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1 Introduction and summary

The ABJM theory [1] provides a rigorous formulation to study the M2-brane dynamics.

At the same time, it also provides a very profound mathematical structure. In studying

the partition function or one-point functions of the BPS Wilson loop, many interesting

properties were found. Most of these properties are shared with the superconformal Chern-

Simons theories with a large number of supersymmetries N = 6 or N = 5 [2, 3].

One interesting discovery is the hidden supergroup structure [4, 5]. After using the

localization techniques [6], the infinite-dimensional path integral in defining the partition

function or the one-point functions of the theories is reduced to a finite-dimensional mul-

tiple integration. These matrix models take the form of the Gaussian matrix model with

two simultaneous deformations: the supergroup deformation and the trigonometric (or

hyperbolic) deformation. For the ABJM theory we replace the U(N) gauge group of the

Gaussian matrix model by the supergroup U(N |N) and at the same time we change the ra-

tional functions by hyperbolic functions. In terms of the hidden supergroups, other N = 6

or N = 5 superconformal theories are associated with U(N1|N2) or OSp(N1|2N2).

Another discovery is the Fermi gas formalism, which was first proposed in [7] for the

original U(N |N) ABJM theory. It was found that the partition function of the U(N |N+M)

theory can also be rewritten into that of a Fermi gas system [8, 9]1∣∣∣∣ZU(N |N+M)

ZU(0|M)

∣∣∣∣ =
1

N !

∑
σ∈SN

(−1)σ
∫

dNq

(4πk)N

N∏
i=1

〈qσ(i)|ρ̂U(N |N+M)|qi〉, (1.1)

where the density matrix ρ̂U(N |N+M) relates a state |qi〉 to its permutation 〈qσ(i)| which is

accompanied by a sign factor (−1)σ. Using the position operator q̂ corresponding to the

1For an alternative formalism keeping the expression of the density matrix ρ̂U(N|N) in the U(N |N +M)

generalization, see [10].

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
0
6
8

state |qi〉 and the dual momentum operator p̂ obeying the canonical commutation relation

[q̂, p̂] = i~ with ~ = 2πk, the density matrix is explicitly given by

ρ̂U(N |N+M) =
√
VM (q̂)

1

2 cosh p̂
2

√
VM (q̂), (1.2)

with [9, 11]

VM (q) =
1

e
q
2 + (−1)Me−

q
2

M−1
2∏

m=−M−1
2

tanh
q + 2πim

2k
. (1.3)

The Fermi gas formalism is not only beautiful but also practical. In fact we can follow the

systematic WKB (small k) analysis [7] to obtain the large N expansion of the partition

function. Finally, the full large N expansion was obtained [10–12], based on the analysis

in the Fermi gas formalism (small k expansion [7, 13] and exact values for finite k [14–17])

together with the results from the ’t Hooft expansion [5, 18–21]. See [22] for a review.

After establishing the result for the unitary supergroup, it is interesting to ask what

happens if we replace the unitary supergroup by an orthosymplectic supergroup, whose

physical interpretation is the introduction of an orientifold plane in the type IIB setup.

It was pointed out in [23]2 that generally in studying the theories with orthosymplectic

groups the projected density matrices introduced in [14]

[ρ̂U(N |N+M)]± =
√
VM (q̂)

Π̂±

2 cosh p̂
2

√
VM (q̂), Π̂± =

1± R̂
2

, (1.4)

play crucial roles, where R̂ is a reflection operator, R̂|q〉 = | − q〉. Owing to the large

number of the supersymmetries, we hope that the non-perturbative effect of the orientifold

plane can be clearly identified by studying the theories with orthosymplectic supergroups.

With this expectation, recently in [25] the full large N expansion of the OSp(2N |2N)

theory was studied with the even projected density matrix and a relation to the original

ABJM U(N |N) theory was found by doubling the orthosymplectic quiver in the sense

of [26]. Along these directions, interestingly it was found [27] that the density matrix for

the OSp(2N + 1|2N) theory is identical to that for the ABJM U(N |N) theory with the

odd projection

ρ̂OSp(2N+1|2N) =
[
ρ̂U(N |N)

]
−, (1.5)

which allows us to study the OSp(2N + 1|2N) theory directly from the ABJM theory.

Subsequently this claim was generalized to the case of non-equal ranks [28]3

ρ̂OSp(2N+2M+1|2N) = ρ̂OSp(2N+1|2N+2M) =
[
ρ̂U(N |N+2M)

]
−. (1.6)

2See [24] for a recent application.
3The partition functions for the U(N1|N2) and U(N2|N1) theories are complex conjugate to each other,

while the density matrices are identical (1.1). Though, as a convention, we typically consider ρ̂U(N1|N2)

with N2 ≥ N1, the schematic pattern may be clearer if we align the ranks of the unitary supergroups with

those of the orthosymplectic supergroups.
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Figure 1. Schematic relations between the density matrix for the theories with the orthosymplectic

supergroups and those with the unitary supergroups.

ρ̂OSp(2N+1|2N) = [ρ̂U(N |N)]−

ρ̂OSp(2N |2N) = [ρ̂U(N |N+1)]+ ρ̂OSp(2N+2|2N) = [ρ̂U(N+1|N)]−

ρ̂OSp(2N+1|2N+2) = [ρ̂U(N |N+2)]− ρ̂OSp(2N+3|2N) = [ρ̂U(N+2|N)]−

ρ̂OSp(2N |2N+2) = [ρ̂U(N |N+3)]+ ρ̂OSp(2N+4|2N) = [ρ̂U(N+3|N)]−
...

