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In the 1970s, the BRST formalism was introduced as a tool in the pertubative quantization

of gauge theories: it permits the use of rather general, non-gauge invariant regularizations,

while still guaranteeing the gauge invariance of the pertubatively quantized amplitudes.

The Batalin-Vilkovisky (BV) formalism was introduced in the 1980s to extend the BRST

formalism to more general situations such as supersymmetric theories, especially those with

extended supersymmetry, and supergravity.

The BV formalism has both classical and quantum versions. In this paper, we restrict

attention to the classical BV formalism.

We will show that in a toy model of supergravity, namely the spinning particle, in

which the worldsheet has dimension 1, there is a series of cohomology classes in negative

degrees, violating a basic axiom for the BV formalism which has been formulated recently

by Felder and Kazhdan [4]. The nontrivial cohomology classes which we find are directly

related to the possibility of formally inverting the superghost of the theory, associated to

local supersymmetry.

This calculation seems to indicate that the BV prescription for associating ghost sectors

to symmetries of the theory requires modification in the presence of local supersymmetry.

1 The Batalin-Vilkovisky formalism

The basic characteristic of the BV formalism is the doubling of the number of fields of the

theory. Whereas in the BRST formalism, one has a series of fields Φi with ghost number

gh(Φi) ≥ 0, in the BV formalism, these are supplemented by antifields Φ+
i , with ghost

number gh(Φ+
i ) < 0, in such a way that gh(Φi) + gh(Φ+

i ) = −1.

Fields with ghost number 0 are interpreted as physical fields, while fields with ghost

number greater than 0 are interpreted as ghosts. (Ghosts properly speaking are fields of
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ghost number 1: fields of ghost number greater than 1 are higher ghosts.) There is a similar

division between those antifields with ghost number −1, corresponding to physical fields,

and those with ghost number less than −1, corresponding to ghosts.

Besides its ghost number, each field Φi carries a parity p(Φi) ∈ {0, 1}, defined modulo

2, which distinguishes between bosonic and fermionic fields. The parity of the antifield Φ+
i

paired to a field Φi satisfies p(Φi) = 1− p(Φ+
i ).

In this paper, we focus on the classical BV formalism with a single independent variable

t (classical mechanics). Let ∂ denote the total derivative with respect to t. Denote by Aj

the superspace of all differential expressions in the fields and antifields with gh(S) = j.

For example, if there is a single physical field φ, then Aj consists of all expressions in the

field φ and its derivatives {∂ℓφ}ℓ>0, and in the antifield φ+ and its derivatives {∂ℓφ+}ℓ>0,

polynomial in {∂ℓφ}ℓ>0 ∪ {∂ℓφ+}ℓ≥0, and homogenous of degree −j in {∂ℓφ+}ℓ≥0. The

sum A of the superspaces Aj for j ∈ Z is a graded commutative superalgebra.

The superspace F of functionals is the graded quotient A/∂A of the algebra A of

currents by the subspace ∂A of total derivatives. Denote the image of f ∈ A in F by
∫

f dt.

The fields and antifields are canonical coordinates for the Batalin-Vilkovisky an-

tibracket, which is a Poisson bracket of degree 1:

{Φi,Φ
+
j } = −{Φ+

j ,Φi} = δij .

In the finite dimensional setting, the antibracket satisfies the following equations:

(skew symmetry) {f, g} = −(−1)(p(f)+1)(p(g)+1){g, f}

(Jacobi) {f, {g, h}} = {{f, g}, h}+ (−1)(p(f)+1)(p(g)+1){g, {f, h}}

(Leibniz) {f, gh} = {f, g}h+ (−1)(p(f)+1) p(g)g{f, h} .

In our setting, the space of functionals F no longer carries a product, and we must we give

up the Leibniz formula; in particular, the antibracket is not characterized by the canonical

relations alone. Neverthless, the following antibracket makes the space of functionals F

into a graded Lie algebra:

{
∫

f dt,

∫

g dt

}

=
∑

i

(−1)(p(f)+1) p(Φi)

∫
(

δf

δΦi

δg

δΦ+
i

+ (−1)p(f)
δf

δΦ+
i

δg

δΦi

)

dt.

Here, δ/δΦi and δ/δΦ+
i are the variational derivatives, and the sum is over the fields of the

theory.

2 The classical master equation and the Batalin-Vilkovisky cohomology

The Batalin-Vilkovisky formalism for classical theory involves the selection of a solution of

the classical master equation
{
∫

S dt,

∫

S dt

}

= 0,
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where S ∈ A0,0 is a differential expression in the fields and antifields with gh(S) = 0 and

p(S) = 0. In other words, there is an expression S̃ ∈ A1,1 such that

∑

i

(−1)p(Φi)
δS

δΦi

δS

δΦ+
i

= ∂S̃.

