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ABSTRACT: We further develop and extend a recent perturbative framework for neutrino
oscillations in uniform matter density so that the resulting oscillation probabilities are
accurate for the complete matter potential versus baseline divided by neutrino energy
plane. This extension also gives the eract oscillation probabilities in vacuum for all values
of baseline divided by neutrino energy. The expansion parameter used is related to the ratio
of the solar to the atmospheric Am? scales but with a unique choice of the atmospheric Am?
such that certain first-order effects are taken into account in the zeroth-order Hamiltonian.
Using a mixing matrix formulation, this framework has the exceptional feature that the
neutrino oscillation probability in matter has the same structure as in vacuum, to all
orders in the expansion parameter. It also contains all orders in the matter potential
and sinfi3. It facilitates immediate physical interpretation of the analytic results, and
makes the expressions for the neutrino oscillation probabilities extremely compact and
very accurate even at zeroth order in our perturbative expansion. The first and second
order results are also given which improve the precision by approximately two or more
orders of magnitude per perturbative order.
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1 Introduction

Neutrino oscillation based on the standard three flavor scheme provides the best possible
theoretical paradigm which can describe most of the experimental results obtained in the
atmospheric, solar, reactor, and the accelerator neutrino experiments. In matter, the
propogation of neutrinos is significantly modified by the Wolfenstein matter effect [1].
The theoretical derivation and understanding of the neutrino oscillation probabilities in
matter have been pursued by various means. The exact expressions of the eigenvalues,
mixing angles, and the oscillation probabilities have been obtained [2—4], albeit under the
assumption of uniform matter density. But the resulting expressions of the oscillation



probabilities are way too complex to facilitate understanding of the structure of the three
flavor neutrino oscillations. For this reason, analytic approaches to the phenomena are
mostly based on variety of perturbative frameworks. For a comprehensive treatment of
neutrino oscillation in the matter, see ref. [5]. Analytic expressions for neutrino oscillations
in arbitrary matter densities has also been considered, but even more simplifying arguments
must be made [6].

What is the appropriate expansion parameter in such a perturbative framework? We
now know that sin 613, once used as the expansion parameter (there are an enormous num-
ber of references, see e.g., [7]), is not so small, sin #;3 ~ 0.15. Moreover, expansion around
sin #13 = 0 misses the physics of the resonance which exists at an energy around F ~ 10 GeV
for earth densities. Therefore, in the environments in which the matter effect is comparable
to the vacuum mixing effect, the only available small expansion parameter known to us is
the ratio of the solar-scale Am? to the atmospheric-scale Am2, Am?2 /Am? ~ 0.03. This
framework was examined in the past, to our knowledge in refs. [7-10].

Recently, two of us, see [11], presented a new perturbative framework for neutrino
oscillation in matter using a modified Am% / Am% expansion. We identified a unique Am%
that absorb certain “first-order” terms into the “zeroth-order” Hamiltonian. The resulting
expansion parameter,

e = Am3 /Am2, where Am?2, = Am3, — sin®610Am3,

ee —

multiplies a particularly simple perturbing Hamiltonian with zero diagonal entries. This
re-organization of the perturbation expansion lead to simple and compact oscillation prob-
abilities in all channels. The v, disappearance channel is particularly simple, being of a
pure two flavor form.

As was noted in [11], this new perturbation expansion, while valid in most of the
baseline, L, divided by neutrino energy, E, versus matter potential plane, has issues around
vacuum values for the matter potential at large values of L/E. These issues are caused
by the crossing of two of the eigenvalues of the new zeroth order Hamiltonian at the
solar resonance. In this paper, we solve these issues by performing an additional rotation
of the neutrino basis in matter by introducing an additional matter mixing angle which is
identical to #12 in vacuum. With this extra rotation, the new eigenvalues of the unperturbed
Hamiltonian do not cross and the perturbing Hamiltonian remains non-diagonal and is
multiplied by an additional factor which is always less than unity and is zero in vacuum.
With this additional rotation our perturbative expansion is valid in the full L/E versus
matter potential plane and the zeroth order gives the exact result in vacuum.