...

ρ̂OSp(2N |2N+k−2) = [ρ̂U(N |N+k−1)]+ ρ̂OSp(2N+k|2N) = [ρ̂U(N+k−1|N)]−

ρ̂OSp(2N+1|2N+k) = [ρ̂U(N |N+k)]− ρ̂OSp(2N+k+1|2N) = [ρ̂U(N+k|N)]−

Table 1. Relations of the density matrices between the theory with orthosymplectic supergroups

and that with unitary supergroups.

Related to these results, it was also observed in [29] that the values of the partition function

for the OSp(2N |2N) theory [25] match with those for the U(N |N+1) theory with the even

projection for various integral values of k. From this we naturally expect the relation

ρ̂OSp(2N |2N) =
[
ρ̂U(N |N+1)

]
+
, (1.7)

though the proof has not been known.

In the first part of this paper, we shall fill this gap. Namely, we first prove (1.7) by

generalizing it to

ρ̂OSp(2N |2N+2M) =
[
ρ̂U(N |N+2M+1)

]
+
, (1.8)

with a non-negative integer M ≥ 0. It is natural to ask what happens to the case when the

rank of the orthogonal bosonic subgroup is greater than that of the symplectic subgroup.

We answer this question by proving (M ≥ 1)

ρ̂OSp(2N+2M |2N) =
[
ρ̂U(N |N+2M−1)

]
−. (1.9)

The result is schematically summarized in figure 1. Combined with the results (1.6)

from [28], we find an interesting pattern depicted in table 1. All of these relations com-

pletely reduce the study of the theories with orthosymplectic supergroups into that for the

unitary supergroups with chiral projections.

The key observation in our proof is to utilize the extra hyperbolic sine function

(2 sinh ν
k )2 appearing in the measure of the bosonic symplectic subgroup. Although this

factor was cumbersome in the Fermi gas formalism proposed in [25], owing to this factor

we can naturally introduce a hyperbolic tangent function in the matrix elements, which is

– 3 –
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Fourier-dual to a hyperbolic cosecant function [30, 31], reproducing the same factor in (1.3)

for odd M .

In [28] only the Fermi gas system for the density matrices with the odd projection is

assigned a physical meaning from the theories with orthosymplectic supergroups. Here we

have seen that both the odd and even chiral projections are physically relevant.

Note that the relations (1.8) and (1.9) are consistent with the duality. The duality for

the theories with orthosymplectic supergroups [3]4

OSp(2N |2N + 2M)⇔ OSp(2N |2N + 2(k/2−M − 1)),

OSp(2N + 2M |2N)⇔ OSp(2N + 2(k/2−M + 1)|2N), (1.10)

is translated to

U(N |N + 2M + 1)⇔ U(N |N + 2(k/2−M − 1) + 1),

U(N |N + 2M − 1)⇔ U(N |N + 2(k/2−M + 1)− 1), (1.11)

which is consistent with the duality for the theories with unitary supergroups. In [3] the

duality leads respectively to the constraint 0 ≤ M ≤ k/2 − 1 for the OSp(2N |2N + 2M)

theories and 1 ≤M ≤ k/2 for the OSp(2N + 2M |2N) theories.5

After establishing the relation between the theories with orthosymplectic supergroups

and those with unitary supergroups with the chiral projections, in the second part we

proceed to study the instanton effects [19, 32] in the chirally projected U(N |N + M)

theories. First of all we introduce the chemical potential µ dual to the particle number N

and switch from the Fermi gas partition function (1.1) to the grand potential J̃(µ) defined

by [7, 10]

eJ̃(µ) =

∞∑
N=0

eµN
∣∣∣∣ Z(N)

Z(N = 0)

∣∣∣∣ = det(1 + eµρ̂), (1.12)

where on the right-hand side we have combined the permutations among the N integration

variables in (1.1) into the Fredholm determinant. As its periodicity in µ→ µ+ 2πi causes

an oscillating behavior, it is reasonable to decompose the grand potential into the non-

oscillating part J(µ) and the oscillations as

eJ̃(µ) = eJ(µ)

[
1 +

∑
n 6=0

eJ(µ+2πin)−J(µ)

]
. (1.13)

Hereafter the original grand potential J̃(µ) is referred to as the full grand potential while

the non-oscillating part J(µ) as the modified grand potential. The instanton effects appear

as the non-perturbative effects in the chemical potential O(e−µ) in the large µ expansion

of the modified grand potential J(µ).

