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Abstract: Majorana and pseudo-Dirac heavy neutrinos are introduced into the type-I

and inverse seesaw models, respectively, in explaining the naturally small neutrino mass.

TeV scale heavy neutrinos can also be accommodated to have a sizable mixing with the

Standard Model light neutrinos, through which they can be produced and detected at the

high energy colliders. In this paper we consider the Next-to-Leading Order QCD corrections

to the heavy neutrino production, and study the scale variation in cross-sections as well as

the kinematic distributions with different final states at 14 TeV LHC and also in the context

of 100 TeV hadron collider. The repertoire of the Majorana neutrino is realized through

the characteristic signature of the same-sign dilepton pair, whereas, due to a small lepton

number violation, the pseudo-Dirac heavy neutrino can manifest the trileptons associated

with missing energy in the final state. Using the
√
s = 8 TeV, 20.3 fb−1 and 19.7 fb−1 data

at the ATLAS and CMS respectively, we obtain prospective scale dependent upper bounds

of the light-heavy neutrino mixing angles for the Majorana heavy neutrinos at the 14 TeV

LHC and 100 TeV collider. Further exploiting a recent study on the anomalous multilepton

search by CMS at
√
s = 8 TeV with 19.5 fb−1 data, we also obtain the prospective scale

dependent upper bounds on the mixing angles for the pseudo-Dirac neutrinos. We thus

project a scale dependent prospective reach using the NLO processes at the 14 TeV LHC.
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1 Introduction

The journey of Large Hadron Collider (LHC) in its 7 and 8 TeV run has been extremely

successful in discovering, and further constraining the properties of long-awaited Higgs

boson [1, 2] of Standard Model (SM). However, LHC is still lacking any clinching signature

yet from the beyond the Standard Model (BSM) physics. With general wisdom, there exists

a broad agreement in admitting the SM as, at most a very accurate description for low

energy effective theory of particle physics. This notion is embolden from the fact, that the

SM falls short to explain divers outstanding issues both in theory and in explaining some

crucial experimental observations.

The most recent observations on the neutrino oscillation phenomena [3–8] have estab-

lished that tiny neutrino mass and the flavor mixing of the SM neutrinos which is one

of the divers mysteries in SM. The existence of such a tiny neutrino mass requires us to

extend the SM. The seesaw mechanism [9–15] is probably the simplest idea to extend the

SM, which can explain the small neutrino mass naturally. The SM-singlet heavy right-

handed Majorana neutrinos induce the dimension five operators [16] leading to very small

light Majorana neutrino masses. If such heavy neutrino mass lies in the electroweak scale,

then the heavy neutrinos can be produced in the high energy colliders [17–57] from various

initial states. The heavy neutrinos are singlet under the SM gauge group therefore they

can be coupled to the SM gauge bosons through the mixing with the light SM neutrinos

vis Dirac Yukawa coupling. The Dirac Yukawa coupling can be sizable for the electroweak

scale heavy neutrinos in general Casas-Ibarra parameterization [58], while reproducing the

neutrino oscillation data.
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There is another kind of seesaw mechanism, commonly known as inverse seesaw [59, 60],

where the tiny Majorana mass is generated from the small lepton number violating param-

eters, rather than being suppressed by the heavy neutrino mass in conventional seesaw

mechanism. In case of inverse seesaw the heavy neutrinos are pseudo-Dirac and the Dirac

Yukawa coupling could be of order one, satisfying the neutrino oscillation data. Thus at

the high energy colliders the pseudo-Dirac heavy neutrinos can be produced through the

sizable mixing with the SM neutrinos. In our analysis we choose the LHC at the center

of mass energy
√
s = 14 TeV and a proposed proton-proton collider at the center of mass

energy
√
s = 100 TeV [61] which can enlighten the new physics era including the heavy

neutrino physics more precisely with its higher fact finding ability.

Apart from these seesaw mechanisms there are different other simple ways which can

also be tested in colliders. Type-II seesaw where the SM is extended by an SU(2) triplet

scalar, see [62–74] for detailed studies. The other one is the type-III seesaw which is

obtained by the extension of the SM with an SU(2) triplet fermion, see [75–82] for detailed

studies, (see [83] for the NLO analysis in type-III seesaw). Additional interesting possibility

of generate naturally small neutrino mass is from higher-dimensional operators at the TeV

scale and thus testable at the collider [84–86].

The heavy neutrino can be produced at the high energy colliders from various initial

states among them the leading contributions come from the processes generated from the

quark-quark (qq′), quark-gluon (qg) and gluon-gluon (gg) initial states. Among these pro-

cesses the qq′ initial state is the commonly studied leading order (LO) production channel

for the heavy neutrinos, where as, the other channels can contribute in its Next-to-Leading-

Order (NLO) and Next-to-Next-to-Leading-Order (NNLO) QCD corrections together with

the corresponding LO processes. In this paper we concentrate on the QCD NLO produc-

tion processes including the virtual correction contributions and the real emission processes.

For the LO processes we demonstrate the production of the heavy neutrino for different

factorization (µF ) scales associated to the parton density functions (PDFs) considering

the 14 TeV LHC and in the context of proposed 100 TeV hadron collider. On the other

hand, NLO processes are studied with different choices of factorization (µF ) as well as

renormalization (µR) scales juxtaposing together with LO contributions.

