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gauge-invariant operators consisting of Wilson lines (visualized as strings of color flux

tubes) that may either end on a quark or an antiquark, or annihilate in triplets at a

junction J or an anti-junction J̄ . For the junction-free sector (ordinary q q̄ mesons and

glueballs) the picture is supported by large-N (number of colors) considerations as well

as by a lattice strong-coupling expansion. Both imply the famous OZI rule suppressing

quark-antiquark annihilation diagrams. For hadrons with J and/or J̄ constituents the

same expansions support our proposal, including its generalization of the OZI rule to

the suppression of J − J̄ annihilation diagrams. Such a rule implies that hadrons with

junctions are “mesophobic” and thus unusually narrow if they are below threshold for

decaying into as many baryons as their total number of junctions (two for a tetraquark,

three for a pentaquark). Experimental support for our claim, based on the observation that

narrow multiquark states typically lie below (well above) the relevant baryonic (mesonic)

thresholds, will be presented.
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1 Introduction

The prediction of multiquark states predates the QCD era. Soon after the Dolen-Horn-

Schmidt (DHS) proposal [1] of a duality between Regge poles in the t channel and reso-

nances in the s and u channels, Rosner [2] pointed out that a straightforward application of

that concept to baryon-antibaryon scattering implies the existence of tetraquark (exotic)

states dual to the exchange of ordinary quark-antiquark mesons. Early claims of their

actual existence, however, turned out to be either unfounded or inconclusive. Convincing

evidence in favor of their existence is relatively recent: what seems to have put the whole

field on solid grounds is the discovery of multiquark states containing heavy (c or b) quarks.

This has brought renewed interest in the subject and, in particular, on the question of how

to interpret this new class of hadrons within QCD.
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For processes involving just mesons the connection between DHS-duality related ar-

guments and QCD was clarified through the introduction of large-N expansions of gen-

eralizations of QCD to an arbitrary number N of colors and Nf of flavors. In particu-

lar, ’t Hooft’s expansion [3] makes a precise connection between the leading QCD dia-

grams and the duality diagrams of DHS. Those considerations can be extended [4] to the

glueball sector of QCD confirming, in particular, the duality connection between glueball

(Pomeron) exchange and a non-resonant two-meson background [5, 6]. Apparently, these

two-particle states had nothing to do with Rosner’s original tetraquarks, but how does

QCD make the distinction?

Some 40 years ago [7] (see also the review paper [8] covering as well the experimental

situation at the time) we did try to reinterpret Rosner’s original observation within QCD.

Rosner’s states were dubbed “baryonium” (for hidden-baryon-number states) for reasons

that will be clarified below. The starting point of the analysis of ref. [7] was the association

of single (stable or metastable) hadrons with irreducible gauge invariant operators in QCD.1

These were taken to be in one-to-one correspondence with connected graphs made of lines

which could either end at a quark (q) or an antiquark (q̄), or join in triplets at a junction

(J) or an antijunction (J̄). The lines were nothing but the Wilson lines (path-ordered

exponentials of the gauge connection) needed for gauge invariance. Examples will be given

in the corresponding appropriate sections.

The main novelty of our proposal was the necessity of introducing J and J̄ as new

essential constituents for a complete and unambiguous classification of single hadron states

as well as of processes involving baryons. Of course, the possibility of having gauge-

invariant operators with junctions is related to the fact that the QCD gauge group is

SU(3), rather than U(3) = SU(3) ⊗ U(1). A couple of years later Witten [9] went further

by discussing the systematics of the large-N expansion for baryons reaching the interesting

conclusion that baryons behave like solitons since their mass is proportional to N ∼ 1/g2.

He also discussed several other features of baryons at large-N (with and without use of the

string-junction picture) that we shall refer to where appropriate in the rest of the paper.

We would like to stress immediately that our approach to multiquark states dif-

fers in a substantial way from other schemes independently proposed at about the same

time [10]–[14], as well as from later constructions like [15]–[20] or [21]–[31] (see also the

review [32] and references therein). We concentrate on the big family of multiquark states

endowed with junctions of which the ordinary baryons (states with one junction) represent

the simplest sector.

Members of this family strongly interact with each other: they should be better called

baryonia. Likewise, hadrons without junctions (ordinary mesons as well as other possi-

ble multiquark states) strongly couple among themselves, while the mutual interactions

between the two sectors (more generally between sectors with a different total number of

junctions) are suppressed. Thus, in our picture, any large-N extrapolation of multiquark

states has to follow the “baryonic route” of keeping the number of junctions fixed.

1(Irr)reducibility will thus distinguish tetraquarks from the above two-meson states of refs. [5, 6].
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In this paper we would like to (recall and) update, both theoretically and phenomeno-

logically, the proposals of [7] and [9] according to the following outline. In section 2 we

briefly review the standard description of q q̄ mesons and glueballs and of their properties

both in the large-N limit [3] and in the strong-coupling expansion [33] of lattice QCD

(LQCD). The latter is argued to become, at large-N , a large λ ≡ g2N (’t Hooft’s cou-

pling) expansion valid even at small g2. Particular attention is paid to the famous OZI

rule [34–36] that suppresses mixing of these two classes of states and is responsible for

the narrow width of several quarkonium states. In section 3 we turn our attention to

baryons and to baryon-(anti)baryon scattering amplitudes arguing that, in QCD, single

tetraquark states should exist although they can mix via J − J̄ annihilation with ordinary

(single or multi)-meson states. After a short reminder of Witten’s large-N expansion for

baryons [9] we turn to the strong-coupling and large-λ expansions. We will argue that

all these approaches neatly show the emergence of a junction in a “baryonic Wilson loop”

(simulating a baryon propagator for large quark masses) and imply the distinction between

scattering and annihilation channels in baryon-antibaryon collisions. In section 4 we recall

the so-called junction-OZI (JOZI) rule proposed in [7], by which, for instance, tetraquarks

prefer to decay into baryon-antibaryon channels whenever this is allowed by phase space,

and should otherwise be unusually narrow. After offering some theoretical justification

for the JOZI rule from the large-N and large-λ expansions we briefly review experimental

evidence for its validity both for tetraquarks and pentaquarks. In section 5 we summarize

our conclusions. Some technical details concerning Witten’s large-N expansion for baryons

are relegated to an appendix.

2 The junction-free sector

2.1 Ordinary q q̄ mesons and glueballs

In our approach ordinary q q̄ mesons are associated with the irreducible (single trace)

gauge-invariant operator

M(Ct) =
1√
N
q̄i(~r, t)U [Ct]ijqj(~s, t) (2.1)

where the Wilson-line operator U is defined by

U [Ct]ij = P exp

[
ig

∫ ~s

~r
d~x ~A(~x, t)

]i
j

(2.2)

with Ct a line joining the point ~r, t with ~s, t. More generally, we may consider as an

interpolating operator one in which the path joins two arbitrary space-time points. But

the above class of paths is sufficient for our purposes and is easier to consider in the

strong-coupling limit.