We may decompose S into its components

S = S[0] + S[1] + . . . ,

where S[k] is homogenous of degree k in the ghosts. The BRST formalism in its original

form is the special case in which all ghost fields have ghost number 1, and S[k] = 0 for k > 2.

Define an operator s : Fk → Fk+1 by the formula

s =

{
∫

S dt,−

}

.

By the classical master equation, this operator satisfies the equation s2 = 0, and we may

consider its cohomology groups H∗(F , s). These are called the BV cohomology associated

to the solution S of the classical master equation. The graded vector space H∗(F , s) is a

graded Lie algebra, with bracket {−,−} of degree 1.

The operator s lifts to an evolutionary vector field on A of degree 1, characterized by

the formulas

sΦi = (−1)p(Φi)+1 δS

δΦ+
i

sΦ+
i = (−1)p(Φi)

δS

δΦi
.

This vector field is cohomological:

s2 = 0. (2.1)

Since (2.1) holds, we may calculate the BV cohomology groups H∗(F , s) using the

complex

Vk = Ak ⊕ Ãk+1 ε,

where

Ãk =

{

A0/C, k = 0,

Ak, k 6= 0.

The differential on this complex is given by the formula

f + g ε 7→
(

sf + (−1)p(g) ∂g
)

+ sg ε.

In this way, we obtain a long exact sequence

· · · H−1(A, s) H−1(A, s) H−1(F , s)

H0(A/C, s) H0(A, s) H0(F , s)

H1(A, s) H1(A, s) H1(F , s) · · ·

∂

∂

∂

(2.2)
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3 The axiom of Felder and Kazhdan

The above formalism is extremely general. In an attempt to constrain the possible models

to a class exhibiting the features of the classical field theories which are of interest in the-

oretical physics, Felder and Kazhdan [4] distilled from the work of Batalin and Vilkovisky

an axiom for solutions of the classical master equation. Following their paper, we start by

formulating the axiom in the finite-dimensional setting, in which fields are replaced by co-

ordinates in a finite-dimensional graded supermanifold. (They restrict attention to graded

manifolds, but for theories incorporating fermions, one must consider graded supermani-

folds.)

Let I ⊂ A be the ideal of A generated by the coordinates with positive ghost number,

and let A/I be the quotient graded superalgebra. The ideal I is closed under the action of

s, so the differential descends to the quotient graded superalgebra A/I, and we may define

the cohomology H∗(A/I, s), which is again a graded superalgebra. There is a quotient map

H∗(A, s) → H∗(A/I, s),

which is in general neither surjective nor injective.

Following Batalin and Vilkovisky, Felder and Kazhdan propose the axiom that the

cohomology of A/I should vanish in negative degrees: if k > 0,

H−k(A/I, s) = 0.

The extension of this axiom to field theory is extremely powerful: for example, starting

with the classical action for the Yang-Mills theory, it leads to the discovery of the gauge

symmetry and its ghosts: the antifields of the ghosts are needed in order to kill the cohomol-

ogy classes
∫

(ǫ, dAA
+) of degree −1 whose closure is a consequence of the second Bianchi

identity for the curvature. (Here, ǫ is a section of the adjoint bundle P ×G g associated to

the principal bundle P , and the antifield A+ is a three-form with values in P ×G g.)

By a spectral sequence argument, Felder and Kazdhan prove that their axiom implies

the vanishing of the cohomology of A in negative degree: if k > 0,

H−k(A, s) = 0.

Filtering A by powers of I, one obtains a spectral sequence with E2-term

∞
⊕

ℓ=0

H∗(Iℓ/Iℓ+1, s) =⇒ H∗(A, s).

Each of the complexes Iℓ/Iℓ+1 is a free module over A/I, with basis in strictly positive

degrees: hence, if H−k(A/I, s) vanishes for all k > 0, it follows that H−k(A, s) vanishes

for all k > 0.

It is not hard to formulate the extension of the axiom of Felder and Kazhdan to the

setting of classical field theory: here, we restrict attention to the case of a single independent

variable t. Let I ⊂ A be the ideal of A generated by the fields with positive ghost number
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and their partial derivatives, and let A/I be the quotient graded superalgebra. There is a

quotient complex

F → A/(∂A+ I),

and a quotient map

H∗(F , s) → H∗(A/(∂A+ I), s),

which is in general neither surjective nor injective.

The natural extension of the axiom of Felder and Kazhdan is that the cohomology of

A/(∂A+ I) should vanish in negative degrees: if k > 0,

H−k(A/(∂A+ I), s) = 0.