The paper is organized in the following way. In section 2 we introduce the type-I seesaw

and inverse seesaw models. These are the primary models we concentrate in our present

analysis. In section 3 we calculate the production cross-section of the heavy neutrino at

the high energy colliders. We discuss the methodology followed with different choice of

parameters in estimating in leading order and next-to-leading order production of heavy

neutrinos. We also opened up discussion on the scale variation related to these production

cross-sections. In section 4 we study the scale dependent kinematic distributions of different

kinematic measurable quantities in the heavy neutrino production from the trilepton plus

missing energy final state. In section 5 we utilize the current Large Hadron Collider (LHC)

data from ATLAS and CMS to put scale dependent upper bounds on the mixing angles

between the light- heavy neutrinos. Section 6 is dedicated to the conclusion.
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2 Neutrino mass mechanism

In type-I seesaw [9–15], we introduce SM gauge-singlet right handed Majorana neutrinos

Nβ
R, where β is the flavor index. Nβ

R couple with SM lepton doublets `αL and the SM Higgs

doublet H. The relevant part of the Lagrangian is

L ⊃ −Y αβ
D `αLHN

β
R −

1

2
mαβ
N NαC

R Nβ
R + H.c. . (2.1)

After the spontaneous electroweak symmetry breaking by the vacuum expectation value

(VEV), H =

(
v√
2

0

)
, we obtain the Dirac mass matrix as MD = YDv√

2
. Using the Dirac and

Majorana mass matrices we can write the neutrino mass matrix as

Mν =

(
0 MD

MT
D mN

)
. (2.2)

Diagonalizing this matrix we obtain the seesaw formula for the light Majorana neutrinos as

mν ' −MDm
−1
N MT

D. (2.3)

For mN ∼ 100 GeV, one may find that the extremely minuscule YD ∼ 10−6 is needed

to construct some light neutrino mass of order mν ∼ 0.1 eV. However, using the general

parameterization based on Casas-Ibarra [58], one gets the Yukawa coupling expressed in

terms of a orthogonal matrix which remains completely arbitrary and hence can be large.

Following this mechanism YD can be phenomenologically viable, as large as order one, and

this is the case we consider in our present work.

There is another seesaw mechanism, so-called inverse seesaw [59, 60], where the light

Majorana neutrino mass is generated through tiny lepton number violation. The relevant

part of the Lagrangian is given by

L ⊃ −Y αβ
D `αLHN

β
R −m

αβ
N SαLN

β
R −

1

2
µαβS

α
LS

βC

L + H.c. , (2.4)

where Nα
R and SβL are two SM-singlet heavy neutrinos with the same lepton numbers, mN

is the Dirac mass matrix, and µ is a small Majorana mass matrix violating the lepton

numbers. After the electroweak symmetry breaking we obtain the neutrino mass matrix as

Mν =

 0 MD 0

MT
D 0 mT

N

0 mN µ

 . (2.5)

Diagonalizing this mass matrix we obtain the light neutrino mass matrix

Mν 'MDm
−1
N µm−1

T

N MT
D . (2.6)

Note that the smallness of the light neutrino mass originates from the small lepton number

violating term µ. The smallness of µ allows the mDm
−1
N parameter to be order one even
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for an electroweak scale heavy neutrino. Since the scale of µ is much smaller than the scale

of mN , the heavy neutrinos become the pseudo-Dirac particles. This is the main difference

between the type-I and the inverse seesaws.

Through the seesaw mechanism, a flavor eigenstate (ν) of the SM neutrino is ex-

pressed in terms of the mass eigenstates of the light (νm) and heavy (Nm) Majorana

neutrinos such as

ν ' νm + V`NNm, (2.7)

where V`N is the mixing between the SM neutrino and the SM-singlet heavy neutrino, and

we have assumed a small mixing, |V`N | � 1. Using the mass eigenstates, the charged

current interaction for the heavy neutrino is given by

LCC ⊃ −
g√
2
Wµ

¯̀γµPLV`NNm + h.c., (2.8)

where ` denotes the three generations of the charged leptons in the vector form, and

PL = 1
2(1 − γ5) is the projection operator. Similarly, the neutral current interaction is

given by

LNC ⊃ −
g

2cw
Zµ
[
Nmγ

µPL|V`N |2Nm + {νmγµPLV`NNm + h.c.}
]
, (2.9)

where cw = cos θw with θw being the weak mixing angle. The main decay modes of

the heavy neutrino are N → `W , ν`Z, ν`h. The corresponding partial decay widths are

respectively given by

Γ(N → `W ) =
g2|V`N |2

64π

(m2
N −m2

W )2(m2
N + 2m2

W )

m3
Nm

2
W

,

Γ(N → ν`Z) =
g2|V`N |2

128πc2w

(m2
N −m2

Z)2(m2
N + 2m2

Z)

m3
Nm

2
Z

,

Γ(N → ν`h) =
|V`N |2(m2

N −m2
h)2

32πmN

(
1

v

)2

. (2.10)

The decay width of heavy neutrino into charged gauge bosons being twice as large as

neutral one owing to the two degrees of freedom (W±). We plot the branching ratios

BRi (= Γi/Γtotal) of the respective decay modes (Γi) with respect to the total decay decay

width (Γtotal) of the heavy neutrino into W , Z and Higgs bosons in figure 1 as a function

of the heavy neutrino mass (mN ). Note that for larger values of mN , the branching ratios

can be obtained as

BR (N → `W ) : BR (N → νZ) : BR (N → νH) ' 2 : 1 : 1. (2.11)

3 Heavy neutrino production at the high energy colliders

We implement our model in the event generator MadGraph5-aMC@NLO [87, 88] and calcu-

late the production cross-section of the heavy neutrino at the LO and NLO respectively.