Ordinary q q̄ mesons will appear as intermediate states in the gauge invariant correlator

(after subtracting a disconnected contribution in the flavor-singlet channel)

GM(Ct′ , Ct) = 〈M(Ct′)M†(Ct)〉 . (2.3)

– 3 –



J
H
E
P
0
6
(
2
0
1
6
)
0
4
1

Similarly, glueballs are associated with the irreducible (single trace) gauge-invariant

operator

G(Ct) = TrP exp

[
ig

∮
C
d~x ~A(~x, t)

]
(2.4)

and will appear as intermediate states in the (connected part of the) correlator

GG(Ct′ , Ct) = 〈G(Ct′)G†(Ct)〉 , (2.5)

where Ct is now a closed spatial loop at time t.

However, there is no strict selection rule preventing single-trace operators from mixing

with multi-trace operators and for flavor-singlet q q̄ mesons to mix with the glueballs. In

full QCD the above correlators will have singularities in correspondence with the exact

spectrum of QCD (including widths, branch points etc.).

Fortunately, the situation simplifies enormously by considering two limits: ’t Hooft’s

large-N limit with fixed λ ≡ g2N and, on the lattice, the strong-coupling limit, g2 → ∞
with fixed N as well as a large-λ limit in which N is large but g2 can be small.

2.2 Two simplifying limits and the OZI rule

2.2.1 The large-N limit

The simplifications occurring in ’t Hooft’s large-N limit [3] (with fixed g2N and Nf , see

also [4, 9]) are well known.

• Color irreducible operators do not mix with reducible ones. Consequently the states

we have introduced above are stable (zero-width) hadrons in the large-N limit.

• This is confirmed by the fact that the coupling among n — q q̄ mesons goes to zero

like N1−nqq̄/2. This result can be easily generalized [4] to multi-glueball couplings

(that scale like N2−ngl) and to mixed ones (that scale like N1−nqq̄/2−ngl).

• As a consequence of the previous properties there is no mixing between q q̄ mesons

and glueballs. They represent two decoupled sectors of stable mesons. Also, there

is no mixing among quarkonia of different flavor, a property that can induce, in

principle, large isospin mixing in some multiquark states [37, 38].

• The absence of mixing with glueballs reflects the validity of the OZI rule at large-N :

q q̄ pairs do not annihilate in the ’t Hooft limit! As an example of the implications of

the OZI rule an ss̄ meson prefers to decay into a strange pair, a cc̄ meson prefers to

decay into a charmed pair, etc. If such decays are kinematically forbidden the state

is unusually narrow.

• The validity of the OZI rule at leading order in N also implies the absence, at the same

order, of the U(1)A anomaly. Thus, at this order, the flavor-singlet pseudo scalar is a

true (pseudo)-Nambu-Goldstone boson. At next to leading order one instead derives

a successful formula [39, 40] for the mass of the η′ meson.

– 4 –
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• The leading (planar) diagrams for the scattering of q q̄ mesons will exhibit (under

mild assumptions about their large-s, fixed-t Regge limit) the usual planar duality

between s, t and u channels and their generalizations to higher-point functions. At

next to leading order, there are also non-planar diagrams contributing to q q̄ meson

scattering. They will exhibit duality [5, 6] between glueball states in the t channel

and states consisting of two q q̄ mesons (thus corresponding to reducible color singlet

operators) in the s and u channels (see also the discussion at the end of section 2.2.2).

2.2.2 The strong coupling and large-λ limits on the lattice

An interesting alternative to the large-N expansion can be defined and nicely implemented

on the lattice. This is the so-called strong coupling expansion [33, 41, 42]: it bears some

interesting analogies with the large-N expansion and, as we shall discuss, can be combined

with it in a large-λ expansion. Its advantage is that, in many cases, the leading term can

be explicitly computed analytically and is exactly gauge invariant.

On the negative side we know that such an expansion can only give some qualitative

information about the true continuum theory which, because of asymptotic freedom, cor-

responds to a vanishing bare (’t Hooft) coupling (to be identified with the coupling at the

lattice cutoff scale). Even getting correct qualitative information is not guaranteed. A

well-known example is a U(1) gauge theory (e.g. QED [43, 44]) which confines at strong

coupling while it is in the Coulomb phase in the continuum, because of the existence of a

first-order phase transition at a finite value of the coupling constant.

In the strong coupling limit it is more convenient to talk about Wilson loops. They

naturally emerge as soon as quark propagators are replaced (in the large mass limit) by a

Wilson line in the time direction (i.e. at a fixed spatial position).

1) As a first example consider the connected meson propagator (2.3) on the lattice.

Contracting the quark fields one finds

GM(Ct′ , Ct) =

=
1

N

∫ ∏
idUiTr

(
U †[Ct]SF (~r, t;~r, t′)U [Ct′ ]SF (~s, t′;~s, t)

)
e
− 1

g2 SLY M (U)

∫ ∏
i dUie

− 1
g2 SLY M (U)

. (2.6)

Since in the limit of a very massive quark (static limit) we can replace the quark

propagator with the product of the links in the time direction from t to t′, we end

up with the correlator

GM(Ct′ , Ct)
∣∣∣
largemass

=

=
1

N

∫ ∏
i dUi Tr

(
U †[Ct]U †[~r, t− t′]U [Ct′ ]U [~s, t′ − t]

)
e
− 1

g2 SLY M (U)

∫ ∏
i dUie

− 1
g2 SLY M (U)

=

=
1

N
〈Tr
(
U †[Ct]U †[~r, t− t′]U [Ct′ ]U [~s, t′ − t]

)
〉 ≡WM , (2.7)
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~r, t

~s, t

~r, t′

~s, t′

U †[Ct] U [Ct′]

U [~s, t′ − t]

U †[~r, t′ − t]

Figure 1. Meson propagator in the strong coupling limit. The Wilson line connecting q with q̄ is

in red. The quark propagators are in light blue.

where SLYM (U) is the lattice pure gauge action and

U [~s, t′ − t] =
∏

τ∈[t,t′]

U [~s, τ ] . (2.8)

Looking at figure 1, one recognizes in WM the expectation value of a Wilson loop

with sides |~s− ~r| × |t′ − t|.
For a generic N the strong coupling expansion is defined as the one in which N is kept

fixed while β ≡ 2N/g2 → 0. Carrying out the actual calculation for the rectangular

Wilson loop of figure 1 and using the standard group integration rules [45], one finds

from (2.7)

lim
Strong Coupling

WM ∝ exp[−A/a2 log(g2N)] (2.9)

A = |~s− ~r| × |t′ − t| . (2.10)

The result (2.9) is obtained by bringing down from the action the minimal number

of plaquettes allowing to have a non-vanishing group integral. This amounts to tiling

with plaquettes the rectangular Wilson loop of figure 1.

We thus see that in the case of a q q̄ meson the area is just |~s − ~r| × |t′ − t| ≡ LT .