The spectral sequence argument of Felder and Kazdhan extends to this setting, and shows

that their axiom implies the vanishing of the cohomology of F in degree less than −1:

if k > 1,

H−k(F , s) = 0.

Barnich et al. have shown that this holds for the pure Yang-Mills theory on R
4, with

arbitrary semisimple gauge group [1] (see also Costello [3, chapter 6, section 5]).

We will show that there exists a field theory in which the axiom of Felder and Kazhdan

fails, in the sense that H−k(F , s) is nonzero for all k > 1.

4 Review of the spinning particle

We now investigate the axiom of Felder and Kazhdan in a toy model of supergravity, the

spinning particle [2]. Consider the vector space R
d with non-degenerate inner product

(eµ, eν) = ηµν .

The spinning particle has physical fields xµ = xµ(t) and θµ = θµ(t) of parity 0 and 1

respectively, and action

S =
1

2
ηµν

(

∂xµ∂xν − θµ∂θν
)

,

where ∂xµ and ∂θµ are the derivatives of the fields xµ and θµ with respect to the indepen-

dent variable t parametrizing the time-line of the particle. We denote by O the algebra

of functions in the variables xµ. There is a lot of flexibility in the choice of this algebra:

we may take polynomials in the variables xµ, infinitely-differentiable functions, analytic

functions, or even power series. All of our results will be independent of this choice. Thus,

A is the graded polynomial algebra over O generated by the remaining variables of the

theory, namely {∂ℓxµ}ℓ>0 ∪ {∂ℓθ, ∂ℓx+µ , ∂
ℓθ+µ }ℓ≥0.

We prefer to work in a first-order formulation of this theory, which has an additional

physical field pµ, with even parity, and the modified action

S = pµ∂x
µ −

1

2
ηµνθ

µ∂θν −
1

2
ηµνpµpν .
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The differential s on the fields and antifields of the theory is given by the formulas

sx+µ = −∂pµ sθ+µ = ηµν∂θ
ν sp+µ = ∂xµ − ηµνpν

sxµ = 0 sθµ = 0 spµ = 0 .

This differential is an example of a Koszul complex, and the cohomology H−k(A/I, s)

vanishes in negative degree, and in degree 0 is the graded polynomial ring in the functionals
∫

xµ dt,
∫

θµ dt and
∫

pµ dt. In particular, the axiom of Felder and Kazhdan is seen to hold.

In order to have a theory with local reparametrization invariance and local supersym-

metry, we may couple the spinning particle to supergravity. Of course, the gravitational

field in worldsheet dimension 1 has no dynamical content: but we will see that the ghosts

for the local supersymmetry of the theory considerably complicate matters.

The supergravity multiplet consists of a pair of physical fields e and ψ, of parity

p(e) = 0 and p(ψ) = 1. These fields, respectively a 1-form and a function, may be

identified with the graviton and the gravitino of D = 1 supergravity. The new action is

S[0] = pµ∂x
µ −

1

2
ηµνθ

µ∂θν −
1

2
eηµνpµpν + ψpµθ

µ.

The differential is now

s[0]e
+ = −

1

2
ηµνpµpν s[0]ψ

+ = −pµθ
µ

s[0]x
+
µ = −∂pµ s[0]θ

+
µ = ηµν∂θ

ν + ψpµ s[0]p
+µ = ∂xµ − eηµνpν + ψθµ .

The variation s[0]e
+ is familiar as the stress-energy tensor. The local gauge symmetries of

this model correspond to cohomology classes of s[0] at ghost number −1:

s[0]
(

∂e+ − ηµνx+µ pν
)

= 0 s[0]
(

∂ψ+ + ηµνθ+µ pν − x+µ θ
µ + 2e+ψ

)

= 0.

These cohomology classes are killed by the introduction of ghosts c and γ, with ghost-

number 1 and parity p(c) = 1 and p(γ) = 0, and the corresponding antifields, and the

addition to the action of the term

S[1] =
(

∂e+ − ηµνx+µ pν
)

c+
(

∂ψ+ + ηµνθ+µ pν − x+µ θ
µ + 2e+ψ

)

γ.

This adds the following terms to the differential:

s[1]c
+ = ∂e+ − ηµνx+µ pν s[1]γ

+ = ∂ψ+ + ηµνθ+µ pν − x+µ θ
µ + 2e+ψ

s[1]ψ
+ = 2e+γ

s[1]θ
+
µ = −x+µ γ s[1]p

+µ = −ηµνx+ν c+ ηµνθ+ν γ

s[1]x
µ = −ηµνpνc− θµγ s[1]θ

µ = −ηµνpνγ

s[1]e = −∂c+ 2ψγ s[1]ψ = ∂γ .