The full automation of NLO computation is based on two main steps. The code for the
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Figure 1. Heavy neutrino branching ratios (BRi) for different decay modes are shown with respect

to the heavy neutrino mass (mN ).

evaluation of one loop is made through MADLOOP [89] and the born and real-emission ampli-

tudes have been computed through MadFKS [90] together with the integration and matching

scheme of MC@NLO. MadLoop evaluate one loop amplitude by using Ossola-Papadopoulos-

Pittau OPP [91] integrand-reduction technique which is implemented in CutTools [92]. In

MadFKS, subtraction method have been used by FKS [93] formalism. The showering and

hadronization of the events were performed with PYTHIA6.4 for LO and PYTHIA6Q for the

NLO processes [94] bundled in MadGraph with anti-kT algorithm. The hadronic jets are

clustered with anti-kT formalism using FastJet [95].1

The hadronic cross-sections have been calculated by convoluting LO (NLO) parton

distribution functions (PDF), namely, CTEQ6L1 (CTEQ6M) with LO (NLO) partonic cross-

section which has been done through MadGraph5-aMC@NLO. We choose αs(mZ) = 0.130

in CTEQ6L1 for LO and αs(MZ) = 0.1180 in CTEQ6M for NLO according to [98], mZ =

91.188 GeV, mW = 80.423 GeV and GF = 1.166×10−5 GeV−2 as electroweak input param-

eters. Thereof, αQED = 1/132.54 and sin2 θW = 0.22217 are computed via LO electroweak

relations. In this analysis we have considered two types of finals states. One of them is N`

from the W boson mediated process. In figure 2 the leading Feynman diagrams including

the Born level in figure 2(a), virtual diagrams in figure 2(b−d) and real emissions diagrams

in figure 2(e − h) initiated from quark-antiquark or quark-gluon are demonstrated. The

other final state we considered is the Nν from the Z boson mediated process which we can

1In our final drafting phase ref. [57] appeared with the NLO prediction of the heavy neutrino production

using MadGraphMC@NLO which overlaps with a part our result consistently depending upon the choices of

scale and selection cuts. It is important to mention that we have used our independently developed code for

the type-I and Inverse seesaw mechanisms in MadGraphMC@NLO, fixing bugs with the active support from

the MadGraph team [96] and finally with private communications. The implementation of scale variations

were suggested in [97], although we finally used the straightforward method bypassing the SyaCalc.
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Figure 2. Representative Feynman diagrams for the leading order N` production from the qq′

process at hadron collider at the Born process or LO(a). Corresponding NLO diagrams including

Virtual Corrections(b − d) and Real Emissions(e − h) contributing from different initial states are

shown in rest of the diagrams.

extract easily from figure 2. We have computed the LO cross-sections for the fixed mass

with the variation of factorisation scale (µF ). Since the LO cross-section depends only on

the µF through LO PDFs and we varied as

µF = ξmN (3.1)

where ξ is the scale factor varying between 0.1 to 10. Whereas the NLO cross-section

depends on both the scale, namely, the factorization scale (µF ) through PDFs and the

renormalisation scale (µR) through NLO partonic cross-section (mainly due to the couplings

renormalisation). For simplicity, throughout the present analysis we have considered to

vary both these scales as,

µF = µR = ξmN with 0.1 ≤ ξ ≤ 10. (3.2)

We have produced the scale dependent cross-sections normalized by the square of the

mixing angle |V`N |2 for a fixed choice of heavy neutrino mass mN at 100 GeV, 400 GeV,

800 GeV and 1 TeV at the 14 TeV LHC for the LO and NLO processes with varying ξ

between 0.1 to 10. This scale dependence are shown in figure 3. In the same plot, we

also display the theoretical scale uncertainty in NLO calculation due to µF alone by fixing

the renormalisation scale at the corresponding heavy neutrino mass (µR = mN ). Since

later dependence only enters at the the NLO level in the form of αs(µR), one expects

the µF scale dependence which actually soften in NLO calculation. The other scenario

by fixing the factorization scale at the corresponding heavy neutrino mass (µF = mN )

is also shown by changing only the µR scale in the same plot. For mN = 100 GeV, the

leading order cross-section σLO varies sharply and increasing almost monotonically by a

factor of two approximately with increase in scale factor (ξ), which indicates a substantial

amount of theoretical uncertainty present in the LO result. This is because of only the LO

quark-antiquark flux with varying scale factor ξ2. Whereas in NLO, it is three fold - the

scale dependent logarithmic terms present in partonic cross-sections, the NLO PDF fluxes

(namely, quark-antiquark, quark-gluon and antiquark-gluon) as well as strong coupling

constant and hence the strong scale dependent part cancels among themselves. Therefore
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Figure 3. Scale variation of the heavy neutrino production process pp → `N at the 14 TeV

LHC comparing the LO with the NLO estimates at different scale choices. Plots are shown for four

different heavy neutrino mass mN . Cross-sections are shown as normalized with the value of |V`N |2.

this strong scale dependence has been soften by including the NLO calculation which varies

slowly with the scale. At the larger choices of heavy neutrino mass, both the LO and the

NLO cross sections decrease with ξ variation, although the basic feature of softening of

NLO variations are evident in all such examples.

The scale dependent results for 100 TeV collider considering mN at 100 GeV, 400 GeV,

1 TeV and 1.5 TeV are also shown in figure 4. Here the scale variation of the leading order

cross-section varies rather sharply especially for lower value of mN , which provides the

LO cross-section dominating over the NLO prediction for ξ > 2. This steep rising of LO

cross-section is mainly due to the LO PDF (CTEQ6L1) sets. On the other hand the NLO

cross-sections reduce this PDF scale uncertainty significantly so that the NLO cross-section

remains almost flat with respect to ξ for all mN at the 100 TeV hadron collider.