Therefore, interpreting the coefficient of T as the energy and the energy as the tension,

κ, times the distance L, we find

κ =
1

a2
log g2N . (2.11)

An important observation here is that, actually, the leading strong coupling term

does not depend on g2 and N separately but only on their combination λ = g2N

where, in the naive continuum limit, λ is nothing but the ’t Hooft coupling. This

conclusion can be extended to the subleading terms [46] (after removing disconnected

diagrams) and the whole strong coupling expansion can be rearranged in the ’t Hooft

form [42]

WM =
∑
h=0

Wh(λ)
1

(N2)h
, (2.12)
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L

d

Figure 2. Glueball propagator in the strong coupling limit. The curves Ct and Ct′ are in red. The

gray horizontal lines are only drawn to guide the eye.

where the sum is over the number of handles, h, of the diagram. The expansion (2.12)

tells us that the strong coupling expansion is actually a large-λ (’t-Hooft-coupling)

expansion, i.e. the corrections to the leading term scale like powers of λ−1 = 1
g2N

and 1/N2, and not of 1/g2. Therefore such an expansion is also valid at small g2

provided λ and thus N � 1.2 This observation will be relevant for the extension of

our considerations to baryons and multiquark states.

2) As a next step we can similarly compute the glueball-glueball correlator in the strong

coupling limit. Starting from the definition (2.4) with the integral extended over the

closed curve, C, that for simplicity we have assumed to lie in a plane at time t, one

finds that in the β → 0, fixed N -limit the dominant topology is that of a cylinder

(actually a parallelepiped) whose bases are the two parallel closed curves Ct and Ct′ ,
and the height is |t− t′|. One thus gets (see figure 2)

lim
Strong Coupling

GG(Ct′ , Ct) ≡ lim
Strong Coupling

WG ∝ exp[−A/a2 log(g2N)] , (2.13)

A = 2(L+ d)|t− t′| ∼ 2LT , d� L , (2.14)

where the condition d � L means that we are looking at states with large angular

momentum. We thus find that the effective “glueball string tension”, defined as the

inverse of the Regge slope, is twice as large as the mesonic one, in full agreement with

the string picture (naturally the energy per unit string length is always the same and

does not depend on whether one is dealing with mesonic or gluonic states).

2This limit is like the much used large AdS-radius limit of the AdS/CFT correspondence [47, 48]. In

ref. [49] the possibility of establishing a bridge between the stringy description of QCD resulting from the

AdS/CFT correspondence and the strong coupling limit of lattice QCD in the study of the potential among

the quarks of a triply heavy baryon is explored.

– 7 –
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Figure 3. Meson-to-meson mixing. As in figure 1 the Wilson lines connecting q with q̄ is in red

and the quark propagators in blight blue.

We now argue that, like in the large-N expansion, also the strong coupling expansion

implies the validity of the OZI rule. We will concentrate on an important consequence

of it, namely the absence of mixing between two quarkonium states carrying different

hidden flavor (which we already mentioned as a property of the large-N expansion).

Let us compare the (OZI-conserving) two-point function of figure 1 with the OZI-

violating one depicted in figure 2. While the former behaves as exp[−κA] (see

eq. (2.10)), where A is the area of the rectangle, in the latter case we have to insert,

somewhere in the strong coupling diagram, a complicated non-planar feature of the

kind shown in figure 3. It is then clear that, for a fixed L and T , this feature can only

increase the minimal area needed to properly tile the diagram. Basically, during a

certain time-interval, we will be dealing with a glueball propagator and thus pay the

price of a larger tension. Consequently the OZI-violating contribution will contain

extra inverse powers of λ.

Before moving on to baryons we wish to make a point that will be relevant later.

Consider the two contributions to meson-meson scattering depicted in figure 4. The

non-planar diagram in the panel (b) is obviously subleading at large N . It is also

subleading at high energy for the channel in which the OZI rule is violated. This is

because the leading Regge singularity in its t channel is a two-Reggeon cut, which

is certainly lower than the single q q̄ Regge pole exchanged in figure 4a. Let us now

look at the diagram of figure 4b from the crossed channel viewpoint, in which all

four quark lines go through. Since the diagram is always the same it is still down,

at large N , with respect to the planar diagram of figure 4a. However, the diagram

of figure 4b is now dominant at high energy, since it allows for the exchange of the

leading (vacuum) Pomeron trajectory in its own t channel. This shows that there is

sometimes competition between large N and high-energy approximations. We shall

see something analogous to this when discussing the JOZI rule in section 4.

– 8 –
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(a) (b)

Figure 4. Two contributions to meson-meson scattering in the large-N limit. Panel (a) is the

leading OZI-preserving term; panel (b) is a non-planar OZI-violating subleading correction. But

at sufficiently high energy in the crossed channel, (b) dominates over (a) because of the higher

intercept of the flavor singlet Regge pole.

3 Baryons, junctions and tetraquarks

3.1 Single baryon states

In SU(N) QCD the (normalized) irreducible gauge invariant operator of a baryon takes

the Y-shaped (for N = 3) form (see figure 5)

B(C1, C2, . . . , CN ) =

=
1√
N !
εi1i2...iNU [C1]i1j1q(x1)

j1 U [C2]i2j2q(x2)
j2 . . . U [CN ]iNjN q(xN )jN , (3.1)

where

U [Ck]ikjk = P exp

[
ig

∫
C(xJ ,xk)

dyµAµ(y)

]ik
jk

, k = 1, 2, . . . , N (3.2)

and C(xJ , xk) is a curve joining the point xJ to xk. As in the mesonic case, we have taken

for simplicity very special space-time locations for the q fields. The description of baryons

as a triplet of flux tubes joining at a point dates back to the work of ref. [50], where the

word “junction” was first introduced (see also [51]).

Single baryon intermediate states appear in the correlator

GB({~rk, k = 1, 2, . . . , N}, ~rJ ; t′ − t) =

= 〈B(C1, C2, . . . , CN )B†(C′1, C′2, . . . , C′N )〉 . (3.3)

We will now discuss how the treatment of this correlator simplifies in the large-N and

strong coupling limit of LQCD, starting with the latter.

3.2 Strong coupling, large-λ considerations

Putting xk = (~rk, t), k = 1, 2, . . . , N ;xJ = (~rJ , t) and similarly x′k = (~rk, t
′), k = 1, 2, . . . , N ;

x′J = (~rJ , t
′), we want to evaluate GB in the strong coupling limit. Following the strategy

– 9 –



J
H
E
P
0
6
(
2
0
1
6
)
0
4
1

C3

C1 C2
xJ

x1 x2

x3

Figure 5. The Y-shaped form of the baryon for N = 3.