The sectional plan of this paper is as follows: in section 2 we describe in detail the
sequence of rotations of the neutrino basis that leads us to the simple Hamiltonian that will
be used in the perturbative expansion. The zeroth order eigenvalues and mixing matrix
are given in this section. Then, in section, 3 we explicitly calculate the first and second
order corrections for both the eigenvalues and the mixing matrix. In section 4, we give
compact analytic expressions for v, and v, disappearance channels as well as v, — v,
appearance channel at both zeroth and first order in our perturbative expansion. All other
channels can by obtained by unitarity. Here we discuss the precision of the perturbative



treatment. Finally, in section 5 there is a conclusion. A number of technical details are
contained in the appendices, see A. We have also published the new Nu-Pert code used in
this paper online.!

2 Rotations of the neutrino basis and the Hamiltonian

In this section we perform a sequence of rotations on the neutrino basis and the corre-
sponding Hamiltonian such that the following conditions are satisfied:

e The diagonal elements of the rotated Hamiltonian are excellent approximations to
the eigenvalues of the exact Hamiltonian and do not cross for any values of the matter
potential. These diagonal elements will form our Hy.

e The size of non-diagonal elements are controlled by our small parameter, €, which
vanishes in vacuum. The non-diagonal elements will form our perturbing Hamilto-
nian, H;.

The first two of these rotations are identical to the rotations performed in [11], while the last
rotation is needed to deal with the remaining eigenvalue crossing at the solar resonance.
With these three rotations the resulting Hamiltonian satisfies the conditions above and
leads us to a rapidly converging perturbative expansion for the oscillation probabilities
that covers all of the L/E versus matter potential plane.

2.1 Overview

Neutrino evolution in matter is governed by a Schrodinger like equation

Z%’”> =H|v), (2.1)
where in the flavor basis
V@
V=) 22)
vr
1
H= 25 Unins diag(0, Am3,, Amgl)Ul&NS + diag(a(z),0,0)| . (2.3)

Unins is the lepton mixing matrix in vacuum, given by Unng = Uas (623, §)U13(013)U12(612)
with?

Cw 81,11 C¢ 8¢
Ue(¥) = | —sy ¢y . Uis(g) = 1 ,
1 —S¢ C¢
(2.4)
1
Ua3(023,6) = co3  sa3e® |,
—s93e 70 ca3

!See https://github.com/PeterDenton/Nu-Pert.

2The PDG form of Unns is obtained from our Unmns by multiplying the 3rd row by e and the 3rd
—is

column by e i.e. by rephasing v, and v3. The shorthand notation ¢y = cos@ and sg = siné is used

throughout this paper.
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and the matter potential, assumed to be constant, is given by

_ Yep E
a=2V2GpN.E ~ 152 x 1074 (g ' Cmg) (Ge\/) eVZ. (2.5)

We will perform a sequence of rotations on the flavor basis by multiplying the left and
right hand side of eq. (2.1) by an appropriate unitary matrix, U' and inserting unity (UUT)
between H and |v). These rotations are chosen such that the final resulting Hamiltonian
satisfies the following properties: the diagonal elements are an excellent approximations
to the exact eigenvalues and the size of off-diagonal elements are controlled by a small
parameter (ratio of the Am?’s) and are identically zero in vacuum.

The sequence of rotations applied to the eigenstates is performed in the following order

[v) = |7) = U, (025, 6) )
= |9) = Uly(6)U3(623. 0)|v) (26)

— [7) = Ul () Ul5(¢) Uy (623, 6)|v) |
with the corresponding Hamiltonians
H — .FNI = U2T3(925,5) H U23(923,5)
— H = Uf5(6)Uf3(023,8) H Uns (623, 8)Ur3(6) (2.7)
— H = Uf2(¢)Ufg(¢)U2Tg(923,5) H U3z(693,0)Ui3(¢)Ur2(2) .

The first rotation undoes the o3 — § rotation, whereas the ¢ followed by ¢ rotations
are matter analogues to the vacuum 613 and 612 rotations, respectively. In vacuum, the
final Schrodinger equation is just the trivial mass eigenstate evolution equation.

2.2 U23(023, (S) rotation

After the Usg(6a3,0) rotation, the neutrino basis is
[7) = Uly(029,0)v) (2:8)
and the Hamiltonian is given by
H = Uly(623,0) H U (a3, 6)

1 .
=355 [U13(¢913)U12(912) diag(0, Am%l,Amgl)UirQ(QlQ)U;rg)(@lS) (2.9)
+ diag(a, 0, 0)} )
As was shown in [11], the Hamiltonian, H, is most simple written in terms of a renormalized
atmospheric Am?2,
Am?

ee —

Am2, — s25Am3, (2.10)
as defined in [12, 13], and the ratio of the Am?’s

e = Am3 /Am?, . (2.11)



In terms of the |a| — oo eigenvalues

Ao = a+ (s13 + esty) AmZ, ,
Ap = €ciyAm?, (2.12)

Ae = (0%3 + es%Q)Am2

ee

the exact Hamiltonian is simple given by?

