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1 Introduction

Studies of nuclear β-decay are a popular probe of physics beyond the Standard Model [1–4].

Interestingly, high precision studies of the (near endpoint) nuclear β-spectrum of tritium

will soon be possible with the KATRIN experiment [5]. The main physics goal is to deter-

mine the value of the absolute neutrino mass if it lies above 0.35 eV, or to set strong limits

going down to 0.2 eV, improving current direct constraints by an order of magnitude. The

possible presence of exotic charged current interactions in direct neutrino mass experiments

(see [6, 7] for reviews) has often been analyzed [8–17]. The outcome of such investigations

is that with studies near the endpoint of the spectrum existing limits on exotic interac-

tions cannot be much improved. Moreover, if the endpoint is left as free parameter in the

analysis, the presence of new interactions will have only little effect on the neutrino mass

determination [14, 17].

However, it is possible to modify the KATRIN setup in order to access the whole

spectrum. This has been proposed in refs. [18, 19] as a possibility to look for sterile neu-

trinos with masses around a few keV, which are interesting values in terms of Warm Dark

Matter [20]. In general, with KATRIN’s 1011 tritium decays per second the experiment
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provides an excellent opportunity to look for spectral distortions, which are characteristic

for new mass states but also for exotic interactions. Having this in mind, there have been

already papers studying the presence of keV neutrinos in the spectrum [18, 21, 22], which

would leave a characteristic kink at Q−mS in the electron energy spectrum (Q being the

endpoint, mS the mass of the sterile neutrino). The presence of right-handed currents,

further modifying the shape of the spectrum, has also been studied [23].

The goal of the present paper is to perform a general and relativistic (see also refs. [15,

16]) analysis of the electron energy spectrum of tritium β-decay in the presence of all

possible exotic charged current interactions and to quantify for the first time the possible

spectral distortions that can be observed if the whole spectrum is accessible. Our analysis

reaches beyond existing literature in the following points:

(i) In our generic relativistic calculation we find that regardless of the interaction the

energy spectrum can be parameterized by six functions which depend only on the

involved particle masses and coupling constants, and whose precise form is specified

by the interaction;

(ii) we use an effective operator approach to study all possible Lorentz-invariant charged

current interactions [3, 24] including right-handed sterile neutrinos;

(iii) both small neutrino masses of order 0.5 eV and large masses of order keV are consid-

ered, and the significance of accessing the full electron energy spectrum is stressed.

We show in particular that while the endpoint region does not display significant

effects, the full spectrum can display sizable distortions on the permille level, even for

unobservably small neutrino masses. This allows in principle to improve the bounds on the

effective operators and adds additional physics motivation to modifications of high activity

neutrino mass experiments to study the full spectrum.1

The paper is build up as follows: in section 2 we study the most general electron energy

spectrum of β-decay, working in a relativistic approach and keeping the underlying inter-

action unspecified. Using this general formalism, we revisit the Standard Model spectrum

and Kurie-plot for tritium β-decay in section 3, where we also analyze the corrections to

well-known textbook results originating from a proper relativistic treatment. In section 4

the various possible corrections to the electron energy spectrum from beyond the Standard

Model charged current interactions are studied in an often considered effective operator

approach. The distortion of the spectrum in case such operators are present is analyzed.

We summarize our results in section 5.

1We note that the Project 8 experiment [25] has in principle also access to the full spectrum and our

results would apply in this case as well. The PTOLEMY project also discusses possible constraints on

keV-scale neutrinos [26].
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2 Fully relativistic treatment of beta decay

We consider in this section the β-decay of a mother nucleus A to a daughter nucleus B, an

electron e− and an electron antineutrino νe:

A → B + e− + νe. (2.1)

The final electron antineutrino state |νe〉 is a superposition of mass eigenstates |νj〉. We will

assume that apart from the three active neutrinos additional, necessarily sterile, neutrino

species are present, i.e.

|νe〉 =

3+ns∑
j=1

Uej |νj〉, (2.2)

where ns is the number of sterile neutrinos and U denotes the (3 + ns) × (3 + ns) lepton

mixing matrix. We will now work out general expressions for the electron energy spectrum,

assuming only that the process in equation (2.1) is generated by an interaction that is

mediated by particles much heavier than the nuclear scale. We make in this section no

assumption about the Lorentz structure of the interactions.

2.1 Kinematics

Our treatment of the kinematics of beta decay follows refs. [15, 27]. The differential decay

rate of A is given by the sum

dΓA→B+e−+νe =

3+ns∑
j=1

dΓA→B+e−+νj Θ(mA −mB −me −mj), (2.3)

where mj denotes the mass of the neutrino νj . The Θ-function has to be introduced in

order to exclude kinematically forbidden decays.

We now consider an individual term dΓA→B+e−+νj in equation (2.3):

dΓA→B+e−+νj =
1

2mA

d3pe
(2π)3 2Ee

d3pj
(2π)3 2Ej

d3pB
(2π)3 2EB

×

×
∣∣M(A → B + e− + νj)

∣∣2 (2π)4 δ(4)(pA − pB − pe − pj).
(2.4)

Since we are interested in the electron energy spectrum only and we assume the decaying

nucleus to be unpolarized, |M(A → B + e− + νj)|2 is the matrix element squared averaged

over the spin of A and summed over the spins of the final particles.2 This matrix element

squared is Lorentz invariant and does not depend on the spins of the particles. Conse-

quently, it is a function only of the masses, scalar products (p · p′) of 4-momenta of the

involved particles and objects of the form

εµνρσpµp
′
νp
′′
ρp
′′′
σ . (2.5)

However, due to energy-momentum conservation there are only three independent 4-

momenta in the process. Thus the expression of equation (2.5) always vanishes due to

the total antisymmetry of the ε-symbol.

2In the entire paper the expression |M|2 always means 1/2
∑

spins |M(spins)|2.
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Taking into account only (possibly effective) tree-level contributions, the amplitudeM
has the form

M = [ueOvj ][uBO′uA], (2.6)

where O and O′ are 4× 4-matrices. If O and O′ do not depend on the 4-momenta of the

particles, the only source of 4-momenta are the four spinors ue, vj , uB, uA. In this case

|M|2 is a quadratic polynomial in products of 4-momenta, i.e. all momentum-dependent

terms of |M|2 are of the form

(p · p′) or (p · p′)(p′′ · p′′′). (2.7)

In this paper the only case of a momentum-dependent matrix O or O′ will be a (weak

magnetism) contribution to O′ proportional to q/M , with q = pA−pB being the momentum

transfer and MN being a mass scale of the order of the nucleus mass. This will induce

terms in |M|2 of the form

(p · q)(p′ · q)(p′′ · p′′′)
M2
N

or
(p · p′)(p′′ · p′′′)(q · q)

M2
N

. (2.8)

Since we will focus on tritium decay for which q < 20 keV and MN ∼ 3 GeV, these contri-

butions are suppressed by a factor of (q/MN )2 . 10−10 and are therefore negligible. Thus,

with excellent accuracy, |M|2 is a quadratic polynomial in products of the form p · p′.
However, due to energy-momentum conservation

pA = pB + pe + pj (2.9)

only two products of 4-momenta are independent. For our purposes it will be most conve-

nient to express all products of 4-momenta in terms of

pA · pe and pA · pj . (2.10)

Since the decay rate is defined in the rest frame of the decaying particle we find

pA · pe = mAEe and pA · pj = mAEj . (2.11)

Thus, the matrix element squared is a function of the particle masses and the electron and

neutrino energy only. As discussed above, this function must be a quadratic polynomial in

Ee and Ej , i.e.∣∣M(A → B + e− + νj)
∣∣2 = A+B1Ee +B2Ej + CEeEj +D1E

2
e +D2E

2
j , (2.12)

where A, B1, B2, C, D1 and D2 are functions of the particle masses and coupling con-

stants. Since |M|2 therefore does not depend on the direction of the emitted electron, the

computation of dΓ/dEe is possible without knowledge of the explicit form of |M|2 — see

appendix A. The result of this computation is(
dΓ

dEe

)
νj

=
1

64π3mA

∫ Ej+

Ej−

dEj
∣∣M(A → B + e− + νj)

∣∣2 , (2.13)
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where

Ej± =
−(mA − Ee)(EemA − α)± |~pe|

√
(EemA − α+m2

j )
2 −m2

Bm
2
j

m2
A − 2mAEe +m2

e

(2.14)

and

α =
1

2

(
m2
A −m2

B +m2
e +m2

j

)
. (2.15)

With |M|2 given by equation (2.12) the Ej-integration is trivial and gives(
dΓ

dEe

)
νj

=
1

64π3mA
(2.16)

×
{

(A+B1Ee+D1E
2
e )(Ej+−Ej−)+

1

2
(B2+CEe)(E

2
j+−E2

j−)+
1

3
D2(E3

j+−E3
j−)

}
.

Equations (2.12) and (2.16) define the most general electron energy spectrum in β-decay.

Any charged current interaction will specify the functions A,B1,2, C,D1,2, which can then

be inserted in those expressions. For the Standard Model the result is presented in equa-

tion (3.3), and the various possible new physics cases are treated in section 4.