U [C3]

U [C1]
U [C2]

U †[C ′
3]

U †[C ′
2]

U †[C ′
1]

U [~r1, t
′ − t]

U [~r2, t
′ − t]

U [~r3, t
′ − t]

Figure 6. The N = 3 baryonic Wilson loop. The green dotted line does not explicitly appear in

the correlator (3.4) but it will come out from the calculation outlined below.

outlined in section 2.2.2 in the case of the meson propagator leads to a new kind of Wilson

loop, the baryonic Wilson loop depicted in figure 6, characterized by the presence of the

Levi-Civita symbol. It reads [52, 53]

GB({~rk, k = 1, 2, . . . , N}, ~rJ ; t′ − t)
∣∣∣
largemass

=
1

N !
εi1...iN ε

i′1...i
′
N · (3.4)

· 〈U [C1]i1j1U [~r1, t− t′]j1j′1U
†[C′1]

j′1
i′1
. . . U [CN ]iNjNU [~rN , t− t′]jNj′NU

†[C′N ]
j′N
i′N
〉 ≡WJ .

We want to evaluate WJ in the lattice strong coupling limit.3 As a guide for the

general situation, let us consider the result of the partial calculation in which in each sheet

only two plaquettes from the action are inserted (see figure 7). In each sheet4 the five

(in general (2nt + 1)ns, with nt and ns the number of plaquettes in the time and space

direction, respectively, on each sheet) group integrations, marked with a cross in the figure,

give the following product of Kronecker δ-functions

δi1b1δk1a1 δk1a1δk2d1 δc1b2δd1a2 δd2k3δa2k2 δd2k3δc2j1 . (3.5)

3There has been quite a number of studies of the three-quark potential in the continuum and on the

lattice, starting with the seminal work of ref. [54]. Without pretending to be complete, we may mention

for the study of the q̄ q and qqq potential in the continuum the work of ref. [52] and the review [55]. For

the study of the qqq potential on the lattice see, for instance [56–59].
4We ignore the fact that we cannot have N orthogonal planes for N > 3. This problem will be solved

when rotation invariance is recovered in the continuum limit.
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Ui1k1

Uk1k2 Uk2k3

U †
k3j1

U †
d1a1

U †
a1b1

Ub1c1
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×

× ×

× ×

Figure 7. Paving three sheets of the baryon propagator.

Each product of δ’s that closes in a loop gives a factor N . In the case of the figure this

means a factor N3, but in general it will give a factor NV−nt−1 (where V is the total number

of vertices), and not just V because the nt links along the dotted line shown in figure 6 (the

junction) have not yet been integrated. The remaining δ’s, δi1b1δc1b2δc2j1 , yield the product

of links Ui1`1U`1j1 . This product will have to be put together with the similar products,

Ui2`2U`2j2 . . . UiN `NU`N jN , coming from the other baryon sheets and integrated over. The

result is (remember we are considering the insertion of only two plaquettes per sheet)∑
`k

∫
dUUi1`1Ui2`2 . . . UiN `N

∫
dUUj1`1Uj2`2 . . . UjN `N =

=
1

N !2
εi1i2...iN

∑
`k

ε`1`2...`N ε`1`2...`N εj1j2...jN =
1

N !
εi1i2...iN εj1j2...jN . (3.6)

It is clear that, in order not to get a vanishing result a new line is dynamically created

along which N parallel links appear. We thus see how the junction is an inevitable ingredi-

ent in the strong coupling limit of LQCD. It is also obvious that such a line can only propa-

gate between two baryonic sources and represents the flow of the N antisymmetrized colors.

To get the final result we must saturate the above tensor with the similar tensor in the

definition of the baryon wave function. We thus have to put together the following factors

• 1
N !

1√
N !

1√
N !

(N !)2 = 1 from eq. (3.6) and the normalization in eq. (3.1)

• N−L+Nt from the normalization factor of the link integration∫
dUUabU

?
cd =

1

N
δacδbd , (3.7)

• NV−Nt−1 from the closed loops formed around vertices with the exclusion of the

vertices sitting along the junction

•
(

1
g2

)P
from the plaquettes.
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Taking into account the presence of the N sheets in the baryon expression and the Euler

relation P − L+ V = 2− 2h− b, we get for a surface of genus h = 0 and b = 1

WJ =
( 1

g2N

)∑N
k=1 Pk

[
1 + . . .

]
= e−κAN

[
1 + . . .

]
, (3.8)

where κ is the previously found string tension (see eq. (2.11)) and

AN = |t′ − t| ×
N∑
k=1

`k (3.9)

with `k = |~rk − ~rJ | the length of the curve Ck in eq. (3.2). We have left unspecified the

dots in eq. (3.8). Actually, we believe that in the large-λ limit corrections to the leading

behavior are again O(1/λ) or O(1/N). In the continuum we also expect the minimal value

of the quantity
∑N

k=1 `k, hence of AN , to be proportional to N , since, in that limit, the

length of each string, `k, will be at least of O(Λ−1QCD). This means that self-energy effects

are expected to be of O(N) consistently with Witten’s interpretation [9] of baryons as

solitons in large-N QCD.

We thus see that the baryonic Wilson loop has in the large-λ limit exactly the same

expression as the usual Wilson loop (see eqs. (2.13) and (2.14)) in terms of the ’t Hooft

coupling and the total area of the pages of our N -page “book”. This is in agreement with

the fact that each Wilson line (flux tube) is assumed to be in the fundamental representation

of SU(N). Furthermore, the baryon states of highest angular momentum for a given mass

(the so-called leading Regge trajectory) correspond to keeping the area of two (for N = 3)

pages fixed and small and to increasing the size of the third. This is how we understand

the universality of the Regge slope for q q̄ mesons and baryons.

One final remark is in order. Suppose that we fix the spatial position of our three (or

N) quarks but not that of the junction. In the strong (or large ’t Hooft) coupling limit the

position of the junction will be dynamically determined by the condition of minimizing the

sum of the areas of the pages of the book. Let us show that this corresponds precisely to

the condition that the junction is in equilibrium as a result of the N forces exerted on it

by the strings coming from each quark.

In order to minimize the area we need to minimize the sum of the distances between

the junction and each quark

D ≡
N∑
1

√
(~xi − ~xJ)2 . (3.10)

Setting to zero its derivatives with respect to xkJ , k = 1, 2, . . . , N , we simply get

N∑
1

~xki − ~xkJ√
(~xi − ~xJ)2

= 0 , (3.11)

which is the stated equilibrium condition since the strengths of the N forces are independent

of their lengths for a linear potential.5 Furthermore, as argued in [9], in the heavy quark

limit the junction is not moving in space.

5A similar argument can be found in ref. [53].
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3.3 Large-N considerations

In a classic paper [9] Witten argued that baryons should be regarded as solitons in the

large-N limit of QCD. His claim was based on the rather convincing argument that the

baryon mass spectrum should be proportional to N ∼ 1/g2, 1/g2 being a typical soliton

mass. Witten also pointed out that getting this result from the N -dependence of bary-

onic correlators in perturbation theory is somewhat subtle, since such a correlator actually

contains arbitrarily high powers of N . We have just seen an example of this in the strong

coupling expansion of the baryonic Wilson loop which goes like the exponential of a sum

of N areas. The correct interpretation is that the Wilson loop is related to a finite (Eu-

clidean) time propagator exp(−Eτ) with E ∼ N . This is, basically, the same as Witten’s

argument in large-N perturbation theory. For the interested reader we briefly sketch (our

understanding of) Witten’s argument in appendix A.