2
1 Aa s13c13AmZ, 9 13

~ Am
H = oF Ap + €s12¢€12 2Eee €13 —S13 | - (2.13)

s13c13Am2, A —513
Note that H is real and does not depend on #s3 or 6.

2.3 Uis(¢) rotation

Since s13 ~ O(y/€), it is natural to diagonalize the (1-3) sector next, using Uiz(¢), again
see [11]. After this rotation the neutrino basis is

|9) = Uly(0)[7) = Uly(6) Uy (623, 0)|v) , (2.14)
and the Hamiltonian is given by
H= U1Tg(¢) H Us3(9)

1 A Am2 C(p—013) (2.15)
=5 Ao + €c12812 2E66 Clp—013) S(¢—013) | >
At S(¢p—br3)

where

1 )
Ay = 5 (Aa + Ae) Fsign(AmZ,)v/(Ae — Aa)? + 4(s13c13Am2,)? | (2.16)

)\0 = )\b = EC%QAWLEE s
which is identical to eq. 3.1 of [11]. Also ¢(y—g,,) = cos(¢ —013) and s(4_g,,) = sin(¢ — b13).
The angle, ¢, that achieves this diagonalization of the (1-3) sub-matrix (see
appendix A.1), satisfies

A 2
Ao = CZ)\, + siA+ , A= sé)\, + 035)\4r , and  sgcy = 81)\3?3_7/\7766 , (2.17)
from which it is easy to derive
Ae — A
2 2 c a
C¢—S¢— ﬁ, (218)

VY Ae — A
_ _ Qe A 2.1
T VD WL S | i W W (2.19)

30ne can use H to do a perturbative expansion, such that it is simple to recover the v,, — v. appearance

probability of Cervera et al., [7] at first order.



The Hamiltonian given in eq. (2.15) was used to derive simple, compact and accurate
oscillation probabilities for a wide range of the L/E versus pE plane, see [11]. However,
as was noted in that paper, there is a region of this plane for which a perturbation theory
based on H is insufficient to describe the physics accurately. This region is small pE and
large L/E given by

la| < %Amge and L/E > Ai:%e (2.20)
To address this region of the L/E versus pE plane, we perform one further rotation on the
Hamiltonian. This rotation removes the degeneracy of the zeroth order eigenvalues at the

solar resonance when A_ = Ag. This is performed in the next subsection.

2.4 Uj2(v) rotation

Since A_ and Ag cross at the solar resonance, a ~ eAmge cos 2012/ cos? 03, to describe
the physics near this degeneracy we need to diagonalize the (1-2) submatrix of H, using
Ui2(¢). The new neutrino basis is

) = Ul (0)9) = Ul () U3 (6) U3 (623, 8)|v) . (2.21)

The resulting Hamiltonian, split into a zeroth order Hamiltonian and a perturbing Hamil-
tonian, is given by

H=Ul(¢) H Up() = Hy + Hy (2.22)

where

Hy=— A2 : (2.23)

—s
Amge ¥
. 2.24
5T cy (2.24)

—Sy Gy

Hy = es(y—p,5)512C12

The diagonal elements of the zeroth order Hamiltonian are

1
A1 = 2 [(/\0 +A)F \/(/\0 — A2+ 4(€C(¢—913)012512Amge)2 )
)\3 = )\+ .

(2.25)

The angle, v, that achieves this diagonalization of the (1-2) sub-matrix of H (see
appendix A.1), satisfies

A= 612!))\1 + Si/\g , Ao = 512/1)‘1 + Ci)\Q , (2.26)
€C(p—0 s12c19Am?2,
Sucy = — 13)A Mol , (2.27)

where we introduce the useful shorthand notation,



It is easy to derive that*

Ao — A
2 2 0

22 =020""— 2.29
VT T Ay, (2.29)

A — A . Ao — A
and sy = 4/ ZA)\mO , cy = sign(Adar) OA)\gll . (2.30)

Figure 1 shows ¢ and v as functions of the matter potential as well as the eigenvalues
of H for both the normal ordering (NO) and the inverted ordering (I0). Several additional
useful identities used in the calculations throughout this paper are listed in appendix A.2.