The scale variations of the heavy neutrino production cross-sections, normalized by

the square of the mixing matrix, is further demonstrated as a function of mN at 14 TeV

LHC and 100 TeV hadron collider in figure 5 and figure 6. In these figures, the blue (red)

bands shows the scale dependence of the σLO (σNLO). It is clear from these figures that the

strong scale dependence reduces significantly at NLO cross-section as compared to LO one.

We also study the next-to-leading order predictions for Nν final state mediated by the

Z boson. The scale dependent cross-sections at 14 TeV LHC and 100 TeV hadron collider

are given in figure 7. We consider the heavy neutrino mass at 100 GeV and 800 GeV. We

– 7 –
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Figure 4. Scale variation of the heavy neutrino production process pp → `N at the 100 TeV

HC comparing the LO with the NLO estimates at different scale choices. Plots are shown for four

different heavy neutrino mass mN . Cross-sections are shown as normalized with the value of |V`N |2.

used the same scale dependence for the Nν final state as we did in N` final state for LO

and NLO respectively. At 14 TeV the LO cross-section at mN = 100 GeV increases with

ξ at a faster rate than the NLO process whereas for mN = 800 GeV the LO cross-section

decreases with the increase in ξ with a faster rate than that in NLO. On the other hand

at 100 TeV collider the LO process at mN = 100 GeV takes over the NLO for ξ > 1.9. For

mN = 800 GeV the LO cross-section increases with the increase in ξ but the NLO cross-

section remains more or less same for ξ > 0.5. Following our earlier demonstration on N`,

we have also shown in figure 8 the cross-sections for the Nν final state as a function of mN

at 14 TeV LHC and 100 TeV collider along with the corresponding scale dependence bands.

4 Scale dependent kinematic distributions in trilepton channel

In this section we consider the pseudo-Dirac heavy neutrino production at the hadron

collider and study its decay process for the 14 TeV LHC and 100 TeV collider. For further

demonstration we choose the heavy neutrino with mass mN = 400 GeV. Different kinematic

distributions are constructed both for the LO and NLO calculations by choosing both the

factorization scale as well as renormalisation scale varying simultaneously (as in eq. (3.2))

with a scale factor ξ between 0.1 and 10. The pseudo-Dirac heavy neutrino is involved in the

inverse seesaw mechanism to generate the neutrino mass. The collider phenomenology of

inverse seesaw mechanism has been studied in [22–24, 26] for the LO process with trilepton

– 8 –
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Figure 5. Heavy neutrino production cross-section from pp→ `N at the 14 TeV LHC as a function

of mN . Both LO and NLO predictions are shown with the scale variation effect as a band. The

cross-sections are normalized by the square of the mixing angles. Inset plots showing with zoomed

bands at different masses.

final state for a fixed scale. In case of inverse seesaw mechanism the Yukawa coupling

could be high enough to enhance the heavy neutrino production. However, due to the

small lepton number violating parameter2 the heavy neutrino becomes pseudo-Dirac. In

this analysis we consider the Single Flavor (SF) scenario, where only one heavy neutrino

is light and accessible to the high energy colliders. It couples with one generation of the

lepton flavor. For simplicity, we consider that the heavy neutrino is coupled with the second

generation of the lepton flavor.3 As a result the golden channel for the final state signal is

the trilepton plus missing energy which is given by

pp→ `+1 N,N → `−2 W
+,W+ → `+3 ν`3

pp→ `−1 N,N → `+2 W
−,W− → `−3 ν`3 . (4.1)

Within the same set of the model parameters as described in the last section, we show the

differential distributions of scattering cross-section as a function of the transverse momenta

for these three leptons separately, p`iT for i = 1, 2, 3 in figure 9 for the 14 TeV LHC and

100 TeV collider. In case of 14 TeV, the NLO distributions dominate over the LO distri-

butions in the high transverse momentum region for `1 and `2. Whereas for `3, the NLO

2See, [22] for the detailed discussion about the smallness of the lepton number violating parameter in

case of inverse seesaw mechanism.
3Another possibility could be possible where we can introduce two generations of the degenerate heavy

neutrinos and each generation couples with the single, corresponding lepton flavor which we can name as

Flavor Diagonal (FD) case. See, [23, 24] for the study on FD case.
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Figure 6. Heavy neutrino production cross-section from pp→ `N at the 100 TeV hadron collider

as a function of mN . Both LO and NLO predictions are shown with the scale variation effect

as a band.

distributions dominate over the LO distributions quite impressively in the low transverse

momentum region. This behavior is due to inclusion of extra radiation at the NLO process

as well as showering effect. In the 100 TeV case, similar situations are demonstrated, how-

ever leading order scale uncertainties are exceptionally large, again due to LO PDF sets as

mentioned earlier.