The interesting outcome of that analysis, relevant for the present investigation, is that

the large-N limit of QCD can also be used for the baryonic (and more generally for the

multiquark) sector. The fact that the mass of such states goes to infinity with N does not

imply that large-N results cannot be used at N = 3. Let us give an example: suppose

that one can prove that, at large N , mB = mMN/2 for a certain baryon B and meson M .

We would then argue that, to the extent that N = 3 can be considered to be sufficiently

large, it is possible to predict a ratio 3 : 2 between, say, the proton and the ρ meson.

More generally, certain baryonic quantities may diverge with N in a precise way, so that,

once such a dependence is factored out and properly taken into account, the rest is just a

function of ΛQCD. Since, by definition of the large-N limit, ΛQCD is N independent, one

would obtain interesting estimates of those quantities at N = 3, possibly in terms of other

(e.g. mesonic) quantities.

3.4 Baryon-(anti)baryon scattering: tetraquarks as baryonia

It is relatively straightforward to extend the considerations of the previous subsection to

baryon-(anti)baryon scattering. Since, as already mentioned, each junction necessarily

connects two baryonic sources (more precisely: either an incoming and outgoing baryon or

antibaryon, or an incoming or outgoing baryon-antibaryon pair) we will have two distinct

strong coupling diagrams for a given flow of the quark lines. For each one of them the strong

coupling limit selects a minimal-area surface with the correct topology for the quark lines

and the junction. These are shown for N = 3 in figures 8 and 9 for a particular choice of

the flavor (quark line) flow.

The flow of the junction lines determines which channel has also purely mesonic in-

termediate states (i.e. annihilation) and which does not (a third channel has total baryon

number two and no intermediate states in this approximation). This classification of strong

coupling contributions to baryon-(anti)baryon scattering makes precise, within QCD, Ros-

ner’s original observation of the necessity of tetraquarks as the intermediate states in the s

channel of figure 8 which are characterized by the fact of containing a junction-antijunction

pair. These states are necessary in order to reproduce the imaginary part of the Regge

amplitude corresponding to ordinary q q̄ mesons in the t channel.6

6Exchange degeneracy of the corresponding positive and negative signature trajectories is forced by the

absence of a u(baryon number two)-channel discontinuity.
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q
q

q

q
q

q

q̄

q̄
q̄

q̄

q̄
q̄

Figure 8. Baryon-antibaryon scattering at large λ, showing an s channel MJ
4 baryonium

(tetraquark) state dual to a t channel q q̄ meson.

q
q

q

q
q

q

q̄

q̄
q̄

q̄

q̄
q̄

Figure 9. Baryon-antibaryon annihilation at large λ, showing a pair of two s channel q q̄ mesons

dual to a t channel MJ
2 baryonium state.

By contrast the intermediate states in the s channel of figure 9 include two q q̄ meson

annihilation states. In the language of DHS duality, tetraquarks are dual to q q̄ mesons,

while baryon-antibaryon annihilation into two mesons is dual to a new kind of state: a

q q̄ state with two junctions (denoted by MJ
2 in [7]). To the extent that such states

lie on lower Regge trajectories, the annihilation channel is suppressed (at least at high

energy) with respect to the scattering channel that proceeds via tetraquark (baryonium)

intermediate states.
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Figure 10. States of the baryonium family for N = 3 with more than two junctions.

Naturally, more that one q q̄ pair can annihilate, if flavor allows it. We do not repeat

here the detailed discussion of all these other cases as it can be found in refs. [7, 8],

together with the complete classification of the large s, fixed t behavior of all scattering and

annihilation amplitudes at N = 3. The latter is summarized in tables 3a and 3b of ref. [8].

We refer the reader to the specialized literature [60–65] for investigations aimed at

proving the existence of tetraquarks, as diquark-antidiquark states or as a molecule made

of two q q̄ singlets, in lattice simulations.

3.5 States with more than 2 junctions

Arguments very similar to those of the previous section can be used to argue that also

states with more than four quarks and more than two junctions should exist. The simplest

ones are pentaquarks with 2 junctions and one antijunction and baryon number one. As we

shall see in the next section, the JOZI rule implies that these states are mostly coupled to

BBB̄ channels and that, when such channels are not kinematically open, they will decay

into a baryon plus mesons with small widths. Other states with more than two junctions

can be constructed. Some of them are depicted, for N = 3, in figure 10 (corresponding to

figure 10 of ref. [8]).

4 The JOZI rule

4.1 Need for a selection rule on top of OZI’s

Let us start by recalling that the usual OZI rule has two important consequences for q q̄

mesons:

• it suppresses decays which need an initial q q̄ pair to annihilate and a new pair to be

created;

• it suppresses flavor mixing in the mass matrix.

The second property is responsible, for instance, for the “ideal mixing” of the vector meson

nonet. Hence the φ meson is (almost) a pure ss̄ state. Then, by the first property, it prefers

to decay into KK̄ rather than into pions, an experimental fact. Of course this decay is

allowed becauseK-mesons are light enough, which, in turn, is the case because of the pseudo
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Nambu-Goldstone (PNG) boson nature of the pseudoscalar nonet. There is a further twist,

though, to this story: the pseudoscalar sector appears to be anomalous. Its “onia” are not

ideally mixed because the U(1)A-anomaly gives large OZI-violating contribution (compared

to the small mass difference of PNG bosons). Hence we do not see any sign of the OZI rule

in the quark composition and decay of the η′.

Obviously, as we move to q q̄ mesons containing heavier quarks (c and b, essentially)

the OZI rule comes back in all the channels. Furthermore, since charmed or beauty mesons

are by no means light PNG bosons, the preferred decay of heavy quarkonia is often not

allowed kinematically and therefore the lightest ones, (J/Ψ,Υ, . . . ) are narrow. The usual

OZI rule applies also, of course, to tetraquarks. However, we claim that, by itself, it cannot

explain the phenomenology of tetraquark states. Take for instance a candidate tetraquark

state containing a cc̄ pair (besides, say, up and down quarks). The usual OZI rule would

suppress decays in which there is no c quark in the final state, but would certainly allow

decay into two charmed mesons if this is allowed by phase space. And indeed, if we look

at figure 12, we see that, for instance, the X(3872) putative tetraquark decays into mesons

containing the charmed pair. But then, if such a decay were unsuppressed, how can we

explain a width of less than 2 MeV? It looks that another selection rule should be there

on top of OZI. This could be the JOZI rule that we introduced long ago and that we shall

now discuss, although other explanations have been proposed [10, 11, 17, 18, 28, 30].