2.5 Remarks
A number of summarizing and useful comments are warranted at this point.

e The neutrino basis that will be used in our perturbation theory, |} is related to the
flavor basis, |v) by

Ve 2
v | =Ulins | 2 | (2.31)
vy 3
where
Unins = U2s(023,0)U13 () Ur2(2)) - (2.32)

e The Hamiltonian, egs. (2.23) and (2.24), that will used as the basis for our pertur-
bation theory is given by

H = (Ufins) ' HUNNs = Ho + H, (2.33)

with the diagonal elements the zeroth order Hamiltonian and the off-diagonal ele-
ments the perturbing Hamiltonian. While the A, . eigenvalues cross twice and the
A_ o+ eigenvalues cross once, the new \j23 eigenvalues do not cross, see figure 1,
which allows for the perturbation theory to be well defined everywhere.

e The size of the perturbing Hamiltonian, H;, is controlled by the parameter

[
€ =€ S(¢,913) S12C12

Am3, (2.34)
= 5(¢—013)512C12 A 5
€ee

which is never larger than 1.4%.

e In vacuum,
S(¢p—013) = 0, (2.35)
so that the zeroth order Hamiltonian gives the exact result. Also, in the limit where
a — —oo for NO or a — +oo for 10 s(4_g,,) — —s13 which is of O(y/€). Whereas for
a — +o0 for NO or a — —oo for 10 s(4_g,,) — c13 ~ 1, see figure 2.

e Since perturbing Hamiltonian, H;, has only non-diagonal entries the first order cor-
rection to the eigenvalues are zero. The diagonal elements multiplied by 2F are, to
an excellent approximation, the mass squares of the neutrinos in matter.

4Given the definition of A1,2 in eq. (2.25), the sign term in from of ¢y is not necessary, but will become
necessary when we discuss the A1 <> A2 interchange symmetry.
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Using H; from eq. (2.24), we see that the corrections are
2

(2) _ (I Am2 2
)‘1 (6 mee) A)\31’

2
Gy
AVESE

(2) 2\2 S’LQZJ 012/’
)\ - /A + .
3 (6 m%) A)\?)l A>\32

We verified that the eigenvalues satisfy the characteristic equation to second order, see

A = —(¢ Am?,)? (3.3)

appendix A.4. The eigenvalues are correct at zeroth order to a fractional precision of
about 10™* or better, and through second order to a precision of 10~ or better. In fact,
the precision of \; + )\gl) + )\52) for sign(Am?2,)Y.pE < 0 is completely saturated by the
limits of double precision computer calculations.

3.2 Corrections to the eigenvectors

Here we present the corrections to the eigenvectors which allows us to calculate the tran-
sition probabilities to second order. Higher orders can be easily calculated by continuing
this approach in a straightforward fashion. This was called the V-matrix approach in [14].

First, we relate the flavor eigenvectors to the zeroth order eigenvectors (no subscript)
using Uyjyg, as in eq. (2.4),

Ve o

m -
VM = UMNS 1%} . (34)
Vs U3

Next, the exact eigenvectors of H, labeled with subscript (ex), are related to the eigenvec-
tors of Hy (the zeroth order eigenvectors) by a unitary matrix, which we call WT,

1% %1
iy =Wl . (3.5)
V3 (ex) &
Combining the above gives,
Ve %
v | =V | where V = UinsW . (3.6)
vy 1)3

(ex)

The exact V matrix transforms the exact eigenvectors of H to the flavor basis. In vacuum
(a=0), Ujfxg = Umns and W =1, so V = Unns as expected.

Standard perturbation theory in Hi, which contains the small parameter €, can be
used to calculate WT. Here we use a slightly modified perturbation theory to calculate W
directly. Expanding W as a power series in €, we define

W =Wy + Wi+ Wa +O(3). (3.7)

It is clear from eq. (3.5) that Wy = 1.