Defining

P (Ee) ≡ −
(mA−Ee)(EemA−α)

m2
A − 2mAEe +m2

e

, Q(Ee) ≡
|~pe|
√

(EemA−α+m2
j )

2−m2
Bm

2
j

m2
A − 2mAEe +m2

e

, (2.17)

we have Ej± = P ±Q and thus(
dΓ

dEe

)
νj

=
Q(Ee)

32π3mA

{
(A+B1Ee+D1E

2
e )+(B2+CEe)P (Ee)+D2

(
P 2(Ee)+

1

3
Q2(Ee)

)}
.

(2.18)

Note that almost all quantities in the above equation depend on the neutrino mass and are

therefore different for different contributions to the total decay rate. In particular also the

maximal electron energy

Emax
e =

m2
A +m2

e − (mB +mj)
2

2mA
(2.19)

is a function of the neutrino mass. As pointed out in [28] the difference to the usual non-

relativistic approximation (Emax
e )NR ≡ mA − mB − mj can be substantial. For tritium

decay and low neutrino masses . 10 eV one obtains (Emax
e )NR−Emax

e ≈ 3.4 eV [28]. For a

neutrino mass of 5 (10, 15) keV, the difference is about 2.5 (1.6, 0.6) eV.

Taking into account that the decay is kinematically forbidden if mj > mA −mB −me

and that
(
dΓ
dEe

)
νj

contributes only for Ee < Emax
e (mj), we find the total electron spectrum:

dΓ

dEe
=

3+ns∑
j=1

(
dΓ

dEe

)
νj

Θ(Emax
e (mj)− Ee)Θ(mA −mB −me −mj). (2.20)
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In the following, we will use the abbreviation

Θ̃j ≡ Θ(Emax
e (mj)− Ee)Θ(mA −mB −me −mj). (2.21)

Since each term in the sum (2.20) is proportional to |~pe| (recall that the spectrum

from equation (2.18) is proportional to Q(Ee) ∝ |~pe|), the whole spectrum is proportional

to |~pe|, and in particular
dΓ

dEe

∣∣∣
Ee=me

= 0. (2.22)

Furthermore, since Q(Emax
e ) = 0, see appendix B, the endpoint of the spectrum is reached

at

Eend
e =

m2
A +m2

e − (mB +m0)2

2mA
, (2.23)

where m0 is the mass of the lightest neutrino mass eigenstate. Thus, the shift of the

endpoint compared to the case of at least one massless neutrino is given by

Eend
e

∣∣∣
m0=0

− Eend
e =

2mBm0 +m2
0

2mA
≈ mB
mA

m0 ≈ m0. (2.24)

The difference of the exact expression to the approximate expression m0 is −1.9 · 10−5 eV

for m0 = 0.1 eV, −1.9 · 10−4 eV for m0 = 1 eV, −0.19 eV for m0 = 1 keV and −0.94 eV for

m0 = 5 keV.

In order to simplify the expression of the spectrum we expand the functions P (Ee)

and Q(Ee) from equation (2.17) in terms of the small parameters [29]

ε ≡ mA −mB
mA

, δ ≡ me

mA
, η ≡ Ee

mA
and ρ ≡ mj

mA
. (2.25)

Taking the standard example of tritium decay, mA = m(3H+), mB = m(3He2+) — see

table 4 — we find

η < ε = 1.9× 10−4, δ = 1.8× 10−4, ρ < ε− δ = 6.7× 10−6, (2.26)

i.e. all expansion parameters are smaller than 2 × 10−4. The parameter ρ (even for large

neutrino masses ∼ keV) is smaller by at least one order of magnitude.3 The reason for this

is the small energy release mA −mB −me . 18.591 keV of tritium beta decay compared

to the mass of the mother nucleus.

We expand the functions P (Ee) and Q(Ee) to lowest order in terms of the four expan-

sion parameters of equation (2.25). For this purpose we treat each of the parameters as

being of the same order λ, i.e. ε ∼ δ ∼ η ∼ ρ ∼ λ. The results are shown in table 1. From

there we find that Q(Ee) is suppressed with respect to P (Ee) by a factor of

|~pe|
mA

<
mA −mB −me

mA
= ε− δ = 6.7× 10−6, (2.27)

3If one would actually use the expansion in the parameters of equation (2.25) for numerical estimations

— which we will not do here — one has to keep in mind that for mj . eV, ρ may be smaller or of comparable

size to η2, ε2 and δ2, in which case an expansion to second order in the small parameters may be necessary

to estimate the effect of nonvanishing neutrino masses on the spectrum.

– 6 –
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function lowest order expansion for mj = 0

Q(Ee) mA
|~pe|
mA

(√
(ε− η)2 − ρ2 +O(λ2)

)
mA

|~pe|
mA

(
ε− η +O(λ2)

)
P (Ee) mA

(
ε− η +O(λ2)

)
mA

(
ε− η +O(λ2)

)
Q(Ee)P (Ee) m2

A
|~pe|
mA

(
(ε− η)

√
(ε− η)2 − ρ2 +O(λ3)

)
m2
A
|~pe|
mA

(
(ε− η)2 +O(λ3)

)
Q(Ee)P (Ee)

2 m3
A
|~pe|
mA

(
(ε−η)2

√
(ε−η)2−ρ2+O(λ4)

)
m3
A
|~pe|
mA

(
(ε− η)3 +O(λ4)

)
Q(Ee)

3 m3
A

(
|~pe|
mA

)3 (
((ε− η)2 − ρ2)3/2 +O(λ4)

)
m3
A

(
|~pe|
mA

)3 (
(ε−η)3+O(λ4)

)
Table 1. Expansion of the functions P (Ee) and Q(Ee) and their products in terms of the small

parameters ε ∼ δ ∼ η ∼ ρ ∼ λ.

the numeric value being again for tritium decay. Consequently,

Q� P and Q3 ≪ QP 2. (2.28)

These inequalities hold also close to the endpoint of the spectrum where

Q(Emax
e ) = 0, P (Emax

e ) =
mj

(
m2
A + (mB +mj)

2 −m2
e

)
2mA(mB +mj)

(2.29)

and

lim
Ee→Emax

e

Q(Ee)

P (Ee)
= 0. (2.30)

From the lowest order expansion in table 1, setting mj = 0 we find the approximate

properties

P (Ee) ∝ (mA −mB − Ee) and Q(Ee) ∝ |~pe|(mA −mB − Ee), (2.31)

i.e.P (Ee) is a linear function of Ee, and Q(Ee) is proportional to the product of this linear

function with |~pe|.

3 The electron spectrum of tritium beta decay in the Standard Model

Let us now apply the formalism from the previous section in detail to the β-decay of

tritium. Moreover, taking tritium decay as an example, we will make the transition from

the general spectrum to the well-known textbook results.

3.1 Shape of the spectrum and corrections to the non-relativistic case

Assuming the nuclei to be point particles interacting only via the weak interaction, the

Standard Model effective Lagrangian for the β-decay A → B + e− + νe is given by

− GF√
2
Vud

(
eγµ(1− γ5)νe

) (
Bγµ(gV 1− gAγ5)A

)
+ H.c. (3.1)

with A = 3H+ and B = 3He2+. Here we use the elementary particle treatment of weak

processes [30–32] as applied to tritium beta decay in [33, 34], and recently also studied

– 7 –
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in relativistic form in [15, 16]. That means we use the fact that the transition 3H+ →
3He2+ + e− + νe has the same relevant spin and isospin structure as neutron decay n →
p+e−+νe. In this case, in the first approximation, the effects from nuclear physics4 can be

absorbed into two form factors gV and gA. We perform here a fully relativistic calculation

within this framework, and furthermore (having in mind the electron energy spectrum as

a test of new physics within the KATRIN experiment in its present and a future modified

form) take advantage of the matrix element parametrization in terms of A, . . . ,D2 given

in equation (2.12).

At tree-level the matrix element squared, already averaged over the spin orientations

of A and summed over the spins of the final state particles5 is given by

∣∣M(A → B + e− + νj)
∣∣2 = 16G2

F |Vud|2 |Uej |2 (3.2)

×
{

(gV +gA)2 (pj ·pA) (pe ·pB)+(gV −gA)2 (pj ·pB) (pe ·pA)−(g2
V − g2

A)mAmB (pj ·pe)
}
.

Using energy-momentum conservation we can reformulate this as a polynomial in Ee and

Ej with the coefficients6

A =
γ

2
mAmB (g2

V − g2
A)(m2

A −m2
B +m2

e +m2
j ), (3.3a)

B1 =
γ

2
mA

{
(gV − gA)2(m2

A −m2
B +m2

e −m2
j )− 2mAmB(g2

V − g2
A)
}
, (3.3b)

B2 =
γ

2
mA

{
(gV + gA)2(m2

A −m2
B −m2

e +m2
j )− 2mAmB(g2

V − g2
A)
}
, (3.3c)

C = 0, (3.3d)

D1 = −γm2
A(gV − gA)2, (3.3e)

D2 = −γm2
A(gV + gA)2, (3.3f)

where we have defined the overall constant

γ ≡ 16G2
F |Vud|2 |Uej |2. (3.4)

From these results we can recover the “classic textbook result” by setting gV = gA = 1

which gives

A = B1 = C = D1 = 0 and B2 = 2γmA
(
m2
A −m2

B −m2
e +m2

j

)
, D2 = −4γm2

A. (3.5)

4For a more detailed discussion of nuclear effects see section 3.3.
5Both 3H+ and 3He2+ have spin 1/2.
6Actually, including the weak magnetism correction to be discussed in section 3.3 induces a small con-

tribution to C and corrections to the other parameters. The overall effect on the total decay width is

1.8× 10−4 %.
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Using the general spectrum from equation (2.18) and the expansion parameters defined

in (2.25), the electron energy spectrum to lowest order is given by

(
dΓ

dEe

)
νj

=
γm4
A

8π3

√
η2 − δ2 η (ε− η)2

√
1−

(
ρ

ε− η

)2

+O(λ5)

=
γm3
A

8π3
|~pe| η (ε− η)2

√
1−

(
ρ

ε− η

)2

+O(λ5)

=
2

π3
G2
F |Vud|2|Uej |2 |~pe|Ee(mA −mB − Ee)2

√
1−

(
ρ

ε− η

)2

+O(λ5).