4Our convention of the level k for the orthosymplectic theories is different from that in [3]:

kABJ = khere/2.
5Strictly speaking, although the constraint 0 ≤ M ≤ k/2 + 1 for the OSp(2N + 2M |2N) theories was

proposed in [3], in our analysis we find it more natural to exclude the M = 0 case and the dual M = k/2−1

case in the OSp(2N + 2M |2N) theories.
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To investigate the instanton effects in the chirally projected theories, we shall consider

the two combinations Σ(µ) = J+(µ) +J−(µ) and ∆(µ) = J+(µ)−J−(µ), instead of J±(µ),

the original modified grand potentials for the even and odd projected systems. In the pre-

vious works [25, 28, 29] the modified grand potentials are studied for k = 1, 2, 3, 4, 5, 6, 8, 12

and M = 0, 1, 2, 3, 5, and it was observed that there are two kinds of the instanton effects,

the worldsheet instantons (e−
4m
k
µ) and the membrane instantons (e−`µ) (m, ` ∈ N). Espe-

cially it was observed that the anti-symmetric combination ∆(µ) contains only the mem-

brane instantons (e−µ), which was also studied in full detail by the WKB expansion in [29].

Our main interest in this paper is the instantons in the symmetric combination Σ(µ).

This part contains not only the membrane instantons but also the worldsheet instantons

(e−
4
k
µ), which are non-perturbative in k and thus cannot be analyzed in the WKB expan-

sion.6 Instead, for this part we can utilize a trivial relation among the full grand potential

for ρ̂U(N |N+M) and those for [ρ̂U(N |N+M)]±

eJ̃(µ) = eJ̃+(µ)eJ̃−(µ), (1.14)

which is, in turn, translated to a relation among Σ(µ), ∆(µ) and the modified grand

potential of the unprojected system J(µ). Note that this relation also implies that the

perturbative part and the membrane instantons in Σ(µ) completely coincide with those in

the system without chiral projections.

In this paper we study this relation carefully. By taking the explicit results for ∆(µ)

into account, we finally identify a simple relation without the oscillatory behavior,

J(µ) = Σ(µ) + log

(
1 + 2

∞∑
n=1

(−1)ne
1
2

Σ(µ+2πin)+ 1
2

Σ(µ−2πin)−Σ(µ)

)
. (1.15)

The result is derived in a similar way as for the duplicate quivers [26]. With this relation the

worldsheet instanton in Σ(µ) is completely solved in terms of the result of the ABJM theory.

Surprisingly, we find that the worldsheet instanton in the chirally projected theories fits

well with the Gopakumar-Vafa formula for the topological string partition function [33].

For the worldsheet instanton in the unprojected U(N |N + M) theories, it was already

known that the same formula with the topological invariants on local P1 × P1 works [5].

It is still non-trivial that the formula applies for the chirally projected theories since the

relation (1.15) induces new instanton effects non-linearly. Nevertheless, with (1.15) we can

check it and identify the Gopakumar-Vafa invariants ndg for the chirally projected theories

up to the seventh instanton as in tables 3 and 4. At present the interpretation of the

invariants ndg is unclear. We shall briefly argue this point in section 4.

The organization of this paper is as follows. In section 2, we prove the relations (1.8)

and (1.9). After reducing the question for the theories with orthosymplectic supergroups

into that for the theories with unitary supergroups and the chiral projections, in section 3

we study the grand potential for the latter theories. Finally we conclude with discussions

in section 4.
6There also exist the bound states of these instantons which have the mixed exponents (e−( 4m

k
+`)µ). It

was observed in [25, 28], however, that these effects are completely absorbed by the shift of the chemical

potential µ into the effective chemical potential µeff (3.4) which is defined in the same way as in the ABJM

theory without chiral projections [17].

– 5 –
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2 Chiral projections

In this section, we prove that the Fermi gas system for the OSp(2N |2N + 2M) theory

with 0 ≤M ≤ k/2− 1 matches with that for the U(N |N + 2M + 1) theory with the even

projection, while the Fermi gas system for the OSp(2N+2M |2N) theory with 1 ≤M ≤ k/2
is that for the U(N |N + 2M − 1) theory with the odd projection. Namely, we study the

partition function of the theory with the orthosymplectic supergroup carefully and finally

find that the partition function is rewritten into

Z±(N) =
1

N !

∫
dNq

(4πk)N

N∏
i=1

V (qi)π±(qi)

N∏
i<j

(
tanh

qi − qj
2k

tanh
qi + qj

2k

)2

, (2.1)

with some function V (q) and π±(q) given by

π+(q) =
cosh2 q

2k

cosh q
k

, π−(q) =
sinh2 q

2k

cosh q
k

, π+(q) + π−(q) = 1. (2.2)

The right-hand side of (2.1) is known to be written as the partition function of the N

particle ideal Fermi gas system (1.1) with the density matrix

ρ̂ =
√
V (q̂)

Π̂±

2 cosh p̂
2

√
V (q̂), (2.3)

which coincide with the chirally projected density matrix for the U(N |N+M) theory (1.4)

if V (q) = VM (q). The proof goes mostly in parallel with [28] except only a few important

novelties.

2.1 Even projection

In this subsection we provide the proof of (1.8). After the localization technique, the

partition function is [6, 34]

ZOSp(2N |2N+2M) =
1

N !(N +M)!

∫
dNµ

(4πk)N
dN+Mν

(4πk)N+M
e

i
4πk (

∑N
i=1 µ

2
i−

∑N+M
k=1 ν2

k) × Z1-loop,

(2.4)

with the one-loop determinant factor

Z1-loop

=

∏N
i<j(2 sinh

µi−µj
2k )2(2 sinh

µi+µj
2k )2

∏N+M
k<l (2 sinh νk−νl

2k )2(2 sinh νk+νl
2k )2

∏N+M
k=1 (2 sinh νk

k )2∏N
i=1

∏N+M
k=1 (2 cosh µi−νk

2k )2(2 cosh µi+νk
2k )2

.