~10 -



The first order correction to the W matrix is given by

0 1=7
(W)ij = QE(ﬁl)ij » ;  thus
- i
AN J
(3.8)
Sy
T Al
W1 = EIAmge fc;fw
Sw C,w
AX31 T Als2

The second order correction, after using the facts that H; is symmetric and has no
diagonal elements, eq. (2.24), is

}Z [2E(H1)ir)

2 It (AXix)? Y
(2
(W) — § 5 , thus
1 2E(Hy )i 2E(H1)g; i
N ANgj !
, (3.9)
512& 824
by | PR T BAAsANn
SRRT-VI-A L
2 = —€ 5 AA31AN21 (AXz2)?
c2 52
) K

B T B2

This series can be continued to reach arbitrary precision. However, we have found that
second order provides more than sufficient precision.
In summary the matrix relating the zeroth order eigenvalues of Hy to the flavor basis
is given by
V = UningW = Uss(023,6)U13(6)Ur2(¥) (1 + W1 + Wa) (3.10)

to second order in €. Demonstration of the unitary nature of V', to the appropriate order,
is given in appendix A.5. With the eigenvalues and eigenvectors determined to second
order we can now calculate the neutrino oscillation probabilities.

4 Oscillation probabilities

In vacuum and in matter with constant density, it is well known that the neutrino oscillation
probabilities for v, — vg for three-flavor mixing (i,j = 1,2,3) can be written in the
following form®

<ex>L 2
P(vy — vp)

Z i Vie™

= (50‘5 + 4021 sin? Ag; + 40516 sin? Ag; + 403?26 sin? Ass
+ 8Daﬂ sin Agq sin Az sin Ags

(4.1)

5The equivalence of the V-matrix method and the S-matrix method for calculating the oscillation prob-
abilities is addressed in appendix A.6.

- 11 -



where
O = —R[Vai V3 Ve Vas)
Daﬁ = S[Va1V5iViaVial (4.2)

Ay = AN L/E,

using the exact mixing matrix, V;, and difference of the exact eigenvalues )\Eex). Both
V and )\Z(-ex)s depend on the energy of the neutrino F, and the matter density p but the
baseline L, dependence only appears in A;;.
By unitarity
> Plua ) =1, (4.3)
B

and using the fact that the sin? functions and the triple sine function are linearly inde-
pendent functions of L, as determined by their non-zero Wronskian, we have the following

Yey=0, Y D¥=0. (4.4)
5 5

Since D = 0, we also note that D* = —D®" for o, 3,7 all different. So, up to one
overall sign, there is only one D term for all channels.

powerful statements,

To determine the oscillation probability to n-th order in our perturbative expansion we
must evaluate C', D, and A)\E;‘X) to the n-th order. We denote this perturbative expansion

as follows
AN = Ad; + AN + AND +

ij
caﬁ (O + () (c,a.ﬂ)@) .. (4.5)
D (DW) + (D)W 4 (D)) .
4.1 The zeroth order probabilities
At zeroth order the AX’s are given by eq. (2.25) and the C, D coefficients are the same as
in vacuum with 613,012 replaced with ¢, v respectively, see eq. (3.10). Therefore
(CE D = —R[UaiU3Uz;Uss)

(4.6)
(Dozﬁ)(o) = \S[UalU[leaQU62] J

where here the U,; are elements of Ufjxg = U23(023,0)U13(¢)U12(¢)). In table 1 we give
the zeroth order coefficients for P(ve — ve), P(v, — ve), and P(v, — v,), from which all
remaining transitions can be easily determined by unitarity.”

4.2 The first order probabilities

At first order the AX’s are again given by eq. (2.25), since /\1(1) =0, see eq. (2.24), because
the diagonal elements of H; are zero. The first order corrections to C, D only have terms
proportional to A)\gll, A)\S_Ql. This comes from the form of Wi, eq. (3.8), which follows

"The v, channels can also be obtained from the corresponding v, channel by the following replacements
C23 — —S23 and S23 —» C23.

- 12 —



from the position of the non-zero elements in H;. In fact, all of the coefficients can be
written in the following general form,

af3 af

AXz1 Az
= cant. (T ).
1
(Cs) D) = € Am?, <_ fﬁj - FS‘Z Lfgﬁ ) | (4.7)
o )

where the F 2, G12 and K1 2 are related by Aq 2, interchange previously discussed. Thus
only three modest expressions are required to describe the C’s and D coefficients to first
order for each channel. The F, G, K terms can be calculated from Ufjyg by

Flo‘/8 = —syR [(UarUps + UasUj1)UnUps]
Gy’ = —syR [(UarUps + UasU31) (2Us3Ups — Sap)] (48)
Kfﬁ = —syT [(UalUgg + UagUEﬁUézU&] :

F and G are even under the interchange of a and 8 whereas K is odd. Their explicit values
are given in table 2.
In the appearance channels the C'P violating term must be of the following form

2
i>j Am;

sy AN

(5]

D= i5126128130%3823623 sin d (49)

where in the denominator one needs the exact eigenvalues in matter. This is the Naumov-
Harrison-Scott identity, see refs. [15, 16]. We have checked this identity to the appropriate
order, see appendix A.7.