(3.6)

Summing over the three neutrino species we obtain

dΓ

dEe
=
∑
j

(
dΓ

dEe

)
νj

Θ̃j =
2G2

F |Vud|2

π3
|~pe|Ee(mA −mB − Ee)2×

×

∑
j

|Uej |2
√

1−
m2
j

(mA −mB − Ee)2
Θ̃j

+O(λ5)

≡
(
dΓ

dEe

)
NR

+O(λ5) .

(3.7)

Here we have defined the lowest-order approximation ( dΓ
dEe

)NR, which is of order λ4. Since

the expansion in λ corresponds to an expansion in 1/mA, the lowest order term in (3.7) is

the result to be expected from a non-relativistic computation. Indeed, setting the neutrino

masses to zero one obtains(
dΓ

dEe

)
NR,mj=0

=
2G2

F |Vud|2

π3
|~pe|Ee(mA −mB − Ee)2Θ̃j |mj=0 (3.8)

which is the classic non-relativistic textbook result [29]. We now want to compare the

exact relativistic spectrum obtained using (2.18) to the non-relativistic approximation of

equation (3.7) by studying the relative deviation

∆ ≡
(dΓ/dEe)− (dΓ/dEe)NR

(dΓ/dEe)NR

. (3.9)

For simplicity we assume only one neutrino with |Uej | = 1. Expanding in λ one obtains

∆ = O(λ), i.e. |∆| ∼ 10−4 ÷ 10−3 for tritium decay. In figure 1 the quantity ∆ is plotted

for a massless and a keV neutrino for the spectrum following from the parameters of

equation (3.5). Indeed, not too close to the endpoint, we numerically find |∆| ∼ 10−4÷10−3.

Approaching the endpoint, ∆ goes to −1. The reason for this is that

lim
Ee→Emax

e

(
dΓ

dEe

)
NR

6= 0, (3.10)

while the exact spectrum of course vanishes at the endpoint.
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Figure 1. Left: plot of the relative deviation ∆ (see equation (3.9)) between the non-relativistic and

relativistic result for the beta decay of tritium assuming only one single neutrino species with |Uej | =
1 and a mass of mj = 0 (solid line) and mj = 5 keV (dashed line). Right: the same plot for the

region near the endpoint for the values |Uej | = 1, mj = 0 (solid line) and mj = 0.5 eV (dashed line).

Let us finally comment on the applicability of the results obtained so far, which

may be estimated most easily by computing the half-life of tritium using our relativistic

Standard Model expression for dΓ/dEe. For the computation we use mj = 0, and the

experimental data of table 4, in particular we take gA = 1.2646. Naively inserting numbers

we find t1/2 ≈ 17.1 yr, which is 40 % larger than the value for 3H+-decay estimated from

experiment t1/2(3H+) = (12.238 ± 0.020) yr [35]. The main reason for this deviation is

our ignoring of the electromagnetic interaction between the newly formed 3He2+-nucleus

and the emitted electron. This can be taken into account by multiplying dΓ/dEe with the

Fermi function F (Z,Ee) [36], i.e.

dΓ

dEe
→ dΓ

dEe
F (Z,Ee). (3.11)

In units where ~ = c = 1 the Fermi function is given by [37]

F (Z,Ee) = 2(1 + γ)(2pR)−2(1−γ)eπy
|Γ(γ + iy)|2

Γ(2γ + 1)2
, (3.12)

where Γ here denotes the gamma function and

γ = (1− α2
EMZ

2)1/2, y = αEMZEe/pe. (3.13)

The atomic number of the daughter nucleus Z is 2 for tritium decay, αEM is the electro-

magnetic fine structure constant and R is the radius of the daughter nucleus. One can

conveniently express R in units of m−1
e . We will adopt the value R = 2.8840 × 10−3m−1

e

used in [18] for 3He.

Including the Fermi function we find a half-life of 11.9 yr, which is off the experimental

value by less than 3%. Therefore, the electromagnetic interaction makes up a substantial

part of the decay rate of tritium.7 However, there are many other effects to be taken

into account aiming at interpretation of high-precision measurements of dΓ/dEe. We will

discuss all these effects in section 3.3.
7Including the weak magnetism term has an effect of only 10−4 % on the half-life.
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Figure 2. Plots of the Kurie-like function K(Ee) (see equation (3.14)) for the spectrum following

from the parameters of equation (3.5), for simplicity assuming only one neutrino species. Left plot:

the solid lines correspond to (from left to right) mj = 2.0, 1.0, 0.5 and 0 eV, respectively. The

dashed curve is the non-relativistic approximation (3.16) for mj = 0. As can be seen from this plot,

the effect of neglecting the relativistic corrections to K(Ee) is, in absolute numbers, much larger

than the effect of a nonvanishing neutrino mass at the level of mj < 1 eV. The reason for this is the

large difference (Emax
e )NR − Emax

e = 3.4 eV. Right plot: the same plot for neutrino masses (from

left to right) of 10, 5, 3 and 0 keV.

3.2 Kurie plots and the endpoint of the spectrum

The effect of non-zero neutrino masses on the spectral endpoint can be seen best in plots

of the Kurie-like function

K(Ee) ≡
1

mA −mB

√
dΓ/dEe
G0(Ee)

, (3.14)

where

G0(Ee) ≡
2G2

F |Vud|2

π3
|~pe|Ee F (Z, Ee). (3.15)

The lowest order approximation of K(Ee) in the Standard Model for gV = gA = 1 and

mj = 0 — see equation (3.8) — is then given by the linear function

K(Ee) = 1− Ee
mA −mB

. (3.16)

Assuming non-zero neutrino masses or including the terms of O(λ5) of equation (3.7) will

lead to deviations from (3.16). The endpoints of the Kurie plots for different values of mj

are shown in figure 2.

Before we go on to discuss corrections from Standard Model physics, let us discuss the

effect of non-vanishing neutrino masses on the shape of the endpoint of the Kurie plot. Us-

ing the lowest-order approximation
(
dΓ
dEe

)
NR

of equation (3.7) one finds the Kurie function

K(Ee) =

(
1− Ee

mA −mB

)
×

√√√√√∑
j

|Uej |2
√

1−
m2
j

(mA −mB − Ee)2
Θ̃j , (3.17)
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i.e. the linear function of equation (3.16) multiplied by a correction term which goes to 1

for vanishing neutrino mass. Far from the endpoint (mA −mB − Ee � mj) we find√√√√√∑
j

|Uej |2
√

1−
m2
j

(mA −mB − Ee)2
Θ̃j ' 1−

∑
j |Uej |2m2

j

4(mA −mB − Ee)2
, (3.18)

i.e. the deviation of the Kurie function from the case of vanishing neutrino mass is

proportional to the effective neutrino mass squared [38]

m2
β ≡

∑
j

|Uej |2m2
j . (3.19)

Clearly, the effect of nonvanishing neutrino masses becomes strong in the region where

mA −mB − Ee ∼ mβ , that is for

Ee ∼ mA −mB −mβ , (3.20)

i.e. an energy mβ before the endpoint of the linear Kurie function. Also other effective

neutrino masses like

m′β ≡
∑
j

|Uej |2mj (3.21)

have been considered in the literature [39–41]. However, in the range of sensitivity of

KATRIN (which would mean quasi-degenerate neutrinos), they all coincide.

3.3 Corrections from Standard Model physics

Up to now we have treated the ideal case of pointlike tritium nuclei decaying into helium-3

nuclei ignoring the electromagnetic and strong interaction. However, the actual experi-

mental situation is of course much more complex. As we already saw, the electromagnetic

interaction between the helium nucleus and the outgoing electron (taken into account by

the Fermi function F (Z,Ee)) is responsible for a large part of the decay rate. Also QED

radiative corrections have to be taken into account to correctly interpret the results of high-

precision measurements of the electron spectrum. Moreover, the source in a tritium decay

experiment is not composed of tritium nuclei, but tritium molecules in gaseous state at finite

temperature (T = 30 K for the KATRIN experiment [42]). The theory corrections which

have to be taken into account to make interpretations of high-precision data on tritium beta

decay in terms of bounds on new physics possible at all are summarized in [18] and include:

• Excited final states: the initial state of the decay is a tritium molecule 3H2. However,

the final state is not necessarily the ground state of the system (3H, 3He+). According

to [18] the effect on the spectrum is very large — larger than 10 % close to the

endpoint. Far from the endpoint (Emax
e − Ee > 1 keV) the corrections are estimated

to still be of the order of 1 %, but expected to be smooth in Ee, since the excitation

energies of the (3H, 3He+)-system are all below 200 eV < 1 keV [18].

