+q>2) ~0 (C.82)
% (@;T—@;) = \}i (cimﬂb?) =0 (C.83)
% <<I>17"<I>T> = \}5 (ci»’{r*cb;) - % ((i)17+<l>1) - \2 (élr+q>2) (C.84)
5 (85 23) - \}5 (57 03) = 5 (277 0s) \}i (#1r+a,) (C.85)

C4 Q =1, Zs-even — Zz-even

1 1 /- 1T
7 <©J{7'7(I)1> -3 <<I>17'3<I>1> = 5)\1 z%j - 2,11{12 - z}ﬁl + z1/2 (C.86)
+ (Zflf - Z}{%) €20 + (Zif - Zix/j) C2p + (21%12 + 2;1/5) 820 2114/3526}
1 1 /- 1.7
% (@57—%) -3 (<1>2¢3<1>2) = S |2 — =l — i+ 2L (C.87)
() e (2 e (24 ) st 2]
1 1 /- 1
G (ol @1) - 5 (@2r2) = 7 Oa+29) (243 - =fl - i + 2402) (C.88)
1
+ 5 (=29 [(Zflf - Z}{/I%I) C2a + (Ziéz - Ziﬁ) C2p T+ (Zz%f + z}{?ﬁ) S200 2,14/582&}
1 1 /- 1
= (@;T—%) -5 <<I>17'3Q>1) = 1 Qa+ ) (z}/j —a oty z;f) (C.89)

- % (A1 = As) [(2;111/12 - ZJI'J/J%I> C2o T (2,%2 - zi/j) C2p + (%%12 + Z%) 52a 2,14/,35%}

C.5 Q=1, Zs-0odd — Zs-odd

\}5 (ofr=@2) = \;5 (#122) = ‘f (22 = A= Xs) (243 — 2 — 23 + 242) (C.90)
2 00 00 (7 = ) et (12 =) o
AT .

12 (ebr=@1) - \}5 (@122) = —?(QA;),—M—AE,)(z;/j—z}f—z}/fﬁz;f) (C.91)
2 @0 = 2a) [ (o102 = 43 e+ (12 = 242 s

1/2 1/2 1/2
+ (zhé’f + ZI{/]’L> S2a0 — ZA/Z 525]
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\}5 (@J{T_q)2> — \2 <<i>17'3<l>2> = \f(2A3+>\4+)\5)(z%j—zif—z}fé—}—zif) (C.92)
+ \éﬁ (23 — A\g + A5) [(Z;ll;/f - Z}{/IZJ) €20 + (Z;f - Zix/j) €28
+ (Zflﬁ + 23 > S200 Zi/fsw]

12 (obr=@1) - \2 (@179, = \f(2)\3+>\4+)\5)<zi/jz%2z}ﬁ{+z¥2) (C.93)
_ *f (2% = a+3s) [ (2ah = 21 ) e2a + (212 = 23 o
(o) s 4]

73 (02) > g (B = (& ) e

1/2 1/2 1/2 1/2 1/2 1/2 1/2
+ (’ZA/A - 2ZH/+H* + 2Zw/+'w* B ZiéQ) €28 + (Zh{q + ZH/h) $20 + (ZA/z B 2zH/+w*> 82/3]

C.6 Q =1, Zs-even — Zs-odd

1 1 1
i g — 1/2
(@17 @1) - (@17 <1>2) = —5 (= 29) 247, - (C.95)

S

2
1 1
+5 (A1t Ag) [(Z}{/EH- - Z},J/fw—> S28 — Z}ﬁw—cw} + 7 (datAs) [Zix/f + 2l — 2

12 172 1/2 12 _1/2 12
(s ) = e (A ) v (A3 22) o)

\}5 (@37—@2) = \}5 <¢£r_¢1) - % (Ao — Ag) 212 (C.96)
+ % (A2 + A3) [(ZZ/EH- - Zju/fw—> S8 — 2115[/311,—025} + i (A1 + As) [_Zix/f — 2l + 2y
— (2hst + 21 ) e2a — 24 cas + (2 = 24 520+ (244 — #4L2) s25]
\}5 (efr@1) = \}5 (2r=@1) = —i (= a) (247 + 2007 — 230 (C.97)
+ % (a+3) 2417, (Lt eap) + (2ift - — 202, ) 520
+ % (a4 3) [= (2007 + 210 ) €30 — 2 Zes + (2 = 2 ) s2a+ (243 — 2112 s24]
\2 (@b @s) - \}5 (2l ,) = i (o = 2a) (247 + 27 = 2107 (C.98)
+ % (A1 + As5) [z}ﬁw_ (—1 4 cop) + (z;[/fH_ = z;/fw_> 525]
bt ) [ (2 ) e = 4 (2 48 (4 — 1))
12 (el @1) = \}5 (#122) = —‘f (= g +2%) (247 = 2307 + 2if7 ) (C.99)
V2 12 | 1/2 1/2

2
+ ? ()\1 + A3 — 2)\5) |:(zhH -+ ZHh) Coa — 24, C28

+ (et = 2n’) soat (A — 2202) o)
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L e A ] G R s B (A
_ f (A2 4+ A3 — 2)X5) [(z,llg + zllq/,?) o0 — 2114/22025
() v (42— 27) )

1 - 1 /- 4 V2 /2 12, 1/2

ﬁ (‘1>17' <I>1) — ﬁ <(I>17 <I>2) =5 (A1 — A3 —2)5) (ZAZ — 2y + th) (C.101)
_ f (A1 4+ Ag+2X5) [(zflﬁ + zllq/,?) Coo — 2114/22025
(=) v (42— 1) )

= (o) o = (8r0) = - xg -2 (2 o)
_ \f (A2 + A3+ 2X5) [(z,lﬁ + z}{/,?) oo — 2114/22025
(el ) s+ (1 - 28 )

% (#:17%01) - \}5 (2]r@2) = %M =242 + 24 — i (C.103)
- (Z,lﬁ + z}q/,f) C2q t+ zi{jcw + (z,lf + z}{/é) Soq + (ziéz — z%j) 325}

% (®:2r%02) - \}5 (alr=@1) = %M (242 - 2t + 2l (C.104)

/2 1/2 1/2 12 1/2 1/2
- (%é{ + ZH/h) C2a + ZA/Z C2p + (Zhé + ZH/H) 52a (Z;éz - ZA/A) 324

% (<i>173q>1) = \}5 (@;Tvbl) = i (A — ) (z;/j s Ve z}q/,f) C.105)
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