The P(vo— ) and P (7, — /g) probabilities are related by 6 — —d and the P(vo —vg)
and P(vg — v,) transition probabilities are related by L — —L. From eq. (4.1), we see
that the D term is the only term odd in L. From tables 1 and 2, we see that the D term is
also the only one odd in 4, confirming the CPT invariance of these equations. Moreover,
all of the D®? terms are the same order by order up to a coefficient of —1,0, 1.

4.3 The second order probabilities

Although we have not expanded the second order oscillation probabilities analytically, the
(2)

second order corrections to the eigenvalues, A;”’, as well as the second order corrections to
the mixing matrix, Ws, have been used to calculate the oscillation probabilities to second
order. The resulting oscillation probabilities are more than two orders of magnitude closer

to the exact values than the first order probabilities.

~13 -



Table 1. The zeroth order coefficients for Ciajﬁ and D®? using eq. (4.6). The angles in matter, ¢,, are given in sections 2.3 and 2.4. We also define
the singly and doubly reduced Jarlskog coefficients in matter as J;™ = sycys4c)sa3cs and J)F = J* /5 respectively. (CS2YO) can be obtained
from (nglﬁ)(o) by using the A; 2 — 1 interchange symmetry (eq. (2.36)) i.e. A\; <> Ag, Ci > si and sycy — —Sycy, which also changes the sign on

Vo = Vg (C25)© (C2P)©) (D) 0)

o | —aad ;

Vy — Ve Sicic?psgg + J"cosé cis?pc?p (c35 — 335353) + coyJ; cos d —JMsin§

Ve v — 3 553(C335% + s5355¢7,) —(c33¢7, + 833555%) (Chys0, + 83355C1,) .
—2s2,.J™ cos & —2(c35 — sésgg)cwﬂ? cos d + (2J7 cos §)?

the J™’s.
Vo — 13 Fla’B G?ﬁ Kf‘ﬁ
Ve — Vg _2025¢>3ij 284CSyCyCag 0
2 2 2
CpS[SpSyCy(Cog + C2pS53) )
Uy — Ve ¢ w[ osueu(2y 0723 —25¢c¢5¢(s§302¢c¢ — 523C235¢5 COS0) 7523023%512&(035612# — 53)) sin §
—823023(83)81% + cagcy) cos O]

. 26¢8¢(8%38¢C¢ + 823C238y COS J)x —20¢8¢(8%38¢C¢ + 523C238y COS 0) 0

Vy = Uy
(63363} — 2593C23545Cy COS O + s%sisi) x(1— 20353%3)

Table 2. The functions F©?, G and K@ from eq. (4.8), are used to calculate the first order coefficients (C?jﬁ)(l) and (D*#)M) through eq. (4.7).
anﬁ, Gg‘ﬁ and Kg‘ﬁ can be obtained using the A; 2 — 1 interchange symmetry (eq. (2.36)) i.e. A1 <> Ag, ci > si and sycy — —sycy. The angles

in matter, ¢,, are given in sections 2.3 and 2.4.







DUNE: NO, § = 37/2 | First min | First max
P(v, — ve) 0.0047 0.081
E (GeV) 1.2 2.2
Zeroth | 5x 1074 | 4x 1074
’A]f’ First 3x1077 | 2x 1077
Second | 6 x 10719 | 5x 10719

Table 3. The transition probabilities, energies, and fractional uncertainties at zeroth, first, and
second order. Values are calculated at DUNE for v, — v. with the NO and § = 37/2. At higher
maxima and minima the fractional uncertainties are even smaller.

experiments JUNO, [21], and RENO-50, [22, 23], a setup where the oscillation probabilities
of [11] miss significant physics, since the L/FE varies from 6 to 25 km/MeV.

5 Conclusions

In this paper we have further developed and expanded upon the recent perturbative frame-
work for neutrino oscillations in uniform matter, introduced in [11]. The new oscillation
probabilities are of the same simple, compact functional form with slightly more com-
plicated coefficients, yet, the range of applicability now includes the whole L/E versus
matter potential, a, plane, i.e. the restriction that L/E be small, (L/E < 1/Am3,)
around the vacuum values of the matter potential has been completely removed. In fact,
with these new improvements, the oscillation probabilities in vacuum are exact at ze-
roth order in our perturbative expansion. This occurs because the expansion parameter
s19c12Am3, /Am?2, = 0.014 is further multiplied by S(¢—0,3), Where ¢ is the mixing angle
f13 in matter. In vacuum, ¢ = 613 and therefore all corrections to zeroth order vanish.