• Coulomb interaction between the outgoing electron, the daughter nucleus (→ Fermi

function F (Z, Ee)) and the left behind orbital electron of the former 3H2-molecule.
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• The nuclear recoil: this effect is automatically taken into account by using the exact

relativistic expression (2.18) for dΓ/dEe.

• The daughter nucleus 3He2+ is not pointlike, which modifies the Coulomb field acting

on the emitted electron.

• Radiative corrections: the dominant radiative corrections will be QED-corrections of

the order of ∼ 1 %.

All these corrections to the electron spectrum are estimated in [18] and can be (at least

far from the endpoint) assumed to be smooth. Moreover, ref. [18] provides a sensitivity

study showing that the maximal sensitivity of a KATRIN-like experiment to the existence

of keV sterile neutrinos will be diminished by these theoretical uncertainties by a factor

of only about 5 from the purely statistical sensitivity.

Another type of Standard Model physics which has to be taken into account are cor-

rections from nuclear structure. Up to now we have mostly treated the involved nuclei as

pointlike and only (electro)weakly interacting. In reality, the nuclei are bound states of

nucleons which themselves are bound states of quarks. Effects from QCD are therefore not

negligible for high-precision studies. We can take these effects into account via so-called

hadronic matrix elements.

Hadronic matrix elements: at the quark level the weak interaction Lagrangian for

beta decay is given by

− GF√
2
Vud

(
eγµ(1− γ5)νe

) (
uγµ(1− γ5)d

)
+ H.c. (3.22)

In order to take into account that the initial and final states do not involve single quarks

but hadrons, instead of 〈u(pu)|
(
uγµ(1− γ5)d

)
|d(pd)〉 one has to consider the hadronic

matrix element

〈B(pB)|
(
uγµ(1− γ5)d

)
|A(pA)〉, (3.23)

where |A(pA)〉 and |B(pB)〉 are the initial and final hadronic state, respectively. Hadronic

matrix elements are calculated by matching the low-energy effective theory of QCD to

the quark-level Lagrangian.8 Note that in section 4 we will use a quark-level Lagrangian

containing also terms apart from the simple V − A term γµ(1− γ5) and therefore we will

also need the hadronic matrix elements for these terms.

Reference [3] gives all relevant hadronic matrix elements for neutron beta decay and

discusses their relevance by ordering the individual contributions in terms of powers of

q/MN , where

q ≡ pn − pp, MN ≡ (mn +mp)/2. (3.24)

For tritium decay we have q < 20 keV and MN has to be replaced by MN ≡ (mA +

mB)/2 ' 3 GeV. Thus we have q/MN < 10−5. Since the sensitivity of a future KATRIN-

like experiment to dΓ/dEe will not be higher than 10−8 [18], we only need to take into

8See [3, 24] for a more detailed discussion and a collection of references.
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account contributions up to order q/MN and this also only for the Standard Model V −A
interaction.9 The relevant matrix elements are then given by [3]:

〈p(pp)|uγµd|n(pn)〉 = up(pp)

[
gV (q2)γµ−i

gWM(q2)

2MN
σµνq

ν

]
un(pn)+O((q/MN )2), (3.25a)

〈p(pp)|uγµγ5d|n(pn)〉 = gA(q2)up(pp)γµγ5un(pn) +O((q/MN )2), (3.25b)

〈p(pp)|ud|n(pn)〉 = gS(q2)up(pp)un(pn), (3.25c)

〈p(pp)|uγ5d|n(pn)〉 = gP (q2)up(pp)γ5un(pn) = O(q/MN ), (3.25d)

〈p(pp)|uσµνd|n(pn)〉 = gT (q2)up(pp)σµνun(pn) +O(q/MN ). (3.25e)

Thus, apart from multiplication of the individual quark-interactions with form factors gV ,

gA, gS , gP and gT ,10 the only relevant new term is the weak magnetism contribution

〈p(pp)|uγµd|n(pn)〉WM = −igWM(q2)

2MN
up(pp)σµνq

νun(pn). (3.26)

In our framework based on the hadron model of [15], we use equations (3.25) with n

replaced by 3H+ and p replaced by 3He2+. Note that the form factors are dependent on

q2. However, in the first approximation this dependence will be of the form [15]

gX(q2) =
gX(0)(

1− q2

M2
X

)2 , (3.27)

where MX ∼ 1 GeV is a cutoff scale (X = V, A, S, P, T ). Therefore,

gX(q2) = gX(0)

(
1 + 2

q2

M2
X

+O((q/MX)4)

)
. (3.28)

For tritium decay we have q < 20 keV and thus 2 q2

M2
X

. 10−9, i.e. we can safely ignore the

q2-dependence of the form factors.

From the discussion here we see that an exact treatment of β-decay involving hadrons

requires the weak magnetism term involving the tensor coupling gWM. Instead of giving

the lengthy full matrix element, we simply write down the corrections to the parameters

A,. . .,D2 of equation (3.3). Neglecting all terms suppressed by q2/M2
N we obtain:

∆A/γ = −gWMgVmA
MN

(
2m4
A +m2

A
(
−4m2

B +m2
e +m2

j

)
+ 2m4

B −m2
B
(
m2
e +m2

j

)
−
(
m2
e −m2

j

)2 )
,

(3.29a)

∆B1/γ =
gWMmA

2MN

(
gV
(
3m3
A +m2

AmB +mA
(
m2
j − 3m2

B
)
−m3

B +mBm
2
e

)
− gA(mA +mB)

(
m2
A −m2

B +m2
e −m2

j

) )
,

(3.29b)

9All new physics interactions will have small coupling constants which further suppress q/MN < 10−5.
10Also the pseudotensor contribution will occur in the Lagrangian of interest in section 4. Using the

identity σµνγ5 = i
2
εµνρσσρσ, we find that the pseudotensor contribution obtains the same form factor gT

as the tensor contribution.
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∆B2/γ =
gWMmA

2MN

(
gA(mA +mB)

(
m2
A −m2

B −m2
e +m2

j

)
+ gV

(
3m3
A +m2

AmB +mA
(
m2
e − 3m2

B
)
−m3

B +mBm
2
j

) )
,

(3.29c)

∆C/γ = −
2gWMgVm

2
A(mA +mB)

MN
, (3.29d)

∆D1/γ =
gWMm

2
A(gA − gV )(mA +mB)

MN
, (3.29e)

∆D2/γ = −
gWMm

2
A(gA + gV )(mA +mB)

MN
, (3.29f)

where γ = 16G2
F |Vud|2 |Uej |2. We see in particular that C is no longer zero.

4 Contributions of new physics

Having summarized the general kinematic structure and the properties of β-spectra in

tritium, we can finally study the effect of possible beyond the Standard Model charged

current contributions.

4.1 Effective operator approach

In parameterizing new physics contributions to the beta decay amplitude [43, 44], we use

the standard expansion of generic 4 × 4-matrices in terms of the sixteen operators

L ≡ 1− γ5, R ≡ 1 + γ5, (4.1a)

Lµ ≡ γµL, Rµ ≡ γµR, (4.1b)

Lµν ≡ σµνL, Rµν ≡ σµνR, (4.1c)

where σµν = i
2 [γµ, γν ]. We use the notation of [3, 24] to parameterize possible new physics

contributions to the charged-current interactions at the level of dimension-six operators:11

LCC = −GFVud√
2

(1 + δβ)(eLµνe)(uL
µd) +

∑
j

(∼)
εj (eOj νe)(uO′j d)

+ H.c. (4.2)

with the
(∼)
εj , Oj and O′j given in table 2. Note that εL is equivalent to a total rescaling

of the rate. The fields e, d and u are the electron, down and up quark mass eigenfields

respectively. The field νe is the electron neutrino flavour field, containing in principle

admixtures of sterile states, see equation (2.2). The first term (eLµνe)(uL
µd) is the usual

Standard Model contribution, which is then multiplied by a factor 1 + δβ taking into

account the non-QED electroweak radiative corrections; GF = g2/(4
√

2M2
W ) is the tree-

level Standard Model Fermi constant.

The general parameterization in equation (4.2) has been obtained by using all possi-

ble and relevant dimension-6 operators including Standard Model fields and right-handed

neutrinos [24]. In case no right-handed neutrinos, i.e. Standard Model singlet fermions or

11We are not considering extremely exotic new physics such as violation of CPT or Lorentz invariance [45].
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(∼)
εj Oj O′j
εL γµ(1− γ5) γµ(1− γ5)

ε̃L γµ(1 + γ5) γµ(1− γ5)

εR γµ(1− γ5) γµ(1 + γ5)

ε̃R γµ(1 + γ5) γµ(1 + γ5)

εS 1− γ5 1

ε̃S 1 + γ5 1

−εP 1− γ5 γ5

−ε̃P 1 + γ5 γ5

εT σµν(1− γ5) σµν(1− γ5)

ε̃T σµν(1 + γ5) σµν(1 + γ5)

Table 2. Coupling constants and operators for the new physics contributions to LCC of the form
(∼)
εj (eOj νe)(uO′j d).

sterile neutrinos, are present, the ε̃j are absent. The various dimension-6 operators could be

generated by integrating out heavy particles in renormalizable theories beyond the SM.12

We see that there are in principle ten additional charged-current contributions to β-

decay, two of which (εL and ε̃R) have the same Lorentz structure as the Standard Model

term, while the other eight enjoy a non-SM structure. We will analyze the effect of the ten

operators on the electron energy spectrum for both light (. 0.5 eV) and heavy (. 10 keV)

neutrinos.