The variation s[1]c
+ reflects the conservation of the stress-energy tensor. The definition of

the action is completed by the addition of the term

S[2] = −c+γ2
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yielding a solution S = S[0] + S[1] + S[2] of the classical master equation

{
∫

S dt,

∫

S dt

}

= 0.

This adds the following terms to the differential, rendering it nilpotent:

s[2]γ
+ = −2c+γ s[2]c = γ2.

In this model, A is the graded polynomial algebra over O generated by the remaining

variables of the theory, namely

{∂ℓxµ}ℓ>0 ∪ {∂ℓθ, ∂ℓpµ, ∂
ℓe, ∂ℓψ, ∂ℓc, ∂ℓγ}ℓ≥0

∪ {∂ℓx+µ , ∂
ℓθ+µ , ∂

ℓp+µ, ∂ℓe+, ∂ℓψ+, ∂ℓc+, ∂ℓγ+}ℓ≥0.

As it happens, the action S satisfies not just the classical master equation but also the

quantum master equation, since for each field Φ of the model, we have

∂2S

∂Φ∂Φ+
= 0.

This is characteristic of quantum mechanics, where one does not meet with anomalies in

the course of quantization.

5 General covariance of the spinning particle

The Lie algebra of vector fields on the real line acts on the spinning particle by

reparametrization of the independent variable t. Reflecting this, this Lie algebra acts

on A by evolutionary vector fields: the vector field −ξ∂/∂t on the real line acts by the

evolutionary vector field

T (ξ)Φ = ξ

(

∂xµ
∂

∂xµ
+ ∂θµ

∂

∂θµ
+ ∂pµ

∂

∂pµ
+ ∂x+µ

∂

∂x+µ
+ ∂θ+µ

∂

∂θ+µ
+ ∂p+µ ∂

∂p+µ

+∂e
∂

∂e
+ ∂ψ

∂

∂ψ
+ ∂e+

∂

∂e+
+ ∂ψ+ ∂

∂ψ+
+ ∂c

∂

∂c
+ ∂γ

∂

∂γ
+ ∂c+

∂

∂c+
+ ∂γ+

∂

∂γ+

)

− ∂ξ

(

e
∂

∂e
+ ψ

∂

∂ψ
+ x+µ

∂

∂x+µ
+ θ+µ

∂

∂θ+µ
+ p+µ ∂

∂p+µ
+ ∂c+

∂

∂c+
+ ∂γ+

∂

∂γ+

)

.

(We may think of ξ either as a function of the independent variable t, in which case ∂ξ = ξ′,

or, more in the spirit of this article, as an auxiliary bosonic field.) In particular, T (1) = ∂.

Consider the expression

G = x+µ p
+µ −

1

2
ηµνθ+µ θ

+
ν + c+e+ γ+ψ.

The general covariance of the spinning particle is expressed through the formula

{{S, ξG}, f} = T (ξ)f,
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which follows from the identity

{S, ξG} = −ξ
(

x+µ ∂x
µ + θ+µ ∂θ

µ + p+µ∂pµ − ∂e+e+ c+∂c− ∂ψ+ψ + γ+∂γ
)

.

As a special case, we have

{{S,G}, f} = ∂f.

This corresponds to the commutator

[s, g] = ∂ (5.1)

among evolutionary vector fields, where g is the vector field g(f) = {G, f} associated to G:

g = p+µ ∂

∂xµ
− x+µ

∂

∂pµ
+ ηµνθ+µ

∂

∂θµ
+ c+

∂

∂e+
− e

∂

∂c
+ γ+

∂

∂ψ+
+ ψ

∂

∂γ
. (5.2)

We see that the total derivative ∂ acts trivially on the cohomology H∗(A, s).

6 The Batalin-Vilkovisky cohomology of the spinning particle: d = 0

In this section, we calculate the BV cohomology of the spinning particle when the matter

fields xµ, θµ, pµ are absent, that is, when the dimension d of the target space R
d is zero.

We will see that the cohomology groups are nontrivial in all negative degrees.

Consider the following elements of the localization Aγ of the complex A obtained by

inversion of γ:

Ak = (ψ+)k+1cγ−1 ∈ A−k−1
γ , k ≥ −1,

Bk =
1

k
(ψ+)kγ−1 ∈ A−k−1

γ , k ≥ 1.

The BV differentials of these expressions are in A itself:

αk = 2(k + 1)(ψ+)ke+c+ (ψ+)k+1γ ∈ A−k, k ≥ −1,

βk = (ψ+)k−1e+ ∈ A−k, k ≥ 1.

It follows that αk and βk are cocycles: it is not difficult to see that they are not coboundaries

in A itself.