To achieve this extended range of applicability, an additional rotation of the Hamilto-
nian is performed over that in [11]. The third angle v is the mixing angle 612 in matter.
In the resulting Hamiltonian, the diagonal elements are the eigenvalues of the zeroth order
Hamiltonian and do not cross for any values of the matter potential, especially near the
solar resonance (this occurred in [11]). The non-diagonal elements of the new Hamiltonian

are the perturbing Hamiltonian for our perturbative expansion and their size is controlled

2

by the small parameter 5(¢_913)512012Am%1/Amee,

mentioned in the previous paragraph.
The new perturbative expansion is now well defined for all values of the matter potential
and gives very accurate oscillation probabilities. We have performed many cross checks
on the perturbative expansion, e.g. we have checked the C'P violating term recovers, or-
der by order, the known form. We have calculated the oscillation probabilities for zeroth,
first, and second order in our expansion parameter. For most practical applications related
to experiments, the zeroth order oscillation probabilities are sufficiently accurate with a
typical fractional uncertainty of better than 1073. Including the first and second order

corrections the accuracy improves that to better than 1076 and 10~?, respectively.
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A Technical details

A.1 Generalized approach to diagonalization

We describe the diagonalization of a particular 2 x 2 submatrix and the angle and eigen-
values. This is the approach used twice in subsections 2.3 and 2.4 to diagonalize the 1-3
and then the 1-2 submatrices.

Given a general symmetric 2 X 2 matrix we wish to diagonalize with angle ¢, we write

Ao Aa Az
( Ap) =U(@) (Ax AC) U(9), (A1)

U(¢) = ( “ %) . (A.2)

Since trace and determinant are unchanged by the U sandwich,

where

Ao+ A =X+ A and Ay = Aghe — A2, (A.3)
By squaring the trace equation and subtracting 4 times the determinant equation we have
A= Ao)2 = (Mo — Ae)2 + 402, (A.4)

thus

Ao = % [()\a + ) \/ (Ao — Ae)? + 4A§] : (A.5)
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Next, we rewrite eq. (A.1) by left (right) multiplying by U(¢) (UT(¢)), then

A Ao + 82N, sece(N, — Ay) Aa A
U 7 Ut = | e et Beiertem ek} = [ e ) A6
(¢) < )\p) 2 <s¢c¢()\p — o) sé)\a +c§))\p Az Ac (A.6)
This gives us three equations,
Aa = CGAo + 53N,
Ae = $5)a + 3N, (A.7)
Az = (Ap = A5)50Co -

The last equation is the standard equation for sys. Subtracting (adding) the first two
gives the standard equation for cyy (the trace). Thus the rotation angle is defined by the
following

e =(Ap = Aa)spcy and  (Ac— Aa) = (A — Ag)(c] — 53) - (A.8)
In addition, using only ci + si =1 we can write down the following useful identities

PV VD Ve
M—Ae A=A,
A —Ae Aa—Ao

AM—Ae Ap—As ]

2
€
(A.9)

2
S¢

which are used extensively throughout this paper. This set of operations will be used both
for ¢ and % rotations.

A.2 Useful identities

From the trace and determinant identities, see eq. (A.3),

Ao+ A=A+ Ae, (A.10)
AL+ A=)+ Ao, (A.11)
M- = Aade — [AmZcizsia]” (A.12)
)\1)\2 = )\0)\7 — [EAm366128120(¢_913)]2 s (A.13)

where we recall that the Aqp . in the tilde basis are defined in eq. (2.12). Another useful
relation is

a
Co—013)5(6—013) = S13C13 13— (A.14)
then for a < Am?2,,
a
S(¢_913) ~ SlgClgW . (A15)

€ee

A.3 Limits

We list the values of the angles and the eigenvalues in vacuum and for ¢ — o0 in table 4.
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a 0 —00 +00
¢ O3 0(m/2) | m/2(0)
) 012 0 /2
Ao | sthAmE; | Ao (Ae) | Ac ()
o | EyAmE, Ab Ab
M| A | A0 | e
A1 0 Aa (Ac) Ab
Ao | Amd, b Ae (Aa)
A | AmE | A (ha) | A (M)