4.2 Neutrino mass and flavour eigenstates

In extensions of the Standard Model with right-handed neutrinos, the terms of (4.2) which

contain right-handed neutrino fields in general do not vanish, i.e.

ε̃L, ε̃R, ε̃S , ε̃P , ε̃T 6= 0. (4.3)

However, εP and ε̃P come along with the pseudoscalar contribution to the hadronic matrix

element (see equation (3.25d)) which is suppressed by a factor of q/MN ∼ 10−5. Even

though the pseudoscalar coupling gP is rather large (see table 4), the suppression is not

compensated and effects of εP and ε̃P are negligible for heavy neutrinos and quite small

for light neutrinos — see section 4.4.

12For instance, within left-right symmetric theories [46–50], one could write at leading order εL = 0,

εR = ε̃L = −ξe−iα and ε̃R = M2
W1
/M2

W2
. Here ξ and α appear as parameters linking the vector bosons of

SU(2)L and SU(2)R with their mass eigenstates(
W±L

W±R

)
=

(
cos ξ sin ξ eiα

− sin ξ e−iα cos ξ

)(
W±1

W±2

)
.
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Generically allowing all three types of neutrino mass terms (Dirac, type-I seesaw, type-

II seesaw), the neutrino mass term is given by

Lmass
ν = −1

2
nLMνn

c
L + H.c., (4.4)

where

Mν =

(
ML MD

MT
D MR

)
and nL =

(
νL

νcR

)
. (4.5)

We use the notation of [23], where Mν is diagonalized via

W †MνW
∗ = diag(m1, m2, m3, M1, M2, M3). (4.6)

Here

W =

(
U S

T V

)
(4.7)

is unitary and mi are the masses of the light neutrino mass eigenfields ν ′i and Mj are the

masses of the heavy neutrino mass eigenfields N ′Rj . The neutrino flavour fields are then

given by

νL = Uν ′L + SN ′R
c, (4.8a)

νR = T ∗ν ′L
c + V ∗N ′R. (4.8b)

Since for massive Majorana fields we have νc = ν and N c = N , equation (4.8) simplifies to

νL = Uν ′L + SN ′L, (4.9a)

νR = T ∗ν ′R + V ∗N ′R. (4.9b)

The “left-right mixing” matrices S and T are constrained to be small and will suppress

interactions of right-handed neutrinos. Nevertheless, interesting effects can arise.

4.3 The energy spectrum

The Lagrangian (4.2) has eleven individual terms (the Standard Model term and ten new

physics contributions). In the following we evaluate the expressions for the individual

contributions to the matrix element of β-decay involving heavy, i.e. few keV, and light

antineutrinos in the final state, respectively. The amplitude M for the decay is given by

M = −GFVud√
2

∑
α

C(α)X
(α)
ej [ueO(α)vj ][uBO(α)′uA], (4.10)

where C(α) is a constant, X
(α)
ej is the ej-element of the (in general non-unitary) mixing

matrix X(α) (X(α) = U, S, T ∗, V ∗) and O(α) and O(α)′ are 4×4-matrices, see equation (4.1)

and table 2. The index α runs over the eleven contributions to LCC of equation (4.2). The
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α C(α) X
(α)
ej O(α) O(α)′

SM (1 + δβ) Uej γµ(1− γ5) gV γ
µ − i gWM

2MN
σµνqν − gAγµγ5

εL εL Uej γµ(1− γ5) gV γ
µ − i gWM

2MN
σµνqν − gAγµγ5

ε̃L ε̃L T ∗ej γµ(1 + γ5) gV γ
µ − i gWM

2MN
σµνqν − gAγµγ5

εR εR Uej γµ(1− γ5) gV γ
µ − i gWM

2MN
σµνqν + gAγ

µγ5

ε̃R ε̃R T ∗ej γµ(1 + γ5) gV γ
µ − i gWM

2MN
σµνqν + gAγ

µγ5

εS εS Uej 1− γ5 gS1

ε̃S ε̃S T ∗ej 1 + γ5 gS1

εP −εP Uej 1− γ5 gPγ
5

ε̃P −ε̃P T ∗ej 1 + γ5 gPγ
5

εT εT Uej σµν(1− γ5) gTσ
µν(1− γ5)

ε̃T ε̃T T ∗ej σµν(1 + γ5) gTσ
µν(1 + γ5)

Table 3. The contributions to the matrix element M(A → B + e− + νj). Here q = pA − pB and

MN = (mA +mB)/2. The expression for M(A → B+ e− +N j) is the same with the replacements

U → S and T → V .

contributions to the matrix element for the emission of a light antineutrino mass eigenstate

|νj〉 or heavy antineutrino mass eigenstate |N j〉 are shown in table 3.

The amplitude squared averaged over the spin orientation of the decaying nucleus and

summed over the spins of all final state particles is then given by

|M|2 =
1

2

∑
spins

|M(spins)|2 =
∑
α,β

Sαβ , (4.11)

where

Sαβ ≡
G2
F |Vud|2

4
C(α)C(β)∗X

(α)
ej X

(β)∗
ej Tr

[
(/pe +me)O(α)(/pj −mj)(γ

0O(β)†γ0)
]

× Tr
[
(/pB +mB)O(α)′(/pA −mA)(γ0O(β)′†γ0)

]
.

(4.12)

Defining that α < β if α comes before β in table 3, we can rewrite this as a sum with

purely real summands:

|M|2 =
∑
α

Sαα + 2
∑
α<β

ReSαβ . (4.13)

Thus the total matrix element squared consists of 66 real terms. For each of these 66 terms

we can take the traces. Removing all terms suppressed by factors (q/MN )2, the terms of

the form (2.8) are removed automatically. Using energy momentum conservation we can

then compute the six parameters A to D2 of equation (2.12). Since the 66 summands are

real, also A to D2 are real for each summand. For the trace computations we used Package-

X [51, 52]. Note that the product of the two traces in equation (4.12) is real. Hence,

ReSαβ ∝ Re
(
C(α)C(β)∗X

(α)
ej X

(β)∗
ej

)
. (4.14)
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All matrix elements have the general parameterization in terms of A,B1,2, C,D1,2 from

equation (2.12), but of course they are different from their Standard Model expressions. The

parameters A,B1,2, C,D1,2 possess three contributions, the Standard Model term (SM), the

New Physics term (NP2) and their interference term (SM-NP). A general property worth

mentioning is that the interference terms of the ε̃ operators vanish for mj → 0, which can

easily be understood from chirality considerations. We will not give the lengthy full expres-

sions for all terms, let us simply give two illustrative examples. Defining the overall constant

γ′ = 2G2
F |Vud|2 |Uej |2 Re ((1 + δβ)ε∗R) , (4.15)

we obtain for the coefficients for the SM-εR interference term:

A/γ′ = 8mAmB
(
g2
A + g2

V

) (
m2
A −m2

B +m2
e +m2

j

)
− 4gWMgVmA

MN
(2m4

A +m2
A
(
−4m2

B +m2
e +m2

j

)
+ 2m4

B −m2
B
(
m2
e +m2

j

)
−
(
m2
e −m2

j

)2
),

(4.16a)

B1/γ
′ = −8mA(g2

A

(
m2
A + 2mAmB −m2

B +m2
e −m2

j

)
+ g2

V

(
−m2

A + 2mAmB +m2
B −m2

e +m2
j

)
)

+
8gWMgVmA

MN

(
3m3
A +m2

AmB +mA
(
m2
j − 3m2

B
)
−m3

B +mBm
2
e

)
,

(4.16b)

B2/γ
′ = B1/γ

′|me↔mj , (4.16c)

C/γ′ = −
32gWMgVm

2
A(mA +mB)

MN
, (4.16d)

D1/γ
′ = 16m2

A(gA − gV )(gA + gV )−
16gWMgVm

2
A(mA +mB)

MN
, (4.16e)

D2/γ
′ = D1/γ

′. (4.16f)

For the SM-ε̃R interference contribution (corresponding to right-handed currents, see

footnote 12) one obtains:

γ′′ = 2G2
F |Vud|2 Re (UejTej(1 + δβ)ε̃∗R) , (4.17)

A/γ′′ = 16mAmemj

(
g2
A(−mA)− 2g2

AmB + g2
VmA − 2g2

VmB
)

+
24gWMgVmAmemj(mA −mB)(mA +mB)

MN
,

(4.18a)

B1/γ
′′ = −16mAmemj(gV − gA)(gA + gV )− 24gWMgVmAmemj(mA +mB)

MN
, (4.18b)

B2/γ
′′ = B1/γ

′′, (4.18c)

C/γ′′ = D1/γ
′′ = D2/γ

′′ = 0. (4.18d)

Due to the different chiralities of the neutrino fields (left in the SM term and right in

the new physics contribution ∝ ε̃R), as expected, all coefficients are proportional to the
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Quantity value comment/reference

mass of e− 0.510998928(11) MeV [53]

mass of 3H (atom) 2809.43185(11) MeV [54, 55]

mass of 3H+ (nucleus) 2808.92085(11) MeV

mass of 3He (atom) 2809.41325(11) MeV [54, 55]

mass of 3He2+ (nucleus) 2808.39126(11) MeV

GF 1.1663787(6)× 10−5 GeV−2 [53]

gV 1.0 CVC hypothesis [56, 57]

gA/gV 1.2646± 0.0035 [58]

|Vud| 0.97425± 0.00022 [53]

gS 1.02± 0.11 MS, µ = 2 GeV [59]

gP 349± 9 MS, µ = 2 GeV [59]

gT 1.020± 0.076 lattice, MS, µ = 2 GeV [60]

gWM −6.106 [15]

Table 4. The quantities needed for the numerical computation of the electron energy spectrum

of tritium beta decay. For the computation of the nuclei masses we have neglected the binding

energy of the electrons (which is < 100 eV). The errors include the error of the determination of

the atomic mass unit u = (931494.013± 0.037) keV [54]. (CVC = Conserved Vector Current).

neutrino mass mj . Consequently, these interference terms are suppressed for the emission

of light neutrinos, but play an important role if heavy neutrinos are emitted.