In analogy with the ordinary OZI rule the new rule recognizes the existence of a hid-

den baryon number inside tetraquarks with a J − J̄ pair. Thus, like with hidden charm or

beauty, the claim is that decay into a pair of baryons is strongly favored whenever kine-

matically accessible. Similarly, a pentaquark containing two junctions and an antijunction

will preferentially decay into two baryons and an antibaryon. A certain number of tetra-

and pentaquark states, however, may lie below threshold for their JOZI-allowed decays. In

that case, the state is expected to be narrow even if it has plenty of phase space for decay-

ing into mesons or a baryon plus mesons, respectively. Again this is similar to the heavy

quarkonium situation. Note that the JOZI rule also implies that production of narrow tetra

and pentaquark states from JOZI-violating processes is suppressed. This may explain why

some earlier attempts to find narrow baryonium states through direct baryon-antibaryon

annihilation failed to give convincing results. Forming such states from the weak decay of

heavy quarks appears to be a much better strategy.

We will now discuss, successively, some theoretical and phenomenological arguments

in support of the JOZI rule.

4.2 Supporting theoretical arguments

Theoretical arguments supporting the JOZI rule follow closely those used in section 2.2

to argue that the strong coupling (or large-λ) expansion justifies the ordinary OZI rule.

We should indeed compare, for a given flow of the quark lines, diagrams with or without

junction annihilation like those in figures 8 and 9. Let us first look into this question from

the large-N expansion viewpoint.

Consider, in general, a duality diagram in which n quark lines annihilate in the s

channel while the remaining (N − n) go through and then distinguish the case in which
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also the junctions go through or annihilate. One can tile the analog of the diagrams of

figures 8 and 9 with a minimal-genus set of plaquettes and, using the usual integration rules,

evaluate the large-N behavior for the two diagrams. A straightforward counting gives:

Ascattering
(n,N−n) ∼ N

−n , (4.1)

Aannihilation
(n,N−n) ∼ N−(N−n) , (4.2)

which is consistent with the fact that the same diagram (rotated by 90 degrees) describes

both scattering and annihilation provided we also change n into (N − n).

The above equation shows consistency with the usual OZI rule for the scattering case

(each annihilation costs an extra factor 1/N). However, for annihilation, the equation

seems to favor a large number of annihilating q q̄ pairs. Also, comparison between the two

processes (for the same n) shows that scattering dominates at n < N/2 while annihilation

dominates at n > N/2. However, before jumping to premature conclusions, we should note

that extra combinatorial factors related to the number of possible ways in which a given

diagram can be built, may have to be taken into account. Such a number involves also the

flavor structure of the process and is, in general, quite complicated.

If we take a large-λ limit we have to compare minimal area surfaces for the two pro-

cesses. The following large-λ behaviors appear

Ascattering
(n,N−n) ∼ λ

−2NA+n(2A−B) , (4.3)

Aannihilation
(n,N−n) ∼ λ−2NC+(N−n)(2C−D) , (4.4)

where the areas A,B,C,D are those indicated in figure 11. In that figure we schemati-

cally indicate the s channel intermediate states of scattering (top panel) and annihilation

diagrams (bottom panel) as well as the leading λ behavior of each of them.

Again, a large n implies many extra sheets in the scattering diagram while a large

(N −n) calls for many sheets in the annihilation diagram (i.e. for for the (N −n) mesons).

This fits well with the large-N result but falls short of justifying the JOZI rule in general.

At this point we can combine the above arguments with the one already given in [7] where

it was pointed out that, at high energy, the diagram in figure 8 dominates over the one

in figure 9 owing to the exchange of a higher Regge trajectory (ordinary meson vs. a

baryonium state). Such an argument can be repeated in the general case discussed above

and supports both the ordinary and the JOZI rule independently of n. We see here an

analogy with what we found already in section 2 for the validity of the ordinary OZI rule.

Sometimes the large-N and high-energy arguments go hand in hand whereas in other cases

they appear to push in opposite directions.

Another theoretical support for the JOZI rule can be based on a judicious extrapolation

from N = 3 to large N . Here our approach can be contrasted to Weinberg’s recent one [26].

His large-N considerations are based on keeping the quark-gluon content of the tetraquark

unchanged as N is increased. In our framework, instead, one should decide first on how to

extrapolate the N = 3 tetraquark state to arbitrary N . Obviously, the state should contain

two junctions but then how many quarks? One possible extrapolation would consist in
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Figure 11. The s channel intermediate states of scattering (top panels) and annihilation diagrams

(bottom panel) and the corresponding λ behavior.

keeping the number of quarks fixed at four and simply increase to (N − 2) the number of

strings connecting the two junctions. At the opposite extreme one might prefer to keep a

single string stretched between the junctions and have 2(N − 1) quarks. Or, finally, one

may like to increase both the number of quarks and the number of intermediate strings

keeping their ratio fixed while N →∞. In all cases the mass of such a state is expected to

grow linearly with N .

One can then estimate for each case the N -dependence of the decay amplitudes into

different channels with and without junctions and compute the N dependence of the rela-

tive branching ratios. Without going into the details of a straightforward though tedious

calculation, one finds that the dominant transitions (of O(N−1/2)) are cascades in which

a single quark-antiquark pair is created or annihilated while preserving the junction struc-

ture. Furthermore, the decay amplitude into a baryon-antibaryon pair goes like N−n/2 if

there are n intermediate strings that have to be broken. Annihilation amplitudes decrease

for increasing N − n (and thus decreasing n), but are always exponentially suppressed in

agreement with [9]. Therefore, quite generically, the ratio between the JOZI-violating and

JOZI-conserving partial widths goes quickly to zero at large N . Assuming N = 3 to be
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large enough, the tetraquark state should also be mesophobic (and narrow) in real QCD.

In conclusion, in spite of several arguments in favor, a general justification of the JOZI

selection rule from either large-N , large-λ, or high-energy considerations is still lacking. In

the end, one has to appeal to the data in order to check its validity or usefulness. This is

indeed the point we wish to address now.

4.3 Supporting phenomenological arguments

The overall pattern of masses and widths of candidate multiquark states is phenomeno-

logically quite puzzling as, generally speaking, they look anomalously long-lived. This, by

the way, is precisely the reason that makes them visible as resonances over the strong-

interaction continuum.

In order to discuss the situation, we found convenient to collect in figures 12 and 13,

respectively, the masses and widths of today’s available (and more or less confirmed) hidden

charm and hidden bottom mesonic (putative tetraquark) states. A similar compilation for

baryonic (putative pentaquark) states is presented in figure 14.

4.3.1 Mesonic states: candidate tetraquarks

The data displayed in the plots of figures 12 and 13 are taken from the nice compilation of

ref. [66]. For each state, together with the mass (horizontal-axis) and width (vertical-axis),

we indicate with arrows the thresholds of the corresponding decay channels. The vertical

line gives the location of the baryon-antibaryon threshold, i.e. of the ΛcΛ̄c and ΛbΛ̄b total

mass, respectively.