(2.5)

As in [10, 28] our starting point is the Cauchy-Vandermonde determinant

det


[

1

(2 cosh
µi−νk

2k
)(2 cosh

µi+νk
2k

)

]
(i,k)∈ZN×ZN+M[

sinh
mνk
k

sinh
νk
k

]
(m,k)∈ZM×ZN+M

 = (−1)MN+ 1
2
M(M−1)

×
∏N
i<j(2 sinh

µi−µj
2k )(2 sinh

µi+µj
2k )

∏N+M
k<l (2 sinh νk−νl

2k )(2 sinh νk+νl
2k )∏M

i=1

∏N+M
k=1 (2 cosh µi−νk

2k )(2 cosh µi+νk
2k )

, (2.6)

– 6 –
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where we have denoted the integer set spanned by each index with the notation ZL =

{1, 2, · · · , L}. After multiplying 2 sinh νk
k to each column, we obtain the following determi-

nant expression for Z1-loop

Z1-loop = det


[

2 sinh
νk
k

(2 cosh
µi−νk

2k
)(2 cosh

µi+νk
2k

)

]
(i,k)∈ZN×ZN+M[

2 sinh mνk
k

]
(m,k)∈ZM×ZN+M


2

. (2.7)

To proceed, it is helpful to introduce the canonical position and momentum operators

q̂ and p̂ obeying the commutation relation [q̂, p̂] = i~ with ~ = 2πk. We shall also introduce

the states |m]] to abbreviate the matrix components in the lower block of (2.7)

2 sinh
mνk
k

= [[m|νk〉 = 〈νk|m]], (2.8)

where |ν〉 is the coordinate eigenstate normalized as 〈µ|ν〉 = 2πδ(µ − ν). For the upper

block, it is crucial to express the matrix component as7

2 sinh νk
k

(2 cosh µi−νk
2k )(2 cosh µi+νk

2k )
= −1

2

(
tanh

µi − νk
2k

− tanh
µi + νk

2k

)
= 2ik〈µi|

1

2 sinh p̂
2

Π̂−|νk〉 = −2ik〈νk|
1

2 sinh p̂
2

Π̂+|µi〉, (2.9)

using the Fourier duality between hyperbolic tangent functions and hyperbolic cosecant

functions [30, 31]. This is the most important point in our proof.

After noticing this structure the rest of the computation is quite parallel to [28]: sub-

stitute Z1-loop (2.7) with (2.8) and (2.9); include the Fresnel factors e
i

4πk
µ2
i and e−

i
4πk

ν2
k

into the brackets; trivialize the first determinant by renaming the indices of νk; perform

the similarity transformation

1 =

∫
dq

2π
e−

i
2~ p̂

2 |q〉〈q|e
i

2~ p̂
2
, (2.10)

to the integration variables. After these steps we obtain the expression

ZOSp(2N |2N+2M) =
1

N !

∫
dNµ

(4πk)N
dN+Mν

(4πk)N+M
(2.11)

×
N∏
i=1

2ik〈µi|e
i

2~ p̂
2
e
i

2~ q̂
2 1

2 sinh p̂
2

Π̂−e
− i

2~ q̂
2
e−

i
2~ p̂

2 |νi〉
M∏
m=1

[[m|e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νN+m〉

× det

([
−2ik〈νk| 1

2 sinh p̂
2

Π̂+|µj〉
]

(k,j)∈ZN+M×ZN

[
〈νk|e

i
2~ p̂

2 |n]]
]

(k,n)∈ZN+M×ZM

)
.

As in [28] the elements in the two products in front of the determinant become the delta

functions and we can perform the integrations. We shall see this explicitly in the following.

Let us first simplify the determinant. Using

〈νk|e
i

2~ p̂
2 |n]] = e−

i
2~ (2πn)2〈νk|n]], (2.12)

7We assume that the singularity at p̂ = 0 is cancelled by the projections and hence harmless.

– 7 –
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the determinant reduces to

det

([
−2ik〈νk| 1

2 sinh p̂
2

Π̂+|µj〉
]
ZN+M×ZN

[
〈νk|e

i
2~ p̂

2 |n]]
]
ZN+M×ZM

)
(2.13)

= e−
i

12~ (2π)2M(2M+1)(M+1) det

([
−2ik〈νk| 1

2 sinh p̂
2

Π̂+|µj〉
]
ZN+M×ZN

[
〈νk|n]]

]
ZN+M×ZM

)
,

which is an odd function of νk.

The two products in the second line of (2.11) can be formally computed as8

2ik〈µi|e
i

2~ p̂
2
e
i

2~ q̂
2 1

2 sinh p̂
2

Π̂−e
− i

2~ q̂
2
e−

i
2~ p̂

2 |νi〉 =
2πk

i

1

2 sinh µi
2

(δ(µi − νi)− δ(µi + νi)),

[[m|e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νN+m〉 =
2πk√
ik
e−

i
2~ (2πm)2

(δ(νN+m+2πim)−δ(νN+m−2πim)). (2.15)

Since the rest of the integrand (2.13) is an odd function of νk, we can drop one of the two

delta functions as in [28],

2ik〈µi|e
i

2~ p̂
2
e
i

2~ q̂
2 1

2 sinh p̂
2

Π̂−e
− i

2~ q̂
2
e−

i
2~ p̂

2 |νi〉 →
4πk

i

1

2 sinh µi
2

δ(νi − µi), (2.16)

[[m|e−
i

2~ q̂
2
e−

i
2~ p̂

2 |νN+m〉 → −
4πk√
ik
e−

i
2~ (2πm)2

δ(νN+m − 2πim).