Theorem. The cohomology group H−k(A, s) is spanned by the cocycles αk and βk, and

the cocycle 1 in degree 0.

Proof. The differential s is a quadratic perturbation of a Koszul differential, and its coho-

mology may be calculated by a spectral sequence with E0 equal to A with the differential

s0 obtained by retaining only linear terms in the formula for s:

s0c
+ = ∂e+ s0γ

+ = ∂ψ+ s0e = −∂c s0ψ = ∂γ.

The cohomology E1 of the differential s0 is a graded polynomial ring in generators E+ =
∫

e+ dt and Ψ+ =
∫

ψ+ dt, in degree −1, and C =
∫

c dt and Γ =
∫

γ dt, in degree 1.
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The differential s1 on E1 is given by the formulas

s1Ψ
+ = 2E+Γ s1C = Γ2.

A cochain z of degree −k for k > 0 has the following general form:

z = uk(Ψ
+)k + vk(Ψ

+)k−1E+

+
∞
∑

j=1

(

(Ψ+)k+j(uk+jΓ
j + Uk+jCΓ

j−1) + (Ψ+)k+j−1E+(vk+jΓ
j + Vk+jCΓ

j−1)
)

.

Setting s1z = 0, we see that Uk+j = Vk+j − 2(k + j)uk+j = 0, and that

z = uk+1αk + vkβk + s1

(

∞
∑

j=2

uk+j(Ψ
+)k+jCΓj−2 +

∞
∑

j=1

vk+j

2(k + j)
(Ψ+)k+jΓj−1

)

.

This shows that if k > 0, H−k(A, s) is spanned by αk and βk.

A cochain z of degree 0 has the following general form:

z = u0 +
∞
∑

j=1

(

(Ψ+)j(ujΓ
j + UjCΓ

j−1) + (Ψ+)j−1E+(vjΓ
j + VjCΓ

j−1)
)

.

Setting s1z = 0, we see that

z = u0 + u1α0 + s1

(

−

∞
∑

j=2

uj(Ψ
+)kCΓj−2 +

∞
∑

j=1

vj
2k

(Ψ+)kΓj−1

)

.

This shows that H0(A, s) is spanned by 1 and α0. Similar calculations show that H1(A, s)

is spanned by α−1, and that Hℓ(A, s) vanishes for ℓ > 1.

Let g be the vector field (5.2), which in the present setting equals

g = c+
∂

∂e+
− e

∂

∂c
+ γ+

∂

∂ψ+
+ ψ

∂

∂γ

and consider the transgressions of the cocycles αk and βk:

α̃k = g(αk−1) ∈ A−k, k ≥ 0,

β̃k = g(βk−1) ∈ A−k, k ≥ 2.

Corollary. The cohomology group H−k(F , s) is spanned by the cocycles
∫

αk dt,
∫

βk dt,
∫

α̃k dt and
∫

β̃k dt, and the cocycle
∫

1 dt in degree 0.

Proof. We consider the long exact sequence (2.2). By (5.1), the morphisms

∂ : H−k(A, s) → H−k(A, s)

vanish. This implies that the classes
∫

αk dt and
∫

βk dt and their transgressions
∫

α̃k dt

and
∫

β̃k dt span H−k(F , s), together with
∫

1 dt in degree 0.
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It turns out that the graded Lie bracket on H∗(F , s) is nontrivial.

Theorem. We have the following nonzero graded Lie brackets in H∗(F , s):

{α̃k, αℓ} = (ℓ− k)αk+ℓ {α̃k, α̃ℓ} = (ℓ− k)α̃k+ℓ

{α̃k, βℓ} = (2k + ℓ+ 1)βk+ℓ {α̃k, β̃ℓ} = (2k + ℓ+ 1)β̃k+ℓ

All other brackets are zero.

Proof. By (5.1), we see that

{α̃k, αℓ} = −s{g(Ak), αℓ}+ ∂{Ak, αℓ} = −s{g(Ak), αℓ},

since {Ak, αℓ} = 0. We have

{g(Ak), αℓ} = {(k + 1)(ψ+)kγ+cγ−1 − (ψ+)k+1eγ−1 + (ψ+)k+1cψγ−2, αℓ}

= (k + 1)Ak+ℓ+1 − 2(ℓ+ 1)Ak+ℓ+1 + (ℓ+ 1)Ak+ℓ+1

= (k − ℓ)Ak+ℓ,

and the formula for {α̃k, αℓ} follows. Applying the vector field g to both sides of the

formula for {α̃k, αℓ}, we obtain the formula for {α̃k, α̃ℓ}.