In the case of hidden charm candidate tetraquarks (figure 12) we note that, in all but

one case, the allowed decay channels are purely mesonic and that there is often generous

phase space allowed for the decay. The exception is the X(4630) meson whose mass is a

mere 60 MeV above the ΛcΛ̄c threshold. Yet the state is pretty large and likes to decay

into charmed baryons. There is a possibility that this state is not distinct from the nearby

Y (4660). That case has been discussed in detail in ref. [67] with the conclusion that the

branching ratio into charmed baryons is two orders of magnitude larger than the one in

Ψ(2S) + π+π− in spite of the huge phase space unbalance.7

Many of the states below the baryonic ΛcΛ̄c threshold (like X(3872), Z+
c (3900),

G(3900), X(3915), χc2(2P ), X(3940)) are very narrow, in spite of the large available

bosonic phase space. Three others (Z∗1 (4050), Y (4260), Y (4360)), though below the ΛcΛ̄c
threshold, are somewhat larger than the six mentioned before.

Here one should also mention the molecular interpretation of some of the states re-

ported in figure 12. In particular the states X(3872), X(3915), X(3940) are narrow and

very near to the DD∗ threshold as predicted by the molecular picture [10, 11, 17, 18, 28, 30].

The situation of hidden bottom candidate tetraquarks (figure 13) is even more striking.

All the known states are below the ΛbΛ̄b threshold, but have plenty of phase space to decay

into bosonic channels, yet their width to mass ratio is extremely small.

7We thank A. Polosa for bringing ref. [67] to our attention.
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Figure 12. Masses and widths of narrow hidden charm candidate tetraquarks, taken from the

compilation of ref. [66]. We have excluded just a couple of states of that compilation whose width

exceeds 100 MeV. In the upper part of the diagram we show the thresholds for the channels into

which each one of the particle is known to decay. The vertical line indicates the position of the

ΛcΛ̄c threshold.

This being said, we should make a disclaimer: we do not pretend that all narrow

tetraquark states are baryonia. A more complete phenomenological study is certainly

necessary before such a suggestion can be made. The above-mentioned X(4630), Y (4660)

tetraquark(s) do smell like baryonia. Instead, states such as Zb(10610), Zb(10650), although

narrow and below baryonic decay channels, appear to have very surprising branching ratios

into open and hidden beauty channels [68] particularly after the difference in available phase

space is taken into account.8 As we shall discuss later, the junction picture would rather

predict a democratic decay into the two categories of mesonic final states. An interpretation

of those states as molecules made of two heavy B-mesons appears to be possible according

to present data.

4.3.2 Baryonic states: candidate pentaquarks

In figure 14 we show masses and widths of candidate pentaquark states. We put in the

figure not only the narrow state recently discovered at LHCb [69], but also the less recent

8We are grateful to M. Karliner for bringing this important point and ref. [68] to our attention.
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Figure 13. Masses and widths of narrow candidate hidden bottom tetraquarks, taken from the

compilation of ref. [66]. We have excluded just a couple of states of that compilation whose width

exceeds 100 MeV. In the upper part of the diagrams we show the thresholds for the channels into

which each one of the particle is known to decay. The vertical line indicates the position of the

ΛbΛ̄b threshold.

(and not fully confirmed) states of refs. [70] and [71], as well as the old state discovered in

1979 again at CERN [72, 73] whose existence was actually never disproved.

We remark that all these states have masses below the corresponding baryon-

antibaryon-baryon threshold, namely ΛN̄N for Θ+(1540), ΛΛ̄N for Ξ−−(1860), ΞΛ̄N for

R+(3170) and ΛcΛ̄cN for P+
c (4450). Despite the fact that they have large phase space for

decaying into a baryon plus bosons, they are very long-lived.

4.3.3 Scattering amplitudes with exotic intermediate states

If we neglect the baryon-baryonium sector of QCD (which we can at N = ∞), scattering

amplitudes with exotic quantum numbers should exhibit no baryonium-like resonances

(they may have instead molecular bound states, but these are not our concern here).

However, at N = 3 nothing forbids exotic baryonium resonances to be formed. According

to our previous discussion they are expected to be narrow whenever their JOZI-conserving

decays are kinematically forbidden. We shall now illustrate this point in two examples.
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Figure 14. Masses and widths of narrow candidate pentaquarks. In the upper part of the diagrams

we show the thresholds for the channels into which each one of them is known to decay. The vertical

lines indicate the position of the various baryon-antibaryon-baryon thresholds. Data are taken from

refs. [69–73].

Meson-meson scattering. Consider meson-meson scattering for the case in which the

flavor content of the incoming mesons is such that q q̄ annihilation is impossible or strongly

suppressed. In the absence of baryons and J−J̄ mesons, such a scattering amplitude should

have no resonances in the direct channel with its duality diagram only showing resonances

in the t and u channels (see discussion at the end of section 2). However, although with a

JOZI-suppressed amplitude, a J− J̄ pair can be created and a tetraquark can be produced.

If formed, such a tetraquark will decay into a precise linear combination of two-meson states

corresponding to the two ways in which the two q q̄ pairs can be reconstructed.

A particularly interesting case, already considered in refs. [21, 22],9 has a c c̄ as well as a

ū d pair. Thus an intermediate tetraquark state with a J− J̄ will be coupled, at the quark-

level, to a particular combination of two states, the first consisting of a c c̄ (e.g. J/ψ) and a

ū d (e.g. π−) meson, the second of a c ū (e.g. D0) and a c̄ d (e.g. D−) meson. Two processes,

with the same initial state, are represented in the top and bottom panels of figure 15. The

amplitudes (and thus also the rates) for the two kinds of final states (J/ψ π− or D0D−)

9We wish to thank L. Maiani and A. Polosa for discussions on this issue.
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Figure 15. Diagrams describing the reactions J/ψ π− → J/ψ π− (top panel) and J/ψ π− → D0D−

(bottom panel) with an intermediate tetraquark/baryonium state. Besides the quark lines also

some intermediate gluons are shown (in double-line notation) in order to evidentiate the two sets

of totally antisymmetrized colors (each one encircled by an ellipse) identifying the intermediate

tetraquark state.

should be simply related if the reaction proceeds via a single tetraquark intermediate state

(each ellipse in figure 15 encircles three totally antisymmetrized color indices showing that

a junction-antijunction pair is created and then annihilated).

Meson-baryon scattering. Problems with DHS duality of the kind pointed out by

Rosner [2] for BB̄ scattering amplitudes, also arise in the case of MB → MB processes.

In the BB̄ case, the exchange of baryonium states in the s channel is necessary in order to

account for the full t channel meson trajectory (a JOZI conserving process). Looking at

figure 16 (taken from ref. [8]), one recognizes that in the MB → MB amplitude interme-

diate states with junctions (pentaquarks in the upper panel and tetraquarks in the lower

panel) are required if one wants to have a non-vanishing discontinuity in the u and t chan-

nel, respectively (JOZI violating exchange). Absence of these discontinuities (at least if

other unitarity corrections due to more complicated, non planar, topologies are negligible)

would imply exchange degeneracy for the strange baryonic Regge trajectories, Λ and Σ,

something which is phenomenologically problematic.