After reducing the two matrix elements into the delta functions we can perform the νk
integrations by simple substitutions, leaving only a single determinant in (2.11). Reverting

it into the products (2.6) and separating the N -independent factors, we finally find that

the partition function (2.11) is given by Z+(N) (2.1) as

(−1)MN iNZOSp(2N |2N+2M)

ZOSp(0|2M)
= Z+(N), (2.17)

with ZOSp(0|2M) being an N -independent factor

ZOSp(0|2M) = (−1)
1
2
M(M+1)e−

πi
3k
M(2M+1)(M+1)(ik)−

M
2

×
M∏
m<n

4 sinh
ρm − ρn

2k
sinh

ρm + ρn
2k

M∏
m=1

2 sinh
ρm
k
, (2.18)

(which is non-vanishing for 0 ≤M ≤ k/2− 1) and V (µ) given by

V (µ) =
1

2 sinh µ
2

tanh
µ

2k

M∏
m=1

tanh
µ− ρm

2k
tanh

µ+ ρm
2k

, (2.19)

with ρm = 2πim. Comparing with the expression (1.3) we find that V (µ) = V2M+1(µ). In

this way we have proved that the Fermi gas system for the OSp(2N |2N + 2M) theory is

identical to that for the U(N |N + 2M + 1) theory with the even chiral projection.

8In the second line in (2.15) we assume the following deformation of the integration contour for νN+m

(−∞,∞)→ (−∞− 2πim,−2πim) t [−2πim, 2πim] t (2πim,∞+ 2πim) (2.14)

so that the new contour contains the supports of the delta functions. We can show that such a deformation

is allowed if and only if M < k/2, following the argument in [28].
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2.2 Odd projection

In the previous subsection, we have seen that the density matrix for the theory with or-

thosymplectic supergroups where the rank of the bosonic symplectic subgroup is greater

than or equal to that of the orthogonal subgroup is related to that for the unitary super-

groups. Here we shall turn to the opposite case: OSp(2N + 2M |2N) with 1 ≤M ≤ k/2.

The partition function is [6, 34]

ZOSp(2N+2M |2N) =
1

N !(N +M)!

∫
dN+Mµ

(4πk)N+M

dNν

(4πk)N
e

i
4πk

(
∑N+M
i=1 µ2

i−
∑N
k=1 ν

2
k)

×
∏N+M
i<j (2 sinh

µi−µj
2k )2(2 sinh

µi+µj
2k )2

∏N
k<l(2 sinh νk−νl

2k )2(2 sinh νk+νl
2k )2

∏N
k=1(2 sinh νk

k )2∏N+M
i=1

∏N
k=1(2 cosh µi−νk

2k )2(2 cosh µi+νk
2k )2

.

(2.20)

Since we can add one row by a multiple of another row in the determinant without changing

its value, we can express the Cauchy-Vandermonde determinant (2.6) by

det

([
1

(2 cosh
µi−νk

2k
)(2 cosh

µi+νk
2k

)

]
(i,k)∈ZN+M×ZN

[
2 cosh (m−1)µi

k

]
(m,k)∈ZN+M×ZM

)
= 2(−1)MN+ 1

2
M(M−1)

∏N+M
i<j (2 sinh

µi−µj
2k )(2 sinh

µi+µj
2k )

∏N
k<l(2 sinh νk−νl

2k )(2 sinh νk+νl
2k )∏N+M

i=1

∏N
k=1(2 cosh µi−νk

2k )(2 cosh µi+νk
2k )

.

(2.21)

After multiplying 2 sinh νk
k to each column, the left block in the determinant can be ex-

pressed as the previous case (2.9). For the right block we introduce the states |m)) by

2 cosh
(m− 1)µ

k
= ((m|µ〉 = 〈µ|m)). (2.22)

Then, through the same steps as in the last subsection, we can rewrite the partition

function as

ZOSp(2N+2M |2N) =
1

N !

∫
dNν

(4πk)N
dN+Mµ

(4πk)N+M

×
N∏
k=1

2ik〈µk|e
i

2~ p̂
2
e
i

2~ q̂
2 1

2 sinh p̂
2

Π̂−e
− i

2~ q̂
2
e−

i
2~ p̂

2 |νk〉
M∏
m=1

〈µN+m|e
i

2~ p̂
2
e
i

2~ q̂
2 |m))

× det


[
−2ik〈νk| 1

2 sinh p̂
2

Π̂+|µj〉
]

(k,j)∈ZN×ZN+M[
((n|e−

i
2~ p̂

2 |µj〉
]

(n,j)∈ZM×ZN+M

 , (2.23)

where the first two factors can be replaced with the delta functions

2ik〈µk|e
i

2~ p̂
2
e
i

2~ q̂
2 1

2 sinh p̂
2

Π̂−e
− i

2~ q̂
2
e−

i
2~ p̂

2 |νk〉 →
4πk

i

1

2 sinh νk
2

δ(µk − νk), (2.24)