Next we will perform a numerical study of the possible corrections to A,B1,2, C,D1,2

with respect to their form in the Standard Model, and also plot the relative deviation from

the shape of the Standard Model electron energy spectrum.

4.4 Numerical analysis

The values for the masses, SM coupling constants and form factors we use for the com-

putation of the tritium beta spectrum are shown in table 4. Current bounds on the real

and imaginary parts of the new-physics coupling constants ε and ε̃ are given in [3, 24].

All constraints are compatible with zero values for these constants. However, the bounds

differ in their orders of magnitude (from |Im εP | < 2× 10−4 to |Re ε̃L| < 6× 10−2 at 90 %

CL [3]). The bounds we use are shown in table 5. The six parameters for the Standard

Model contribution SSM,SM using the numerical input from table 4, setting δβ = 0 and

assuming only three massless neutrino states with
∑3

j=1 |Uej |2 = 1 are

ASM = −1.45× 10−11, (4.19a)

B1,SM = 2.74× 10−11 MeV−1, (4.19b)

B2,SM = 2.71× 10−11 MeV−1, (4.19c)

CSM = 3.98× 10−13 MeV−2, (4.19d)
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parameter best 90 % CL upper bound [3] used for our estimation

|Re ε| |Im ε| ε

εL 5× 10−4 5× 10−3 5.0× 10−3

ε̃L 6× 10−2 — 8.5× 10−2

εR 5× 10−4 5× 10−4 7.1× 10−4

ε̃R 5× 10−3 5× 10−3 7.1× 10−3

εS 8× 10−3 1× 10−2 1.3× 10−2

ε̃S 1.3× 10−2 1.3× 10−2 1.8× 10−2

εP 4× 10−4 2× 10−4 4.5× 10−4

ε̃P 2× 10−4 2× 10−4 2.8× 10−4

εT 1× 10−3 1× 10−3 1.4× 10−3

ε̃T 3× 10−3 3× 10−3 4.2× 10−3

Table 5. Numerical values for the coupling constants ε and ε̃ used for our analysis.

Contribution from Γ/Γtotal

A −26583.954

B1 26051.460

B2 555.755

C 4.214

D1 −26.572

D2 0.097

Sum 1.000

Table 6. Contributions of the different terms in |M|2 in the Standard Model to the total decay

width of tritium. Note that since we have divided |M|2 into real (but not necessarily positive)

parts, the different Γ contributing to Γtotal can have either sign.

D1,SM = −5.38× 10−14 MeV−2, (4.19e)

D2,SM = 3.67× 10−13 MeV−2. (4.19f)

Note that the inclusion of the weak magnetism term proportional to gWM in equa-

tion (3.25a) gives a small contribution to CSM, which is zero in the pure V −A interaction

case, cf. (3.3) and (3.29d). In the following, when we compare parameters to the Standard

Model values, we always mean the above numbers.

In order to get a feeling for the sizes of the physical effects, we compute the relative

sizes of the contributions to the total decay width, see table 6. As can be seen from this

table, there are huge cancellations among the six different terms. Therefore, in general all

six contributions are important.
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In table 8 (see appendix) we give the numerical values for the coefficients A/ASM to

D2/D2,SM for Uej = Vej = Sej = Tej = 1 and ε = ε̃ = 1. From these, the values of A to D2

can be computed by multiplication with the Standard Model values of equation (4.19) and

the appropriate suppression factors found in table 7, to be discussed next.

Numerical values for the suppression factors: in order to estimate the suppression

factors of table 7, we use the 90 % CL upper bounds on the ε and ε̃ from [3]. Since

we only perform an order of magnitude estimation, we use the real positive values ε =√
|Re ε|2 + |Im ε|2 — see table 5. In those cases where there is no bound on |Im ε|, we set

ε =
√

2|Re ε|.
Moreover, we have to fix at least the order of magnitude of the values of the mixing

matrix elements Uej , Tej , Sej and Vej . We use:

Uej = Vej = 1, Tej = Sej = 10−3, (4.20)

which resembles a typical size of the effects of active-sterile mixing (i.e. proportional to

eV/keV) compared to the “active only” values of∣∣∣∣SejUej

∣∣∣∣2 ∼ 10−6. (4.21)

Values for other constraints can be easily obtained by rescaling the results according to ta-

ble 7. Note that depending on the model, strong constraints on the mixing of keV-neutrinos

may exist, for instance in the context of left-right symmetric theories and Warm Dark

Matter decay, see for instance [23]. We will however not go into detail here, but rather wish

to show the shape of the spectral distortion of the new interactions and to demonstrate the

capability of a modified KATRIN setup to give strong laboratory limits on exotic charged

current interactions. We have by now all ingredients to make a full numerical comparison

of the sizes of the new-physics contributions to the electron energy spectrum. Table 9 (see

appendix) shows, using the just discussed suppression factors, the sizes of the new physics

effects for the emission of a light (mj = 0.5 eV) and heavy (Mj = 5 keV) neutrino.

For illustration of the possible distortions of the electron spectra we first define refer-

ence spectra to which we will compare different sample scenarios of new physics in beta

decay.

• Reference spectrum 1N: the beta decay spectrum for only Standard Model in-

teractions with three neutrinos and normal mass hierarchy (m1 = 0). For the mass-

squared differences and the values of the mixing angles we use the values from the

global fit [61] which imply mβ = 8.7 meV� 0.2 eV. Within KATRIN’s experimental

possibilities, this effectively corresponds to massless neutrinos.

• Reference spectrum 1I: the same spectrum as reference 1N, but with an inverted

mass hierarchy (m3 = 0). For this case one obtains mβ = 48 meV < 0.2 eV. Within

KATRIN’s experimental possibilities, this is still not distinguishable from the case of

massless neutrinos. We note that Project 8 has in principle (using an atomic tritium

source among other modifications) the option to reach such low values [62].
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light neutrino emission heavy neutrino emission

SM-NP NP2 SM-NP NP2

ε Re(ε U2
ej) |ε|2 |Uej |2 Re(ε S2

ej) |ε|2 |Sej |2

ε̃ Re(ε̃ UejT
∗
ej) |ε̃|2 |Tej |2 Re(ε̃ SejV

∗
ej) |ε̃|2 |Vej |2

Table 7. Suppression factors for the new-physics contributions to the electron energy spectrum of

beta decay.

• Reference spectrum 2: the beta decay spectrum for only Standard Model interac-

tions with one neutrino of mass mj = 0.5 eV and Uej = 1. This corresponds to three

quasi-degenerate light neutrinos with
∑

j |Uej |2 = 1, i.e. a spectrum to be expected

in KATRIN if mβ ≈ 0.5 eV > 0.2 eV.

• Reference spectrum 3: reference spectrum 2 (quasi-degenerate light neutrinos)

plus one sterile neutrino with Mj = 5 keV and mixing Sej = 10−3.

Our sample scenarios that include new physics are:

• Test spectrum AN: the reference spectrum 1N (i.e. left-handed neutrinos) with

new interactions εi 6= 0. Since we neither add heavy nor right-handed neutrino fields,

there are no ε̃-interactions and Tej = Sej = Vej = 0.

• Test spectrum AI: like the test spectrum AN but for an inverted neutrino mass

hierarchy (m3 = 0).

• Test spectrum B: like the test spectra 1N and 1I, but this time for quasi-degenerate

neutrinos with mβ ≈ 0.5 eV.

• Test spectrum C: the reference spectrum 2 (three quasi-degenerate light neutrinos)

but including a heavy neutrino (Mj = 5 keV, Uej = Tej = 0) having mixing matrix

elements Sej = 10−3, Vej = 1 and new interactions.

We compare the test spectra to the reference spectra by plotting

∆(
(∼)
εj ) ≡ test spectrum− reference spectrum

reference spectrum
=

test spectrum

reference spectrum
− 1, (4.22)

where
(∼)
εj means that we turn on the new physics parameter

(∼)
εj (setting all other epsilons

to zero). In all plots we set δβ = 0. The comparisons that were analyzed are:

• Test spectrum AN (AI) vs. reference spectrum 1N (1I). This shows the effect of new

physics in the worst case of extremely light neutrinos.