Similarly, {α̃k, βℓ} = −s{gAk, βℓ}. Since

{g(Ak), βℓ} = {(k + 1)(ψ+)kγ+cγ−1 − (ψ+)k+1eγ−1 + (ψ+)k+1cψγ−2, βℓ}

= −(ψ+)k+ℓγ−1 − (ℓ− 1)(ψ+)k+ℓ−1e+cγ−2,

the formula for {α̃k, βℓ} follows. Finally, applying the vector field g to both sides of the

formula for {α̃k, βℓ}, we obtain the formula for {α̃k, β̃ℓ}. It is easily seen from the explicit

formulas that all of the remaining brackets vanish.

7 The Batalin-Vilkovisky cohomology of the spinning particle: d > 0

The cohomology classes αk and βk which we constructed in the previous section have

generalizations for the spinning particle in a positive-dimensional target, where d > 0.

Here, we discuss the case of a flat target: we generalize our results to targets with nontrivial

(pseudo-)Riemannian metric, and background magnetic field, in a forthcoming paper.

Although the formulas for the cohomology classes of negative degree are quite com-

plicated, they all involve an analogue of the volume form for R
d constructed from the

field θµ:

Ω = θ1 . . . θd.

Since (Ω)2 = 0 when d > 0, it turns out that the Lie bracket on the cohomology H∗(F , s)

is simpler in the general case.

Let ιµ = ∂/∂θµ. If v is a vector with components vµ, define

ι(v) = ηµνvµιν .
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In particular, [s, ι(v)] = ι(s). Note that sΩ = ι(p)Ωγ. If f ∈ O, denote by grad f the vector

with components ∂f/∂xµ.

Given a function f of the coordinates xµ and k ≥ 0, consider the following elements

of A−k−1
γ :

Ak(f) = (ψ+)k+1cfΩγ−1,

Zk(f) = (k + 1)(ψ+)kfΩγ−1 + (ψ+)k+1cι(grad f)Ωγ−1.

The BV differentials of these expressions are in A−k:

αk(f) = s(Ak(f)), ζk(f) = s(Zk(f)).

It follows that they are are cocycles in A: we will see that they represent nontrivial coho-

mology classes.

There are also cocycles in degrees 0 and 1 which have no analogue in the case where

d = 0. Let R be the quotient of the differential graded superalgebra A by the differential

ideal generated by the fields

{e, ψ, c} ∪ {x+µ , θ
+
µ , p

+µ, e+, χ+, c+, γ+} .

Denote by Pµ, Θ
µ, Xµ and Γ the zero-modes

∫

pµ dt,
∫

θµ dt,
∫

xµ dt and
∫

γ dt respectively.

Then R is the graded superalgebra

O[Θµ,Pµ,Γ]/
(

PµΘ
µ, ηµνPµPν ,Γ

2
)

with differential QΓ, where Q is the differential operator

Q = ηµνPµ
∂

∂Θν
+Θµ ∂

∂Xµ
.

We may think of R as the ring of functions whose spectrum is a supersymmetric analogue

of the light-cone. We will denote Θ1 . . .Θd ∈ R0 by the same letter Ω as in A0.

There is an embedding ξ of H∗(R) into H∗(A, s), defined by mapping a function u of

the variables {Xµ,Θµ,Pµ} to the corresponding function ξ0(u) of the variables {xµ, θµ, pµ}

in A. If Qu = 0, it follows that ξ0(u) is a cocycle.

Since (PµΘ
µ)ξ0(u) = −s(ψ+ξ0(u)) and (ηµνPµPν)ξ

0(u) = −2s(e+ξ0(u)) are cobound-

aries, we see that ξ0 induces a map fromH0(R) toH0(A, s). Note that ξ0(ι(P )Ω) = −ζ0(1).

We may also map a function v of the variables {Xµ,Θµ,Pµ} to the 1-cocycle

ξ1(v) = γv + cQv.

By the formulas

ξ1(Qv) = −s(ξ1(v)),

and

ξ1
(

PµΘ
µv

)

= s
(

2e+cξ0(v)− ψ+ξ1(v)
)

ξ1
(

ηµνPµPνv
)

= −2 s
(

e+ξ1(v)
)

,

we see that ξ1 induces a map from H1(R) to H1(A, s).
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Theorem.

H−k(A, s) =



































{

∫ (

αk(f) + ζk(g)
)

dt
∣

∣

∣
f, g ∈ O

}

k > 0,
{

∫ (

ξ0(u) + α0(f) + ζ0(g)
)

dt
∣

∣

∣
u ∈ H0(R), f ∈ O, g ∈ O/C

}

k = 0,
{

∫

ξ1(v) dt
∣

∣

∣
v ∈ H1(R)

}

k = −1,

0 k < −1.