〈µN+m|e
i

2~ p̂
2
e
i

2~ q̂
2 |m))→ 4πk√

−ik
e
i

2~ (2π)2(m−1)2
δ(µN+m−2πi(m−1)).
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After performing the integration over µi, this time we obtain

iN (−1)MNZOSp(2N+2M |2N)

ZOSp(2M |0)
= Z−(N), (2.25)

with

ZOSp(2M |0) = 2(−1)
1
2
M(M−1)(−ik)−

M
2 e

πi
3k
M(2M−1)(M−1)

×
M∏
m<n

4 sinh
ρm−1 − ρn−1

2k
sinh

ρm−1 + ρn−1

2k
, (2.26)

and

V (ν) =
1

2 sinh ν
2

(
tanh

ν

2k

)−1
M∏
m=1

tanh
ν − ρm−1

2k
tanh

ν + ρm−1

2k
. (2.27)

Hence again (2.25) is nothing but the Fermi gas formalism for the U(N |N+2M−1) theory

with the odd chiral projection.

3 Worldsheet instantons

In the previous section, combined with the result from [25], we have found that the matrix

model associated with any orthosymplectic supergroup is directly related to that associ-

ated with the corresponding unitary supergroup and the chiral projection. This means

that we can study the OSp(N1|2N2) theories with completely general (N1, N2) from the

U(N |N +M) theories with the chiral projections.

Here we proceed to study the grand potentials for the latter theories. First we define

the following symmetric and anti-symmetric combination

Σ(µ) = J+(µ) + J−(µ), ∆(µ) = J+(µ)− J−(µ), (3.1)

where J±(µ) are respectively the modified grand potential for the density matrix

[ρ̂U(N |N+M)]±. The large µ expansion of Σ(µ) and ∆(µ) was studied previously in [28, 29],

and was observed to have the following structures

Σ(µ) =
C

3
µ3

eff +Bµeff +A+
∞∑
m=1

sme
− 4m

k
µeff +

∞∑
`=1

(̃b`µeff + c̃`)e
−2`µeff ,

∆(µ) =
µ

2
+A′ +

∞∑
`=1

r`e
−`µ, (3.2)

with

C =
2

π2k
, (3.3)

and (B,A, sm, b̃`, c̃`, A
′, r`) being some constants depending on k and M . Here µeff

is the effective chemical potential defined in the U(N |N + M) theory without chiral

projections [10, 17]

µeff = µ+
1

C

∞∑
`=1

a`e
−2`µ, (3.4)
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with some constants a`. The possible bound states of the worldsheet instantons and the

membrane instantons e−( 4m
k

+`)µ are observed to be absorbed into the worldsheet instantons

e−
4m
k
µeff through the non-perturbative deviations in µeff (3.4). Note that Σ(µ) and the

modified grand potential without chiral projections J(µ) have the same schematic structure:

they have completely the same perturbative part and the membrane instantons; they are

different only in the coefficients of the worldsheet instantons. Several coefficients of the

half membrane instantons r` (1 ≤ ` ≤ 7) in ∆(µ) are determined as explicit functions of

(k,M) through the extrapolation of the WKB small k expansion in [29].

Below we shall study the worldsheet instantons in the symmetric combination Σ(µ).

With the help of the schematic expression (3.2) of the anti-symmetric part ∆(µ), we extract

from (1.14) a new relation (1.15) between Σ(µ) and J(µ). Using it we further compute

the explicit expression of the first few instanton coefficients and find that they fit with

the Gopakumar-Vafa formula of the topological string theory, with the Gopakumar-Vafa

invariants identified as in tables 2, 3 and 4.

3.1 Worldsheet instantons for chiral projections

From the fundamental properties of the projection operators Π̂+ +Π̂− = 1 and Π̂+Π̂− = 0,

it follows that

det(1 + eµρ̂U(N |N+M)) = det(1 + eµ[ρ̂U(N |N+M)]+) det(1 + eµ[ρ̂U(N |N+M)]−). (3.5)

This is translated into the relations among the full grand potentials (1.14) or∑
n∈Z

eJ(µ+2πin) =
∑
n+∈Z

eJ+(µ+2πin+)
∑
n−∈Z

eJ−(µ+2πin−). (3.6)

At first sight it seems difficult to extract a relation between the modified grand potentials

as the equation contains the oscillating terms both for J(µ) and J±(µ). As we see below,

however, using the schematic expression of the anti-symmetric part ∆(µ) (3.2) we obtain

a more refined relation (1.15) where the oscillations for J(µ) are absent.