• Test spectrum B vs. reference spectrum 2. This shows the effect of new physics for

observable light neutrino emission, mβ ≈ 0.5 eV in this case.

• Test spectrum C vs. reference spectrum 3. This shows the effect of new physics for

heavy neutrino emission, Mj = 5 keV and mixing Sej = 10−3 in this case.
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The resulting conclusions are as follows:13 the plots AN (AI) vs. 1N (1I) and B vs. 2

are indistinguishable both at the full scale (Ee−me ∈ [0, Q]) and also close to the endpoint

(Ee −me ∈ [Q − 2 eV, Q]). We therefore show only the plots for B vs. 2 in figure 3. To

repeat, the quantity plotted is

∆B(
(∼)
εα ) ≡

(
dΓ
dEe

)NP(
(∼)
εα )

mβ=0.5 eV(
dΓ
dEe

)no NP

mβ=0.5 eV

− 1 , (4.23)

i.e. for quasi-degenerate neutrinos with mβ = 0.5 eV we show the relative ratio of the elec-

tron spectrum with and without new physics interactions governed by
(∼)
εα . The endpoint

plots for the different scenarios of new physics in cases A and B all look the same, i.e. new

physics has a negligible effect on the endpoint in the case of light neutrinos. For complete-

ness, we show one of the endpoint plots (for εL) in figure 4. We can see however that inter-

esting effects can be observed if the full spectrum is accessible. Also the case of heavy neutri-

nos as displayed in figure 5 shows interesting effects. Again, we repeat that here the function

∆C(
(∼)
εα ) ≡

(
dΓ
dEe

)NP(
(∼)
εα )

Mj=5 keV(
dΓ
dEe

)no NP

Mj=5 keV

− 1 (4.24)

is displayed, i.e. for mβ = 0.5 eV and Mj = 5 keV with Sej = 10−3 we show the relative

ratio of the electron spectrum with and without new physics interactions governed by
(∼)
εα .

It is also worth to study the region of this function around the kink at Q −Mj , which is

shown in figure 6.

Accessibility of the new-physics effects by a future KATRIN-like experiment:

without a dedicated experimental sensitivity study in terms of general spectral distortions,

we have to satisfy ourselves with estimates on how current limits can be improved. In

ref. [18] the effect of a heavy neutrino mass eigenstate in the keV range on the spectrum

is parameterized as

dΓ

dEe
= cos2θ

dΓ

dEe
(mlight) + sin2θ

dΓ

dEe
(mheavy), (4.25)

where the angle θ is a measure for active-sterile mixing. The potential sensitivities stated

in [18] are, if the neutrino mass is not too small or too close to the endpoint, sin2θ < 10−7 for

the tritium source of KATRIN and sin2θ < 10−9 for a source with 100 times higher activity.

The final sensitivity that is achievable is still unclear at the moment and requires further

13The new physics effects from εP and ε̃P are suppressed by gP ×q/M . 0.004 and are therefore expected

to be almost negligible. Being negligible for heavy neutrinos, in the case of emission of light neutrinos

the effect is probably also too small to be observed. The effect of pseudoscalar interactions is nevertheless

shown in figure 3.
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Figure 3. Plots of the spectral distortions ∆B(
(∼)
εj ), see equation (4.23), showing the effect of new

physics in the case of light active neutrinos with mβ = 0.5 eV. For smaller values of mβ the plots

look essentially the same.

studies of theoretical corrections and a full understanding of systematic effects in the ex-

periment. We are aware that the modifications of the spectrum that are presented here are

not as obvious as “simply” a kink that is characteristic for a keV-scale neutrino. However,

even in case of a keV neutrino the accompanying spectral modification will be important

to distinguish the signal from systematic effects [18]. In the present paper we will assume

for illustration a somewhat optimistic sensitivity of 10−7 on relative spectral distortions.

Regarding the new physics interactions we can therefore estimate that if ∆(
(∼)
εj ) exceeds

10−7 the effect will be observable. Another way to get a feeling for the testable effects is to

consider the parameters A, . . . ,D2 and assume that if A/ASM, . . . , D2/D2,SM exceeds 10−7
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Figure 4. The endpoints of the spectra AN (blue dashed), AI (red dashed) and B (black) for

εL = 0.005.
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Figure 5. Plots of the spectral distortions ∆C(ε̃j), see equation (4.24), showing the effect of new

physics in the case of a sterile neutrino with Mj = 5 keV and mixing Sei = 10−3, Vej = 1.

the effect is observable. See table 9 for the numerical values of A/ASM, . . . , D2/D2,SM, with

numbers above 10−7 highlighted.

From figures 3 and 5 it becomes obvious that a modified KATRIN-like setup is sensitive

to new physics represented by εL, εR, εS , εT in case of left-handed light (even almost

massless) neutrinos, while effects of εP , though looking most spectacular, are too small.

Those parameters appear linearly in the interference terms without suppression through

the ratio of neutrino mass and electron energy, which is what happens for the ε̃. We can

extract from the plots that the current limits on εL, and εR,S,T could be improved by about
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Figure 6. The regions around the kink in the spectra of case C (heavy neutrino with Mj = 5 keV

and mixing Sei = 10−3, Vej = 1). In order to make the effects visible at this scale, the contribution

of the heavy neutrino to the total spectrum (blue dashed) has been multiplied by a factor 10 (for

ε̃L) and 1000 (for the other ε̃). The reference spectrum 2 (only light neutrinos) is shown in red.

six and five orders of magnitude, respectively. The limits can of course easily be rescaled

for less optimistic sensitivities than the one we use here (10−7). Regarding the shape of

the spectral distortion, the different figures offer means to distinguish the different εj .

For keV-scale right-handed neutrinos as displayed in figure 5 it is the other way around,

ε̃L, ε̃R, ε̃S , ε̃T are of interest, while the interference terms involving ε are proportional to

the ratio of neutrino mass over energy. This mass is for our example values in figures 3

and 5 a factor of 104 larger, but the results for keV-neutrinos are suppressed by a factor

of 10−6 from the mixing matrix elements S and T , respectively. For our example values

of the mixing, the bounds on ε̃L, ε̃R,S , and ε̃T could be improved by four, two and three

orders of magnitude, though distinguishing them seems difficult.

The main point to appreciate here is that the relative spectral distortions of the electron

energy spectrum can be on the permille level for current limits on the exotic interactions.

If understanding of the theoretical uncertainties and control on systematical effects beyond

this level can be achieved, the current limits on the epsilon parameters can be improved.

5 Conclusions

We have performed in this paper a study of the electron energy spectrum in nuclear β-decay,

focussing on tritium because of the upcoming prospects of its investigation in KATRIN and
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other experiments. In particular, the full energy spectrum may be accessible, allowing the

study of spectral distortions and additional heavy (sterile) neutrino mass states.

First we have carried out a fully relativistic calculation of the spectrum, where we have

demonstrated that in general the spectrum can be parameterized by six functions which

depend only on the involved particle masses and coupling constants. Those six functions

are specified by the underlying interaction. Then we analyzed the spectrum in the Standard

Model, discussing departures from the non-relativistic results.

Finally, using our relativistic calculation, we studied the potential spectral distortions

in a general effective operator approach, taking all possible new charged current interactions

into account, considering both light (sub-eV) and heavy (few keV) neutrinos. While the

endpoint region does not display significant effects, the full spectrum can show sizable

distortions on the permille level, even for unobservably small neutrino masses. This allows

in principle to improve the bounds on the effective operators and adds additional physics

motivation to modifications of high activity neutrino mass experiments to study the full

spectrum.
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A Computation of dΓ/dEe

Since in our special case |M|2 does not depend on the direction of the emitted electron we

can use∫
d3pe

(2π)3 2Ee
=

∫
4π d|~pe||~pe|2

(2π)3 2Ee
=

∫
4π dEeEe|~pe|

(2π)3 2Ee
=

∫
dEe

√
E2
e −m2

e

4π2
. (A.1)

The contribution to the electron spectrum is then given by(
dΓ

dEe

)
νj

=

√
E2
e −m2

e

128π4mA

∫
d3pjd

3pB
EjEB

∣∣M(A → B + e− + νj)
∣∣2 δ(4)(pA−pB−pe−pj). (A.2)

Since |M|2 does not depend on ~pB and EB when given in the form of equation (2.12), we

can carry out the ~pB-integration and obtain(
dΓ

dEe

)
νj

=

√
E2
e −m2

e

128π4mA

∫
d3pj
Ej x

|M|2 δ(mA − x− Ej − Ee), (A.3)

where

x =
√
|~pe|2 + |~pj |2 + 2|~pe||~pj | cosϑ+m2

B. (A.4)
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Here ϑ denotes the angle between ~pe and ~pj . Next we introduce polar coordinates for the

d3pj-integration as follows:

d3pj = d|~pj ||~pj |2dϕ dϑ sinϑ = dEjEj |~pj |dϕ dϑ sinϑ. (A.5)

The integration over ϕ gives a factor 2π and the integration over ϑ can be replaced by an

integration over x [29]:

|~pj | sinϑ dϑ
x

= − dx

|~pe|
= − dx√

E2
e −m2

e

. (A.6)