Table 4. The NO (IO) limits of the angles and the eigenvalues in vacuum and for a — oo, where
Ao = a+ (835 + €s39)Am2,, Ay = eciyAm2,, and \. = (¢35 + es?y)Am?Z,, from eq. (2.12).

ee’ ee’ eer

A.4 Characteristic equation

The characteristic equation for neutrino oscillation in matter is

AP — (Am§1 + Am3, + a) A+ {AmglAmgl +a [(0%2 + s19573) Am3, + C%BAmgl} P
— (ac%zc%Am%lAm%l) =0. (A.16)

The coefficient of the A\? term is the sum of the eigenvalues, the coefficient of the A term is
the sum of pairs of the eigenvalues, and the coefficient of the A? term is the triple product
of eigenvalues.

We now verify that our matter mass eigenvalues satisfy these expressions to second
order. First, the A_ 1 eigenvalues satisfy the first requirement exactly as was discussed
in [11]. Since > 7;_153A = > ;= g4 Ais 50 the Aj23 eigenvalues also satisfy the first
requirement. Also, from eq. (3.3), Zi:172,3 )\2(2) = 0, so the Aj 23 eigenvalues also satisfy
the first requirement exactly through second order. We have also verified that each of the
other two conditions are satisfied to second order.

A.5 Unitarity of the W matrix

We verify that the V matrix satisfies the unitarity requirements, VVT = 1. OYing 18
unitary by definition. Then we just need that the W matrix is unitary. The zeroth order
requirement is I/VOI/VOT = 1 which is immediately satisfied since Wy = 1. At first order
the requirement is Wi + VVlT = 0. This is equivalent, to the requirement that W is anti-
Hermitian, or that H; is Hermitian, which they are, respectively, see eq. (3.8).

To second order, the unitarity requirement becomes, Wy + WQT = —W12. That is, that
the Hermitian part of W5 must be _W12 /2, which it is. An additional anti-Hermitian part
is unconstrained and is calculated through perturbation theory.

~19 —



A.6 V-matrix, S-matrix comparison

In the S-matrix method, the oscillation probabilities are given by, see for example [11],
Ss(L) = Udiins "M Q(L) (Uins)
L
QL) =1+ (z)/o dx ¢Hov [ e=1How (A.17)
L T
+ (_1)2/ dr eiHoa:Hle—iHox/ dx, eiHox/Hle—iH()x’ 4
0 0
where Hy and H; are given by eqs. (2.23) and (2.24). (We drop the “check” in this
appendix.)
In the V-matrix method, used in this paper, the oscillation probabilities are given by,
Sy (L) = Ulis We MF2EWT (Ufs)!
(A)ij = 6550 + A £ AP 4 (A.18)
W=1+Wi+Wo+---,

where the \;/2E are the eigenvalues of H. )\En) and W,, are given by n-th order perturba-
tion theory.
Specializing to the case when the perturbing Hamiltonian has no diagonal elements,

(H1)ij = (1= bij)hi;/2E (A.19)

which is relevant for the perturbation discussed in this paper, W can be calculated from
eq. (3.8) for first order and eq. (3.9) for second order.
Then it is trivial to show that to first order,

[(Ufitns) T Ss (L) Uninslis = [(Ugins)TSv (L) Usinsli

. s . .
_ 5 —i\L/2E ooy MM ixLJ2E  —iNLJ2E
dije + (1 —645) Ahg (e e~ ) :

(A.20)

We have also checked that they are equal at second order. As this is just a consistency
check of perturbation theory, we postulate that it is true to all orders, without presenting
an all orders proof.

A.7 CP violating term

It is useful to rewrite the numerator of eq. (4.9) as e(Am2,)3(1 — e cos 2012 — €2c2552,). We
evaluate D through first order, keeping terms that are explicitly second order in €, noting
that dividing by AMXs; introduces an additional factor of € in vacuum.

e(Am2,)3(1 — e cos 2612)

Det (0) DeH 1) — - A.21
where J, is the reduced Jarlskog factor, see ref. [24],
J, = 6128126%3813623523 . (A.22)
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The dropped higher order contribution to the numerator is

_ 222 AXi— + (Amg, —a)
12212 4<A)\+_)3
X [(Amze)2 + 3a% — 4egg,aAm?2, + (Am?, + a)AXi_], (A.23)

which is —€%c2,s2, in vacuum as desired since A\ _ is Am2, in vacuum.
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