We rewrite the relation (3.6) in terms of Σ(µ) and ∆(µ)∑
n∈Z

eJ(µ+2πin) =
∑
n+∈Z

e
Σ+∆

2
(µ+2πin+)

∑
n−∈Z

e
Σ−∆

2
(µ+2πin−). (3.7)

As ∆(µ) in (3.2) has the following simple quasi-periodicity

∆(µ+ 2πin) = ∆(µ) + πin, (3.8)

the relation reduces to∑
n∈Z

eJ(µ+2πin) =
∑
n+∈Z

∑
n−∈Z

in+−n−e(Σ(µ+2πin+)+Σ(µ+2πin−))/2. (3.9)

Here we notice that the terms with odd n+ − n− do not contribute, since each of those

terms is always accompanied with the one with the opposite sign

in+−n−e
1
2

Σ(µ+2πin+)+ 1
2

Σ(µ+2πin−) + in−−n+e
1
2

Σ(µ+2πin−)+ 1
2

Σ(µ+2πin+) = 0. (3.10)
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Then, (3.6) can be rewritten as∑
n∈Z

eJ(µ+2πin) =
∑

n+−n−∈2Z
(−1)

n+−n−
2 e

1
2

Σ(µ+2πin+)+ 1
2

Σ(µ+2πin−). (3.11)

This relation can be solved by

eJ(µ) =
∑
n∈Z

(−1)ne
1
2

Σ(µ+2πin)+ 1
2

Σ(µ−2πin), (3.12)

which can be rewritten as (1.15). As in [26] we can easily check that (3.12) correctly

reproduces (3.11) and contains no oscillations.

3.2 Gopakumar-Vafa invariants

To obtain the direct relation between the worldsheet instantons in Σ(µ) and those in J(µ),

let us compute the exponent inside the logarithm in (1.15) using the schematic expression

of Σ(µ) (3.2). Note that, since the effective chemical potential µeff is related to the original

one µ by (3.4), shifting µ by ±2πin directly means shifting µeff. Hence, in the following we

shall regard Σ(µ) in (3.2) as a function of µeff and, with a slight abuse of notation, denote

the same function as Σ(µeff). Then, most of the contributions in the exponent in (1.15)

including the non-perturbative membrane instantons cancel and we are left with the C

term and the worldsheet instantons as

1

2
Σ(µeff + 2πin) +

1

2
Σ(µeff − 2πin)− Σ(µeff) = −8n2

k
µeff − 2

∞∑
m=1

sm sin2 4πmn

k
e−

4mµeff
k ,

(3.13)

where we have used the explicit value of C (3.3). Hence we obtain an equation containing

only the worldsheet instantons

JWS(µeff) =
∞∑
m=1

smz
m
eff + log

(
1 + 2

∞∑
n=1

(−1)nz2n2

eff

∞∏
m=1

e−2sm sin2 4πmn
k

zmeff

)
, (3.14)

where zeff = e−
4
k
µeff and JWS(µeff) is the worldsheet instantons in the U(N |N +M) theory

without chiral projections [11, 12]

JWS(µeff) =
∞∑
m=1

dmz
m
eff. (3.15)

We can solve (3.14) inversely order by order in zeff as

s1 = d1, s2 = d2 + 2, s3 = d3 − 4d1 sin2 4π

k
,

s4 = d4 − 4d2 sin2 8π

k
+ 4d2

1 sin4 4π

k
+ 2− 8 sin2 8π

k
, · · · . (3.16)

Then, we find that the functional form of sm reproduces all the numerical fitting in [28, 29].

More surprisingly, this functional form fit well with the Gopakumar-Vafa formula, which
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d 1 2 3 4 5 6 7

nd0 −2 −2 −6 −24 −120 −678 −4214

nd1 0 1 8 73 676 6279 58916

nd2 0 0 −2 −76 −1556 −26098 −391604

nd3 0 0 0 39 2020 65984 1656280

nd4 0 0 0 −10 −1586 −111668 −4916452

nd5 0 0 0 1 756 132105 10723496

nd6 0 0 0 0 −212 −111774 −17629842

nd7 0 0 0 0 32 68342 22182896

nd8 0 0 0 0 −2 −30194 −21562774

nd9 0 0 0 0 0 9530 16278148

nd10 0 0 0 0 0 −2092 −9561340

nd11 0 0 0 0 0 303 4361964

nd12 0 0 0 0 0 −26 −1536200

nd13 0 0 0 0 0 1 412728

nd14 0 0 0 0 0 0 −82898

nd15 0 0 0 0 0 0 12036

nd16 0 0 0 0 0 0 −1192

nd17 0 0 0 0 0 0 72

nd18 0 0 0 0 0 0 −2

Table 2. The diagonal Gopakumar-Vafa invariants ndg (d = d1 + d2) identified for the chirally

projected theory J±(µeff).

is not guaranteed from the beginning,

sm(k,M) = (−1)m
∑
nd=m

1

n
σd

(k
n
,M
)
,

σd(k,M) =
∑

d1+d2=d

e2πi(d1−d2)M
k

∞∑
g=0

2ndg

(
2 sin

2π

k

)2g−2
, (3.17)

where we have written the arguments (k,M) to express the multi-covering structure of the

coefficients. We have also introduced the extra factor of 2 in front of the Gopakumar-Vafa

invariants ndg , as the original modified grand potentials J±(µ) associated to the density

matrices [ρ̂U(N |N+M)]± are related to Σ(µ) and ∆(µ) by J±(µ) = (Σ(µ)±∆(µ))/2.