We exhibit the pseudo-rapidity distributions in figure 9. The η`2,3 distributions at the

14 TeV are sharper than that of η`1 , resulting the production of these two leptons in the

central region. The scale variations for the LO and NLO cases are not very high in the

14 TeV LHC. In comparison to that, the scale variations at the LO is very prominent in the

100 TeV case. The scale variation for the NLO calculation soften strikingly as expected.

To study the different dilepton correlating observables in terms of LO and NLO calcu-

lation with their corresponding scale uncertainties, in figure 10 we display the differential

distributions for scattering cross-section with respect to the angles between the leptons,

cos θ`i`j for i = 1, 2, 3, j = 1, 2, 3 and i 6= j. The production of the leptons with large polar

angular separation is abundant, although tend to choose smaller one since main produc-

tion channel involves the contributions from both the valence and sea quarks. This effect

is quite more evident at 100 TeV machine, where the leptons are mostly produced at small

polar angle. The difference between the azimuthal angle between the two leptons, namely,

∆φ`i`j of the leptons with i = 1, 2, 3, j = 1, 2, 3 and i 6= j are also shown in figure 10. One

notice that both the ∆φ`1`2 and ∆φ`1`3 distributions show some enhancement when leptons

are produced back to back, supported by the leptons produced in boosted heavy neutrino
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Figure 7. Scale variation of the heavy neutrino production process pp→ νN at the (upper) 14 TeV

LHC (lower) 100 TeV hadron collider comparing the LO with the NLO estimates at different scale

choices. Plots are shown for two different heavy neutrino mass mN . Cross-sections are shown as

normalized with the value of |V`N |2.
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Figure 8. Heavy neutrino production cross-section normalized by the square of the mixing angle

from pp→ νN at the 14 TeV LHC as a function of mN at the 14 TeV(Left panel) and 100 TeV(right

panel). Both LO and NLO predictions are shown with the scale variation effect as a band.

decay. This peak is further enhanced in the NLO calculation. However, ∆φ`1`2 remains

flat in both calculations. Scale uncertainty is also shown to be substantially controlled in

NLO estimates.

The scale dependent differential scattering cross-section as a function of missing trans-

verse energy, Emiss
T , are given figure 11 where the LO and NLO variations have good

agreements at 14 TeV LHC. NLO distribution enhances at larger Emiss
T . We can make the

same observation at the NLO and LO cases for the 100 TeV collider.
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Figure 9. Scale variation of the differential scattering cross-section as a function of the transverse

momentum of leptons(p`iT , i = 1, 2, 3) and pseudorapidity of leptons(η`i , i = 1, 2, 3) in case of trilep-

ton production channel for mN = 400 GeV. The first row corresponds to the p`iT distributions at√
s = 14 TeV LHC whereas the second row represents the same at

√
s = 100 TeV collider. The third

row corresponds to the η`
i

distributions at
√
s = 14 TeV LHC whereas the fourth row represents

the same at the
√
s = 100 TeV collider. The differential scattering cross-section distributions are

normalized by |V`N |2.

5 Scale dependent prospective upper bound on the mixing angles

In this section, we study the prospective upper bounds on the mixing angles between the

heavy neutrino and the SM light neutrinos. We consider two different scenario such as type-

I seesaw which involves a heavy Majorana neutrino and inverse seesaw which introduces

a pseudo-Dirac heavy neutrino. Due to the large lepton number violation, the type-I

seesaw scenario is observed through the characteristic same sign dilepton plus dijet final

state. On the other hand due to a very small lepton number violating parameter, optimal

observable being the trilepton plus missing energy signal for inverse seesaw case. Using

these mechanisms and existing searches done by LHC at
√
s = 8 TeV(Run−1) we obtain

prospective search reaches at the LHC at
√
s = 14 TeV(Run−2) and proposed proton-

proton collider at
√
s = 100 TeV.
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Figure 10. Scale variation of the differential scattering cross-section distribution with respect to

cos θ`i`j of the leptons with i = 1, 2, 3, j = 1, 2, 3 and i 6= j and ∆φ`i`j of the leptons with

i = 1, 2, 3, j = 1, 2, 3 and i 6= j for the trilepton production channel for mN = 400 GeV. The

first row corresponds to cos θ`i`j at
√
s = 14 TeV LHC whereas the second row represents the√

s = 100 TeV collider. The third row corresponds to ∆φ`i`j at
√
s = 14 TeV LHC whereas the

fourth row represents the same at
√
s = 100 TeV collider. The differential cross-section distributions

are normalized by |V`N |2.

5.1 Same sign dilepton plus two jet production signal

For simplicity we consider the case that only one generation of the Majorana heavy neutrino

is lighter enough and accessible to the LHC which couples to only the second generation

of the lepton flavor. To generate the events in the MadGraph we use the CTEQ6L1 for the

LO and CTEQ6M for the NLO(µF = µR) cases respectively. We study the scale dependent

same sign dilepton plus dijet signal cross-section as a function of the heavy neutrino mass

(mN ). The signal cross-section at the level of LO and NLO are calculated as σ(ξ)LO and

σ(ξ)NLO respectively for the same sign dimuon production,

pp→ Nµ± → µ±µ±jj. (5.1)
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Figure 11. Scale variation of the differential scattering cross-section as a function of the missing

transverse momentum (η`i , i = 1, 2, 3) in case of trilepton production channel for mN = 400 GeV.

The left panel corresponds to case at
√
s = 14 TeV LHC whereas the right panel represents the√

s = 100 TeV collider. The differential cross-section distributions are normalized by |V`N |2.

Thus corresponding values are expressed the 14 TeV LHC
(
σ(ξ)14LO, σ(ξ)14NLO

)
and 100 TeV

collider
(
σ(ξ)100LO , σ(ξ)100NLO

)
. Comparing our generated events with the recent ATLAS re-

sults [99] at the 8 TeV LHC with the luminosity 20.3 fb−1, we obtain an upper limit on the

mixing angles between the Majorana type heavy neutrino and the SM leptons as a function

of mN for ξ = 0.1, 1.0, 10.0. In the ATLAS analysis the upper bound of the production

cross-section (σATLAS) is obtained for the final state with the same sign di-muon plus dijet

as a function of mN . Using these 14 TeV leading order (LO) scale dependent cross-sections,

we obtain the prospective upper bounds on the mixing angles for different values of ξ = ξ′

which is chosen to be either of = {0.1, 1, 10},

|V`N |2(ξ′)14LO .
σATLAS

σ(ξ′)14LO
, (5.2)

whereas those for the NLO case at the 14 TeV are given as

|V`N |2(ξ′)14NLO .
σATLAS

σ(ξ′)14NLO

. (5.3)