We get∫
d3pj
Ej x

|M|2 δ(mA−x−Ej−Ee)=
2π√

E2
e−m2

e

∫
dEj

∫ x+

x−

dx |M|2 δ(mA−x−Ej−Ee), (A.7)

where

x± =
√

(|~pe| ± |~pj |)2 +m2
B. (A.8)

Since |M|2 does not depend on x, the x-integration reduces to

∫ x+

x−

dx δ(mA − x− Ej − Ee) =

{
1 if mA − Ej − Ee ∈ (x−, x+)

0 else
. (A.9)

The condition mA − Ej − Ee ∈ (x−, x+) determines the minimal and maximal electron

energy14

Emin
e = me, Emax

e =
m2
A +m2

e − (mB +mj)
2

2mA
(A.10)

and the boundaries

Ej± =
−(mA − Ee)(EemA − α)± |~pe|

√
(EemA − α+m2

j )
2 −m2

Bm
2
j

m2
A − 2mAEe +m2

e

(A.11)

of the neutrino energy whose computation is deferred to appendix B. The constant α is

given by

α =
1

2

(
m2
A −m2

B +m2
e +m2

j

)
. (A.12)

Thus, we have arrived at∫
d3pj
Ej x

|M|2 δ(mA − x− Ej − Ee) =
2π√

E2
e −m2

e

∫ Ej+

Ej−

dEj |M|2 . (A.13)

Inserting equation (A.13) into equation (A.3) we find our final result(
dΓ

dEe

)
νj

=
1

64π3mA

∫ Ej+

Ej−

dEj
∣∣M(A → B + e− + νj)

∣∣2 . (A.14)

14If Ee 6∈ [Emin
e , Emax

e ],
(
dΓ
dEe

)
νj

vanishes.
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B Boundaries of the Ej-integration

The boundaries Ej− and Ej+ of the Ej-integration are determined by the three conditions

Ej > 0, (B.1a)

mA − Ej − Ee > x− =
√

(|~pe| − |~pj |)2 +m2
B, (B.1b)

mA − Ej − Ee < x+ =
√

(|~pe|+ |~pj |)2 +m2
B. (B.1c)

In order to solve equations (B.1b) and (B.1c) for boundaries of Ej , we want to square them.

Doing so, we lose the condition mA − Ej − Ee > 0 which follows from inequality (B.1b).

Thus, we have the two constraints

Ej > 0, Ej + Ee < mA (B.2)

and two further bounds on Ej determined through

(mA − Ej − Ee)2 > x2
− and (mA − Ej − Ee)2 < x2

+. (B.3)

The two inequalities (B.3) may be written as a single inequality:

(α−mAEe − (mA − Ee)Ej)2 < |~pe|2|~pj |2 (B.4)

where we have defined

α ≡ 1

2

(
m2
A −m2

B +m2
e +m2

j

)
. (B.5)

We may write equation (B.4) as

f(Ee, Ej) < 0 (B.6)

with

f(Ee, Ej) ≡ E2
j (m2

A − 2mAEe +m2
e) + Ej(−2αmA + 2αEe + 2m2

AEe − 2mAE
2
e )

+ α2 +m2
AE

2
e − 2αmAEe +m2

jE
2
e −m2

em
2
j .

(B.7)

The inequality (B.6) determines the boundaries of the kinematically allowed region as

f(Ee, Ej) = 0. Solving for Ej gives two solutions

Ej± =
−(mA − Ee)(EemA − α)± |~pe|

√
(EemA − α+m2

j )
2 −m2

Bm
2
j

m2
A − 2mAEe +m2

e

. (B.8)

There are only these two solutions and they have no singularities for Ee <
m2
A+m2

e

2mA
, which

is necessarily fulfilled for all beta decays.15 Moreover, Ej+ and Ej− become equal at

precisely the point where the term involving the square root vanishes. Thus the two

functions together describe the whole curve f(Ee, Ej) = 0.

15Since mB > mA/2 we have Ee < mA/2 < (m2
A +m2

e)/2mA.
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Furthermore, the two points where Ej+ = Ej− determine the maximal and minimal

electron energy. The minimum is given when |~pe| = 0, i.e. Emin
e = me. The maximum is

reached when the square root vanishes. This gives two solutions for Emax
e , namely

Emax
e =

m2
A +m2

e − (mB +mj)
2

2mA
(B.9)

and the same solution with (mB − mj)
2 instead of (mB + mj)

2. However, this second

solution is unphysical, because it would correspond to a negative neutrino energy (which

can be seen from inserting the value for Ee into the expression for Ej±).

It remains to check whether the bounds Ej± are in agreement with the conditions

of equation (B.2). The maximal and minimal neutrino energy (i.e. the extrema of Ej+
and Ej−) can be easily determined via f(Ee, Ej) = 0 in the same way as we determined

the maximal and minimal electron energy. Since the whole problem is e↔ νj-symmetric,

any expression for the neutrino can be obtained from the corresponding expression for the

electron (and vice versa) via the replacements

mj ↔ me and Ej ↔ Ee. (B.10)

Thus the minimal and maximal neutrino energy are given by

Emin
j = mj , Emax

j =
m2
A +m2

j − (mB +me)
2

2mA
. (B.11)

The condition Ej > 0 is thus always fulfilled automatically, and also Ej + Ee < mA is

satisfied due to

Emax
j + Emax

e =
1

2mA
(2m2

A − 2m2
B − 2mB(me +mj)) < mA. (B.12)

In total we have found that

∫ ∞
0

dEj

∫ x+

x−

dx |M|2 δ(mA − x− Ej − Ee) =


∫ Ej+

Ej−

dEj |M|2 for Ee ∈ [Emin
e , Emax

e ]

0 else.

(B.13)
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[49] R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with

spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

[50] N.G. Deshpande, J.F. Gunion, B. Kayser and F.I. Olness, Left-right symmetric electroweak

models with triplet Higgs, Phys. Rev. D 44 (1991) 837 [INSPIRE].

[51] H.H. Patel, Package-X webpage, http://packagex.hepforge.org/.

[52] H.H. Patel, Package-X: a mathematica package for the analytic calculation of one-loop

integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

[53] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin.

Phys. C 38 (2014) 090001 [INSPIRE].

[54] A.H. Wapstra, G. Audi and C. Thibault, The AME2003 atomic mass evaluation I.

Evaluation of input data, adjustment procedures, Nucl. Phys. A 729 (2003) 129 [INSPIRE].

[55] G. Audi, A.H. Wapstra and C. Thibault, The AME2003 atomic mass evaluation II. Tables,

graphs and references, Nucl. Phys. A 729 (2002) 337 [INSPIRE].

– 36 –

http://dx.doi.org/10.1016/j.physletb.2005.01.094
http://dx.doi.org/10.1016/j.physletb.2005.01.094
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B610,45%22
http://dx.doi.org/10.1007/BF01351864
http://inspirehep.net/search?p=find+J+%22Z.Physik,88,161%22
http://dx.doi.org/10.1016/0370-2693(80)90235-X
http://dx.doi.org/10.1016/0370-2693(80)90235-X
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B96,159%22
http://dx.doi.org/10.1016/S0370-2693(99)00780-7
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B460,219%22
http://dx.doi.org/10.1016/S0920-5632(01)01454-2
http://dx.doi.org/10.1016/S0920-5632(01)01454-2
http://arxiv.org/abs/hep-ph/0012018
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0012018
http://dx.doi.org/10.1016/S0550-3213(01)00361-3
http://arxiv.org/abs/hep-ph/0105105
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0105105
http://dx.doi.org/10.1016/j.cryogenics.2013.01.001
http://inspirehep.net/record/1234514
http://dx.doi.org/10.1103/PhysRev.104.254
http://dx.doi.org/10.1103/PhysRev.104.254
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,104,254%22
http://dx.doi.org/10.1103/PhysRev.106.517
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,106,517%22
http://dx.doi.org/10.1103/PhysRevD.88.071902
http://dx.doi.org/10.1103/PhysRevD.88.071902
http://arxiv.org/abs/1305.4636
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4636
http://dx.doi.org/10.1103/PhysRevD.11.2558
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D11,2558%22
http://dx.doi.org/10.1103/PhysRevD.10.275
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D10,275%22
http://dx.doi.org/10.1103/PhysRevD.12.1502
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D12,1502%22
http://dx.doi.org/10.1103/PhysRevD.23.165
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D23,165%22
http://dx.doi.org/10.1103/PhysRevD.44.837
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D44,837%22
http://packagex.hepforge.org/
http://dx.doi.org/10.1016/j.cpc.2015.08.017
http://arxiv.org/abs/1503.01469
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01469
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+%22Chin.Phys.,C38,090001%22
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.002
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,A729,129%22
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,A729,337%22


J
H
E
P
0
6
(
2
0
1
6
)
0
4
0

[56] S.S. Gershtein and Ya. B. Zeldovich, Meson corrections in the theory of beta decay, Zh. Eksp.

Teor. Fiz. 29 (1955) 698 [INSPIRE].

[57] R.P. Feynman and M. Gell-Mann, Theory of Fermi interaction, Phys. Rev. 109 (1958) 193

[INSPIRE].

[58] Yu. A. Akulov and B.A. Mamyrin, Determination of the ratio of the axial-vector to the

vector coupling constant for weak interaction in triton beta decay, Phys. Atom. Nucl. 65

(2002) 1795 [INSPIRE].
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