5 Conclusions

In this paper we have tried to update, both theoretically and phenomenologically, our old

proposal [7] for interpreting narrow multiquark states as having hidden baryon number

(“baryonia”). These states were predicted to be “mesophobic” i.e. with a preference for

baryonic rather than mesonic decay channels (in analogy with heavy quarkonia). This idea

can be made more precise, in QCD, by introducing the concept of a junction (resp. anti-

junction) as a sink (resp. source) of triplets of Wilson lines, each seen as a string-like color
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Figure 16. In the upper and lower panel we provide examples of MB → MB processes where

intermediate pentaquark and tetraquark states are required in order not to have a vanishing dis-

continuity in the u and t channel, respectively.

flux tube. Single hadron states are then associated with irreducible color singlet operators

containing quarks, antiquarks, junctions and antijunctions connected by Wilson lines. Be-

sides the baryons themselves (one junction states) the simplest new states in this sector are

tetraquarks and pentaquarks with two and three junctions (and baryon number zero and

one), respectively. In our picture, however, other two and three-junction states with fewer

quarks should also be present in the spectrum, although they might be hard to distinguish

from ordinary states with the same flavor.

On the theoretical side we have discussed this picture in two distinct limits: the ’t Hooft

large-N limit (at fixed number of flavors and fixed λ ≡ g2N) and a lattice strong coupling

limit that we argued to be actually a large-λ limit similar to the one often discussed in the

AdS/CFT correspondence [47, 48]. Both limits have been successfully used for the study

of the mesonic sector of QCD but, as first pointed out by Witten [9], a suitably defined

large-N limit can also be defined for baryons and baryonia in spite of the fact that certain

quantities diverge in that limit. We have briefly reviewed Witten’s approach and then

argued that also the large-λ limit can be usefully applied to the baryonic sector.

We are of course aware of the fact that both the large-N and the large-λ limits could

give misleading information about real QCD: the former because N = 3 may not be large

enough, the second because the continuum limit corresponds to the λ→ 0 limit as a result

of asymptotic freedom. In figure 17 we show how these different limits are defined in a
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Figure 17. Different regimes in (lattice) QCD. One may try to extract information about the real

world (Nc = 3 in the continuum limit) by going clockwise around a large semicircle in this diagram.

two-dimensional parameter space. It is somewhat reassuring that the strong coupling limit

can be turned into a large-λ one, but this is still not sufficient to reach the continuum limit

of large-N QCD.

The theoretical analysis we have presented in this work provides us with some qualita-

tive understanding of the spectrum of multiquark states and of their interactions including

the possible validity of a junction-OZI (JOZI) rule generalizing the ordinary OZI rule to

the baryonic/baryonium sectors. In spite of these considerations the validity of the JOZI

rule appears to depend on a number of extrapolations that may be satisfied for some states

and not for others.

We think that only a detailed study of the relevant experimental data can tell whether

the string-junction picture for multiquark states is useful. In this paper we have undertaken

a first and modest step in this direction by collecting present data about multiquark states,

their masses, widths and decay channels. The gross features that strikes the eye is that

many of these states are unusually narrow even when they have considerable phase space for

decaying into channels that violate the JOZI. All of them are below threshold for decaying

into JOZI-allowed channels with one exception, the X(4630) state, which is just above the

ΛΛ̄ threshold and yet is pretty broad.
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We believe that, all in all, our forty years old proposal appears to hold water, but

a more detailed study of the existing experimental situation, as well as the acquisition

of new data, is necessary before discriminating our approach from several others that are

presently on the market. It is quite likely that there is no single explanation for the existence

of narrow multiquark states. We have argued that the fifty year old DHS duality, as well

as several QCD approximations (large-N , large-λ), predict the existence of tightly bound

“irreducible” multiquark states. But, of course, QCD should better not exclude that in

proton-neutron scattering a narrow “molecule”, usually called deuteron, will appear. It is

perfectly possible that, similarly, some tetra and pentaquark states are narrow, not because

of the OZI or JOZI rules, but simply because they are “molecules” whose mass is close to

the dissociation threshold into their constituent “atoms”.
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A Sketch of Witten’s large-N argument

In principle, to study the large-N limit of baryon dynamics one should set up a relativistic

and gauge-invariant N -particle bound state equation, a highly not trivial task. In prac-

tice, being only interested in some qualitative conclusion, one can employ the following

reasoning: one starts by separating the N quark interaction potential V (N) from the free

N quark propagator. This is done, technically, by associating the former with N -quark-

irreducible (NQI) diagrams (diagrams that do not have an intermediate state consisting of

just N dressed quark propagators). Next, one decomposes V (N) into contributions from

two-body, three-body, etc. interactions all the way up to an N -body term (a set of fully

connected diagrams). In formulae we write

V (N) =
N∑
n=2

V (N)
n . (A.1)

Finally, one uses the large-N limit to analyze each term in the above sum. Eventually, the

energy levels of the system will be given by the eigenvalues V (N).

By its definition V
(N)
n consists of diagrams that have a connected (amputated) 2n-point

function accompanied by N − n non-interacting (but dressed) propagators. Our claim is

that, at leading order in 1/N , the above mentioned connected 2n-point function can be

constructed out of an n-meson planar amplitude by the following procedure. Take all the

planar diagrams giving the leading contribution to the correlation function of n gauge-

invariant quark-antiquark bilinears. Then, open up the quark bilinears, and, instead,
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Figure 18. Typical leading (“planar”) diagram contributing to the baryon wave function for

n = N = 4. Unlike in the rest of the paper different colors represent different flavors. The numbers

indicate how the 4 colors flow in the diagram.

simply join the n quark and n antiquark lines with the remaining (N − n) “spectator”

quarks and antiquarks at two vertices inserting at each of them an overall N -dimensional

Levi-Civita ε factor. This is illustrated in figure 18 for n = N = 4, where one can easily

visualize the above mentioned 4-meson amplitude by joining together the q−q̄ pairs sharing

the same color label (i.e. the same number, as in this figure different colors actually denote

quark’s flavors).

In order to determine the N -dependence of V
(N)
n one will have to sum over all possible

inequivalent ways of applying the above procedure. This will produce an
(
N
n

)
binomial

coefficient (and not its square since the n quark colors have to match those of the n

antiquarks) as well as a factor (n− 1)! from the number of inequivalent cyclic + anticyclic

orderings of the pairs in the n-meson diagram. Finally, there will be a factor g2(n−1) ∼
N−(n−1) from the n-meson amplitude itself. Summing up we find

V (N)
n ∼ NnN−(n−1)F (n, λ) = NF (n, λ) , (A.2)

V (N) = N

N∑
n=2

F (n, λ) , (A.3)

where F (n, λ) includes some of the above-mentioned combinatorial factors as well as the

dynamical n-dependence of the n-boson correlator. Note, however, that the F (n, λ) coeffi-

cients do not depend upon N . As a result, provided their n dependence is not too singular

(i.e. that the sum over n in (A.2) converges fast enough), V (N) will be simply proportional

to N with an overall universal coefficient. The above considerations make somewhat more

precise the conditions under which Witten’s “soliton claim” follows. It also confirms his

point that the problem of determining the relevant quark interaction inside a baryon at

large-N is of the same level of difficulty as that of finding the large-N mesonic scattering

amplitudes.
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