At the 100 TeV we use eqs. (5.2) and (5.3) replacing the cross-sections at the 14 TeV

LHC with those at the 100 TeV collider. The calculated prospective upper bounds on the

mixing angles are shown in figure 12 along with the bounds from ATLAS [99], CMS [102],

LEP (L3) [101], electroweak precision data for tau (EWPD-τ), electron (EWPD-e) and

muon (EWPD-µ) [107, 108] (see, [103–105] for previous analysis), and finally LHC Higgs

data (Higgs) [100] (see, [106, 109, 110] for some updated analysis). Comparing our results

with the 8 TeV results given by ATLAS [99] we give a prospective upper bound on the

mixing angle at 14 TeV LHC with 20.3 fb−1 luminosity for different values of ξ = 0.1, 1.0,

10.0 at the LO and NLO. We notice that the scale dependence at LO is very clear for

mN . 300 GeV in comparison to the NLO case at the 14 TeV LHC. The LO and NLO

results could be comparable to the EWPD at the 14 TeV. Which we can easily verify

using the LHC results in Run−2 at the 14 TeV. We have also studied the prospective

upper bounds on the mixing angles at the 100 TeV collider for the LO and NLO cases at
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Figure 12. Figure shows the prospective upper bounds of square on the mixing angles as a function

of mN using the ATLAS data at the 8 TeV [99] at 20.3 fb−1 luminosity for the same sign dileton

plus dijet case. The scale dependent LO and NLO prospective upper bounds at the 14 TeV LHC

at 20.3 fb−1 luminosity (left panel, upper row), at 300 fb−1 luminosity (right panel, upper row)

and 1000 fb−1 (lower row) are given. These bounds are compared to (i) the χ2-fit to the LHC

Higgs data [100] (Higgs), (ii) from a direct search at LEP [101](L3), valid only for the electron

flavor, (iv) CMS limits from
√
s =8 TeV LHC data [102] (CMS8) and ATLAS [99] (ATLAS8), for

a heavy Majorana neutrino of the muon flavor and (v) indirect limits from the global fit to the

electroweak precision data (EWPD) from [103–105] for electron (cyan, EWPD-e(old)) and muon

(cyan, EWPD-µ(old)) flavors(new values can be found from [106], for tau (dotted, EWPD- τ)

electron (solid, EWPD- e) and muon (dashed, EWPD- µ) flavors). The shaded region is excluded

by the 8 TeV data.

20.3 fb−1 luminosity. We have noticed that for mN . 250 GeV, the mixing angle could

be a factor better than those given by EWPD. An improved prospective search reach by

an order of magnitude (more) for 300 fb−1(1000 fb−1) luminosity is also given in figure 12

for the 14 TeV LHC. We have also calculated a prospective search reach for the 100 TeV

Collider at 20.3 fb−1, 300 fb−1 and 1000 fb−1 luminosities in figure 13. The improvement

in search reach of the mixing angle from a factor to an order of magnitude with respect to

the EWPD can be obtained at the 100 TeV.

Recently the CMS has performed the same-sign dilepton plus dijet search [102]. Using

this result and adopting the same procedure for the ATLAS result we calculate the prospec-

tive upper bound on the mixing angles at the 14 TeV LHC for the LO and NLO cases at

19.7 fb−1. The results are shown in figure 13. A clear scale dependence is observed for

mN . 300 GeV for the LO case whereas the mixing angle around 120 GeV is comparable
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Figure 13. Figure shows the prospective upper bounds of square on the mixing angles as a function

of mN using the ATLAS data at the 8 TeV [99] at 20.3 fb−1 luminosity for the same sign dileton

plus dijet case. The scale dependent LO and NLO prospective upper bounds at the 100 TeV LHC

at 20.3 fb−1 luminosity (left panel, upper row), at 300 fb−1 luminosity (right panel, upper row)

and 1000 fb−1 (lower row) are given. These bounds are compared to (i) the χ2-fit to the LHC

Higgs data [100] (Higgs), (ii) from a direct search at LEP [101](L3), valid only for the electron

flavor, (iv) CMS limits from
√
s =8 TeV LHC data [102] (CMS8) and ATLAS [99] (ATLAS8), for

a heavy Majorana neutrino of the muon flavor and (v) indirect limits from the global fit to the

electroweak precision data (EWPD) from [103–105] for electron (cyan, EWPD-e(old)) and muon

(cyan, EWPD-µ(old)) flavors(new values can be found from [106], for tau (dotted, EWPD- τ)

electron (solid, EWPD- e) and muon (dashed, EWPD- µ) flavors). The shaded region is excluded

by the 8 TeV data.

to the EWPD. The scale dependence is not very high in the NLO case in comparison to the

LO case. We can easily verify using the LHC results in Run−2 at the 14 TeV. An improved

prospective search reach by an order of magnitude (more) for 300 fb−1 (1000 fb−1) lumi-

nosity is also given in figure 14 for the 14 TeV LHC. We have also depicted the prospective

search reach in figure 15 for the 100 TeV Collider at 19.7 fb−1, 300 fb−1 and 1000 fb−1 lu-

minosities where we can improve the upper bound on the mixing angle from a factor up to

an order of magnitude with respect to the EWPD from low to high luminosities.