Proof. The proof uses a filtration on A, defined by assigning to the fields the following

filtration degrees:

Φ deg(Φ) deg(Φ+)

x 0 2σ

θ σ σ

p 2σ 0

e 2− 2σ 4σ − 1

ψ 2− σ 3σ − 1

c 2− 2σ 4σ − 1

γ 2− σ 3σ − 1

We will see that the spectral sequence converges if σ equals 1 or 0. In the former case, the

filtration degree is positive, while in the second case, the complementary degree is negative.

The choice σ = 0 is convenient in a sequel to this paper, where we discuss the case of a

non-negative magnetic field.

The filtration degrees of the terms of the BV differential s are independent of σ, and

lie between 0 and 2. The differential s0 on E0 is the following Koszul differential:

s0c
+ = ∂e+ s0γ

+ = ∂ψ+

s0x
+
µ = −∂pµ s0θ

+
µ = ηµν∂θ

ν s0p
+µ = ∂xµ s0e

+ = 0 s0ψ
+ = 0

s0x
µ = 0 s0θ

µ = 0 s0pµ = 0 s0e = −∂c s0ψ = ∂γ

s0c = 0 s0γ = 0 .

We see that the cohomology E1 of the differential s0, is a graded polynomial ring in the

following generators:

gh generators

−1 E+ =
∫

e+ dt, Ψ+ =
∫

ψ+ dt

0 Xµ =
∫

xµ dt, Θµ =
∫

θµ dt, Pµ =
∫

pµ dt

1 C =
∫

c dt, Γ =
∫

γ dt

The differential s1 on E1 is given by the formulas

s1E
+ = −

1

2
ηµνPµPν s1Ψ

+ = −PµΘ
µ.
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A cochain in E1 has the general form

z =
∑

j>0

(Ψ+)j−1E+aj +
∑

j≥0

(Ψ+)jbj ,

where aj , bj ∈ O[Θµ,Pµ,C,Γ]. The differential of z equals

s1z =
∑

j>0

j(Ψ+)j−1E+
(

PµΘ
µ
)

aj+1−
∑

j≥0

(Ψ+)j
(

(j + 1) (PµΘ
µ) bj+1 +

(

1

2
ηµνPµPν

)

aj+1

)

.

The equations

j
(

PµΘ
µ
)

bj = −

(

1

2
ηµνPµPν

)

aj (7.1)

imply the vanishing of s1z. To see this, multiply both sides of the equation (7.1) by PµΘ
µ.

The left-hand side vanishes: since ηµνPµPν is not a zero-divisor, it follows that

(

PµΘ
µ
)

aj = 0. (7.2)

Associate to f ∈ O[C,Γ] the cocycles in E1

Aj(f) = 2j(Ψ+)j−1E+f Ω− (Ψ+)jfι(P)Ω, Bj(f) = (Ψ+)jf Ω.

Since the operation of multiplication by PµΘ
µ may be interpreted as the differential

of a Koszul complex, it has kernel spanned by elements of the form
(

PµΘ
µ
)

u, where

u ∈ O[Θµ,Pµ,C,Γ], and f Ω, where f ∈ O[C,Γ]. Thus, we may decompose a solution aj
of (7.2) as a sum

aj =
(

PµΘ
µ
)

uj + 2jfj Ω,

where uj ∈ O[Θµ,Pµ,C,Γ] and fj ∈ O[C,Γ]. This allows us to rewrite the cocycle z as

z = b0 +
∑

j>0

Aj(fj) +
∑

j>0

(Ψ+)j
(

bj + fjι(P)Ω +
(

ηµνPµPν

)

uj

)

+ s1
∑

j>0

2(Ψ+)jE+uj .

Applying (7.1), we see that

(

PµΘ
µ
)(

bj + fjι(P)Ω +
(

ηµνPµPν

)

uj
)

= 0.

Hence there is a decomposition

bj + fjι(P)Ω +
(

ηµνPµPν

)

uj = (j + 1)
(

PµΘ
µ
)

vj + gj Ω,

where gj ∈ O[C,Γ]. This allows us to rewrite the cocycle z as

z = b0 +
∑

j>0

(

Aj(fj) + Bj(gj)
)

+ s1
∑

j>0

(

2(Ψ+)jE+uj + (Ψ+)j+1vj

)

.

We conclude that a cohomology classes in E2 = H∗(E1, s1) take the general form

z = [b0] +
∑

j>0

(

[Aj(fj)] + [Bj(gj)]
)

,
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where [b0] is an element of the ring

O[Θµ,Pµ,C,Γ]

/(

PµΘ
µ,

1

2
ηµνPµPν

)

.