For the N1 = N2 case, the diagonal Gopakumar-Vafa invariants of J±(µeff) = (Σ(µeff)±
∆(µeff))/2 is given in table 2. This matches with the results for d = 1, 2, 3, 4 in [28]. We can

perform a similar analysis for the non-diagonal case N1 6= N2. The results are summarized

in tables 3 and 4.
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(d1, d2) (1, 0) (1, 1) (1, 2) (1, 3) (2, 2) (1, 4) (2, 3)

nd0 −1 −2 −3 −4 −16 −5 −55

nd1 0 1 4 10 53 20 318

nd2 0 0 −1 −6 −64 −21 −757

nd3 0 0 0 1 37 8 1002

nd4 0 0 0 0 −10 −1 −792

nd5 0 0 0 0 1 0 378

nd6 0 0 0 0 0 0 −106

nd7 0 0 0 0 0 0 16

nd8 0 0 0 0 0 0 −1

nd9 0 0 0 0 0 0 0

Table 3. The general Gopakumar-Vafa invariants ndg = n
(d1,d2)
g with d1 +d2 = 1, 2, · · · , 5 identified

for the chirally projected theory J±(µeff).

4 Conclusion and discussion

In this paper we have proved that the density matrix of the theories with orthosymplectic

supergroups reduces to that of the theories with unitary supergroups and the chiral projec-

tions. We have further established the identity between the total grand potential J(µ) and

the sum of the projected ones Σ(µ). From this identity we can derive the Gopakumar-Vafa

invariants systematically without mentioning to the numerical fitting, as long as we know

those for the theories with unitary supergroups.

Let us raise several questions related to our results and discuss some further directions.

Firstly, though we have found the equivalences between the chiral projections of the

U(N |N + M) theories and the theories with the orthosymplectic groups, the counterpart

of the U(N |N + 2M)+ theory is still missing (see table 1). It is then interesting to ask the

role of this sector in the context of the orientifold background.

Secondly, we shall argue possible extension of our computations. We have introduced

the states |m]], |m)) in section 2 and |m〉〉 in [28]. It is interesting to note that these combi-

nations appear naturally in the Weyl character formulas for Sp(2N), O(2N) and O(2N+1)

respectively (see e.g. [35]). Apparently, this interpretation is a good sign for generaliza-

tions of our results on partition functions into one-point functions of the BPS Wilson

loops [10, 36]. It is also interesting to study the non-perturbative effects of the orientifold

plane for other exactly solvable Chern-Simons theories like the (2, 2)k model [37, 38].

Thirdly, we have found that the worldsheet instanton in the chirally projected theories

fits with the Gopakumar-Vafa formula, though the interpretation of the Gopakumar-Vafa

invariants in tables 2, 3 and 4 is unclear to us. From our knowledge of the unprojected

theories, it is natural to expect a relation to local P1 × P1 with a projection. It will be

interesting to understand the Gopakumar-Vafa invariants from the geometrical viewpoint.
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(d1, d2) (1, 5) (2, 4) (3, 3) (1, 6) (2, 5) (3, 4)

nd0 −6 −144 −378 −7 −322 −1778

nd1 35 1272 3665 56 3998 25404

nd2 −56 −4860 −16266 −126 −22030 −173646

nd3 36 10850 44212 120 72770 755250

nd4 −10 −15476 −80696 −55 −158453 −2299718

nd5 1 14654 102795 12 238214 5123522

nd6 0 −9368 −93038 −1 −254225 −8560695

nd7 0 4046 60250 0 195788 10895660

nd8 0 −1160 −27874 0 −109595 −10671792

nd9 0 211 9108 0 44508 8094568

nd10 0 −22 −2048 0 −12949 −4767721

nd11 0 1 301 0 2626 2178356

nd12 0 0 −26 0 −352 −767748

nd13 0 0 1 0 28 206336

nd14 0 0 0 0 −1 −41448

nd15 0 0 0 0 0 6018

nd16 0 0 0 0 0 −596

nd17 0 0 0 0 0 36

nd18 0 0 0 0 0 −1

nd19 0 0 0 0 0 0

Table 4. The general Gopakumar-Vafa invariants ndg = n
(d1,d2)
g with d1 + d2 = 6, 7 identified for

the chirally projected theory J±(µeff).

Finally let us discuss the BPS index. In general the worldsheet instantons are changed

drastically, while the membrane instantons remain unmodified. This indicates that, if

we assume the same refined topological string expression as in the ABJM theory [12],

the BPS index is reshuffled with the membrane instantons kept fixed. For example, for

(d1, d2) = (1, 1), the only non-vanishing BPS index in the ABJM theory is N
(1,1)

0, 3
2

= 1. In

the orientifold theory, if we make an ansatz that only the BPS indices for 0 ≤ jL ≤ 1/2

and 0 ≤ jL + jR ≤ 3/2 are non-vanishing from the expression of the instantons, we find

non-trivial relations

N
(1,1)

0, 1
2

= −2 + 2N
(1,1)
1
2
,1
, N

(1,1)

0, 3
2

= 1−N (1,1)
1
2
,1
, N

(1,1)
1
2
,0

= 2− 3N
(1,1)
1
2
,1
, (4.1)

by matching the expressions of the instantons. Then, apparently there are no non-negative

solutions. We would like to search for the correct analysis for the topological invariants

and see the reshuffling more clearly in future.9

9In studying the ABJM partition function on an ellipsoid, it was found [39] that the BPS index is

changed from that of the local P1 × P1 geometry to that of local P2 when moving the ellipsoid deformation

parameter from b = 1 to b =
√

3. The change of the BPS indices may be similar to our situation.
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