5.2 Trilepton associated with missing transverse energy signal

We consider two cases in this analysis. One is the Flavor Diagonal case (FD), where we

employ three generations of the degenerate heavy neutrinos and each generation couples

with the single, corresponding lepton flavor. The other one is the Single Flavor case (SF)
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Figure 14. Figure shows the upper bounds on square of the mixing angles as a function of mN

using the CMS data at the 8 TeV [102] at 19.7 fb−1 luminosity for the same sign dileton plus

dijet case. The scale dependent LO and NLO prospective upper bounds at the 14 TeV LHC at

20.3 fb−1 luminosity (left panel, upper row), at 300 fb−1 luminosity (right panel, upper row) and

1000 fb−1 (lower row) are given. The bounds are compared to (i) the χ2-fit to the LHC Higgs

data [100] (Higgs), (ii) from a direct search at LEP [101](L3), valid only for the electron flavor, (iv)

ATLAS limits from
√
s =8 TeV LHC data [99] (ATLAS 8) and CMS [102], for a heavy Majorana

neutrino of the muon flavor and (v) indirect limits from the global fit to the electroweak precision

data (EWPD) from [103–105] for electron (cyan, EWPD-e(old)) and muon (cyan, EWPD-µ(old))

flavors(new values can be found from [106], for tau (dotted, EWPD- τ) electron (solid, EWPD- e)

and muon (dashed, EWPD- µ) flavors). The shaded region is excluded by the 8 TeV data.

where only one of the heavy neutrinos is accessible to the LHC and having mass in the

Electroweak scale being coupled to only the first or second generation of the lepton flavor.

In this analysis we use the CTEQ6M PDF [111] for generating the NLO(µF = µR) processes

to compute the scale dependent trilepton plus missing energy events with ξ = 0.1, 1.0 and

10.0 at
√
s = 14 TeV LHC using MadGreph-aMC@NLO bundled with PYTHIA6Q using anti-kT

algorithm for jet clustering in FastJet. We use the hadronized events in Delphes [112]

to produce events after the detector simulation. The trilepton plus missing energy mode

is given in eq. (4.1). After the detector simulation we have considered the events with

3`+ Emiss
T + n−jets where n = 0,1 and 2.

Recently the CMS has studied the anomalous multilepton plus missing energy final

state at the 8 TeV [113]. We adopt their search result for out trilepton analysis and com-

pare our trilepton plus missing energy final state after the detector simulation to put a

prospective upper limit on the mixing angle at the 14 TeV. The cuts we used for this

analysis according to [113] are itemized below:
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Figure 15. Figure shows the upper bounds on square of the mixing angles as a function of mN

using the CMS data at the 8 TeV [102] at 19.7 fb−1 luminosity for the same sign dileton plus

dijet case. The scale dependent LO and NLO prospective upper bounds at the 100 TeV LHC at

20.3 fb−1 luminosity (left panel, upper row), at 300 fb−1 luminosity (right panel, upper row) and

1000 fb−1 (lower row) are given. The bounds are compared to (i) the χ2-fit to the LHC Higgs

data [100] (Higgs), (ii) from a direct search at LEP [101](L3), valid only for the electron flavor, (iv)

ATLAS limits from
√
s =8 TeV LHC data [99] (ATLAS 8) and CMS [102], for a heavy Majorana

neutrino of the muon flavor and (v) indirect limits from the global fit to the electroweak precision

data (EWPD) from [103–105] for electron (cyan, EWPD-e(old)) and muon (cyan, EWPD-µ(old))

flavors(new values can be found from [106], for tau (dotted, EWPD- τ) electron (solid, EWPD- e)

and muon (dashed, EWPD- µ) flavors). The shaded region is excluded by the 8 TeV data.

(i) The transverse momentum of each lepton: p`T > 10 GeV.

(ii) The transverse momentum of at least one lepton: p`,leadingT > 20 GeV.

(iii) The jet transverse momentum: pjT > 30 GeV.

(iv) The pseudo-rapidity of leptons: |η`| < 2.4 and of jets: |ηj | < 2.5.

(v) The lepton-lepton separation: ∆R`` > 0.1 and the lepton-jet separation: ∆R`j > 0.3.

(vi) The invariant mass of each OSSF (opposite-sign same flavor) lepton pair: m`+`− <

75 GeV or > 105 GeV to avoid the on-Z region which was excluded from the CMS

search. Events with m`+`− < 12 GeV are rejected to eliminate background from

low-mass Drell-Yan processes and hadronic decays.

(vii) The scalar sum of the jet transverse momenta: HT > 200 GeV.

(viii) The missing transverse energy: 50 GeV< Emiss
T < 100 GeV.
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To derive the limits on |V`N |2, we calculate the signal cross-section normalized by the

square of the mixing angle as a function of the heavy neutrino mass mN for both SF and

FD cases, by imposing the CMS selection criteria listed above for different scale values

of ξ at the NLO process.4 Passing the generated detector events through all the cuts we

compare them with the observed number of events at the 19.5 fb−1 luminosity [113]. For

the selection criteria listed above, the CMS experiment observed:

(a) 10 events with the SM background expectation of 11±3.8 events for m`+`− < 75 GeV.

(b) 4 events with the SM background expectation of 5.0±1.6 events for m`+`− > 105 GeV.

In case (a) we have an upper limit of 2.8 signal events, while in case (b) leads to an upper

limit of 0.6 signal events.