The differential s2 on E2 is induced by the graded differential taking the following

values on the generators of E1:

s2E
+ = 0 s2Ψ

+ = 2E+Γ

s2X
µ = −ηµνPνC−ΘµΓ s2Θ

µ = −ηµνPνΓ

s2C = Γ2 s2Γ = 0 .

We have

s2(Bj(f)) = Aj(Γf)− s1

(

(Ψ+)j+1Cι(grad f)Ω

j + 1

)

.

This establishes the formula s2[Bj(f)] = [Aj(Γf)] and s2[Aj(f)] = 0 in E2. Thus, the

subcomplex of E2 spanned by

{

[Ak(f)], [Bk(f)]
∣

∣ k > 0, f ∈ O[C,Γ]
}

contributes to E3 a summand spanned by

{

[Ak(f)]
∣

∣ k > 0, f ∈ O[C]
}

.

These elements of E3 lift to the cocycles αk(f) and ζk(f) in A, showing that these classes

in E3 all survive to the last page E∞ of the spectral sequence.

It remains to calculate the contribution of the elements of the form [b0] ∈ E2 to E3.

There is a quasi-isomorphism between the complexes

(

O[Θµ,Pµ,C,Γ]/(PµΘ
µ, ηµνPµPν), s2

)

and R, induced by sending the elements C and Γ2 to zero and Γ to −Γ. Thus the subspace

of E2 consisting of elements of the form [b0] contributes a copy of the cohomology H∗(R)

of R to E3. These classes lift to the summand of H∗(A, s) spanned by the classes

{ξ0(u) | u ∈ H0(R)} ⊕ {ξ1(v) | v ∈ H1(R)},

completing the proof of the theorem.

We denote the transgressions of the cocycles αk(f), ζk(f), ξ
0(u) and ξ1(v) obtained

by applying the vector field g by α̃k(f), ζ̃k(f), ξ̃
0(u) and ξ̃1(v). The following corollary

follows by applying the long-exact sequence (2.2).
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Corollary.

H−k(F , s) =











































































{

∫ (

αk(f) + ζk(g) + α̃k(f̃) + ζ̃k(g̃)
)

dt
∣

∣

∣
f, g, f̃ , g̃ ∈ O

}

k > 1,
{

∫ (

ξ̃−1(u) + α1(f) + ζ1(g) + α̃1(f̃) + ζ̃1(g̃)
)

dt
∣

∣

∣

u ∈ H0(R/C), f, g, f̃ ∈ O, g̃ ∈ O/C
}

k = 1,
{

∫ (

ξ0(u) + ξ̃0(v) + α0(f) + ζ0(g)
)

dt
∣

∣

∣

u ∈ H0(R), v ∈ H1(R), f ∈ O,O/C
}

k = 0,
{

∫

ξ1(v) dt
∣

∣

∣
v ∈ H1(R)

}

k = −1,

0 k < −1.

In the remainder of this section, we calculate some examples of graded Lie brackets

among the cohomology groups H∗(F , s). All of the brackets among classes in the image of

H∗(A, s) → H∗(F , s) vanish. As for brackets among the classes ξi(u) and ξ̃i(u), we have

{ξi(u), ξj(v)} = 0, and

{ξ̃i(u), ξj(v)} = ξi+j({u, v}), {ξ̃i(u), ξ̃j(v)} = (−1)p(u)ξ̃i+j({u, v}),

where

{u, v} = (−1)p(u)
∂u

∂xµ
∂v

∂pµ
− (−1)p(u)

∂u

∂pµ

∂v

∂xµ
− ηµν

∂u

∂θµ
∂v

∂θν
.

Here, we understand ξk(u) and ξ̃k(u) to be 0 when k > 1.

We may also calculate the bracket of α̃k(f) with the classes αℓ(g), ζℓ(g), ξ
i(u), taking

the calculation in the case d = 0 as the model. We have

g(Ak(f)) = (k + 1)(ψ+)kγ+cfΩγ−1 − (ψ+)k+1efΩγ−1 − (ψ+)k+1(p+ · grad f)cΩγ−1

+ (ψ+)k+1cfι(θ+)Ωγ−1 + (−1)d(ψ+)k+1cfΩψγ−2.

Using this formula, it is not hard to show that {g(Ak(f)), αℓ(g)} = {g(Ak(f)), αℓ(g)} = 0,

at least when d > 2, and hence that {α̃k(f), αℓ(g)} = {α̃k(f), ζℓ(g)} = 0. When d ≤ 2,

the brackets {g(Ak(f)), αℓ(g)} and {g(Ak(f)), αℓ(g)} are coboundaries in the complex A,

leading to the same conclusion.
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