Using these limits, we can set an upper bound on |V`N |2 for a given value of mN for the

scale dependent NLO case. In figure 14 we plot our results of the prospective upper bounds

for the SF and FD cases for the scale dependent NLO case at the 14 TeV. In [23] different

HT and Emiss
T regions are considered to calculate the upper bounds on the mixing angle

which has been improved in [24] for the LO processes. In this work we have considered

a different region for HT and Emiss
T to evaluate the upper bounds on the mixing angles

which has not been tested before. In this new region we can put the prospective upper

bounds on the mixing angle for the 14 TeV LHC for mN = 91.2–400 GeV for the scale

dependent NLO processes. We notice that for the trilepton case for the NLO processes at

14 TeV the scale dependent prospective bounds on mixing angle well coincide with each

other. An estimation at the 100 TeV collider for the same study can make a legitimate

improvement by approximately one order of magnitude or more and this will be tested in

future. A prospective search reach for the 300 fb−1 luminosity at 14 TeV LHC is also given

in figure 16 for which we can get up to order one improvement in the upper bounds of the

mixing angles.

6 Conclusion

In this paper we have discussed the generation of the SM neutrino mass through the

type-I and inverse seesaw mechanisms which involve the Majorana and the pseudo-Dirac

heavy neutrinos respectively. Such heavy neutrinos, residing in the eleactroweak scale,

can be produced at LHC and proposed 100 TeV hadron collider through a large mixing

angle with the SM light neutrinos. To produce such heavy neutrinos at such high energy

hadronic colliders it is important to discuss the scale dependent production cross-sections

and distributions at the LO and also at the NLO QCD.

We have studied two different channels for the heavy neutrino production; one is the

W mediated for the associated production of lepton and the other one is the Z mediated

4It should be mentioned clearly that omitting the Z−pole we are excluding the effects of the other

trilepton channels like pp → N`, N → Zν followed by Z → `+`− [49, 50] exclusively form the present

analysis. There is another channel pp → NN which will be suppressed by |V`N |4 compared to the W

mediated channels in figure 2. However, see [114–121] for some recent analyses on NN production from

the B−L model due to its rich phenomenology.
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Figure 16. The prospective upper bounds on the light-heavy neutrino mixing angles |V`N |2
as a function of the heavy pseudo-Dirac neutrino mass mN at 14 TeV LHC with 19.5 fb−1(left

panel) and 300 fb−1(right panel) luminosities, derived from the CMS trilepton data at
√
s =8 TeV

LHC for 19.5 fb−1 luminosity [113] at 95 % CL. We have considered the scale dependent NLO

case(ξ = 0.1, 1.0, 10.0) for the trilepton plus missing energy final state. Some relevant existing up-

per limits (all at 95% CL) are also shown for comparison: (i) from a χ2-fit to the LHC Higgs

data [100] (Higgs), (ii) from a direct search at LEP [101](L3), valid only for the electron flavor, (iii)

ATLAS limits from
√
s = 7 TeV LHC data [122, 123] (ATLAS7) and

√
s =8 TeV LHC data [99] (AT-

LAS8), valid for a heavy Majorana neutrino of the muon flavor, (iv) CMS limits from
√
s =8 TeV

LHC data [102] (CMS8), for a heavy Majorana neutrino of the muon flavor and (v) indirect limits

from the global fit to the electroweak precision data (EWPD) from [103–105] for electron (cyan,

EWPD-e(old)) and muon (cyan, EWPD-µ(old)) flavors(new values can be found from [106], for tau

(dotted, EWPD- τ) electron (solid, EWPD- e) and muon (dashed, EWPD- µ) flavors). Here SF75

and FD75 are the single flavor and flavor diagonal cases below the Z-pole whereas SF105 and FD105

are the same above the Z-pole.

process with associated light neutrino. We have demonstrated that the heavy neutrino pro-

duction cross-sections at the next-to-leading order QCD accuracy are quite stable against

the scale variations, where as leading order estimated can change substantially. We also

exhibit the scale dependance in different differential distributions related with the leptons

and correlations between them.

We have obtained the prospective scale dependent search reach at the 14 TeV LHC and

as well as at the 100 TeV collider for the Majorana heavy neutrino through the same sign

dilepton plus dijet final state. Using the pseudo-Dirac heavy neutrinos we have studied

the trilepton plus missing energy final state with jets and obtained the prospective search

reach at the 14 TeV. A collider with a higher energy can probe the mixing angle more

precisely improving the 14 TeV result up to an order of magnitude or more.

Acknowledgments

We thank Oliver Mattelaer and Valentin Hirshi for useful discussions and fixing bugs on

Madgraph5 aMC@NLO when we were implementing the SM singlet heavy neutrinos in the

MadGraph. AD would like to thank UC Davis and the organizers of Pre-SUSY 2015 and

SUSY 2015 where a part of the work had been continued. Authors also thank V. Ravindran

for useful discussions.

– 20 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
9

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[2] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[3] Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics

(RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

[4] T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an

Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801

[arXiv:1106.2822] [INSPIRE].

[5] MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to

electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802

[arXiv:1108.0015] [INSPIRE].

[6] Double CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor

electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012)

131801 [arXiv:1112.6353] [INSPIRE].

[7] Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance

at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

[8] RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino

Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802

[arXiv:1204.0626] [INSPIRE].

[9] T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980)

1103 [INSPIRE].

[10] P. Minkowski, µ→ eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977)

421 [INSPIRE].

[11] T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, in proceedings of The

Workshop on the Unified Theories and the Baryon Number in the Universe, O. Sawada and

A. Sugamoto eds., KEK, Tsukuba, Japan (1979), pg. 95 [INSPIRE].

[12] M. Gell-Mann, P. Ramond and R. Slansky, Supergravity, P. van Nieuwenhuizen et al. eds.,

North Holland, Amsterdam (1979), pg. 315.

[13] S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687

[INSPIRE].
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